

 Swansea University E-Theses ___

Development of a parallel CFD solver with application to arterial

flows.

Kapoor, Amarpal Singh

 How to cite: ___
Kapoor, Amarpal Singh (2014) Development of a parallel CFD solver with application to arterial flows.. thesis,

Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42216

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42216
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Swansea University
Prifysgol Abertawe

D o c t o r o f P h il o s o p h y

Developm ent of a Parallel CFD
solver w ith application to arterial

flows

Amarpal Singh Kapoor
MRes., B.E

Thesis submitted to Swansea University in fulfilment of the
requirements for the Degree of Doctor of Philosophy

December, 2014

ProQuest Number: 10797918

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10797918

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Declaration and statem ents

DECLARATIO N

This work has not previously been accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

S igned.. (candidate)

D a te

STATEM ENT 1

This thesis is the result of my own investigations, except where otherwise stated.

Where correction services have been used, the extent and nature of the correction

is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibli­

ography is appended.

Signed... (candidate)

D a te2 .3 --. U.. .-r:. A S ..

STATEM ENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying

and for inter-library loan, and for the title and summary to be made available to

outside organisations.

Signed.. (candidate)

D a te 2*2>..:r...J^..rr...\5.......................................

LIBRARY ̂

£

Acknowledgements

My life during the tenure of this PhD has been an experience packed with lessons

that will continue to guide me throughout. These lessons were made possible by

all the wonderful people who witnessed me from an external frame of reference

and provided me with insightful suggestions, motivation, feedback and courage.

Reaching the end of my PhD, I would like to thank all of them and express my

kindest gratitude, I hold towards them all.

I would like to thank my supervisors, Dr. Raoul van Loon and Prof. Perumal

Nithiarasu, for their kind supervision and constant steering in the right direc-

tion(s). This research would not have been possible without their vision, support

and guidance. The subject of research undertaken was so vast and the method­

ologies and tools developed have such a bright scope, that it is hoped that future

collaborative work will result in more valuable and useful insights.

I would also like to express my gratitude towards my parents, who have untiringly

motivated me during times of despair and supported me in every possible way.

Thank you, for making me the package, that I have come to become. A special

word goes out to my sister, who has accompanied me during this international

endeavour and infused a vibrant and lively environment around. Thank you for

walking along this journey that will be cherished with extreme fondness, upon

reflecting back in a few years time. I would like to also thank all my friends and

colleagues for their kind communications from far and close.

The Zienkiewicz scholarship from the college of Engineering, Swansea Univer­

sity, that realized this foreign endeavour for me, is heavily acknowledged. The

computational resources that were made available for the purpose of this research,

from Barcelona Supercomputing Center, Barcelona, Spain (HPC Europa 2) and

High Perform ance Com puting Wales, Wales, UK are greatly acknowledged. The

sim ulations o f this research would not have been possible without the support from

these supercomputing centres. Also, the numerous support tickets that were raised

with these centres have contributed in solving problems on multiple occasions. I

would also like to thank the quick P E T Sc team fo r all their technical support and

knowledge shared in regard to the high performance com putations o f algebraic

system s.

I would also like to thank Dr. Igor Sazonov, Swansea University, fo r providing

patient specific meshes and the velocity profile generator.

I ’m grateful to all m y well wishers, from the entire team at P E S Institu te o f

Technology, Bangalore, India, fo r their teachings and blessings.

Final ly , and as always,

To the creator o f everything, f o r everything!

I HPr ®
a s — . HPC-Europa2
L>*m u-.-m . dm . . C E C

Lipi—
S w ansea University VVBLES. [VMnu P E ^ I t j ^ S
Pritysgol A bertaw e " ET.

Summary

In this research, the finite element method (FEM) was used to solve the non­
linear, incompressible, transient, three dimensional Navier-Stokes equations in
their non-conservative form. Linear tetrahedron elements were employed with the
elegant, equal order interpolation for both pressure and velocity. The characteris­
tic based split scheme was formulated in a fully implicit manner to circumvent the
time step restrictions of the classical explicit formulations. The monolithic (single
step, fully coupled solution procedure for pressures and velocity) form of the CBS
scheme was also derived and its suitability was positively demonstrated. Casting
the CBS scheme in a monolithic framework, results in the generation of a pres­
sure stabilization term in the mass conservation equation, thereby circumventing
the LBB restriction by the elimination of the zero pressure block. An account of
all the steps involved in discretizing the Navier-Stokes equations (both in split
and monolithic frameworks) was presented in meticulous detail, which included
the derivation of the convective and pressure stabilization terms, linearization of
the non-linear terms and the consequent derivation of the highly efficient analyt­
ical jacobian matrix, along with the temporal and spatial discretizations of the
corresponding terms.

The monolithic and the split version of the CBS scheme were integrated into a
parallel, scalable and extensible Fortran90 software called IFENs. The develop­
ment of IFENs started during the course of this research and all of its components
have been designed and implemented by the author of this thesis. Multi proces­
sor parallelism was achieved using the Intel® implementation of the most widely
used/preferred, Message Passing Interface (MPI) standard. The parallel support
needed for the use of a variety of parallel, linear, iterative solvers belonging to
the Krylov subspace family (e.g. GMRES and its variants, CG, BiCG, BiCG-
stab, etc.), parallel non linear solvers belonging to the Newton-Krylov family (line
search newton, trust region newton, nonlinear GMRES, etc.) and parallel precon­
ditioners (incomplete LU, Additive Shwarz Method - ASM, algebraic multigrid,
etc.), was provided by the incorporation of PETSc into IFENs. PETSc is a state
of the art, non-trivial toolkit, which represents a collection of several parallel
libraries useful in high performance scientific computing. Keeping in mind the
specific requirements of IFENs, a custom mesh partitioner was implemented. It
operated on meshes that were renumbered using bandwidth reducing algorithms
like Revere Cuthill Mckee. The possibility of using established domain decom­
position libraries like ParMETIS was explored and demonstrated to be counter
productive for the demands of this research.

v

After the preliminary testing and validation of the procedures adopted before
and during the execution of IFENs, large, high definition domains representa­
tive of human arteries (specifically, carotid bifurcations, found in the neck) were
considered and the complete incompressible set of Navier-Stokes equations were
solved for pressure and velocity fields. During the tenure of this research more
than 1000 recorded parallel test cases were executed to test various components of
IFENs, as well as various simulations representative of a wide variety of problems.
IFENs can easily handle meshes with tens of millions of elements. The largest
mesh used for the purpose of this research contained 14.58 million tetrahedrons
and 2.489 million nodes, which on average required just 7 minutes per timestep,
while executing the classical split framework of the CBS scheme. Results from
the simulation of 9 carotid meshes, representative of 4 carotid geometries were
presented and found to be in good agreement with the available ultrasound data.
The flow fields were analysed and post processed using different techniques for
each case. The haemodynamic wall parameters like time averaged wall shear
stress and oscillatory shear index were calculated and mapped onto the corre­
sponding boundary nodes. The region in the carotid bifurcation susceptible to
the deposition of plaques and consequent stenosis were pointed out and other
anomalies were highlighted.

Contents

1 Introduction 1

1.1 B ackground ... 1

1.2 Brief historical overview and applications... 2

1.3 Finite Element M eth o d .. 3

1.4 Aims and objectives ... 8

1.5 Motivation - a biomedical view ... 9

1.5.1 Problem s ize .. 11

1.6 Assum ptions... 11

1.7 A note on application of parallel computing to arterial flows . . . 12

1.8 Thesis o u tl in e .. 13

2 Governing Equations 17

2.1 In troduction ... 17

2.2 Navier-Stokes equations .. 18

2.3 Characteristic Based Split (CBS) algorithm 20

2.3.1 Time d iscre tization ... 20

2.3.2 The s p li t ... 29

vii

2.3.3 Spatial d iscretization .. 31

2.4 Monolithic CBS scheme ... 35

2.5 Summary ... 38

3 C om putational Framework 39

3.1 In troduction ... 39

3.2 Parallelization.. 40

3.2.1 M P I .. 42

3.2.2 P E T S c .. 46

3.2.3 Domain decom position... 53

3.2.4 PETSc matrix p rea lloca tion ... 61

3.3 Code overview.. 62

3.4 Operation sequence.. 69

3.4.1 M esh in g ... 70

3.4.2 Generation of boundary condition d a t a 71

3.4.3 Job s e t u p .. 72

3.4.4 Post-processing.. 74

3.5 PETSc specific d e t a i l s ... 74

3.6 S u m m a ry ... 75

4 Benchm arking 76

4.1 In troduction ... 76

4.2 Mesh renumbering ... 76

4.3 Iterative linear s o lv e r s .. 78

viii

4.4 Parallelization.. 82

4.5 Number of processors... 84

4.6 Schemes and c o d e ... 86

4.6.1 Single lid driven c a v ity ... 88

4.6.2 Backward facing s t e p .. 89

4.6.3 Flow past a c y l in d e r .. 91

4.6.4 Flow through a prismatic p ip e .. 93

4.6.5 S calab ility ... 97

4.7 Monolithic treatment for p re ssu re ..104

4.7.1 Flow through pipe: Monolithic CBS framework for solving

NS e q u a t io n s ..106

4.8 Summary ..107

Patient Specific G eom etries 109

5.1 In troduction ...109

5.2 Carotid a n a to m y ...109

5.3 Boundary c o n d itio n s ...110

5.4 Mesh convergence... 113

5.5 Geometry 2 ...124

5.5.1 Flow field - Geometry 2 ... 125

5.6 Geometry 3 ... 131

5.6.1 Flow field - Geometry 3 ... 132

5.7 Geometry 4 ...137

5.7.1 Flow field - Geometry 4 ...138

5.8 Summary ...145

6 Conclusions and Future Research 150

A Sam ple M PI code explained 154

B Sam ple PE TSc code explained 160

C D etailed formulation of N avier-Stokes Equations 164

C.l Spatial discrertization of step 1 ... 164

C.2 Spatial discrertization of step 2 ... 174

C.3 Spatial discrertization of step 3 ... 177

C.3.1 Monolithising step ..180

C.4 Monolithic equations without in d ic e s ... 182

C.5 Non-linear context .. 184

C.6 D efinitions...185

D C SR m atrix and preallocation exam ple 187

D.l CSR representation ...187

D.2 P re a llo c a tio n .. 189

E Closed form expressions 191

E .l Integral of shape fu n c tio n s ... 191

E.2 Shape function deriv a tiv es ..192

Bibliography 196

x

List of Figures

2-1 Visualizing the Characteristic-Galerkin p ro c e d u re 22

3-1 Character-Processor mapping for the MPI sample program 44

3-2 Hierarchical organisation o f P E T S c libraries .. 47

3-3 Sample linear system: Elements of KSP along with parallel object

p a r titio n in g .. 51

3-4 Types of mesh partitioning ... 53

3-5 Left: PETSc matrix partition projected on the mesh. Right:

ParMETIS p a r t i t i o n .. 56

3-6 Slice extraction from various sections of the domain in Figure 3-5 56

3-7 Comparison of PETSc and ParMETIS partition with RCM pre­

processing 57

3-8 Sparsity pattern of the finite element system matrix. Left: Before

RCM renumbering. Right: After RCM renum bering....................... 58

3-9 Partition renumbering scheme on 4 patches. (Left) PETSc parti­

tion (Right) ParMETIS p a r t i t io n ... 58

3-10 Sparsity pattern of the partitioned renumbered finite element sys­

tem matrix .. 59

xi

3-11 Renumbering a carotid mesh, (a) Sparsity pattern before and after

renumbering (b) Patch co n to u rs .. 61

3-12 Overview of the parallel multi purpose Navier-Stokes Solver . . . 63

3-13 Patient specific meshing [134]: (a) CT scan of a carotid artery (b)

Segmentation using IDM-GPF method (c) Surface meshing (d)

Surface mesh refinement (e) Generation of boundary layers near

the walls (f) Volume meshing (g) Final mesh, with mesh visible in

the lower h a l f ... 71

3-14 Typical velocity profiles for carotids [134]: (a) 2D inlet velocity

profiles as a function of space and time (b) 3D peak velocity profiles

at the b o u n d aries .. 72

4-1 Mesh used for checking renumbering .. 77

4-2 Comparison of pressures and velocity magnitude contours and stream-

traces at steady state. (a,c) Gmsh numbering (b,d) RCM renum­

bering .. 78

4-3 Checking renumbering (a) Velocity magnitudes (b) Pressure . . . 79

4-4 Comparison of direct and iterative solutions at steady state, (a)

Left - Mesh; Centre - Velocity magnitudes in the X Y plane at

Z = 0.25cm with the iterative solver; Right - Wall pressure ob­

tained with the iterative solver, (b) Left - Comparison of velocity

and pressure at the bifurcation; Center - Velocity magnitudes at

corresponding locations with a direct solver; R ight - Pressure con­

tours on the walls as obtained with the direct solver................ 80

4-5 Inputs for validating parallelization. (a) Surface mesh (b) Inlet

section depicting structured refinement at the walls (c) Transient

velocity profile imposed at the inlet p lan e 82

xii

4-6 Comparison of solutions obtained in serial and parallel, (a) Serial

(b) P a r a l le l .. 83

4-7 Transient solution tracking at nodes 4033 (located at approxi­

mately the central exit region) and 7433 (located in the mid length

region, close to wall).. 84

4-8 Change in solution as a function of number of processors, (a)

Velocity error measure (b) Pressure error m e asu re 85

4-9 Illustration of the effect of over partitioning the mesh, on wall time 86

4-10 3D Lid driven cavity m e s h .. 87

4-11 3D Lid driven cavity at Re = 1 0 0 .. 87

4-12 Lid driven cavity at Re = 100: (a) Horizontal velocity contours (b)

Vertical velocity contours (c) Pressure contours (d) Streamtrace

plot of the velocity field .. 88

4-13 3D Lid driven cavity at Re = 400 ... 90

4-14 Lid driven cavity at Re=400: (a) Horizontal velocity contours (b)

Vertical velocity contours (c) Pressure contours (d) Streamtrace

plot of the velocity field .. 91

4-15 Backward facing step at Re = 229. Top: Mesh used. Centre:

Horizontal velocity contours. Bottom: Pressure contour lines . . . 92

4-16 Validating the velocity distributions at various sections (up to a

length of 14.586L) for a backward facing step at Re = 229 93

4-17 Mesh used for flow past a cylinder... 94

4-18 Flow past a cylinder: Horizontal velocity co n to u rs 94

4-19 Flow past a cylinder: Vertical velocity c o n to u r s 95

4-20 Flow past a cylinder: Pressure con tours 95

xiii

4-21 Flow past a cylinder: (a) Streamlines imposed on horizontal ve­

locity contour in the vicinity of the cylinder (b) Time history of

vertical velocity at a central exit n o d e ... 96

4-22 Flow through a prismatic pipe: Problem definition and computa­

tional d o m a in ... 97

4-23 Flow through a prismatic pipe: Pressure and sectional velocity

c o n to u rs ... 97

4-24 Flow through a prismatic pipe: Velocity profiles at various sections

along the pipe le n g th .. 98

4-25 Flow through a prismatic pipe: Pressure distribution along the

pipe length in the test section of the p ip e .. 99

4-26 Low range scalability results: Wall time and speedup comparisons 101

4-27 High range scalability results: Wall time and speedup comparisons 103

4-28 Testing the single equation framework of IFENS by solving the

poisson equation on a 3D cuboidal domain: (a) Contour plot with

the mesh superimposed (b) Comparison of the numerical and an­

alytical solutions along several polylines .. 105

4-29 Testing the monolithic CBS scheme implemented within IFENS

for the problem of flow through a prismatic pipe at Re = 100: (a)

Sectional velocity magnitude contours (b) Wall pressure contours 107

5-1 Location of carotid bifurcation in the neck [94]. Legend: (1) Bra­

chiocephalic trunk (4) Right Common carotid artery (5) Right in­

ternal carotid artery (7) Left internal carotid artery (8) Left exter­

nal carotid artery (9) Left common carotid artery (11)Aorta . . . I l l

xiv

5-2 Geometry 1: Truncated carotid mesh used for assessing mesh con­

vergence .. 115

5-3 Mesh boundary layers, as visible in the plan view of the ECA: (a)

No boundary layers (b) 3 boundary layers (c) 7 boundary layers

(d) 8 boundary layers (e) 9 boundary layers (f) 10 boundary layers

(g) 11 boundary layers (i) 12 boundary layers 116

5-4 Cardiac cycle: velocity profile as a function of time (the filled

circles show the time points of interest for the plots of Figure 5-7) 116

5-5 Convergence of velocity magnitudes as a function of boundary lay­

ers for the geometry of Figure 5 - 2 ... 118

5-6 Convergence of pressure as a function of boundary layers for the

geometry of Figure 5 - 2 ...119

5-7 Comparison of velocity fields as a function of time, in an approxi­

mate central, 2D axial slice: (a) Mid acceleration (t=0.0882 s), (b)

Peak flow (t=0.1215 s), (c) Mid deceleration (t=0.1882 s), (d) End

deceleration (t=0.277 s), (e) Mid acceleration during flow reversal

(t=0.293 s), (f) Peak reversal (t=0.3039 s), (g) Remnant flow start

(t=0.347 s), (h) Mid remnant flow (t=0.459 s) and (i) Remnant

flow end(t=0.6078 s) ..120

5-8 Instantaneous pressure fields: (a) Peak forward flow (b) Peak re­

versed flow 121

5-9 (L) Normalised time averaged wall shear stress (R) Oscillatory

shear i n d e x .. 123

5-10 Illustration of flow skewing at the ECA close to the bifurcation . . 124

5-11 Mesh 2: (L) Anterior (R) P o s te r io r ...126

5-12 Ultrasound measurements for geometry 2 127

xv

5-13 Sectional velocity profiles for geometry 2 at various time instants:

(a) Mid acceleration (b) Peak flow (c) Mid deceleration (d) Mini­

mum remnant flow (e) Peak remnant flow (f) Mid remnant flow . 128

5-14 Streamtraces of secondary flow revealing the flow disturbances. . . 129

5-15 Streamtrace plots coloured by velocity magnitudes: (a) Peak flow

(b) Lowest flow (c) Peak remnant f l o w ... 129

5-16 Maps of time averaged normalised WSS and OSI: (a,c) Posterior

(b,d) A n te rio r ... 130

5-17 Sectional velocity profiles for geometry 3 at mid acceleration . . . 132

5-18 Sectional velocity profiles for geometry 3 at peak f lo w 133

5-19 Sectional velocity profiles for geometry 3 during the stage of lowest

flow ..133

5-20 Sectional velocity profiles of the secondary flow field: (a) Mid ac­

celeration (b) Peak flow (c) Least flow (d) Peak remnant flow . . . 135

5-21 Bifurcation region of geometry 3: sectional velocity profiles with

streamtraces (surface lines, volume lines and volume rods) super­

imposed, during mid d ece le ra tio n ... 136

5-22 Time average WSS (normalized) and OSI maps for geometry 3:

(a,c) Anterior (b,d) Posterior ..138

5-23 Geometry 4 (with pressure contours during mid acceleration phase):

(a) Front view (b) Top v i e w ... 139

5-24 Vector plots of secondary field for Geometry 4 in the ECA (mid

length section): (a) Mid acceleration (b) Peak flow (c) Mid decel­

eration (d) Least flow (e) Peak remnant f lo w ..140

xvi

5-25 Sectional velocity profiles for primary flow field of geometry 4: (a)

Mid acceleration (b) Peak flow (c) Mid deceleration (d) Least flow

(e) Peak remnant f l o w ... 141

5-26 Geometry 4: Evolution of recirculation zone during the phase of

least flow (Left branch is the ICA) .. 143

5-27 Streamtraces for geometry 4: (a) Mid acceleration (b) Peak flow

(c) Mid deceleration (d) Least flow (e) Peak remnant flow 144

5-28 Time average WSS (normalized) and OSI maps for geometry 4:

(a,c) Anterior (b,d) Posterior ..145

xvii

List of Tables

3.1 Harmonics used for the construction of the velocity profile in 3-14 73

4.1 Iteration history (T :T im e s tep ; N K i:N ew ton K ry lo v -ite ra tio n s . F o r m a t= (i , j) i= n e w to n i te r a ­

tio n s a n d j = c u m u la tiv e k ry lov ite ra t io n s in i n ew to n ite ra t io n s ; K i:K ry lo v i te ra t io n s) 1 0 2

4.2 Iteration history with 1 to 32 processors: Time steps 6 to 10 . . . 102

5.1 Harmonics used for the construction of the velocity profile used for

assessing convergence..117

D.l Matrix preallocation data ... 190

xviii

Chapter 1

Introduction

1.1 Background

In the modern times, mathematical modellinghas come to become an integral part

of various areas related to engineering, natural sciences and social sciences. These

range from low fidelity models designed to only roughly capture the trends, to high

fidelity models which mimic the underlying physics/mechanism within very close

tolerances. Computational Fluid Dynamics (CFD) is one such discipline where

numerical approximation methods like the Finite Element Method (FEM), Fi­

nite Volume Method (FVM), Finite Difference Method (FDM), Spectral Element

Method (SEM) [7, 79, 42, 31]etc., are typically utilized to analyze and accurately

solve complex problems of fluid flow, heat transfer and related phenomena using

digital computers. Central to the mathematical description of fluid flow are the

Navier-Stokes equations, which are presented in detail in Chapter 2. These are

a set of conservation laws and are widely used for simulating fluid flow in a wide

variety of applications.

1

Chapter 1. Introduction

1.2 Brief historical overview and applications

Just over a century ago, in 1910, Lewis Pry Richardson, presented one of the first

studies on the use of finite differences for stress analysis of a masonry dam [130],

at the Royal society of London. Less than two decades later, in 1928, the very first

CFD applications of FDM began to appear. Some of these early contributions

include the contributions from Courant, Friedrichs, and Lewy in 1928 [37]; Evans

and Harlow in 1957 [102]; Lax and Wendroff in 1960 [89] and MacCormack in

1969 [93]. FEM applications to CFD appeared much later in 1965 with the works

of Zienkiewicz and Cheung [159, 26], Oden in 1972 [116], Chung in 1978 [30], to

name a few.

The emergence of digital computers in the early 1950s ushered the development

of modern CFD. The advent of cheap and fast computational resources over the

recent past has contributed to the success and popularity of CFD techniques

for large, real world applications. Some common applications of CFD include

flow simulations around aircrafts, spacecrafts, vehicles and ships; weather fore­

casting, reservoir modelling, electronic heat sink design, manufacturing process

simulation, ventilation systems design, etc. The past few years have also wit­

nessed a rise in the use of CFD techniques for biomedical applications. To date,

several studies in the literature use Navier-Stokes equations, in some form, to

predict and analyze complex flow mechanisms within the human body. Some

common biomedical applications of CFD include vessel specific flow simulations

(e.g. carotid [144, 55, 152], aorta [14, 85], cerebral arteries [148, 147] etc.), full

arterial system simulations [107], fontan circulation [54, 20], cardiac and arterial

remodeling [4], nasal airway simulations [138, 113, 100], lymph flow simulations

[155], valve function [6, 48], etc.

2

Chapter 1. Introduction

1.3 Finite Element M ethod

In this research, the finite element method, which has received considerable at­

tention, both in academia and industry, has been employed to solve the incom­

pressible Navier Stokes equations. FEM is a common choice in the field of CAE

(Computer Aided Engineering). FEM can easily accommodate complex geome­

tries and unstructured meshes without the need for coordinate transformations,

like that needed in FDM. Also, the Neumann boundary conditions can be conve­

niently and naturally imposed due to the occurrence of the first order derivatives

after integration by parts (unlike FDM). As illustrated in [31], the finite volume

method can be formulated both from FDM and FEM. For simple, one-dimensional

problems, the finite difference/volume/element methods give identical algebraic

equations. Making a choice between the use of different methods like FEM, FVM,

FDM, etc. often depends on the nature of problem, available computational re­

sources, geometry, mathematical and computational background; personal and

experiential preferences, etc., and continues to remain a topic of debate.

The basic theme of the finite element method divides the domain of interest into

a finite number of sub domains that have a finite number of connections with

the neighbouring elements. This information is contained in what is called as

the finite element mesh. The mesh contains information regarding nodes (non­

physical points on the domain) and elements (region enclosed by a set of nodes

- line in ID, area in 2D and volume in 3D). As a result of splitting the domain,

the original continuous problem with an infinite number of unknowns can be

represented with a finite, solvable number of degrees of freedom. Typically, the

variational or weak form of the governing equations is derived next using a suitable

approach, for e.g. Galerkin Method [45], where the residual is weighted by the

shape functions and integrated over the entire domain. This integral is set equal

to zero to imply minimization of the errors. After assembling the contributions

3

Chapter 1. Introduction

from all the discrete elements that encompass the original domain, along with the

simultaneous or post-assembly application of boundary conditions, an algebraic

system representative of the weighted residual integral is ready to be solved.

Sometimes, the arising matrices are lumped to get a matrix-free solution strategy.

When a consistent matrix system is retained, suitable solvers (direct or iterative)

must be used depending on the problem size.

When the Galerkin formulation is used for the solution of incompressible Navier

Stokes equations, a couple of numerical instabilities arise. One results in oscilla­

tory velocity field, while the other results in spurious pressure oscillations. The

non self-adjoint1 unsymmetric convective terms result in node to node oscillations

in velocity, especially in convection dominated flows. The second instability is en­

countered when the same order of shape functions are used for both pressure and

velocity. The equal order interpolations for both pressure and velocity results in

the violation of the inf-sup or Ladyzhenskaya-Babuska-Breezi (LBB) restriction

[9, 13], which is a condition for well posedness. Prom an engineering perspective,

the LBB violation may be associated with the presence of zero diagonal terms,

when visualising the discretized Navier-Stokes equations as an algebraic matrix

system of the form [j4]{;c} = {6}, with,

A =
C G

D 0
(i.i)

where, C, G and D are the discrete mass-convection-diffusion, pressure gradient

and divergence sub-matrices/operators, respectively. The systems of the form

represented in Equation (1.1) are called saddle point problems, which imply the

presence of a zero block on the diagonal [154].

1 self-adjoint: Consider an operator L — Pqj^z + P i ^ + P^u. Its self adjoint operator is,

pX = £ s (Pou) - i (p i u) + p zu = Po ^ + (2Po ~ p i)% + (p o ~ p i + p 2)• For self adjoincy,
L^u — Lu. In this case, when, P0 = Pi(= > P0 = p \i p o ~ Pi + P2 = L will be self
adjoint.

4

Chapter 1. Introduction

As illustrated in [162], the standard Galerkin spatial discretization has the effect

of introducing negative diffusion by virtue of a central difference like approxima­

tion of the convective terms. Diffusion terms are known to introduce stability,

hence with less overall diffusion in the standard Galerkin procedure, instabili­

ties arise, especially when the Peclet number is high. In order to address the

convective instability, several techniques have already been proposed, some of

these were inspired by the Finite Difference community. Starting off with the

steady-state assumption, one can list methods like, Petrov Galerkin method (PG)

[65, 58, 162], streamline-upwind petrov Galerkin (SUPG) [71, 70, 83] (also referred

to as streamline balancing diffusion), Galerkin least square approximation (GLS)

[73, 136], and finite increment calculus method (FIC) [117, 118].

All the methods mentioned above result in approximations that are similar or

comparable to that obtained with the Petrov-Galerkin method. Adopting the

concept of one-sided finite differencing or up-winding, the PG stabilization was

developed. With respect to the standard Galerkin procedure, the PG method

employs different weighting functions, which have the effect of introducing ad­

ditional numerical diffusion/damping, thereby addressing the issue of convective

instability. When considering multiple spatial dimensions, the SUPG method

turns out to be superior as it adds the balancing diffusion in the direction of the

resultant velocity, i.e. in an anisotropic manner. This is also consistent with the

idea tha t information propagates in the direction of velocity, which the Finite

Difference community originally used while introducing the one-sided difference

approximations.

For solving time dependent equations, the steady state strategies of the PG based

methods have been accordingly adopted [156, 157, 35, 33, 23]. From the point of

view of explict treatments, the PG methods are difficult to use as they result in

non-symmetrical mass matrices, which are non-trivial to lump. Therefore, the use

of methods like Taylor Galerkin (TG) [64, 43, 143] and more importantly, Char­

5

Chapter 1. Introduction

acteristic Galerkin (CG) [46, 123, 92] have been suggested by Zienkiewicz et al.

[162]. Codina [34] compared these two methods along with some other methods

to reveal the similarity between them. He concluded that just the operator acting

on the test functions set each of the methods apart, consequently providing dif­

ferent stabilizing effects. In methods like TG and CG, the temporal discretization

precedes spatial discretization. As a result of performing the temporal discretiza­

tion in these methods, there is a natural introduction of the balancing diffusion

like terms of the PG family, which provide convective stabilization.

The characteristic-type methods are based on the wave nature of the equations

and convect the spatial coordinates along the characteristic. Doing so, the non-

adjoint terms get eliminated (and therefore, Galerkin spatial approximations are

optimal in the energy norm sense [162]), but a need to update the mesh arises.

Since updating the mesh is computationally expensive and distorted elements

might result in multi dimensions, a local Taylor expansion is generally used, which

is described in Chapter 2. For solving the Navier Stokes equations, an extension

of CG, called Characteristic Based Split (CBS) scheme is available. The splitting

strategy used here follows from the finite difference work of Chorin [27, 28], for

incompressible flows. In the search for a unified scheme for both compressible

and incompressible flows, Zienkiewicz and Codina [160, 161] adapted Chorin’s

split into a finite element setting and introduced the CBS algorithm in 1995.

The split being referred to, in the CBS scheme relates to the treatment of the

pressure terms in the momentum conservation equation and hence to the de­

coupling of pressure and velocity fields. Two different variants of the split are

available in the CBS framework. In one, all the pressure gradient terms are re­

moved (split A), while in the other, those pressure gradient terms corresponding

to the start of step (time step n) are retained (split B). Although the second split

appears to be more accurate, it is not the preferred choice, because it imposes

restrictions on the nature of permissible interpolating functions for pressure and

6

Chapter 1. Introduction

velocity, in light of the LBB restriction. Therefore, using the split A of the CBS

scheme, the LBB restriction, whose violation leads to oscillatory pressure fields,

gets automatically addressed. Schemes that separate the pressure terms from the

momentum equation during the solution phase, are referred to as projection/s­

plit schemes. Whereas, schemes that retain all pressure terms, as they appear

in the Navier-Stokes equations, are referred to as monolithic schemes (although

this term is more commonly used in the fluid structure interaction (FSI) com­

munity to indicate that the fluid and solid equations are solved together). In

the monolithic framework, a range of different pressure stabilization techniques

are available to satisfy the LBB restriction, when equal order interpolations for

velocity and pressure are desired.

The pressure stabilizations in the monolithic framework are mostly themed around

augmenting the mass conservation equation appropriately, in order to eliminate

the zero pressure contribution. This results in the equations becoming nearly

incompressible. A very intuitive pressure stabilization, inspired from the solid

mechanics community would be to just add a pressure term, scaled by a penalty

number in the mass conservation equation. This is however a crude solution and

sensitive to the choice of the scaling factor chosen. The penalty method [8, 72], on

the other hand circumvents the LBB restriction by eliminating the mass conser­

vation equation altogether, with modification to the momentum balance equation

and suitably imposing a constraint on the divergence of velocity, in the process.

Another pressure stabilization introduces the second order, pressure laplacian in

the mass conservation equation [119]. Another simple augmentation was sug­

gested in [19, 50]. Here, a local averaging operator was used to construct a local

matrix that was subtracted from the local mass matrix and assembled into the

mass conservation equation. Chorin [29] introduced the artificial compressibility

method for steady flows. Nithiarasu [112] extended the artificial compressibil­

ity method to the CBS scheme, where the transient density term in the mass

7

Chapter 1. Introduction

conservation equation was replaced by an equivalent pressure term (scaled suit­

ably). The petrov-galerkin based methods have a pressure stabilized version

called pressure stabilized petrov galerkin (PSPG) [145, 146], where the residual

of the momentum conservation equation is used to populate the pressure block

in the mass conservation equation. The community of iterative algebraic solvers

view the problem of constructing the pressure stabilizer, from a preconditioning

view point. This is a rather algebraic way of solving physical problems, but they

have been successful in constructing block preconditioning strategies that suit­

ably remove the zero block of Equation (1.1) and result in accurate, convergent

systems. The purely algebraic considerations are often portrayed positively in

such treatments, as they render the possibility of providing a black box like solu­

tion to potential users. Most of these preconditioners are based on constructing

an approximation of the Schurcomplement [158] in an inexpensive manner. Such

preconditioners include the least squares commutator (LSC), pressure convection

diffusion (PCD), Augmented Lagrangian (AL) [15] etc, which have been described

in [49, 82, 140, 15, 51] and the references within. In [154], another strategy called

the SILU preconditioner is proposed, though for discretizations obeying the LBB

condition. The SILU proposition is in regard to a particular arrangement of de­

grees of freedom, such that pivoting will not be necessary and the performance of

SILU has been shown to be comparable to the block preconditioners mentioned

before.

1.4 Aims and objectives

As briefly illustrated in the previous section, there are a number of possible

schemes and their combinations to consider while numerically approximating the

incompressible Navier-Stokes equations, each with its own merits and limitations.

Following the past success and experience with the CBS scheme, it was chosen

Chapter 1. Introduction

to be used for this research. Also, a monolithic version of the CBS scheme was

intended to be introduced with the aim of providing a single step solution. It was

also intended to develop a computational framework in which these schemes could

be efficiently and easily implemented for running large problems with millions of

degrees of freedom. The major application of interest for this research was the

flow within human arteries, especially the carotid bifurcations [150]. As a starting

point, the fully implicit version of the CBS scheme would be considered and

the framework essential for both split and monolithic versions will be developed

simultaneously. This framework will be developed in a parallel, high performance

computing environment. Prom a broader perspective, the monolithic framework

not only circumvents the splitting errors but also provides the opportunity to

easily make the code extensible for multi-physics applications like FSI.

1.5 M otivation - a biomedical view

As per the World Health Organization (WHO), cardiovascular diseases are the

leading cause of deaths, globally [115]. As per the British Heart Foundation

(BHF), coronary heart disease is the UK’s single biggest killer. Various com­

plex biochemical reactions (known and possibly unknown) result in conditions

favourable for the deposition of plaque within the arteries that restrict blood

flow. This condition is referred to as Atherosclerosis. A mathematical modelling

approach that can truly represent and predict the flow inside arteries would be

highly valuable in this regard. Such techniques can potentially enrich the medical

decision-making process, which is mostly experiential in nature. Another impor­

tant benefit of using such techniques is their inherently non-invasive nature. This

implies that important and life saving predictions can be made without breaking

the surface of the skin or inserting probes/sensors into the body. Furthermore,

given the highly adaptive nature of the human body, every patient may be consid­

9

Chapter 1. Introduction

ered a unique system and use of such mathematical techniques have the potential

of delivering non-generalized, highly patient-specific treatments.

Many computational studies can be found in literature, that attem pt to simulate

blood flow in human arteries like carotids. However, the mesh used in most of

these studies is generally not a very good representation of the real anatomical

geometry [152, 144, 85]. These models are mostly idealised and roughly/approx­

imately represent the true shape. Since, slight geometric variations will result in

considerable variation in the flow field and the combination of a couple of such

variations can result in a completely new flow field, this is a serious problem.

Also the meshes are generally not densely packed and do not contain refinement

at the walls for capturing the high gradients that exist on these locations. Meshes

with less than 100,000 tetrahedron elements and just a few thousand nodes have

commonly been observed, to be used for carotid bifurcations. W ith such coarse

meshes there is no point in seeking a high fidelity solution from the model. Also,

many studies to date rely on commercial packages to solve the Navier-Stokes

equations. This strategy comes with many constraints that are imposed by the

software publisher, in the interest of selling the software to a wider user base.

The closed source nature of these programs also imply that the fluid solvers get

invisible to the users and it becomes impossible to make changes to the scheme

to meet the requirements of the problem. In this research however, very ac­

curate representation of the actual carotid anatomy is captured from the scans

and structured boundary layers (upto 12) have been used with tens of millions

of tetrahedrons in a single carotid mesh. A custom parallel solver called IFENs

was also developed, which could easily accommodate these multi-million element

meshes and give results in reasonable wall times.

10

Chapter 1. Introduction

1.5.1 P rob lem size

Ideally, such an approach would realize at the cost of being extremely multi

physics. One would need a fluid solver, solid solver, fluid-solid coupling strat­

egy, endothelial solver, several chemical kinetics kernels, remodelling strategies

and an efficient implementation and parallelization of each of the components in

an extensible, modular and strongly coupled computer code. To complete the

perspective, it should be possible to run the entire multi physics engine on the

entire human arterial system in all spatial dimensions and time, in realistic wall

times 2. The realization of such an ideal model will not only require collaboration

between groups of mechanical engineers, chemists, computer scientists, doctors

and managers, but also extensive real world validation using patient data. With

all technology developed, validation against patient data alone involves months

of applications for approvals from the local Research Ethics Committee and the

R&D offices. This illustrates the mammoth problem size and gives a holistic

view of the components that must be employed in making accurate predictions

for systems, such as the human circulatory system.

Realistically, such a complete solution would not be generally possible due to

constraints of available resources. However, various groups around the world

model specific sub-components based on certain assumptions, that substitute

for the absence of the highly comprehensive, high fidelity framework mentioned

before.

1.6 Assum ptions

The following assumptions have been made in this research:

• The fluid is incompressible and Newtonian.

2Execution time of a parallel code as measured on a wall clock (different from CPU time)

11

Chapter 1. Introduction

• The flow field is laminar.

• The walls of the arteries are rigid, i.e. they do not deflect or deform under

the action of stresses generated by the pulsatile flow.

• CGS units are used throughout this thesis, unless stated otherwise.

1.7 A note on application of parallel com puting

to arterial flows

Being an active medical problem, blood flow simulations are increasingly being

pursued by various computational groups around the world. As more realistic

predictions are desired in 4D (space and time), the problem size inherently in­

creases and therefore adoption of efficient methods like parallelization become

mandatory, to get accurate, timely solutions. In as early as 1989, three dimen­

sional simulations of the carotid bifurcations were being performed with the aid

of parallel and vector processing techniques [131, 121].

In early 1990s, a standard for message passing between a grid of participat­

ing processors on distributed memory systems was conceived and put together.

This standard came to be known as the Message Passing Interface (MPI) [56].

The MPI paradigm was realized to be a very natural and convenient parallel

computing model for CFD applications and started being adopted in mid 1990s

[1, 22, 105, 122]. Applications relating to arterial flows soon followed [151, 53, 39].

Another parallelization paradigm, called Open Multi-Processing (OpenMP) [38],

was introduced in October 1997. This parallelization paradigm employs multi­

threading, in which, a specified number of slave threads are forked by a master

thread. With respect to MPI programs, OpenMP compatible program are rela­

tively simpler for the end users to program. All interprocessor communications

12

Chapter 1. Introduction

are managed automatically under the OpenMP framework and therefore only

trivial changes need to be made to parallelize serial codes. Although OpenMP

has been utilized for blood flow applications [62, 106, 24], problems regarding

portability, robustness and scalability exist.

The shortcomings of OpenMP get elegantly addressed by the MPI standard and

has therefore became a popular choice for large problems. In the last decade,

several groups have relied solely on MPI for parallelization [44, 17, 21, 32]. Hy­

brid MPI-openMP models have also become a popular choice for many bio-fluid

simulations [84, 69, 18]. Such a hybridization seems simpler to implement for

existing MPI codes, than for existing OpenMP codes.

Implicit and monolithic methods have recently gained popularity and are be­

ing adopted for arterial flows. Since large algebraic systems need to be usually

solved, the parallelization process becomes more complicated. However, several

libraries currently exist with varied capabilities to efficiently solve the algebraic

systems arising in implicit discretizations. Some groups tend to program and par­

allelize algebraic solvers, but considering the libraries and toolkits that already

provide accurate, efficient and scalable solver-preconditioner combinations, the

recommended approach is to interface with existing tools. Many studies have

successfully taken this path [88, 128, 96, 114] by employing libraries/toolkits like

PETSc, Trilinos, Hypre, etc.

1.8 Thesis outline

A total of six chapters and 5 appendices constitute this thesis. A brief description

about each of these chapters is presented in the following parts of this section.

This chapter provides background and introduction to the matters of interest to

this research. Starting with the chronological events that led to the modern CFD,

a brief introduction of the available numerical schemes for dealing with incom­

13

Chapter 1. Introduction

pressible Navier-Stokes equations are presented. The main focus of this research

and a motivation for considering bio-medical problem appears next, along with

the grand nature of this problem. This chapter ends by providing an outline of

this thesis.

Chapter 2 is dedicated to the mathematical formulations used in this research for

solving the incompressible Navier- Stokes equations. It derives the Characteristic

Based Split scheme in the split form and introduces the monolithic version of

the CBS scheme. Since the fully implicit version of CBS is used, the inherent

linearization required for the convective terms is presented next. This leads to

the derivation of the jacobian matrix that is directly used in the Newton-Krylov

solvers employed in this research. The aim of this chapter is to start with the

continuous Navier-Stokes equations and derive their fully discrete forms, such

that they can be directly coded.

Chapter 3 presents the computational framework in which the schemes derived

in Chapter 2 were processed. The libraries used for realizing the parallel support

needed were described along with 2 sample codes. The elegance and simplicity

with which these samples present the parallel framework and execute typical

tasks performed in a finite element application, justify their presence in the main

body. Domain decomposition strategies used in this research appear next. A

justification of a custom partitioner written for this research is also provided.

The PETSc matrix preallocation concept is presented next. The Fortran90 code

that was developed from scratch during this research is described in detail but is

not exhaustive, in the interest of brevity. A description of mandatory supporting

tasks that need to be performed, while running a typical simulation, with the

code developed in this research is also provided for completeness. The aim of

this chapter is to provide working knowledge of the parallel computing paradigm

and to illustrate the ways in which MPI based parallelism was achieved in this

research work. Considering the complexity of this step, majority of the time was

14

Chapter 1. Introduction

spent in writing and developing this framework.

Chapter 4 illustrates several tests that were performed to assess the correctness

of both the scheme as well as its implementation within the code. These ranged

from standard problems like lid driven cavity, backward facing step, flow past

cylinder to certain other tests that were intended to evaluate the effects of mesh

renumbering, parallelization, number of processors used, etc. The main aim of

this chapter was to validate results of test problems against benchmark data.

Chapter 5 presents the results obtained when the Navier-Stokes equations are

solved over complex biomedical domains, specifically the Carotid bifurcation.

Four different meshes, acquired and reconstructed from real patients will be used.

Typically each of these meshes had close to a million degrees of freedom to solve,

for which parallelization was critical. Various Haemodynamic parameters were

also calculated for each of the cases and the results were analysed. The main

aim of this chapter was to illustrate the application of the code developed in this

research to real world, bio-medical applications to get meaningful results.

Chapter 6 presents the conclusions that could be derived from the present re­

search. It summarises the achievements of this research and lists the major mile­

stones of this project. A list of possible future research directions along with the

current limitations are also presented. A number of appendices are presented

after this chapter.

Appendices A and B provide explanations of the sample MPI and PETSc codes,

presented in Chapter 3. The function of various subroutines along with the idea

behind the codes are explained. Appendix C includes all the spatial discretization

steps that were omitted from Chapter 2. Appendix D explains the construction

of a commonly used sparse matrix storage format, called the Compressed Sparse

Row (CSR) format. Also, the matrix preallocation strategy is explained. CSR

construction is described to present the possibility of using CSR data for preal­

15

Chapter 1. Introduction

locating matrices in PETSc. Finally, in Appendix E, the closed form expressions

(for linear four noded tetrahedron elements are presented) that may be used

for the efficient evaluation of the shape function integrals as well as the shape

function derivatives, are presented.

16

Chapter 2

Governing Equations

2.1 Introduction

This chapter describes the formulations used to mathematically describe the flow

of fluids. The goal of this chapter is to derive the fully discrete form of the Navier-

Stokes equation. These fully discrete forms, resulting from the Finite Element

Method, serve as a basis for the computer code that syntactically encodes the

governing equations. The formulations will be presented in terms of the primitive

variables (velocities and pressure). A monolithic as well as a split version will be

presented. The convective and diffusive terms will be treated fully implicitly and

hence a large and sparse system of linear equations needs to be solved, at least

once, in every time step. However, a couple of Newton iterations will be typically

required per time step. Also, the stabilization techniques used will be presented

to complete the formulation.

17

Chapter 2. Governing Equations

2.2 Navier-Stokes equations

The combined efforts of Claude Louis Marie Henri Navier, Euler, Cauchy, Pois-

son, Barre de Saint- Venant and George Gabriel Stokes led to the derivation of

the Navier-Stokes equations in a manner that is currently understood. The three

dimensional, transient Navier-Stokes equations may be written in fully conserva­

tive standard form as shown in Eq. (2.1). For clarity the non-tensorial notation

is adopted.

d $ dFi dG\

where in general ^ is a basic dependent, vector-valued variable, Fi is the convec­

tive flux, Gi is the diffusive flux and Q is the source vector.

In the expanded form,

d_
dt

p
/ >

pUi 0
f \

0

pUi puiUi + pSu - n i P9i
d d

pu2
+ dxi

pu2Ui + pS2i 1
**

l<c>
+

~T2i > + < P92

PU3 pu3Ui + pS3i ~T3i P9s

p E < >
pH ui < >

- (Tt jUj) - pgiUi - qH \ /

= 0

with

Tij = I1
duj dun

+
dxj ' dxi

2 duk
S ijdxk

(2 .2)

(2.3)

where, p is the density, iq, u2 and u3 represent the three velocity components,

p is the pressure, E is the total energy per unit mass, <5 represents kronecker

delta, H is the enthalpy, r represents the deviatoric stress, p is the dynamic vis­

cosity, k is the isotropic thermal conductivity, T is the absolute temperature, qn

represents the heat source terms per unit volume and g represents the body force.

18

Chapter 2. Governing Equations

Equation (2.2) represents the mass conservation, three momentum conservation

and energy equations, in the same order (from top). Since the changes in density

with time are negligible in blood flow applications, it is safe to assume the in­

compressibility condition. As a consequence of incompressibility, there are only

four unknowns and hence we can ignore the energy equation. The mass and

momentum conservation under the incompressibility condition, may be written

as,

Mass Conservation

Momentum Conservation

duj d . . 1 &Tji 1 dp -
~dt + ” P f a i + ~p~dxi ' =

The convective term is differentiated to get the non-conservative form (which is

safe to use since we are not dealing with high-speed flows where shock capturing

is important),

duj dui duj 1 drji 1 dp _
+ U j— +Ui—± - - —±- +

at oxi dxi p dxi p oxi

Since the divergence of velocity is equal to zero (from Eq. (2.4)),

duj duj 1 dTj i 1 dp _
dt ' dxi p dxi p dx, **

On removing the kronecker delta from the above equation, the derivative index

19

Chapter 2. Governing Equations

for p changes from i to j, as Sij = 1, only if i = j ,

duj duj 1 dr a 1 dp .^ + ^ - ^ - - - ^ + - - ^ = 0 2.5
o t O X i P O X i p O X j

Since Eq. (2.5) is not self-adjoint due to the convective term, this equation, as

is, cannot be derived from any variational principle.

2.3 Characteristic Based Split (CBS) algorithm

The CBS algorithm is based on the split process initially proposed by Chorin

[27, 28] in the Finite Difference context. In this research, the algorithm pro­

posed by Zienkiewicz and Codina [160, 161], which is a rather general approach

to numerically solving Navier-Stokes equations, is used. Starting off with the

discretization in the time domain, the actual splitting followed by the spatial

discretization, will be presented.

2.3 .1 T im e d iscretiza tio n

The momentum conservation equation will now be dicretized in time to get its

semi-discrete form, using the Characteristic Galerkin scheme. In doing so, the

convective stabilization will also be established.

To simplify the derivation, in the succeeding part of this section, the continu­

ous form of the momentum conservation equation will be shown to be similar to

the reduced, scalar form of Navier-Stokes equation. The characteristic Galerkin

scheme will then be derived for the one dimensional, scalar Navier-Stokes equa­

tions and extended to the vector form of Navier-Stokes.

20

Chapter 2. Governing Equations

Rewriting the full Navier-Stokes equation, as in Eq.(2.1),

d $ dFi dGi „
s ^ + Q " 0

If,

then,

$ = ; Ft = U d ; Gj = - k ^ ; Q = Q fc) (2.6)

In one spatial dimension,

d(f) d . . 5 (. d<j)\
~dt + d i {U4>)~ d i \ k d i] + Q = {)

Like before, since divergence of velocity is zero, the non-conservation form yields,

The continuous form of the momentum equation (Eq. (2.5)) is similar to the

reduced NS equations (Eq. (2.8)), provided the pressure term in Eq. (2.5) is

treated as a source term. Hence, the temporal discretization of Eq. (2.8) will be

presented in the following section and extended to Eq.(2.5).

2.3.1.1 Characteristic Galerkin Schem e

Eq. (2.8), is indeed the convection-diffusion equation, which in this section will

be discretized in the time domain. Characteristic Galerkin procedure involves a

local Taylor expansion illustrated in the figure 2-1. We can write equation (2.8)

21

Chapter 2. Governing Equations

along the characteristic as,

dt (* ' (*) > *) - < ? (<) = 0 (2-9)

Figure 2-1: Visualizing the Characteristic-Galerkin procedure

In the moving coordinate x 'y the convective acceleration term disappears and the

source and diffusion terms are averaged along the characteristic. In the absence

of the convective term, Eq. (2.9) is fully self-adjoint and Galerkin spatial approx­

imation is optimal. Time discretization of Eq. (2.9) along the characteristic gives

(Fig- 2-1),

^ (r+1 - 4>n l*-{) « e
n+1

+ (i - 0) A (k dl
dx I dx - Q

x —6
(2.10)

where 9 is equal to zero for explicit forms, between zero and unity for semi-implicit

and unity for fully implicit forms. Here, 6 will be preserved until the end to

maintain generality. The version of time discretization selected here, is first order

22

Chapter 2. Governing Equations

accurate.If the moving coordinates are retained, the mesh needs to be updated,

which is a cumbersome process. Hence, the moving coordinate is eliminated by

spatially Taylor expanding the three terms that need to be evaluated at (x — S)

inEq. (2.10).

r \ x - t

<*-•>!(*£ x —8

(1 - 0)Q\x-s

2 - (i Mdx \ dx

(:
dQ’

+ 0(52)

(2 .11)

Substituting Eqs. (2.11) in Eq. (2.10),

d_ (a * '
dx \ dx j Q

n + 1

r (*r)~dx \ ox

+(1 - 0){S)
dQn
dx

a - m n)

(2 . 12)

Rearranging,

6 d(t>n 52 d2(\?
A t dx

+e
2 A t d x2

s * s H
n+1

dx V dx
- (1 - 0)(Q»)

+ (l - 0) (5)
dQ'
dx

(2.13)

23

Chapter 2. Governing Equations

where, S is the horizontal distance travelled along the x axis and is simply given

by,

S = U At (2.14)

where, U is the average velocity along the characteristic and is chosen to be

written as,

U =
Un+l + Un L g

Again, Taylor expanding, to get rid of the moving coordinate, i.e.,

U
J /n+ l + (j j n _ A t U n dU p^

(2.15)

Substituting (2.15) in (2.14),

6 = A tUn+i - A # W
2 dx

(2.16)

where, Un+ 21 _ ljn + l +Ur

Substituting for 5 from Eq. (2.16) into Eq. (2.13),

Acf)
A t

j j n + \ _
2 dx

d(pn
dx

4 - i + f u - u - (* £) ' - %

+e I (*£)-«
n+1

+(1 - 6) (A tUn+i - ^ UndUni 9Q’

A (k ^
dx \ dx - (1 - m n)

dx / dx

24

Chapter 2. Governing Equations

Neglecting the higher order terms,

A(f>
At

2A t

2 dx dx

h (A t2Un+iU n+i) ^ A / V J

+e
n+l

dx2

- (A W l X l - . t l j K *

+(1 - *) (A W + ^

50 '
dx

(2.17)

Simplifying and getting rid of the Un+ 2 notation,

d(j)nA <f>
At

f /n+ i j j n A t T d U n
 1 u ------

2 2 dx2
1

+ 2

I P
>

1 c-
t*

+9 \-dx

dx

n+l

At
"2
At

d_ (t r « + [/») (1 _ e)

+ — (1 -d) (un+1 + un)
dx
dQn
dx

A (k dJ L
dx V dx

(2.18)

Fully E xp lic it case

In Eq. (2.18), put 9 = 0 and change all terms on the RHS that are to be evaluated

at time level (n+l) to time level n,

A (j)
At

At dUn
Un -------Un- ; - -

2 dx
9 r + ^ (4(C/")2)

- A tur

dx

dx

d2(f)n
dx2

r (#dx \ dx
dQ'

- (Qn) + AO/n+ 4 2 .1 9)
ox

25

Chapter 2. Governing Equations

Rearranging,

A0
A t

A tU — + A tU

ox ox ox1

(2 .20)

A cj)
A t

U
d(j)
dx 2 dx

' u d/ - 2 ^ - (k d/) + 2Q
dx dx \ dx

Sem i Im plicit case

In Eq. (2.18), put 6 = | and using the substitution

all terms on the RHS at time level (n +

= ()n+2 , evaluate

A(f)
At

Un+ 2 - — UA t„ „ d U r

+
1 d
2 dx V dx

k dJ X -

dx
A t

d(f)n
dx

+ ^ (i r + i)

Un+ I d
2~dx

2
d

ix2 d2(j>n 1
+ 2d x2 £(*£)-«

n+l

dx \ 5a:

writing, | d_
dx V,v eta - Q

n+l
+ as &(*£)-«

n+4

A0
At

_ ^ u n~
2 5a;

2 d2(f)r
dx

- — Un+i —
2 dx

k
dx V dx

2
A t

dx2 +
T (4dx V dx

in+i
<3

(2 .22)

Rearranging,

A</>
At dx

— Un+i —
2 5a:

n + | ' A t
H— —

2

5a; I dx 2 5a:

IT*
5 t/n 5</>n
5a: 5a:

IX 2 d2(f)T
dx2

(2.23)

26

Chapter 2. Governing Equations

Writing all the left over terms at time level n as (n +

A4>
A t dx dx

n+

u d(f)n
dx ~ r (#dx \ dx

n+i

+ Q

Fully Im plicit case

In Eq. (2.18), put 9 = 1 and change all terms on the RHS that are to be evaluated

at time level n to time level (n+l),

A(f>
A t

t /n+ l _ A t
2 dx

9 <t>n+1 + At ((^+1)2) 9 '2<t>
dx dx2

+
n+l

+ 0 (2.24)

Rearranging,

A 4
A t

V 9A _
dx

n+l

+
n+l

In summary, the time discretization using the characteristic Galerkin scheme, re­

sults in the following semi-discrete equations. The second square-bracketed term

in the RHS of the following 3 equations represents the convective stabilization.

Fully Explicit

A (p
At U 7 T -dx 2 dx u\rdx

+ 2 Q

27

Chapter 2. Governing Equations

Sem i Implicit

A(/>
A t

n+%2 A t +i d
+ Y i r

n+±

Fully Implicit

A </>
A t ° S - s (‘ s) +«

n+l

+ M (“S'
n+l

(2.25)

Since a fully implicit scheme is being formulated, Eq. (2.25) will be considered

from this point forward.

2.3.1.2 Extension to m ulti dim ensions (3D)

Eq. (2.25) represents the semi-discrete form of Eq. (2.8) and it may be written

in three dimensional indicial notation as,

A (f>
A t 'dx< f e l d x j W

n+l

+ - u k d 2 u M)
d x k V l d x i)

n+l

(2.26)

2.3.1.3 E xtension to the m om entum equation

Eq. (2.26) represents the semi-discrete form of Eq. (2.8) in multi dimensions.

Eq. (2.8) was similar in form to momentum equation represented by Eq. (2.5).

Therefore, with a few modifications, Eq (2.26) can serve as the time discretization

for the momentum equation.

First, replace <fi by Uj and Q by Q”,+6>2, in Eq (2.26),

AUj_
A t

dU<
Ui

d (B U j
1 k-

dxn dxn \ d x

n+l

+Q"+°2+
A t d
r>
2 u x k

U<S ty
dx,

n+l

(2.27)

28

Chapter 2. Governing Equations

where, Q™+e2 may be evaluated at t = t + ^ A t . Setting 92 = 1 and replacing Q™+1

by ^P~n+1} the final semi-discrete form of the momentum equation is obtained,dx

A Uj
A t

dul _ _ d _ (&%_
1 dx< d x ,■ I + dxu

n+l

+
A t d
2 C/Xfc

3 0 ,'
cte,

1 n+l

(2.28)

Replacing the diffusion term by deviatoric stress and noting that Ui = pUi,

A Uj
A t

du^ 1 dr., , 1 <9p
&Ci p dxj p dxj

n+l

+
A tuk d (duj

Uj,'
2 p dxk V dxi

n+l

(2.29)

In summary,

Momentum Equation:
duj du, 1 dTjj 1 dp
dt 1 dxi p dxi p dxj

Semi Discrete Momentum Equation:

u]+1 - u j
A t dxi p dxj p dx

n+ldu< 1 dr a 1 dp At Uk d
u,

du.

3 J 2 p dx k \ dx

n+l

2 .3 .2 T h e sp lit

The core idea here is to separate the pressure terms from the semi-discrete mo­

mentum equation. Two version of this split are available in an explicit case. We

could either remove the pressure gradient terms altogether (called split A) or re­

tain the pressure gradient term corresponding to the beginning of the step, i.e. at

time level n (called split B). However, split B has restrictions on the nature of in­

terpolating functions that can be used for pressure and velocities. The restriction

arises as a result of violating the Ladyzenskaja-Babuska-Brezzi (LBB) condition.

For stability, the mass conservation equation must have a small non-zero pres­

sure contribution. Split A has the tendancy of augmenting the mass conservation

29

Chapter 2. Governing Equations

equation with a small pressure term and hence circumvents the LBB restriction.

Split B on the other hand results in a zero pressure block, violating the LBB re­

striction and hence must be used with caution. In the fully implicit case however,

there is only one pressure gradient term and there is just one possible split.

Step 1

Remove all pressure terms from Eq. (2.29) and introduce the intermediate fields

(velocity) represented by superscript *

A u* d , . 1 drji* A t u t d (. d u j \ n .
— j- + 1— (u*u*) - — K i r 1 ~ ° (2.31A t dxi 3 p dxi 2 p dxk \ dxi J

where, Au* = u* —

Step 3

While deriving, it is convenient to present the step 3 before step 2. However, while

coding, the correct order is used. In this step, the pressure term is recovered by

subtracting Eq. (2.29) from Eq. (2.31).

A Uj - Au* 1 dp
~\~ —~ ~ u

A t p d x

(2-32)
3 P UXj

Step 2

From mass conservation and gas law,

A p _ 1 Ap _ du?+e
At ~ c? At - P dx< (2'33)

30

Chapter 2. Governing Equations

Equation (2.32) may be written as,

(2.34)

(2.35)

2 .3 .3 S patia l d iscretiza tio n

The three steps of the CBS scheme are now ready to be discretized spatially. The

standard Galerkin procedure, which is fully justified to be used with the char­

acteristic Galerkin time discretization, is employed. A very detailed account of

the spatial discretization, considering 4 noded, linear tetrahedron finite elements

is given in Appendix C. In appendix C, the final expressions that are actually

coded are derived and presented meticulously. Here just a few details are pre­

sented.

n+l ^ ★ _
u i ~ u i

A t dp
p dxi

Assuming 9 = 1 and substituting equation (2.34) in (2.33),

l_Ap _ du* d2p
c2 A t ^ dx, dx2

Spatial discretization using the standard Galerkin method, results in the following

forms for steps 1 through 3,

/ W M + ^ _ i p i * _ * * 9 C p)) dn „ 0 (2.36)
Jn I A t dxi p dxi 2 p dxk V &x i) J

/ + (- ' S + A1§) ' ” “ 0 (2 3 7)

L « ') m •* / + (” »■ - t e) * (2 381

31

Chapter 2. Governing Equations

Just the non-linear convective acceleration term will be spatially discretized in the

next section (2.3.3.1). As indicated before, the remaining terms are discretized

in appendix C.

2.3.3.1 Linearization

Since a fully implicit treatment is sought for in this research, the non-linear

convective acceleration and convective stabilization terms are linearized, deriving

the Jacobian matrix in the process, which in turn is utilized by the Non-linear

solvers in PETSc to realize the Krylov-Newton-like solver(s). Considering a non­

linear system of the form,

m = 0 (2.39)

the update of a Newton iteration is given by,

^nn+l = pin _ (2.40)

where, the subscript nn represents the newton iteration counter.

The SNES (Scalable Nonlinear Equation Solver) objects in PETSc approximately

solve,

JA ^ = -f(4>) (2.41)

where, J = /'(</>), A</> = <f)nn+1 — 4>nn and the end of step update being,

4>n n + 1 = ^nn T A 0

Equation (2.41) is solved iteratively until 0nn+i is equivalent to (f)nn within a suit­

able tolerance, at which point the Newton solver is considered to have converged.

In the light of Eq. (2.41), which is completely linear, the non-linear solver may

32

Chapter 2. Governing Equations

be viewed as a set of linear solves. Since the non-linear solution is centred around

solving a set of linear systems formulated in terms of change in unknowns rather

than the unknown variables themselves, in order to build a system in terms of

consistent unknowns, the linear terms need to be, so called linearized.

Next, only the non-linear convective acceleration term (Term 10) of Eq. (2.36)

will be linearized and spatially discretized. The same treatment may be extended

to the rest of the terms with suitable modifications. Noting that at Newton con­

vergence, un+1 « unn+\ the convective term may be written in non-conservative

form as,

Approximating terms at Newton iteration nn +1 as (and dropping the superscript

* for convenience),

nn+ 1
Tprm 1 fl (2.42)

u n n + l _ u nn + ^

we may rewrite Eq. (2.42) as,

Term 10

V /

i d\L'For 4 noded, linear tetrahedron elements, we may approximate u™n and as,

(2.43)

f u r (2.44)

33

Chapter 2. Governing Equations

and therefore TermlO takes the following form,

TermlO = / N T (NuD (g a r) + (Nu,r (g * * ,) + (N<5ui) (g a r ' dfl

(2.45)

Finally, term 10 takes the following fully discrete form (the superscript”is dropped

for convenience),

TermlO1 = ^ [M]{ ii i}’“ {D l}{u i }“ *+ ^ [M]{u ,}" “{ D l}{<5ui } + ^ { D ,} { i iJ “}[M]{«ii4}

(2.46)

where, [M]

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

a n d D i = (M i m ay* dN±\
OX% uXi uXi OX-i J

Following a similar treatment for the rest of the terms, the 3 steps of the CBS

scheme my be written in the fully discrete form as,

step 1

+ ^ [M] { u i} nn{Di}{5uj} + +

+ ^ { A U X j r i u i r i D l H D i K S u j } +

— { D l H D i U u j r ^ A U X } ™ ^ } + ^ { D l H D i H u ^ i A U X ^ S u k } =

}{u j}nn - g i ^] { % r - ^ h {j4{/ x } r { t f j ,*’*{£)n { A } { % r

(2.47)

1variables enclosed within [.], represent matrices, while those within {.}, represent vectors.

34

Chapter 2. Governing Equations

step 2

^ ^ [M] { A p } + Y £ [NDi]{u*} + V A t l H ^ S p } ' = - V A t[H ii]{p}nn (2.48)

step 3

V V A t V V A t V
- [M } { 6 u j } - - [M } { u * } - — - { D j N}{5p} « - - { M) { u j Y n+ — - [D j N}{pnn}
20 20 P 4 20 P 4

(2.49)

where A U X = <

2 Wfci + + wfc3 + uU

'U'ki 4~ “I-

Ukx 4- u*;2 + 2u^3 + UkA

f̂ci 4~ -(- ti/jg -j- 2

The index-free, fully expanded form of the above equation will be presented in

the next section (2.4) for the monolithic case. By removing the pressure terms

from the monolithic case, the fully expanded form of stepl can be obtained. For

steps 2 and 3, a similar expansion procedure may be used. It must be noted that

the system matrix arising from Equation (2.47), is actually the jacobian matrix

that can be directly used by the nonlinear solver.

2.4 M onolithic CBS scheme

The three steps of the actual characteristic based split scheme may be recombined

suitably to establish its monolithic counterpart. In monolithizing the split CBS

scheme, a pressure stabilization term is automatically established. This pressure

stabilization term augments the mass-conservation equation and thereby prevents

the zero diagonal pressure block in the system matrix. By substituting step3 into

steps 1 and 2, the momentum and mass conservations equations, respectively,

35

Chapter 2. Governing Equations

may be recovered. The final form is presented below

X momentum equation,

+ ^ { D 2}{ur}[M]{8u2} + ^ { D 3}{ur}[M]{8u3} +

(x L [M] + J)1'M] ({fil}” { D l } + {“2}nn{D>} + W +
^ [f fx x + # 2 2 + H ^ S u , } + ^ [N D j m » - -

^ [m] + {fi2r { ^ } + {«3n c 3}) {u i}nn -

y [ffn + H22 + i?33]{«1}nn + (2.50)

i.e.

ai{Sui} + a 2 {^U2 } + <a3 {£u3} + P{5p} = 7 (2.51)

Y momentum equation,

^ { £ ,iH «r}[M]{.5« 1 } + ^ { c 2 }{ur}[M]{<»2 } + +

(^ O A t ^ + 2 0 ^ + { ^ " " { A i} + {“ 3}"n{£,3})) {<̂“ 2 } +

+ H22 + H33]{Su2} + ^ { N D 2]{5p} « - ^ M { f i 2 }nn - -̂p [ND2]{p™} -

^ [M] ({fli}"“{I>i} + {u2}nn{D2} + {u3}™{D3}) {u2}™ -

y [ffxx + # 2 2 + H33]{u2}™ + ^ Z _ [M] { u n2} (2.52)

i.e.

£i{£fii} + M ^ } + £3 (^ 3 } + e{(5p} = C (2.53)

Z momentum equation,

T t A H f i n M W + T{Dj}{fi5»}[Af]{5fl2} + T { D s}{<jy}[A#]{ifls} +

36

Chapter 2. Governing Equations

(2S& t[M] + h [M] + + {Us}nn{D 3}) ĵ {5u3} +

t y [H u + H22 + + -̂p [ND3]{5p} « - - (^[ND3]{pnn} -

~ [M] (R ^ R i } + {u vYn{D 2} + {«,}""{!?»}) R } ™ -

f y [H u + H22 + H33){u3}”n + ^ 7 ^ [M] R } (2.54)

i.e.

rji{5ui} + r)2{5u2} + 773(^ 3 } + 0{5p} = i (2.55)

Mass conservation (augmented automatically),

'— [NDi]{5ui} + ^ [N D 2]{5fi2} + ^ [N D 3]{Su3} + V A t[H n + H22 + H33]{Sp} -

([W A H M -'IRTV] + [ND2][M -l}{D2N] + {Sp} «

([NDJ l M- ^ l DrN] + {N D ^ M ^ ^ N] + [jV R lM ^ R iiV]) {p}nn -

VAt [Hn + H22 + H33]{p}nn - ^ [A fO i]{« i}"n - ^ { N D 2}{u2}nn - ^ - { N D 3]{u3}nn

(2.56)

i.e.

*R}”+1 + AR}n+1 + mR}"+1 + H P } n+1 = Z (2.57)

In block matrix form, a single element system may be represented as,

ai & 2 Of3 P
(* 'I
5ui

' '
7

Si S2 3̂ e Su2 C< > = <
m e Su3 i

K A V Sp\ j A .

37

Chapter 2. Governing Equations

For linear tetrahedron elements, every block-matrix entry is a sub-matrix of size

(4 x 4) and every vector entry is a vector of size (4 x 1). The degrees of freedom

are trivially arranged one after the other, on a nodal basis.

2.5 Summary

Starting off with the Navier-Stokes equations, this chapter derived their fully

discrete forms both in monolithic and split frameworks, as obtained from the

characteristic based split algorithm. The time discretization was presented first

for a simplified form of Navier-Stokes equations using the characteristic Galerkin

scheme in explicit, semi-implicit and fully implicit forms. The convective stabi­

lization term was derived in the process. The semi-discrete form was then ex­

tended to three dimensions and consequently to the momentum equation. Next,

the splitting of pressure from the momentum equation as prescribed by the CBS

scheme was performed in a 3 step procedure, which includes solving for intermedi­

ate velocity fields by removing pressure terms from the momentum conservation

equation, pressure-poisson solve and correcting the intermediate velocity fields (in

the same order). Each of the terms in each of the three steps were then consid­

ered separately and discretized spatially using the standard Galerkin procedure.

The linearization procedure used for the non-linear convective and convective

stabilization terms was presented next. As a result an analytical jacobian ma­

trix was derived, which could be readily used in the Newton-like methods to

solve the resulting non-linear algebraic set of equations. A monolithic version of

the CBS scheme was presented next, which results in an additional term in the

mass conservation equation. This additional term acts as a pressure stabilization

and renders the possibility of using equal order interpolations for pressure and

velocity. Some details of the derivation have been moved to Appendix C.

38

Chapter 3

Com putational Framework

3.1 Introduction

This chapter deals with the computer implementation of the discretized Navier

Stokes equations derived in chapter 2. A pre-processing-enabled Fortran90 code

was written from scratch and parallelized using the MPI standard. The paral­

lel support needed for the use of pre-programmed linear solvers (e.g. Conjugate

Gradient, Biconjugate gradient, Generalized Minimal Residual Method, etc.) was

realized by interfacing Intel® Math Kernel Library (IMKL) [2] and Portable Ex­

tensible Toolkit for Scientific Computation (PETSc) [11] with the code developed

for this research. The structure of the code, libraries used and the additional steps

that inherently need to be performed in a parallel framework will be described

in this chapter. A sample parallel code each for MPI and PETSc are also pre­

sented in this chapter. These are specifically written to be included here as they

elegantly demonstrate the usage of MPI and PETSc to establish the foundation

for the development of a parallel FE application in a succinct and encouraging

manner.

In the most simplest terms, the Fortran90 code houses a nesting of a loop over

39

Chapter 3. Computational Framework

elements followed by an iterative linear/non-linear solve, within a loop over time,

all in a parallel framework. The loop over elements constructs the element level

matrices and vectors and assembles them suitably into the global matrix and

vector. The global matrix and vector constitute the left hand side (LHS) matrix

and right hand side (RHS) vector of a linear system, which the iterative solver

attempts to solve using iterative methods belonging to the Krylov family [77],

along with a suitable preconditioner. The loop over time helps solve transient

problems.

To conveniently test various schemes and strategies in the same code, the fortran

preprocessor, "fpp" was also used. Conditional compilation without the over­

head of invoking traditional "if statement" in a nested-loop environment was an

important motivation for the incorporation of a compiler preprocessor.

IMKL was only used in the very early versions of the code to solve linear systems

using the preconditioned GMRES [133] method. Although, the IMKL implemen­

tation was parallel, it was limited to threading using OpenMP, i.e. it was able to

only utilize multiple cores available in a single processor, but couldn’t parallelize

across several processors, like that supported in an MPI environment. Since the

primary problems of interest for this research were expected to involve the use of

high definition meshes with millions of elements, multi processor parallelism was

essential and consequently the use of IMKL was discontinued.

3.2 Parallelization

The primary motivators for code parallelization were speed and memory. Since

this research was expected to use large patient specific meshes with millions of

degrees of freedom, the run time and memory requirements would make the

computations infeasible with traditional serial computers.

40

Chapter 3. Computational Framework

Parallelization is a vast area. Not only can one find several different types of

parallel computers but also several types of classifications for parallel computers.

Some common classifications are based on instruction and data stream, structure

of computers, memory access and grain size. For a thorough introduction to

parallel computers, the reader is directed to standard texts on this subject [87, 90].

The Single Program Multiple Data (SPMD) programming style is used for the

code developed in this research. SPMD is a common style for message-passing

programming on distributed memory computer architectures. In SPMD, all the

participating processors receive the same copy of the executable, but operate

on a different data set. Despite receiving the same code, individual processors

can perform dissimilar tasks, if necessary. This capability requires generic task

allocation based on the processor ranks/IDs.

For conventional serial programs, the coding process may be perceived as writing

along with a simultaneous mental simulation of the effects of the statements being

written. The coder constantly thinks from the processor’s viewpoint and writes

code that performs the actions dictated by the algorithm. This is eventually

achieved by a sequence of syntactical characters that encompass the body of the

code. Every line in the code executes one after the other, in an orderly fashion.

However, when writing parallel MPI codes, the situation is more complicated.

Depending on the per-processor-load, every processor invariably executes a dif­

ferent line of the code and completes its task in a certain wall-time, dissimilar

to other processors. Some sort of synchronization, either implicit or explicit is

essential for the problems of interest for this research. Since all the processors get

a copy of the same code, data must be suitably arranged/distributed and must be

accessed with generic variable names and indices. The sample MPI code enclosed

in section 3.2.1.1 will attem pt to illustrate this.

41

Chapter 3. Computational Framework

3.2 .1 M P I

MPI is not a library/implementation/language. It is a set of specifications that

prospective message-passing library interface developers may adhere to. The col­

laborative efforts of 40 American and European organizations resulted in the MPI

standard. MPI started off in 1992 as being a conglomeration of the attractive fea­

tures of a number of existing message passing systems. Over the years, the MPI

standard incorporated new types of functionalities and is being widely used. A

number of MPI implementations are currently available (e.g. MPICH, winmpich,

HP MPI, IBM’s MPI, Intel MPI, etc.). This research work uses the implemen­

tation from Intel® Corporation. The latest version is the MPI-3.0, which is a

major update to the MPI standard.

Right from the start, the developers of the MPI standard aimed at allowing easy

integration with programs written in Fortran and C, thus making the use of MPI

in this research work, not very atypical. There are around 370 subroutines in

a typical MPI implementation, although the exact numbers are specific to the

implementation in question. Generally, an MPI code uses/needs far less than the

total number of subroutines available. Simply stated, these MPI subroutines give

a coder the ability to simultaneously employ a group of communicating processors

to perform a collection of tasks.

3.2.1.1 Sample M PI code

A simple MPI code is presented in this section with a level of complexity to

illustrate basic inter-processor communications in an MPI environment. This

sample code is presented with the aim of illustrating the basic framework that

may be used in a parallel Finite Element application.

42

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chapter 3. Computational Framework

program thesis_samp1e_mpi
implicit none
include ’m p i f .h ’

integer,parameter
integer
integer
integer
character(charlen)
character(charlen)
character(LEN=l)

call MPI_INIT(ierr)
call MPI_C0MM_SIZE(MPI_C0MM_W0RLD , numProcs, ierr)
call MPI_COMM_RANK(MPI_C0MM_W0RLD, myrank, ierr)
if (myrank.e q .0)then

write(*,*)’Starting program’
endif !myrank
if (numProcs.n e .msglen+1)then

write(*,*)’Incorrect number of processors u sed!’
write(*,*)’Rerun with 12 processors’
call MPI_AB0RT(MPI_C0MM_W0RLD ,errorcode , ierr)

endif !numProcs
write(myrank_char , ’ (I) ’)myrank + l
myrank_char = adjust1(myrank_char)
! Every processor reads a suitable data file,
dest = numProcs - 1
if (myrank . ne . dest) then

base_name = ’sample_mpi ’
ext = ’ . dat ’
proc_specific_name = trim(base_name)//’_ ’// &

trim(myrank_char)//trim(ext)
unitno = 10 + myrank + (l*numProcs)
open(unitno,file=proc_specific_name,status=’o l d ’)
read(unitno , *) my_character

endif !myrank
if (myrank.e q .0)then

result_basket(:) = ’X ’
write (*,*) ’result_basket=’ ,result_basket

endif !myrank
call MPI_BCAST(result_basket ,msglen,MPI_CHARACTER , 0 , &

MPI_C0MM_W0RLD,ierr)
! Prepare the message to send

charlen=20,msglen=ll
myrank,numProcs ,ierr,unitno ,tag , i
status(MPI_STATUS_SIZE) ,errorcode
source,dest
myrank_char,my_character,i_char
base_name ,proc_specific_name , ext
result_basket(msglen),msg

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68
69

70

Chapter 3. Computational Framework

msg = trim(my_character)
if (myrank.e q .dest)then

do i = 1,numProcs-1
! Receive message
call MPI_RECV(result_basket(i), 1, MPI_CHARACTER, &

i-1, 1, MPI_C0MM_W0RLD, status, ierr)
write(i_char, ’ (I) ’)i
i_char = adjust1 (i_char)
write (*,*) ’ [P12] ’ , ’ReceivedMessageFrom [P J ,trim(i_char) , ’]
! Track progress
write(*,*)’result_basket=’,result_basket

enddo !i
endif !myrank
if (my rank . ne . dest) then

! Send message
call MPI_SEND(trim(msg) , 1, MPI_CHARACTER , dest

MPI_C0MM_W0RLD ,
write(*,*)’[P’,trim(myrank_char), ’] sent message:’, &

trim(msg),’ to [P12] ’
endif
! Synchronization
call MPI_BARRIER(MPI_COMM_WORLD,ierr)
if (myrank.e q .0)then

write(*,*)’Ending program’
endif !myrank
call MPI_FINALIZE(ierr)
end program thesis_sample_mpi

1 , &
ierr)

H E L L 0 W O R L D'
1 2 3 4 5 6 7 8 9 10 1t

Test String

Processor
Ranks

Figure 3-1: Character-Processor mapping for the MPI sample program

The sample code enclosed above makes use of 9 MPI subroutines and is expected

to run in a parallel MPI environment on 12 processors. This code simply gen­

erates a string th a t reads HELLO _W O RLD . However, the string is assembled

non-trivially in parallel to illustrate the participation of various processors. Fig­

ure 3-1 presents the processor-alphabet mapping. The use of 12 processors for

44

Chapter 3. Computational Framework

such a simple task is unnecessary and is intended here for purely illustrational

purposes. Processors 1-11 read a processor-specific file. Each of these files contain

an alphabet of the HELLO_WORLD string. After every processor has its string

(i.e. message to communicate), the message is sent to the 12th processor which

acts as a container for the final string being constructed.

3.2.1.2 Sam ple code output

The output enclosed below shows how the assembly process progresses to com­

pletion.

Starting program
result basket=XXXXXXXXXXX
[PI] sent message:H to [P12]
[P2] sent message:E to [P12]
[P3] sent message:L to [P12]
[P4] sent message:L to [P12]
[P5] sent message:0 to [P12]
[P6] sent message:_ to [PI 2]
[P7] sent message:W to [PI 2]
[P8] sent message:0 to [P12]
[P9] sent message:R to [P12]
[P10] sent message:L to [P12]
[PI1] sent message:D to [P12]
[P12]received message from [PI]
result_basket=HXXXXXXXXXX
[P12]received message from [P2]
result_basket=HEXXXXXXXXX
[P12]received message from [P3]

result_basket=HELXXXXXXXX
[P12]received message from [P4]
result_basket=HELLXXXXXXX
[P12]received message from [P5]
result_basket=HELLOXXXXXX
[P12]received message from [P6]
result_basket=HELLO_XXXXX
[P12] received message from [P7]
result_basket=HELLO_WXXXX
[P12]received message from [P8]
result_basket=HELLO_WOXXX
[P12]received message from [P9]
result_basket=HELLO_WORXX
[P12]received message from [P10]
result_basket=HELLO_WORLX
[P12]received message from [Pll]
result_basket=HELLO_WORLD
Ending program

45

Chapter 3. Computational Framework

A detailed explanation of the sample program is provided in Appendix A.

Although a message passing library is sufficient to parallelize a code, it is not

sufficient to solve the linear systems arising as a result of the discretization of

Navier-Stokes equations. Several libraries specialize in providing parallel itera­

tive solvers and pre-conditioners, but two of the most powerful ones are PETSc

(Argonne National Laboratory, IL, USA) and Trilinos (Sandia National Labora­

tory, USA). It is often worth the effort to spend time in learning to use these

non-trivial libraries that to program the solvers and pre-conditioners (especially

in parallel).

3 .2 .2 P E T S c

PETSc is an open source suite of data structures and routines for parallel so­

lution of large-scale scientific applications modeled by partial differential equa­

tions. It supports MPI, shared memory pthreads, and GPUs1 through CUDA2

or OpenCL3, as well as hybrid MPI-shared memory pthreads or MPI-GPU paral­

lelism. PETSc provides interfaces for programs written in Fortran, C, C + + and

python.

PETSc is currently run by a group of around 12 very enthusiastic and motivated

scientists. Even with such a limited number of active developers a new ver­

sion/update is rolled out several times in a year. The current version of PETSc

is 3.5, released in June 2014. It is worth noting the excellent support provided by

this dedicated team. Almost all support queries are dealt with, in the same hour

at no charge! Also, extensive documentation is available, both in the form of a

user manual and online manual pages. Using PETSc is far more complicated and

involved when compared to other conventional libraries. It by no means is a plug

1 Graphics Processing Unit
2Compute Unified Device Architecture
3Open Computing Language

46

Chapter 3. Computational Framework

and play library from the user’s perspective. Although the number of subroutines

is ballooning, it is in the range of a few thousand. Having access to quick and

direct support under these conditions is highly valuable.

The PETSc team employ and encourage the "use as much as you like" ideology.

This lets users control the extent of PETSc’s involvement in their application

programs. In this work, PETSc is purely used to solve the linear and non-linear

systems arising from the discretized Navier-Stokes equations. Although, the us­

age seems minimal, the consequences of using PETSc penetrate several layers

upwards into the code and considerably change its overall structure. This makes

PETSc ideally suited to be employed in the early phases of application program

development. Although possible, incorporating PETSc in an existing code is

rather cumbersome.

3.2.2.1 B uild ing blocks of P E T S c

Index Set sMatr ices Vec tors

BLAS MPI

Applicat ion Code s

KSP
(Krylov S u b sp a c e M e t h o d s)

PC

(Precondi t ioners)

SNES
(Nonl inear Equat ion Solvers) (Time Steppers)

Figure 3-2: Hierarchical organisation of PETSc libraries

Figure 3-2 shows the libraries present in PETSc. Each library consists of an ab­

stract interface, which is a set of calling sequences with a specific set of arguments.

47

Chapter 3. Computational Framework

A brief description of all the libraries is presented below.

Vector, denoted by Vec, is one of the simplest objects in PETSc. As the name

suggests, it is used to store the solutions and RHS (Right Hand Side) of linear

systems. These vectors may be sequential or parallel. Although specific subrou­

tines are provided to create both sequential (VecCreateSeq(args)) and parallel

(VecCreateMPI(args)) vectors, it is considered a good practise to use the generic

vector generation subroutine - VecCreate(args). Depending on the number of

processors employed, the VecCreate subroutine can automatically generate the

required type of vector. This simple subroutine selection criterion may also be

extended to other objects in PETSc. Another benefit of using generic object

generation subroutines is the ability to explicitly control their behaviour by using

suitable options in the PETSc options database. Since the options database file

is external to the source code, different settings may be tested without having to

recompile the entire code. Just for the Vec object alone around 250 subroutines

are available. This gives an idea about the scale and extent of PETSc.

Index Set, denoted by IS, is a set of indexing integers used to define scatters,

gathers and similar operations on vectors and matrices. Scatters and gathers refer

to operations where a specific subset of a vector is either selected for insertion

or to update/add to a subset of another vector. Although, ISs are useful for

problems involving unstructured meshes, they haven’t been currently employed

in the code developed in this research. PETSc provides around 170 IS related

subroutines.

Matrix, denoted by Mat, provides a variety of matrix implementations to cater for

a wide range of applications. Sequential and parallel versions of both dense and

sparse matrices are provided. The default matrix representation within PETSc

is the AIJ format (Yale Sparse Matrix format or Compressed Sparse Row (CSR)

format). The Mat objects are used to store the Jacobian and system matrices

arising while solving non-linear and linear systems. In order to efficiently use

48

Chapter 3. Computational Framework

this object for systems with large number of overall degrees of freedom, memory

preallocation is of paramount importance. The matrix assembly performance

can be increased by more than a factor of 50 if correct preallocation data is

specified. The preallocation data essentially consists of the number of non-zero

entries occurring in the matrix, both in the diagonal and the off-diagonal blocks,

for each row of the matrix owned by every processor. PETSc currently provides

around 460 Mat specific subroutines.

KSP, represents the scalable-linear-equation-solvers component available in PETSc

to access parallel and sequential, direct and iterative solvers for non-singular sys­

tems of the form [A]{:r} — {b}. Some of the methods available under KSP are

Richardson, Chebyshev, Conjugate Gradient, BiConjugate Gradient, Generalized

Minimal Residual, Generalized Conjugate Residual, BiConjugate Gradient Sta­

bilized, Conjugate Gradient Squared, Transpose-Free Quasi-Minimal Residual,

Conjugate Residual and Least Squares. The elegance of this library lies in the

fact that the same code, without recompiling, can be used to test each of the

methods listed above, with just a change in the options database file. Standard

convergence monitoring is provided for all methods. However, if there is a need

for a special convergence monitoring test to be included, PETSc provides for

subroutines which can invoke a user-defined monitoring routine and hence alter

the behaviour of the method as per the new test. There are currently 252 KSP

subroutines in the PETSc toolkit.

PC, provides access to a variety of preconditioners, which are typically used to

accelerate the convergence rate of iterative methods. All KSP implementations

available in PETSc default to left preconditioning. Using suitable options in the

options database file of PETSc, right preconditioning may be activated for some

methods. Preconditioners like Jacobi, block Jacobi, SOR (Successive Over Relax­

ation Gauss Seidel), Incomplete LU, Incomplete Cholesky, Additive Schwarz and

Algebraic Multigrid are available in PETSc. Some preconditioners are difficult

49

Chapter 3. Computational Framework

to use when compared to others. There are around 270 PC subroutines currently

available. One can also use matrix element based preconditioners in the LLNL

package hypre.

SNES, stands for Scalable Nonlinear Equation Solvers and provides access to

various non-linear solvers within PETSc. These include Newton like methods

which internally employ the Krylov solvers described earlier. There are around

300 SNES subroutines currently available. SNES may be used to create a generic

framework to solve both linear and non-linear equations, which is helpful for de­

veloping general, multi purpose applications. Various methods like the line search

and trust region Newton methods, non-linear Richardson, non-linear conjugate

gradient, non-linear GMRES, etc are available within SNES. Typically the SNES

solvers are capable of calculating the jacobian matrix using finite differences, but

for large problems it is faster and efficient to provide a subroutine to evaluate

the jacobian. One also needs to provide a subroutine to calculate the non-linear

function. PETSc can invoke external user defined subroutines for the jacobian

and function evaluations, as necessary during the solution process.

TS, provides access to frameworks for solving ODEs and DAEs that arise by

virtue of discretization of the time dependent partial differential equations. Im-

plict, Explicit and mixed implicit and explicit methods are available currently.

Provisions for pseudo time stepping has also been implemented for steady state

problems. Since, the primary motivation behind employing PETSc in this re­

search was to gain access to parallel solvers and pre-conditioners, the TS library

was not used.

3.2.2.2 Sam ple PE TSc code

The sample code enclosed below, iteratively calculates the solution to a dense

4 ★ 4 linear system in parallel on 2 processors, using GMRES. Although simple,

50

1

2

3

4

5

6
7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Chapter 3. Computational Framework

this sample PETSc code is an attem pt to provide a taster of PETSc. Some MPI

subroutines will be used in the process, though it is not mandatory. The following

linear system is solved in the sample PETSc code,

Vec 1Mat 1 Vec 2

0.6667
Proc 0

-1.1795

0.4359
Proc 1

1.8462
KSP

Figure 3-3: Sample linear system: Elements of KSP along with parallel object
partitioning

program thesis_sample_petsc
implicit none
! PETSc specific include files
#include <finclude/petscsys.h>
include <finclude/petscviewer.h>
#include <finclude/petscvec.h>
#include <finclude/petscvec.h90>
#include <finclude/petscmat.h>
#include <finclude/petscksp.h>
! PETSc data types
Mat LHS
Vec RHS , x
KSP ksp
PetscErrorCode ierr
PetscMPIInt myrank,numProcs
! Fortran data types
integer,parameter :: nnodes=4
integer :: i ,partition_info (2 , 2) ,def1,idxm(4)
double precision :: values(4)
! PETSc Initialization - Auto initialization of MPI
call PetscInitialize(PETSC_NULL_CHARACTER,ierr)
call MPI_COMM_RANK(PETSC_C0MM_W0RLD,myrank,ierr)
call MPI_COMM_SIZE(PETSC_C0MM_WORLD,numProcs,ierr)
! Set matrix partition
part ition_info(1,:) = (/I,2/);partition_info(2,:) = (/ 3 , 4 /)
defl = partition_info(myrank+1,2)-partition_info(myrank+1,1)+1
! Generate parallel matrix

51

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Chapter 3. Computational Framework

call MatCreate(PETSC_COMM_WORLD,LHS,ierr)
call Mat Set Sizes (LHS , def 1 , def 1 , nnodes , nnodes , ierr)
call MatSetUp(LHS,ierr)
! Generate parallel right hand side and solution vector
call VecCreate(PETSC_COMM_WORLD,RHS,ierr)
call VecSetSizes (RHS , def 1 , nnodes , ierr)
call VecSetUp(RHS,ierr)
call VecDuplicate(RHS,x ,ierr)
! Set dummy values in parallel matrix and vector
idxm = (/l,2,3,4/) ; idxm = idxm - 1
if (myrank.e q .0)then

values = (/l,2,3,4/)
call MatSetValues (LHS ,1,0,4, idxm , values , INSERT_VALUES , ierr)
values = (/4,3,5,2/)
call MatSetValues (LHS ,1,1,4, idxm , values , INSERT_VALUES , ierr)
values = (/7,5,3,2/)
call VecSetValues(RHS,2,idxm (1:2) ,values (1:2) , &

INSERT_VALUES,ierr)
else

values = (/1,3,5,2/)
call MatSetValues (LHS ,1,2,4, idxm , values , INSERT_VALUES , ierr)
values = (/6,4,2,1/)
call MatSetValues (LHS ,1,3,4, idxm , values , INSERT_VALUES , ierr)
values = (/7,5,3,2/)
call VecSetValues(RHS,2,idxm (3:4) ,values (3:4) , &

INSERT_VALUES,ierr)
endif !myrank
! Parallel object assembly
call MatAssemblyBegin(LHS,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(LHS,MAT_FINAL_ASSEMBLY,ierr)
call VecAssemblyBegin(RHS,ierr)
call VecAssemblyEnd(RHS,ierr)
! Call krylov solver
call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)
call KSPSetOperators(ksp,LHS,LHS,SAME_N0NZER0_PATTERN,ierr)
call KSPSolve (ksp , RHS , x , ierr)
! Display solution vector
call VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr)
! Terminate Petsc
call PetscFinalize(ierr)
end program

52

Chapter 3. Computational Framework

Even for such a simple program around 20 PETSc subroutines had to be used,

most of which are mandatory to use and many more become both mandatory and

necessary when writing an entire finite element application. A brief explanation

of the entire sample code is provided in Appendix B.

3 .2 .3 D om ain d eco m p o sitio n

The basic paradigm in most parallel computing frameworks is that a large problem

can be divided into smaller, simultaneously solvable sub problems. The process

of suitably breaking down the problem into smaller parts or partitions is referred

to as domain decomposition or partitioning. An application which performs this

task is called a partitioner. The domain, in this case is represented by the mesh.

The partitioner typically reads this mesh and splits it into the desired number

of partitions, each representing a sub domain for the participating processors to

assume ownership of, and process. It must also be mentioned that the use of a

SPMD framework usually necessitates the partitioning of the global domain.

/ V

Node based partition

FFH * ♦ > */ ' \
Element based partition

Figure 3-4: Types of mesh partitioning

Two different types of partitioning are possible. These are node based (edge

cut) and element based (vertex cut). As illustrated in Figure 3-4, node based

partitioning cuts the mesh across element faces, whereas the element based par­

titioning cuts the mesh along element faces. The element based partitioning is

adopted in this research. This type of partitioning is also in line with the finite

53

Chapter 3. Computational Framework

element method, where the element level matrices are constructed in a loop and

assembled into the global matrices. With the interface nodes 4 being duplicated

across communicating processors, the finite element assembly operation may be

viewed as the incorporation of contributions from various super elements. All el­

ements contained in a certain processor/partition/patch are collectively referred

to as a super element.

The initial choice for partitioning meshes was ParMETIS [81]. It is an MPI

based parallel library written in C, with various implementations of partitioning

algorithms for unstructured meshes. ParMETIS was the successor of the popular

METIS library [80], which implemented multilevel partitioning and fill-reducing

ordering algorithms.

For use in parallel frameworks, partitioners must typically ensure:

1. Load balancing: The sub domains generated by a partitioner must roughly

contain equal number of elements. This ensures that all processors get

evenly loaded, ensuring that they can complete their respective tasks in

approximately the same length of time. An important implication of sat­

isfying this condition is that the processors will have to spend little time

while waiting for the slowest processor to complete.

2. Minimising communications: Processors communicate only when they do

not have the required information. This typically occurs at the interface,

along which the mesh will be cut. A partitioning scheme that can reduce the

number of these interface nodes, therefore directly addresses the problem

of reducing communication across participating processors.

Although, the above conditions were elegantly addressed by ParMETIS, another

problem was encountered. Since, the code developed in this research used PETSc,

4Interface nodes: Nodes along which the mesh is cut in an element based strategy. Conse­
quently, these nodes are duplicated across adjacent mesh partitions.

54

Chapter 3. Computational Framework

another type of partitioning - matrix partitioning, had to be addressed. In the

PETSc framework, the matrix arising from the linear system is partitioned across

participating processors in a row-wise manner. Although, users can specify the

ownership limits for every processor, they must be contiguous. This might get

addressed in future releases, but remains a constraint in the PETSc version 3.4.0

employed in this research. The contiguity constraint implies that the ParMETIS

partitions could not be directly used within the PETSc framework, in an efficient

manner. The inefficiency creeps from the fact that the majority of the element

level matrix entries generated in a certain processor might get assembled within

global matrix entries that belong to other processor(s), i.e. many off-processor

assembly operations might occur. Such off-processor assembly operations add to

the communication overhead. It is therefore necessary to also ensure that the

partitioner decomposes the domain by minimising the number of off-processor

assembly operations. This problem is illustrated in the following section.

3.2.3.1 Illustration of inconsistency betw een ParM ETIS m esh parti­

tions and PE TSc m atrix partitions

For the purpose of this illustration, a tetrahedral mesh representative of a cuboid,

is considered. The mesh is assumed to be partitioned into 16 sub domains and has

refinement towards one of the long faces. Assuming the standard approach, if one

was to mesh with Gmsh and partition straight with ParMETIS, then the resulting

inconsistency with respect to the PETSc matrix partitioning is illustrated in

Figure 3-5. If we consider patch number 16 of the ParMETIS partition (right),

and compare the corresponding region in the figure on the left showing the PETSc

partition, it is obvious that the processor 16 will generate element level matrices

that will need to be assembled in processors 2,3,8 and 9. It turns out that all

assembly operations from processor 16, will be in other processors leading to

communications overhead. The same is the case with almost all the remaining

55

Chapter 3. Computational Framework

processors.

Figure 3-5: Left: PETSc m atrix partition projected 011 the mesh. Right:
ParMETIS partition

In Figure 3-6 various slices are extracted along the cuboid to reveal the presence

of such inconsistency not just on the surface, but even on the inside of the cuboid.

Figure 3-6: Slice extraction from various sections of the domain in Figure 3-5

The quality of the initial mesh may be improved by renumbering the mesh, so

that the node numbers of interconnected nodes are close to each other. In other

words, the random distribution of node numbers occurring in the first plot of

Figure 3-6 can be corrected. This is also traditionally referred to as reducing

the bandwidth of the matrix, which may be visualized by plotting the sparsity

structure of the matrix. Techniques like Cuthill Mckee, Reverse Cuthill Mckee

[91], Minimum degree perm utation [5], etc. are available to reduce the matrix

bandwidth. Figure 3-7 presents the results of partitioning, when the Reverse

56

Chapter 3. Computational Framework

Cuthill Mckee (RCM) renumbering scheme is adopted. Although, RCM helps

cluster the nodes, the problem of inconsistency between the two partitions is not

addressed.

ParMETIS partition 2 6 10 14PETSc partition 2 5 8 11 14

Figure 3-7: Comparison of PETSc and ParM ETIS partition with RCM prepro­
cessing

The benefit of using RCM renumbering becomes apparent by plotting the spar­

sity structure of the finite element system matrix. The sparsity structure pre

and post renumbering are presented in Figure 3-8. The m atrix bandwidth after

RCM renumbering gets reduced by 92%. Such an elegantly renumbered mesh

will inherently result in a reduction in the MPI communications by virtue of clus­

tered entries along the diagonal. Also, diagonal dominance leads to better rates

of convergence [67]. However, the inconsistency between the mesh and m atrix

partitioning still exists.

Another strategy was implemented with the aim of making the mesh and m atrix

partitions coherent. For this purpose, an MPI Fortran renumberer was w ritten

and was intended to operate on the mesh after partitioning it. A global list of

interface nodes on all processors was first constructed and assigned to the first

patch in the mesh, after renumbering them. W ith the interface nodes being dealt

with, all the nodes th a t remained in the remaining patches would be under the

exclusive ownership of the patch/processor in which they appear. This implies

th a t a top-down approach could easily be employed to renumber the nodes such

57

Chapter 3. Computational Framework

t ip 4 Sparsity pattern of the original m esn BancVndtn= 26554 0 * io 4 Sparsity pattern after applying RCM renumbering BancM-idh=2096

0 6

1

1 5

2

2 5

0 0 5 1 1 5 2 2 5

Figure 3-8: Sparsity pattern of the finite element system matrix. Left: Before
RCM renumbering. Right: After RCM renumbering

that the consistency between mesh and m atrix partitions could be achieved.

Figure 3-9: Partition renumbering scheme on 4 patches. (Left) PETSc partition
(Right) ParM ETIS partition

In other words, the range of nodes contained in a mesh-patch th a t gets assigned

to a specific processor would be the same as the range of m atrix rows owned by

th a t processor. Assuming four partitions, the partition contours before and after

partition-renum bering are presented in Figure 3-9. The box type sparsity pattern

arising out of this approach is presented in Figure 3-10. Although, this approach

(renumbering the mesh patches) appears to generate consistent partitions, the

first processor is heavily loaded, since all interface nodes appear in it. This leads

58

Chapter 3. Computational Framework

to poor load balancing.

25000

20000

15000

10000

5000

° 0 5000 10000 15000 20000 25000

Figure 3-10: Sparsity pattern of the partitioned renumbered finite element system
m atrix

To circumvent the overloading of the first processor, it is possible to distribute

the interface nodes equally amongst all processors. However, this will lead to a

slightly more cumbersome renumbering strategy. Also, the m atrix bandwidth is

relatively larger in the partition-renum bering case when compared against RCM

renumbering, leading to performance penalties.

3.2.3.2 C u rre n t w orking s tra te g y

In order to amalgamate the benefits of RCM renumbering along with a parti­

tioning scheme that permits coherence between mesh and m atrix partitions, a

custom partitioner was implemented serially. This partitioner first applies RCM

renumbering on the un-partitioned mesh and then partitions the nodal block in

a mesh, like th a t done in PETSc. As a result of partitioning the nodal block in

this manner, mesh patches consistent with the matrix partitions are obtained.

Next, the elements are partitioned. This is not trivially done, because the ele­

ment ownership depends on the nodal ownership. The following rules apply when

59

Chapter 3. Computational Framework

partitioning the elements:

1. Pure ownership: An element with all of its nodes in a certain partition,

belongs to that partition.

2. Biased shared ownership: An element with nodes belonging to multiple

patches will get assigned to the patch in which majority of its nodes lie.

3. Unbiased shared ownership: An element whose nodes are equally shared

across multiple patches gets assigned to either of the patches.

4. Poor ownership: An element whose every node is in a different processor,

currently terminates the program, as this indicates excessive partitioning

of the mesh concerned. If the partitioner runs before RCM renumbering,

then most of the elements are expected to fall in this category and hence

this check currently terminates the program.

While partitioning the elements in accordance with the above rules, a simulta­

neous record of nodes that need to be duplicated in various patches is made.

This step becomes essential when dealing with elements whose nodes are under

shared ownership (for completeness of information while constructing element

level matrices). Finally, the boundary block is partitioned based on the element

partitioning data, since every boundary element will be independently associated

with an inside element. This completes the mesh partitioning process. The parti­

tioned mesh is then written to processor specific files with the header (containing

local mesh size), local connectivity information, local nodal coordinate informa­

tion along with the duplicated nodes and the local boundary information, in the

same order. For convenience, the node and element numbers appearing in the

mesh patches are global, i.e. fully consistent with the un-partitioned mesh. The

partitioning results for a Carotid mesh containing 16 partitions is presented in

Figure 3-11.

60

Chapter 3. Computational Framework

10s Sparsity pattern of the original mesh Bandw(Jh= 299906 Sparsity pattern alter applying RCM renumbering Banc*vtcJtn=34iW

nz = 10406194 nz = 10446190

(b)

Figure 3-11: Renumbering a carotid mesh, (a) Sparsity pattern before and after
renumbering (b) Patch contours

3.2 .4 P E T S c m a t r ix p re a l lo c a t io n

Preallocating memory to the parallel matrices within PETSc is an efficiency mea­

sure th a t can increase the performance by a factor of more than 50 [41]. In the

absence of preallocation data, PETSc defaults to dynamically allocating memory.

This means th a t every time a new non-zero entry is encountered, all the entries

are copied from the old location to a new, larger location. This becomes very

expensive when dealing with large systems. In the early stages of code devel­

opment, the CSR (Compressed Sparse Row) sparse m atrix representation of the

system matrix was generated to aid in preallocation (see appendix D). As per the

61

Chapter 3. Computational Framework

standard CSR representation, the difference of consecutive entries of the CSR-

row array gives the exact number of non-zero matrix entries in every row of the

matrix. Splitting this data further into the exact number of non-zeros appear­

ing in the diagonal and off-diagonal blocks of every row in the matrix, results in

an accurate preallocation. Cases where exact preallocation data is unavailable,

inaccurate overestimation is cheaper than underestimation, the former involving

significantly smaller or no data movement. The calculation of preallocation data

for a small pseudo-sparse system is presented in Appendix D.

3.3 Code overview

A brief description of the main code developed in this research (IFENs) will be

provided in this section. As mentioned before, this code is written in Fortran90

and parallelized using the MPI standard and PETSc. There are several ways of

using PETSc in a Fortran code. Here one of the recommended approaches, called

"Classic Fortran 90 style" is used. In this approach, various PETSc header files

are included at the top of the program using the fortran preprocessor. Apart

from the above mentioned use of the preprocessor (automatically invoked using

the F90 file extension rather than the f90 extension), it was used to conditionally

omit or include various sections of the code before compiling. This is beneficial

from the point of view of making the code multi purpose, without having to

invoke traditional if statements several times in a loop. Also, the code can be

elegantly made portable to take care of platform specific source text.

Figure 3-12 gives an outline of the main code developed in this research. In the

remaining part of this section some details of the code are provided, which by

no means is exhaustive. The code starts off by defining variables that control

the actions of the preprocessor. These variables are defined by what are called

as ‘preprocessor directives’, that must begin with # in the first column of the

62

Chapter 3. Computational Framework

H eader files

loading

D efinition of p re

p ro cesso r variab les

an d o th e r o p tio n s

PETSc and MPI

in itia lization

P ro g ram o p tio n s , o p tio n s

d a ta b a s e , m esh and

velocity pro file read in g

C alculate PETSc

p artitio n in g d a ta

P rocess b o u n d a ry

d a ta req u ired for

BC app lica tion

C alcu la te vo lum es

a n d s h a p e fu n c tio n

d e riv a tiv es

G e n e ra te and

initialize M at an d

Vec o b je c ts

SPLIT MONOLITHIC

S tep 1

Semi

im plicit

Fully

im plicit
N onlinear

fu n c tio n

Jacob ian

m atrix

S patial loopS patial

loop
N on linear

function

Jacob ian

m atrix
A ssem blies

FE assem b lyS patial loop
SNESSolve

A ssem blies PETSc KSPSolve
assem b ly

SNESSolve P reco n d itio n e r

KSPSolve

S tep 2KSPSolve

Sync p ro cesso rs S te a d y -s ta te co n v e rg e n ce checkP o s tp ro c e s s in g

P re ­

p rocessing

P rocessing

O utside tim e

loop

^ R eynolds

loop

.T im e

loop

Finalize lib raries an d e n d p ro g ram

Figure 3-12: Overview of the parallel multi purpose Navier-Stokes Solver

63

Chapter 3. Computational Framework

desired source line. After the initial definition, the conditional directives are used

(similar to typical conditional statements) to control visibility of source lines to

the compiler. The Fortran variables defined by the preprocessor are now ready

to be used in any source location beyond the initial definition. The variables

that need to be visible globally in all subroutines are defined next within Fortran

module(s). The actual program starts now with the typical ‘program’keyword.

PETSc specific header files are loaded next, which in turn loads the MPI header

files by default. Hence, there is no strict need to separately initialize MPI. Al­

though MPI may be explicitly initialized, if desired. The standard PETSc data

types like Mat, Vec, KSP, PC, SNES, etc. are defined next, followed by the defi­

nition of standard Fortran data types. The validity of the values set in each of the

preprocessor specific variables are tested next and a record of the current options

are made in appropriate log files. If any of the checks fail, the code aborts via

M P I _ A B O R T . Since in a supercomputing environment, running simulations

is not interactive, any data that needs to be entered through the keyboard, is

placed in the right order in a file called the options file, which will be accessed

by the code, every time it expects to read data from the keyboard. This way an

interactive code can be dealt, without problems in a job scheduler driven pro­

gram execution environment. All the options are read in the rank 0 processor

only, which broadcasts the data to the remaining processors. If vectors whose

sizes are not known a priori, need to be transmitted, then care must be taken to

first broadcast their size, allocate variables based on this size (in the receiving

processors) and finally broadcast the vector entries. This will require the use of

processor specific task allocation (based on processor ranks). Depending on the

number of processors requested, the sequential or the partitioned mesh will be

read next. The format of the partitioned files depends on the partitioner used,

for which checks have been included. Each processor reads a specific mesh file as­

signed to it, there by reading the mesh in parallel. In cases where velocity profiles

are being imposed, these are read from separate files (depending on the number

64

Chapter 3. Computational Framework

of boundaries). If the velocity profiles file are meant to impose transient dirich-

let boundary conditions, then the file format changes significantly and therefore

the code flow is adjusted to invoke the appropriate file readers. Currently, the

velocity profiles are read sequentially and the required data is broadcast to the

remaining processors. This completes the preprocessing stage.

The processing stage starts off in preparation for the application of boundary

conditions. Every boundary is assigned a specific flag in the mesh. The options

file mentioned before activates the boundaries on which to apply the required

boundary conditions. A list of nodes occurring on each of the active bound­

aries is made, so that these can be prevented from being included in the parallel

matrix, under the elimination approach of handling the dirichlet boundary condi­

tions. Since there are multiple degrees of freedom (DOF) per node, the nodes list

generated here must be suitably augmented. Two different arrangement of DOF

are currently permitted in the system matrix. Either all DOF corresponding to

a node appear together [ul,vl,wl,pl,....,un,vn,wn,pn] or a certain DOF-type for

all nodes appear together [ul,...un,vl,...vn,wl,...,wn,pl,...pn]. Once a list of all

dirichlet nodes is made, corresponding lists of boundary flags and values are also

made. These arrays/lists are useful for incorporating the contributions from non­

zero dirichlet boundary conditions in the RHS vector. Since this list generation

process is a one time affair and is also very efficient by virtue of associative lists,

which helps in direct/search-free indexing, this step is performed sequentially and

the lists are broadcast to the remaining processors. In general, light weight and

serially efficient operations that are performed outside the tim e loop may

be run sequentially, if the parallelization is non-trivial with the data structures

being used. Provisions for the inclusion of no de-specific-values to successfully im­

pose the steady velocity profiles is included at this point. However, for transient

velocity profiles, the values need to imposed inside the time loop.

The contiguous matrix partitioning is calculated next, based on the size of the

65

Chapter 3. Computational Framework

augmented-reduced 5 system. Special provisions are set in place to repeat this

process when the code is set to run in the split mode, because the step 2 of the

CBS scheme involves a pressure-Poisson solve, which would require just one DOF

per node unlike the CBS step 1 (which requires three). From the point of view

of calculating the contributions that need to be assembled into the RHS vector,

another array of contributing elements is generated. For these elements, the exact

nodes that need to be considered is also pre computed and stored. In the split

framework, the corresponding arrays for the pressure system are also generated

and stored. Next, the volumes and shape function derivatives with respect to all

spatial dimensions are calculated for all the elements in the mesh (the expressions

for which, are presented in Appendix E). The quality of the mesh is also evaluated

at this point, by calculating the smallest edge length.

The matrix preallocation data for all the matrices involved, is calculated next

and fed into PETSc via suitable routines. The parallel matrices and vectors are

generated and their sizes (global and local) are set suitably in all processors. The

initial conditions are set next, via data entered in the options file. For restarting

a simulation from an intermediate calculation, there are arrangements in place

to read in the last known solution as initial conditions and restart the simulation

from the point of exit. This is a useful feature for carrying long simulations that

cannot complete within the specified wall-time limits of the job scheduler or in

cases where a job gets killed after running for substantial lengths of time. When

using the monolithic framework, various other data structures are generated to

calculate and hold the pressure stabilization matrices.

After all the data structures are ready to aid the actual computations, the loop

5Augmented: The mesh assumes one DOF per nodes in the numbering of nodes. This data
needs to be suitably modified depending on the number of DOF per node.
Reduced: After augmenting the node numbering, care must be taken to remove the dirichlet
boundary nodes, by generating suitable mapping between the node numbers in the full and
reduced systems.

66

Chapter 3. Computational Framework

over time begins. This loop over time is nested within a Reynolds loop6. Reynolds

loop may be activated when a better initial guess is required for the Newton

solvers. Setting the maximum number of Reynolds steps to one, the typical time

loop environment can be activated.

In the time loop, the parallel matrices and vectors are initialized. Before the

spatial loop starts all the data that would be needed in the construction of the

elemental matrices and vectors is off-loaded from the parallel PETSc Vec objects

into standard Fortran arrays. Depending on the type of solvers selected, in the

very first time step, the required linear (KSP) and non-linear (SNES) objects

are created. This is a one time operation, as these objects can be reused during

consequent time and/or Reynolds steps. Subroutines that are specifically writ­

ten for the generation of non-linear function and the Jacobian matrix, are made

aware to PETSc at this point using the SNESSetFunction and SNESSetJacobian

subroutines. In the non-linear mode, the spatial loops are hidden inside the sub­

routines specified by the SNESSetFunction and SNESSetJacobian subroutines.

The SNESSet functions mentioned here are limited in terms of the number of ar­

guments they allow. Therefore, data other than that allowed by these arguments

will need to be made visible via other means. If the extra data needed is a PETSc

data type, then a user defined context is provided as an optional argument to

the concerned subroutines. Analogous to the concept of structs in C, the various

parallel objects needed must be packaged into this single argument. If the addi­

tional data needed is a Fortran data type, then suitable Fortran modules must

be employed to make these variables visible in the user defined routines.

The subroutines that evaluate the non-linear function and the Jacobian matrix

are constructed based on equations C.27 through C.29 in the split framework and

equations 2.50 through 2.57 in the monolithic framework. In these subroutines

6Analogous to the concept of load steps in solid mechanics, the reynolds loop gradually
approaches the actual velocities in desired number of velocity steps

67

Chapter 3. Computational Framework

there are 2 notions of old solution. One being the previous time step solution and

other being the previous Newton iteration solution. Given the old solution, these

subroutines construct 16 x 16 elemental matrices and 16 x 1 elemental vectors

(monolithic) or 12 x 12 elemental matrices and 12 x 1 elemental vectors (split).

These elemental quantities are assembled into the global, parallel matrices and

vectors by assigning the global indices in which they must be added. In PETSc,

when Mat or Vec entries need to be selectively suppressed (while encountering

dirichlet nodes), a negative index needs to be assigned. Although, this is the

default behaviour for matrices, the vector objects can exhibit this behaviour by

turning on the V E C _ I G N O R E _ N E G A T I V E _ I N D I C E S option using the

VecSetOption sub routine. All the elemental matrix-vector and vector-vector

multiplications are done without using the intrinsic matmul function in Fortran.

For matrix-vector operations involving the parallel PETSc objects, subroutine

like MatAXPY and VecAXPY may be used, where, AXPY denotes the standard

A * X + Y operation of several standard linear algebra libraries. In the PETSc

framework, apart from the finite element assembly, all parallel objects need to

be assembled to ensure that they contain valid entries in them (data may be

cached). Setting appropriate values of the pre processor directive results in ap­

propriate pressure stabilization matrices being constructed and assembled, in the

monolithic framework. Finally, the function to invoke the actual non-linear solver

(SNESSolve) is called. This subroutine automatically controls the invocation of

the subroutines for the construction of the function and the jacobian matrix,

during the solution process until convergence is achieved. Crucial information

regarding the solution process may be obtained using appropriate flags in the

options-database file.

While using PETSc, various options can be hard coded into the program. For

flexibility, a file called the options-database file may be used to override these

options. Depending on the object whose options need to be overridden, it is

68

Chapter 3. Computational Framework

therefore a good practice to include the *SetFromOptions sub routine for the

concerned objects in the source, which activates the overriding procedures. The

name of the object needs to be prepended to the SetFromOptions string to get the

actual subroutine to invoke. These options can override the hard coded options

by the use of * SetFromOptions sub routine. The options-database file is made

visible to PETSc by providing its path and name while initializing PETSc. For

transient simulations, the steady state convergence checks are performed next, the

post-processing routines to invoke file writes are called before executing the next

time step. ASCII Tecplot and binary ParaView writers have been programmed

to visualize the results.

However, in the split framework the pressure-poisson solve (step 2) as well as

the velocity correction (step 3) need to be performed before moving to the next

time step. Provisions are made to be able to solve the intermediate velocity field

of step 1 via a semi-implicit scheme (convective terms in the RHS and diffusion

terms in the matrix). Equation specific coding is also performed to be able to

run the Laplace, Stokes and Burgers equations in addition to the Navier-Stokes

equations. The current version of the code is packaged into a code-folding enabled

(when viewed in Vim [95]), single file, with the main program and all sub routines

in a bit more than 10000 lines. Despite the massive line count for a single file, the

code folding technique makes it possible to see the overall hierarchical structure

and specific sections may be opened, while others are hidden.

3.4 Operation sequence

Typical steps that are generally performed while setting up simulations are pre­

sented in this section. Depending on the simulation being run, extra data might

be needed, which is suitably read using the problem specific components in the

code.

69

Chapter 3. Computational Framework

3.4 .1 M esh in g

Construction of the computational domain, i.e. the finite element meshing is

the first step. For simple/idealized geometries, the 3D meshing package, Gmsh

was utilized. The mesh format of Gmsh is converted into a format compatible

with the IFENs solver, using a translator routine, specifically written for this

purpose. Once the mesh is translated, the current working strategy requires it

to be renumbered to reduce the bandwidth of the resulting system matrix, as

mentioned before. The mesh is then partitioned using a custom serial routine

specifically written for this purpose.

For patient-specific meshes additional steps need to be performed. A good repre­

sentation of the vessel geometries is required to accurately predict the flow within

them. Non-invasive data acquisition methods like computed tomography (CT)

and magnetic resonance imaging (MRI) are usually utilized to get the initial pa­

tient data, which is basically an image set. The next step is to reconstruct the

geometries. This involves extracting the surface/wall of the geometry from the

image, i.e. to separate the vessel from the rest of the image, commonly referred to

as segmentation. The implicit deformable model (IDM), based on the geometric

potential force (GPF) field, was used to generate the meshes used in this research.

An overview of the available segmentation methods along with their limitations

and the IDM-GPF method have been presented in [134]. This reference also

describes the surface and volume meshing strategy along with the mesh cosmet­

ics/smoothing procedures. The entire sequence of operations is summarized in

Figure 3-13. Once the patient specific mesh is ready, like for the idealized geome­

tries the renumbering and partitioning programs need to operate on the mesh.

70

Chapter 3. Computational Framework

Figure 3-13: Patient specific meshing [134]: (a) CT scan of a carotid artery
(b) Segmentation using IDM-GPF method (c) Surface meshing (d) Surface mesh
refinement (e) Generation of boundary layers near the walls (f) Volume meshing
(g) Final mesh, with mesh visible in the lower half

3.4.2 G e n e ra t io n o f b o u n d a r y c o n d i t io n d a t a

This step is directly related to imposing dirichlet conditions a t the boundaries.

These boundary conditions may be constant, function of time and /o r space. For

constant boundary conditions, using a suitable flag-value mapping in the pro­

gram options file will be sufficient. For conditions th a t change in space, for e.g.

imposing a fully developed poiseuille profile a t the inlet of a cylindrical pipe, a

MATLAB script is used to generate the relevant values and the X,Y and Z com­

ponents of the velocity profile are w ritten to a da ta file. This file is read through

71

Chapter 3. Computational Framework

the right selection of preprocessor directives and using the boundary flag data,

the required profile is imposed. However, for cases where the solution variable is a

function of both space and time, e.g. imposing a womerslev profile on non-circular

boundary, the work flow involves additional steps, which are described in detail

in subsections 5.1 through 5.5 of [134]. The velocity profile typically imposed for

the carotid geometries considered in this research are shown in Figure 3-14. The

harmonics used in the construction of this velocity profile are presented in Table

3.1

120

100

80

&
O 60
d)
>

40

20

"o 0.2 0.4 0.6 0.8 Inlet
time

Figure 3-14: Typical velocity profiles for carotids [134]: (a) 2D inlet velocity
profiles as a function of space and time (b) 3D peak velocity profiles at the
boundaries

In sta n t, velocity profile

X in let radius

O u t l e t 1

3.4 .3 J o b s e tu p

The Navier-Stokes solver of this research was developed and executed on the

supercomputing facilities of HPC Wales. The Load Sharing Facility (LSF) system

is used there to schedule and execute workloads over the HPC environment. The

workload consists of so called jobs which are generated and subm itted by users

to run their simulations. This job submission script is used by LSF scheduler to

72

O u t l e t 2

Chapter 3. Computational Framework

Harmonic Frequency (Hz) Amplitude Phase (rad)
0 0.0000000e+000 4.6926373e+001 0.0000000e+000
1 1.0875476e+000 2.1524133e+001 -1.1757456e+000
2 2.1750952e+000 1.7614591e+001 -1.6399569e+000
3 3.2626427e+000 1.2147710e+001 -2.4126155e+000
4 4.3501903e+000 6.7678515e+000 -2.5923204e+000
5 5.4377379e+000 9.0132960e+000 -2.8654415e+000
6 6.5252855e+000 8.0155307e+000 2.5792239e+000
7 7.6128331e+000 4.4200926e+000 2.0271286e+000
8 8.7003806e+000 3.5711419e+000 1.9278901e+000
9 9.7879282e+000 3.4320565e+000 1.3878100e+000
10 1.0875476e+001 2.3272178e-(-000 7.7936298e-001
11 1.1963023e+001 1.4287817e+000 6.2628156e-001
12 1.3050571e+001 1.5817702e+000 3.5279629e-001
13 1.4138119e+001 1.2964663e+000 -3.6075375e-001
14 1.5225666e+001 7.1691449e-001 -7.5219771e-001
15 1.6313214e+001 6.4928471e-001 -8.7984983e-001
16 1.7400761e+001 5.5890994e-001 -1.4506194e+000
17 1.8488309e+001 3.5656742e-001 -1.8778747e+000
18 1.9575856e+001 2.7656662e-001 -2.0518077e+000
19 2.0663404e+001 2.5371520e-001 -2.4611692e+000
20 2.1750952e+001 1.8540847e-001 -2.9991421e+000
21 2.2838499e+001 1.1846889e-001 3.0061654e+000
22 2.3926047e+001 1.0273053e-001 2.7403593e+000
23 2.5013594e+001 7.7012238e-002 2.2301464e+000
24 2.6101142e+001 4.9128254e-002 1.9239422e+000

Table 3.1: Harmonics used for the construction of the velocity profile in 3-14

access all the mandatory information required for it to schedule and execute jobs.

This includes information about the number of processors to use, maximum wall

time, queue name and execution mode. These are specified as directives to the

job scheduler in the header section of the script. The paths and names of the

executable along with all the input and output files are also included here. Any

modules that may be required by the executable may be loaded here.

The job submission script also makes reference to another file, called the program

options file. In the program options file, all the queries from the read(*,*) state­

73

Chapter 3. Computational Framework

ments of the source code are addressed (to substitute for the data entered by users

at runtime in an interactive environment). Another file specific to PETSc, called,

the options database file must be appropriately updated to suit the requirement of

the simulation being run. Once the source code has been compiled with suitable

flags and libraries, the job submission script is ready to be submitted. Depending

on the work load, the program will be executed. Various commands are available

to check the status of a job, post submission. The code itself writes a log file

which is updated intermittently during the execution phase of the program.

3 .4 .4 P o st-p ro cessin g

Currently, the output from all processors is assembled together in a single file.

Depending on the nature of simulations, a single solution block or multiple time

blocks are appended to the same file. The results were analysed and required

quantities were calculated using custom programs and subroutines. These were

written in either Fortran or MATLAB, depending on the problem size. For visu­

alizing the results, both Tecplot [75] and ParaView [66] were employed. Currently

ASCII tecplot and/or binary vtk [76] files are generated. These steps generally

complete the process of running a simulation.

3.5 PETSc specific details

For the fully implicit solution of the incompressible Navier-Stokes equations, the

so called, Newton-Krylov framework was used both in the split and monolithic

versions of the CBS implementation. With the non-linear function, as well as the

jacobian matrix being derived, PETSc invokes its krylov solvers in every Newton

iteration to find a better approximation of the solution. Variants of the Newton

method, like line search and trust region are generally used. In this research,

74

Chapter 3. Computational Framework

the initial success with Newton line search resulted in that being chosen as the

default non-linear solver. The restarted GMRES as well as the Loose GMRES -

LGMRES [10] have been usually used in this research. The ASM preconditioner

[47] was found to perform well with the chosen combination of solvers.

3.6 Summary

This chapter presented the computational framework in which the discretized

Navier-Stokes equations were solved. Starting with a brief introduction to par­

allel computing, MPI and PETSc toolkit were introduced along with two basis

examples. The domain decomposition process suitable in a matrix environment

was then described along with the transition from the use of ParMETIS to a cus­

tom partitioner. A brief note on matrix preallocation was provided next, followed

by an example in Appendix D. A description of the IFENs solver, developed in

this research was also included. This helped highlight some of the important

steps. Finally, the operation sequence involved in the execution of a typical sim­

ulation was described. This included meshing, generation of boundary condition

data, parallel environment job setup and post-processing of the results.

75

Chapter 4

Benchmarking

4.1 Introduction

Chapter 3 described the framework used for computing solutions to the dicretized

form of Navier-Stokes equations derived in Chapter 2. The current chapter aims

to verify the overall correctness of the scheme and the code developed in this

research. Various aspects like mesh renumbering, iterative solver framework,

parallelization, number of processors, scheme and code, etc. may be separately

subjected to validation. Simulations set up to check these aspects, as well as the

results are presented in the following sections.

4.2 M esh renumbering

As already illustrated in chapter 3, mesh renumbering is an efficiency measure,

which improves convergence, while using iterative solvers. The solutions obtained

by using a mesh generated with gmsh [60] were compared with those obtained by

using the same mesh renumbered with RCM1. This test was performed serially

Reverse Cuthill Mckee

76

Chapter 4. Benchmarking

(nprocs= l) using the non-monolithic formulation. The convection and diffusion

terms were retained in the LHS matrix, hence employing the SNES objects to

realize the Newton-Krylov solvers.

Figure 4-1: Mesh used for checking renumbering

The mesh used for checking the correctness of mesh renumbering is shown in Fig­

ure 4-1. It represents a 3D, internal-flow domain cast in the shape of characters

C,F and D, connected in a wav to result in some back flow. A uniform unit flow

field was imposed along the X axis at the base of the character, C and a dirichlet

boundary condition was imposed for pressure on just one node at approximately

the mid height of character, D. A no slip condition was imposed on all boundaries.

This domain had no outlet. The dirichlet boundary condition on pressure in the

character D attracts the flow, by virtue of being visible as a low resistance point

to the fluid.

Figure 4-2 presents the steady state pressure contours, with the streamtraces

superimposed. The solutions before and after renumbering are identical. To make

2D comparisons, a slice was first extracted at mid thickness, i.e. Z = 0.25cm.

77

Chapter 4. Benchmarking

Velocities and pressures were then extracted along the X axis a t a height of

2.815cm. This comparison for velocity and pressure is presented in Figures 4-3a

and 4-3b respectively. The extracted data was found to be in good agreement,

reflecting the correctness of the renumbering algorithm. Also, both the cases

converged to a steady state in 37 time steps.

The renumbering procedure was subjected to a couple of similar tests and the

results with and without renumbering was observed to be identical in all the cases

(results not presented).

(b)

(c) (d)

Figure 4-2: Comparison of pressures and velocity magnitude contours and stream-
traces at steady state. (a,c) Gmsh numbering (b,d) RCM renumbering

4.3 I te ra t iv e l inear solvers

All problems considered in this research (linear and non-linear) made use of it­

erative solvers, which in most cases was GMRES and its variants. Although, the

iterative solver(s) were not coded, it is a good practise to check for any bugs in the

78

Chapter 4. Benchmarking

3O)10
E

0 5

X

a

60

0 62 4 8
X

(a) (b)

Figure 4-3: Checking renumbering (a) Velocity magnitudes (b) Pressure

library itself, PETSc in this case. Direct linear solvers (also available in PETSc)

served as benchmarks. The solvers were validated in serial because PETSc by

default doesn't provide for a parallel direct solver. Although, this is possible by

interfacing with suitable external libraries (e.g. SuperLU, MUMPS, e.t.c). For

the purpose of this test, the Newton-Krylov and pure Krylov solvers use GMRES

(iterative) to test both the direct and iterative solution procedures. It might seem

counter intuitive, but the key to realizing a direct solver in the PETSc framework

is to use LU as a preconditioner with an iterative solver. W hen a direct precon­

ditioner is used with an iterative solver, convergence is achieved in one iteration.

A simple bifurcation with a rectangular cross-section was used to test the itera­

tive solvers. A 0.5cm x 0.5cm parent branch bifurcates into 2 daughter branches

of cross-sections 0.5cm, x 0.3cm, and 0.5cm, x 0.2cm. The overall length of the

domain is 5cm. A uniform vertical velocity of 1 cm /s was imposed a t the inlet

(V = 0cm), a zero dirichlet pressure condition was imposed on both the exits

(Y = 5cm) and a no slip condition on all walls.

79

Chapter 4. Benchmarking

(b)

Figure 4-4: Comparison of direct and iterative solutions a t steady state, (a) Left
- Mesh; C en tre - Velocity magnitudes in the X Y plane at Z = 0.25cm with
the iterative solver; R igh t - Wall pressure obtained with the iterative solver, (b)
Left - Comparison of velocity and pressure at the bifurcation; C en te r - Velocity
magnitudes at corresponding locations with a direct solver; R igh t - Pressure
contours on the walls as obtained with the direct solver.

A coarse mesh consisting of only 9218 tetrahedrons and 2299 nodes was used

for this test. Figure 4-4 presents the mesh, pressure and velocity contours (with

both iterative and direct solvers) and a comparison of pressures and velocities ex-

80

Chapter 4. Benchmarking

tracted along a horizontal line at the bifurcation (in the X Y plane at Z = 0.25cm

and at a height of Y = 2.5cm). The direct and iterative solutions were found to

be in good agreement over all time steps. Both simulations converged to a steady

state in 22 time steps. While the direct solver required a wall time of 112.53 s,

the iterative solver required 110.69 s. This test seems to represent a break-even

point in terms of the computational load, since the execution times of direct and

iterative solvers was almost equal. For smaller systems, direct solvers are known

to outperform iterative solvers. As the size of the system increases, the itera­

tive solvers outperform direct solvers (both in terms of speed and memory), by a

large margin. The direct solution procedures become prohibitively expensive for

moderately large systems and one easily gets into situations where direct solvers

will no longer be able to give a solution.

Generally, in the world of iterative solvers, a large number of combinations of

iterative linear and non-linear solvers; and preconditioners are available. For

every iterative linear solver, one can use a combination of different non-linear

solvers and preconditioners, resulting in a very huge number of possible settings,

when tested methodically. The same is valid, exclusively for the remaining 2

components. Also, each of the 3 components mentioned above, invariably have

one or more parameters to adjust, resulting in an even larger number of possible

combinations. A detailed study of these combinations is not performed, but since

the PETSc framework is being used, as required, a particular combination can

easily be realized (in most cases, without even recompiling the code!). A rigorous

analysis of this kind has been presented in the work of George et al [59].

The main aim here is to only check for consistency between solutions generated

from direct and iterative procedures. The physical interpretation of the solution

is not important in this context. Since a coarse mesh is used, the solutions indeed

are not very smooth. In the succeeding sections of this chapter, the actual solution

81

Chapter 4. Benchmarking

will become im portant.

4.4 P a ra lle l iza tio n

Since a parallel code was developed in this research it was necessary to validate

the parallelization. The solutions obtained by running the code with just one pro­

cessor are representative of executing a purely serial code, and hence these were

used as benchmark data to validate the parallelization (both MPI and PETSc

components). In testing for parallelization, the domain decomposition algorithm

gets automatically tested.

Timestep

Figure 4-5: Inputs for validating parallelization. (a) Surface mesh (b) Inlet section
depicting structured refinement at the walls (c) Transient velocity profile imposed
at the inlet plane

82

Chapter 4. Benchmarking

Flow through a pipe of prismatic cross-section was considered to validate the

parallelization. A medium quality mesh with 8 boundary layers as shown in

Figure 4-5 was used. It consisted of 169666 tetrahedrons and 30088 nodes. A

transient velocity profile was imposed at the inlet plane with a peak velocity of

83.051cm/s. A total of 50 time steps were run in this test, with a constant time

step of 0.01839s.

a
8 4 0
76 5
69 1
61 6
5 4 2
46 7
39 3
31 8
24 4
1 69

2850 0
2595 5
2340 9
20864
1831 8
1577 3
13227
10682

8136
5591
304 5

5 0 0

=

(b)

Figure 4-6: Comparison of solutions obtained in serial and parallel, (a) Serial (b)
Parallel

The pressures and velocities at peak flow, obtained from the serial and parallel

runs are presented in Figure (4-6). The primitive variables are also tracked at

2 nodes throughout the transient cycle. Node 4033, which is approximately at

the centre of the pipe, and node 7433, which is located proximal to the center of

the exit plane, are tracked in time (Figure 4-7). All the solutions obtained from

serial and parallel runs are found to be in good agreement with each other over

the entire transient cycle.

83

^

Chapter 4. Benchmarking

8 500

Time s tepTime step

(a) (b)

Figure 4-7: Transient solution tracking at nodes 4033 (located at approximately
the central exit region) and 7433 (located in the mid length region, close to wall).

4.5 N u m b e r of p ro cesso rs

While solving linear systems in parallel, there is a possibility of the solution

changing slightly as a function of the number of processors used. The PETSc

documentation states tha t this is because of the use of M PI_ALLREDUCE(args)

command for computing the inner products and norms. Depending on the size

of local data, the values will get computed and arrive at a given processor in a

certain order, which might change every time the system is solved under simi­

lar conditions. Owing to the non-associativity of floating point arithm etic, the

computed quantity may be slightly different. These errors gradually build up

over time. Also, the algorithm for most preconditioners, with the exception of

Jacobi, is different for different number of processors, which will consequently re­

sult in greater differences in the solution computed [41]. Under these conditions

it becomes necessary to assess the effect of the number of processors used.

For the purpose of testing the effect of number of processors on the solution, the

t est case of transient flow through a pipe similar to the one used for validating the

parallelization is used. The simulation is repeated for the number of processors

84

Chapter 4. Benchmarking

-2.9
TCP799. 40 procs
TCP800: 50 procs
t r o a n 4 • an

-5.6

-5.8

2u. §3 2
a>I
I62O)
o

-3.3

-6.4 -3 4

-3.5-6.6

-3 6
5050 30

Tim estep
4010 20 30

T im estep
40 10 20

(a) (b)
Figure 4-8: Change in solution as a function of number of processors, (a) Velocity
error measure (b) Pressure error measure

ranging from 36 to 80. For a thorough comparison of the solution, the following

error measure is calculated for both velocity magnitude and pressure. These are

plotted in Figure 4-8.

, (V E ti Ke/, -
error = logi 0 --------------------------

V n J

where, uref l is the nodal solution obtained using 1 processor, it* is the nodal

solution obtained in parallel and n is the number of nodes in the mesh. The

change in solution variables was found to be within acceptable limits. The error

in pressure shows a convergent trend, over the processor space th a t was possible

to be used for this problem. The errors in velocity on the other hand behave even

better and are orders of magnitude smaller than those encountered in pressure.

The inherent design of this test imposed a limit on the number of processors

being used to 80. On one hand, since the reference solution was provided by

the single processor serial run, the mesh had to be small enough to complete in

85

Chapter 4. Benchmarking

3

I
o
CT>
.2

2
numProcs

Figure 4-9: Illustration of the effect of over partitioning the mesh, on wall time

reasonable time. Since the mesh was small, excessive partitioning resulted in a

critical point, beyond which the MPI communications become more expensive

than the actual calculation itself. In this case this critical point was in the range

of 70-80 processors. W ith 80 processors, the time to complete the simulation was

unreasonably high, as shown in Figure 4-9. Considering that all computations

were timed and only a limited number of CPU hours were available to use, this

mesh was not partitioned beyond 80 parts. Close to the range of 70-80 processors

the number of shared matrix entries far exceeds the number of local entries leading

to an increased MPI communications load. For a well arranged banded matrix,

the critical point mentioned before is reached when the size of matrix partition

tends towards the bandwidth of the matrix.

4.6 Schem es a n d code

To validate the code and the m athem atical schemes encoded within, several stan­

dard benchmark problems were executed. These were single lid driven cavity,

backward facing step, flow past a cylinder and flow through a pipe. All prob­

lems were three dimensional and steady, with the exception of flow past a cylin­

der. Flow past cylinder is also the only external flow case, while the remaining

86

Chapter 4. Benchmarking

benchmarks represent internal flow domains. The lid driven cavity is completely

enclosed, i.e. no flow occurs across the cavity boundaries. For the case of a back­

ward facing step and flow through a pipe, fluid enters and leaves the domain, like

in carotid bifurcations.

Figure 4-10: 3D Lid driven cavity mesh

0 8

0 6

0 4

0.2

-02 0 2 04u 0 6

01

-0.2

0 2 0 4 0 6
X

Figure 4-11: 3D Lid driven cavity a t Re = 100

87

Chapter 4. Benchmarking

(c) (d)

Figure 4-12: Lid driven cavity a t Re = 100: (a) Horizontal velocity contours
(b) Vertical velocity contours (c) Pressure contours (d) Stream trace plot of the
velocity held

4.6.1 S ing le lid d r iv e n ca v ity

This is one of the most widely used benchmarks for testing new schemes and

codes. A cuboid of size 1.0 cm x 1.0 cm x 0.1 cm, constitutes the com putational

domain in this test case. The mesh used is presented in Figure 4-10. It contains

52999 nodes, 293784 tetrahedrons and was partitioned into 36 sub domains. The

top face of the cuboid is called the lid. A positive, non-zero horizontal velocity

Chapter 4. Benchmarking

component is imposed on the lid while a no slip condition is imposed on the

three remaining rectangular lids. A zero dirichlet pressure is imposed on a single

node, in the nort-east quadrant of the cuboid (imposing zero pressure on any

of the bottom corners, prevents the formation of a recirculation zone at that

corner. This is because such a point represents the least pressure with respect

to its surroundings, hence attracting the fluid towards it). The moving lid drives

the flow within the cavity, in the clockwise direction, forming a primary vortex

occupying most of the cavity. At the bottom corners two recirculation zones also

appear as the flow separates and shears the trapped fluid pockets. Such flow

features are often encountered in complicated patient specific geometries and

therefore the lid driven cavity is a representative test case. Results from Ghia et.

al. [61] are commonly used as reference data for this problem. For quantitative

comparisons, results along the vertical and horizontal, geometric centres were

compared against the reference solutions. These are presented in Figures 4-11

and 4-13 for Reynolds numbers of 100 and 400 respectively. The results were

found to be in good agreement with the reference solution. The plots of Figure

4-12 present the horizontal and vertical velocity contours; pressure contours and

the streamtrace plots for a Reynolds number of 100. Figure 4-14 presents a similar

set of plots for a Reynolds number of 400.

4 .6 .2 B ackw ard facing step

This is an important benchmark as it contains a sudden change in cross sectional

area at the step, in combination with channel flow features away from the step.

Since the patient specific meshes presented in chapter 5, represent very complex

tubular geometries, this benchmark is also representative of flow fields expected

in carotid geometries. The mesh used, along with the horizontal velocity and

pressure contours are presented in Figure 4-15.

89

Chapter 4. Benchmarking

0.6

>
0.4

0.2

G h ia eta l. (1982)

-0.2 0.2 0.4 0 6
u

0 4

Q h ia e ta l . (1982)

0.2

0 -

- 0.2

-0 4

0 0.2 0 4 0.6 0 8 1

Figure 4-13: 3D Lid driven cavity at Re — 400

The backward facing geometry is formed by subtracting a cuboid of size 4L x

1L x 1L from a bigger cuboid of size 40L x 3L x 1L, such th a t the left bottom

vertices of both the cuboids coincide. Here, L is the step height and is chosen

to be 0.1 cm. The mesh used contains 52934 nodes, 287631 tetrahedronsand was

partitioned into 36 sub-domains.

For validation, experimental results from Denham and Patrick [40] were used.

The experimental velocity profile imposed at the inlet is not exactly parabolic.

For obtaining the numerical results, the experimental values were suitably inter­

polated. To reduce the errors from interpolation the mesh was refined at the

inlet. However, due to the unstructured nature of the mesh, slight differences

exist along the thickness and hence the velocity profile imposed at the inlet is

slightly different from the experimental profile. The numerical horizontal veloc­

ity component at 6 different sections along the length of the domain (in the mid

Z plane)were compared with corresponding values from [40] and found to be in

good agreement with each other. This comparison is presented in Figure 4-16.

90

Chapter 4. Benchmarking

(c) (d)

Figure 4-14: Lid driven cavity at- Re=400: (a) Horizontal velocity contours (b)
Vertical velocity contours (c) Pressure contours (d) Stream trace plot of the ve­
locity field

4.6 .3 F low p a s t a c y l in d e r

This is an external flow, transient benchmark and provides an opportunity to test

the evolution of solution in time. The region around the cylinder is represented

by a rectangular domain, whose length and width are 25D and 10D respectively,

91

Chapter 4. Benchmarking

Figure 4-15: Backward facing step at Re — 229. Top: Mesh used. Centre:
Horizontal velocity contours. Bottom: Pressure contour lines

where, D = 1.0 cm, is the diameter of the cylinder. In order to capture the

vortex shedding downstream of the cylinder, the mesh along the centreline region

is refined (Figure 4-17). The mesh contained 17382 nodes, 69948 tetrahedrons

and was partitioned into 32 sub-domains.

The horizontal and vertical velocity contours; pressure contours, as well as the

stream trace in the vicinity of the cylinder are presented in Figures 4-18,4-19,4-20

and 4-2la. The vertical velocity is tracked through the entire time period (250

s) and plotted in Figure 4-2lb. The Strouhal number for this case was found to

be 0.14, which is lesser than the expected value of 0.165. The underestim ation

of the Strouhal number occurs because the fluid is not constrained in the vertical

direction at the horizontal walls. As a result, the vortex shedding results in some

mass loss at the walls, especially in the regions close to the cylinder. This overall

has an effect of reducing the primary velocity component (horizontal) th a t is

experienced bv the cylinder. As a result the frequency of vortex shedding will be

92

Chapter 4. Benchmarking

0.3
TCP826: Re=229)
Denham & Patrik, (1974)

0.2

>
/

/ /

0.1

0 0 5 U*0.1 10 15

Figure 4-16: Validating the velocity distributions at various sections (up to a
length of 14.586L) for a backward facing step at Re = 229

slightly smaller, which consequently explains the underestim ation of the Strouhal

number.

4 .6 .4 F low th r o u g h a p r i s m a t ic p ip e

A steady flow through a circular pipe of uniform cross-section is considered here.

A uniform velocity profile is imposed at the inlet and the length of the pipe is

sufficient for the flow to transition into a fully developed flow. A zero dirichlet

boundary condition is imposed on the entire exit plane. A no slip condition is

imposed on the walls. A summary of the problem definition along with the quality

of the mesh used for this test is presented in Figure 4-22.

The developed region spanning 6 < x < 10, along the pipe length is considered

as the test section for validating against the analytical pressure drop, where the

flow is fully developed. In this case, the entrance length for laminar flow may be

evaluated from the following relation,

= 0.0 6Re (4.1)

93

Chapter 4. Benchmarking

Figure 4-17: Mesh used for flow past a cylinder

Figure 4-18: Flow past a cylinder: Horizontal velocity contours

94

Chapter 4. Benchmarking

Figure 4-19: Flow past a cylinder: Vertical velocity contours

Figure 4-20: Flow past a cylinder: Pressure contours

95

Chapter 4. Benchmarking

0 5

>

0 5

2500 50 100 150 200
Time

(b)

Figure 4-21: Flow past a cylinder: (a) Streamlines imposed on horizontal velocity
contour in the vicinity of the cylinder (b) Time history of vertical velocity at a
central exit node

where, le is the entrance length, D is the diameter and Re is the reynolds number.

Since D = 1 cmand Re = 100, the entrance length would be 6cm.

The pressure and sectional velocity contours are presented in Figure 4-23. The

velocity profiles a t various sections along the length are presented in Figure 4-24.

The numerical velocity profile a t the exit was found to be in very good agreement

with the fully developed, analytical velocity profile. The pressure distribution

along the test length is presented in Figure 4-25. The predicted pressure drop

was in close agreement with the analytical pressure drop, given bv the Hagen-

Poiseuille equation,

A P =
8/iLQ

7TV'
(4.2)

where, A P is the pressure drop, L is the pipe length, /i id the dynamic viscosity,

96

Chapter 4. Benchmarking

Outlet
P = 0

a :
Inlet
Uniform velocity
distribution

Figure 4-22: Flow through a prismatic pipe: Problem definition and com puta­
tional domain

u: 0.1 0 6 1 1 1 6 2.1 2.6 3.1 3.6 4 1 4 6 5.1 5 6 6 .1

p 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Figure 4-23: Flow through a prismatic pipe: Pressure and sectional velocity
contours

Q is the volumetric flow rate and r is the radius.

4.6 .5 S ca lab il i ty

Ideally, in a parallel computing environment, the wall time requirements must get

halved as the number of processors used are doubled. This property represents

how well a parallel code scales in performance, by virtue of parallelization under

similar test conditions. A scalability study therefore measures the quality of

parallelization. A common metric used in scalability studies, is called speedup,

97

Chapter 4. Benchmarking

X=0.0
X=0.25
X=0.5
X=1.0
X=1.5
X=2.0
X=3.0
X=4.0
X=5
X=6.0
X=8.0
X=10.0
Anaiytica!

0.2 0.4 0.6 0.8
z

Figure 4-24: Flow through a prismatic pipe: Velocity profiles at various sections
along the pipe length

98

Chapter 4. Benchmarking

14

12

10

8
a

6

Figure 4-25: Flow through a prismatic pipe: Pressure distribution along the pipe
length in the test section of the pipe

S. In this context, speedup may be defined as,

where, Ts denotes the wall time with 1 processor (serial) and Tp represents the

wall time in parallel. Ideal speedup occurs, when,

S = p

where, p represents the number of processors.

Generally, ideal speedup is easily achieved in situations where there is no or neg­

ligible interprocessor communication. These are some times refereed to as embar­

rassingly parallel problems. Computer graphics rendering is one such example.

Such problems are usually rare. A parallel code renders itself to be potentially

able to scale linearly/ideally, when there are no/negligible serial components. In

[dpLAnalytical = 14.68 g/cm .sA2
[dp] Numerical = 14.65 g/cm .sA2

99

Chapter 4. Benchmarking

cases, where serial components are prevalent in a parallel application, there is a

limit on speedup imposed by the serial components. Irrespective of the quality of

parallelization, the quickest such a program will complete will always be greater

than the time required to perform the serial operation(s). Amdahl’s law [132]

summarises this in an equation form as,

S<P> - 5 7 T j b s j <«>

where, B E [0,1], represents the serial fraction of the program.

Also, matrix-free schemes (e.g. explicit) render themselves to scale linearly or

better (moderately super-linear). Super linear speedup is said to occur when

the speedup exceeds the number of processors employed (S > p). Although

rare, these speedups are possible. If a problem gets so small after partitioning

that it can completely fit into the cache memory, which is the fastest computer

memory, then superlinear speedup occurs, as the data access is tremendously

efficient. Techniques like backtracking [141], searching large data sets [129] and

neural network based optimizations [104] lend themselves to superlinear speedup.

However, superlinear speedups must be handled with caution. If not caused

by the situations listed above, it most likely indicates a very inefficient serial

implementation [16, 139].

In order to demonstrate the parallel performance of the code developed in this

research, two scalability studies are presented in this section - low range (LR)

scalability and high range (HR) scalability. The LR2 tests were carried out with

1, 2, 4, 8, 16 and 32 processors, with a carotid mesh that contained 323856 tetra­

hedrons and 57234 nodes. The HR3 tests were executed on 36, 72 and 144 pro­

cessors, with a carotid mesh containing 4014037 tetrahedrons and 695605 nodes.

The reasons for splitting this test into 2 ranges are similar to those mentioned

2Job codes - 1:TCP885; 2:TCP884; 4:TCP883; 8:TCP882; 16:TCP881; 32:TCP880
3Job codes - 36:TCP780; 72:TCP778; 144:TCP892

100

Chapter 4. Benchmarking

in section 4.5, i.e., the mesh must be small enough to be able to complete in

reasonable times, but big enough to prevent excessive communication overhead

due to over partitioning.

3500

3000

«> 2500

2000

m 1500 1
*■ 1000

500

0
(

5000

4000

3000

© 2000

1000

0
C

Figure 4-26: Low range scalability results: Wall time and speedup comparisons

The scalability tests were carried out on the facilities of HPC Wales, Bangor. A

to tal of 10 tim e steps were run in each case and the I/O from the code was limited

to just the essential data. W ithin every time step, several Newton-Krvlov and

pure-krylov iterations are performed. The iteration data is presented in Tables

4.1 and 4.2 . Two different time samples were extracted in the LR study. Since

some operations related to applying boundary conditions were performed seri­

ally outside the time loop, the first set of time measurements d idn’t include this

phase of the code. Also, the first time step is relatively expensive as the m atrix

preallocation is performed, this too was excluded from the first measurement set.

These results are presented on the top half of 4-26. In the second set of measure­

ments, all preprocessing operations, along with the first tim estep are included,

to assess the overall performance. These results are presented in the bottom half

of Figure 4-26. In both types of sampling of the low range study, the scalability

101

LIBRARY

Time steps 2 to 10

20 25 305 10 15 35
Number of processors

Time steps 1 to 10 (with preprocessing)

Number of processors

Time steps 2 to 10
35

30

25

20

15

10

Actual speedup
Ideal speedup

5

00 5 15 25 30 3510 20
Number of processors

Time steps 1 to 10 (with preprocessing)
35

30

25

20

15

10

Actual speedup
ideal speedup

5

00 5 10 15 20 25 30 35
Number of processors

Chapter 4. Benchmarking

nprocs T1 T2 T3 T4 T5
NKi Ki NKi Ki NKi Ki NKi Ki NKi Ki

1 7,34 1210 5,47 1484 4,38 862 3,31 675 3,31 760
2 7,34 1238 5,47 1355 4,38 848 3,31 674 3,31 721
4 7,34 1276 5,48 1310 4,41 839 3,31 680 3,31 737
8 7,34 1392 5,48 1330 4,41 858 3,31 677 3,32 718
16 7,34 1590 5,49 1433 4,41 1001 3,31 683 3,33 866
32 7,34 1132 5,52 1413 4,46 885 3,37 695 3,36 1024

Table 4.1: Iteration history (T :T im e s tep ; N K iiN ew ton K ry lo v - ite ra tio n s . F o r m a t= (i , j) i= n e w to n ite ra t io n s a n d
j = c u m u la tiv e k ry lo v it e r a t io n s in i n ew to n ite ra t io n s ; K i:K ry lo v ite ra t io n s)

nprocs T6 T7 T8 T9 T10
NKi Ki NKi Ki NKi Ki NKi Ki NKi Ki

1 3,32 0801 3,33 0660 3,33 0682 4,48 714 4,51 892
2 3,32 780 3,33 662 3,33 686 4,48 715 4,51 899
4 3,32 894 3,33 656 3,35 660 4,48 655 4,51 775
8 3,33 866 3,35 694 3,35 741 4,49 687 4,52 927
16 3,35 752 3,36 862 3,37 905 4,53 965 4,56 769
32 3,38 764 3,39 748 3,41 887 4,57 932 4,61 1014

Table 4.2: Iteration history with 1 to 32 processors: Time steps 6 to 10

was found to be near linear. This is also indicative of the overall good qual­

ity, appropriate serial fraction selection and serial efficient routines, in the code.

With 32 partitions of the medium sized mesh, the local matrix patches would

approach the matrix bandwidth, resulting in increased MPI communication. As

a result, sub-optimal speedup is expected around the range of 32 processors, for

the mesh employed. However, the average parallelization efficiency for the LR

tests, considering both types of time sampling was found to be 105.13%.

For the HR scalability test, a complete simulation ranging the entire cardiac

cycle was executed. No special arrangements, like limiting the amount of I/O or

selective time sampling were employed. As a result, the true scalability or working

scalability tha t would be experienced while running real problems with the code,

will get demonstrated. The wall time and speedup results for the HR scalability

102

Chapter 4. Benchmarking

180
■*— Actual speedup
-*— Ideal speedup160

« 120

E 100

0 50 100 150

Actual time
Ideal time

2.5

T3COo
©
COc

H-
0.5

50 100 1500
Number of processors Number of processors

Figure 4-27: High range scalability results: Wall time and speedup comparisons

test are presented in Figure 4-27. The HR scalability was not performed on

less than 36 processors, as a result there was insufficient data for the speedup

calculation (i.e. serial time, Ts). In light of the corresponding linear speedup in

the low range tests, it was assumed tha t the serial time for the high range case,

could be extrapolated form the time required for the simulation to run with 36

processors. The average parallelization efficiency for the HR tests was found to

be 86.43%, while the overall parallelization efficiency for both the low and high

range scalability tests was found to be 96%.

The localised sub-linear speedup may be improved bv pursuing the following

directions:

• The PETSc toolkit can be complied in two modes - debug and non-debug.

For performance measurements, the non-debug mode is recommended. In

the debug mode, large number of additional checks are performed, which

can negatively reflect upon the code performance. For the version of PETSc

currently being used on HPC Wales clusters, only the debug version was

found to run successfully. Therefore, there is scope for further improve­

ment by just using a different compiled version of PETSc, when it becomes

103

Chapter 4. Benchmarking

available in due course.

• Since just iterative solvers are employed for solving the algebraic systems

resulting from the discretization, the overall scalability is a function of not

just the quality of parallelization but also of the convergence of the solvers

employed, which in turn depends on the quality of the preconditioners used.

Therefore, unless scalability studies are neutral to solver-preconditioner

choices, the speedup figures for codes involving iterative solvers must be

looked at with this paradigm in mind. Although cumbersome, measuring

the scalability for all possible combinations of solvers and preconditioners

will help visualize the true scaling exhibited by such codes.

• By further optimising the domain decomposition strategy employed, it

might be possible to prevent localized sub-linear behaviour in the exces­

sive partitioning limits (which are mesh dependent).

4.7 M onolithic treatm ent for pressure

In this section, unlike the previous cases which used the CBS scheme in its clas­

sical - split version, the monolithic scheme proposed in section 2.4 will be used.

The process of monolithising the CBS scheme, generates pressure stabilization

terms in the mass conservation equation thereby circumventing the LBB restric­

tion while using equal order interpolations for both velocity and pressure.

Since this is a single equation framework, the usual (split) code flow changes and

therefore the single equation framework is tested first via the solution of a simple

Laplace equation on a cuboidal domain4. This test is not strictly necessary but is

merely used to test the single equation components of the code. Dirichlet bound­

ary conditions are imposed on each of the four rectangular lids. A unit dirichlet

4TCP192

104

Chapter 4. Benchmarking

0.2 0.4 0 6 0 8
Length

(b)

phi (left d iagonal) v/s x (numerical)
phi (left d iagonal) */» x (analytical)
phi(y=0 5) v /s x (num erical)
phi(y*0.6) vf% x (analytical)
ph^x=0 5) W» y (numerical)
phrfr=0.S) W* y (analytical)
phi (nght d iagonal) vis y (numerical) I
phi (right d iagonal) *f% y (analytical)

Figure 4-28: Testing the single equation framework of IFENS by solving the
poisson equation on a 3D cuboidal domain: (a) Contour plot with the mesh
superimposed (b) Comparison of the numerical and analytical solutions along
several polylines

boundary condition is imposed on the north lid. The east, west and south facing

lids have a zero dirichlet boundary condition imposed. The numerical solution is

presented in Figure 4-28a. A very coarse, nearly-uniform mesh (superimposed on

105

Chapter 4. Benchmarking

the solution contours), with just 6210 tetrahedron elements and 2192 nodes was

used for this test. A comparison with the analytical solution, which is given by,

" / 2(1 - (- 1)"): i n (n - K X \ s i n h { ^)

h \ ™ U i s in k (* £)
(4.4)

was performed by extracting data along multiple lines from a 2D slice (z = zmax =

0.1 units). A good agreement was observed between the numerical and analytical

results (Figure 4-28b), except at the regions close to the left and right edges

of the north lid. At the north corners, the coarseness of the mesh results in

poor application of dirichlet boundary conditions and poor capturing of the high

gradients that exist in this neighbourhood of the domain. Also, the average value

of phi in the domain centre along the entire thickness was found to be 0.2487

units, which is expected to converge to the expected value of 0.25 units, with

mesh refinement.

4 .7 .1 F low through pipe: M on olith ic C B S fram ew ork for

so lv in g N S eq u ation s5

The problem being considered here is identical to the one considered in Section

4.6.4. The performance of the monolithic scheme is assessed here. Figure 4-29

presents the sectional horizontal velocity contours and wall pressure contours.

The overall solution was found to be over damped. Even though a parabolic

profile is developed at the exit and mass conservation is achieved, the maximum

horizontal velocity at the exit is 5.95 cm/s, as opposed to the expected value of

6.602 cm/s. The same was the case with the pressure drop in the fully developed

section. The numerical pressure drop was found to be 13.5 dynes/cm2, while

the analytical value is 14.68 dynes/cm2. These represent an average error of

5TCP915

106

Chapter 4. Benchmarking

U 0 20 0 80 1 40 2 00 2 60 3 20 3 80 4 40 SOO 5 60

(a)

p 2 00 10 00 18 00 26 00 34 00 42 00

(b)

Figure 4-29: Testing the monolithic CBS scheme implemented within IFENS for
the problem of flow through a prismatic pipe at Re = 100: (a) Sectional velocity
magnitude contours (b) Wall pressure contours

8.95%. A similar damped behaviour was observed for transient simulations like

flow past cylinder. However, the current results from the monolithic framework

seem promising and will be pursued in the future.

4.8 S u m m a ry

In this chapter, various validation scenarios were presented from the point of view

of checking the overall correctness of the solution procedure used in this research.

Various aspects like mesh renumbering, iterative linear solvers, parallelizat.ion and

effect of number of processors were considered and verified to be correct by run­

ning simulations tailored to test specific aspects. In order to check the correctness

of the schemes and the parallel software th a t was w ritten from scratch to encode

these schemes (IFENs), the four common benchmarks, namely lid driven cavity,

backward facing step, flow past cylinder and flow through a prismatic tube, were

executed and benchmarked. Two scalability studies were also presented and the

107

Chapter 4. Benchmarking

overall parallelization efficiency for the low and high range scalability tests was

found to be 96 %. Finally, the single equatio framework of IFENs was tested

via solution of the Laplace equation. Flow through arteries being the primary

application of this research, the test case of flow through a prismatic tube was

repeated for validating the CBS scheme in its monolithic form.

108

Chapter 5

Patient Specific G eom etries

5.1 Introduction

W ith the fluid solver/software developed in this research being validated in Chap­

ter 4, this chapter utilizes the software to solve Navier-Stokes equations on high

definition computational domains, representative of carotid bifurcations within

real patients. These meshes are three dimensional and are made up of tens of

millions of linear tetrahedral elements, typically with structured refinement near

the walls to accurately capture the steep velocity gradients experienced in these

regions.

5.2 Carotid anatomy

A reference to the carotid typically includes 3 vessels - common carotid artery

(CCA - parent vessel), internal carotid artery (ICA - branch 1) and external

carotid artery (ECA - branch 2) which together constitute a bifurcation. These

carotid bifurcations occur in pairs on either side of the neck. Their typical ap­

pearance and placement within the human arterial tree is shown in the MR-

109

Chapter 5. Patient Specific Geometries

Angiograph of Figure 5-1 [94]. The left and the right CCA differ in their points

of origin. While the left CCA originates directly from the Aorta, the right CCA

emanates after an extra level of branching. The ICAs supply oxygenated blood

to the brain while the ECAs supply blood to the face, scalp, skull, and meninges,

hence carotids play an especially important role. Severe blockage or narrowing

of the carotid artery (stenosis) may therefore lead to stroke. The medical liter­

ature suggests that regions such as entrances of branching arteries, like carotid

bifurcations, and bends, tend to develop conditions favourable for atherosclerosis

[103, 63, 109, 52, 110, 57]. Another region of interest in the carotid arteries is

called the carotid sinus or bulb. It is usually located in the ICA, near the bi­

furcation region. The carotid sinus contains baroreceptors that modulate blood

pressure. The complex heamodynamic patterns found in these regions seem to

promote the deposition of platelet thrombi and biochemical reactions in the inner

lining of the vessels. The propensity of carotid bifurcations to develop stenosis,

as well as their clinical importance led them to be chosen as the zone of study

for this research.

5.3 Boundary conditions

As illustrated in Figure 5-1, carotid bifurcations are not terminal vessels. They

occur in the midst of a complex, branching vessel network. The ICAs form a

bridge between the CCA and the circle of willis. The circle of willis is a com­

plex branching network that supplies blood to the brain, as a result there will be

a back pressure experienced within the ICA, towards the bifurcation. The ECA

on the other hand, trifurcates and bifurcates away from the carotid bifurcation,

resulting in a cumulative back pressure in the ECA close to the bifurcation. Since

the CCA is directly connected to the Aorta, which is relatively larger in diam­

eter, flow disturbances exist in the inlet section of the carotid bifurcation, due

110

Chapter 5. Patient Specific Geometries

Figure 5-1: Location of carotid bifurcation in the neck [94]. Legend: (1) Brachio­
cephalic trunk (4) Right Common carotid artery (5) Right internal carotid artery
(7) Left internal carotid artery (8) Left external carotid artery (9) Left common
carotid artery (11)Aorta

to the sudden change in cross-sectional area. This makes the process of impos­

ing boundary conditions highly non-trivial in com putational studies like these.

Ideally, pressure and /or velocity measurements at the extremities of the bifurca­

tions under consideration, will be valuable. However, such detailed readings often

involve complicated procedures (e.g. 4D flow MR imaging) and use of invasive

111

Chapter 5. Patient Specific Geometries

devices (like catheters *). Also, the heart itself pumps blood by a wringing motion

tha t is often likened in the literature to the wringing of a wet towel [127, 99]. A

pair of crescent shaped vortices are formed in the left atrium, which make their

way into the Aorta and the pulmonary artery [108, 135]. This suggests there

would be some vorticity effects retained in the blood entering the CCA, on either

sides, which must be accounted for in the construction of the inlet velocity profile

of the CCA. No velocity or pressure boundary data was available for the carotid

geometries being used in this research. The way forward under these conditions

is to assert a paradigm which demonstrates the potential of predicting physiologi­

cally correct results, when the correct boundary conditions will become available.

Until then, surrogate data serve to substitute for the real boundary conditions.

This may result in the solution lying in a space away from the physiological range,

but this is merely an artefact of inputting erroneous data into the model.

Under these conditions, the velocity profile generator referenced in 3.4.2 was em­

ployed to generate a physiologically realistic, pulsatile velocity profiles across the

boundary faces (Womersley profiles). Some studies, for e.g. [17] impose a Wom-

ersley profile on both exits. However, from the point of view of imposing a flow

split across the two branches, just imposing one velocity profile is sufficient. Ow­

ing to the property of mass conservation, the flow at the other exit gets adjusted

automatically. Doing so, the system is less constrained by not imposing the spa­

tial distributions in velocity at the other exit. This lets the system naturally

develop a velocity gradient along the face of the free outlet.

In split schemes, like the CBS, it becomes mandatory to also impose a dirich-

let pressure boundary condition in the pressure poisson solve of step 2. Some

studies, for e.g. [142], use equal pressures at both the exits, which seems unreal­

istic considering the unequal back pressures from the downstream beds of ECA

1 Catheters are medical devices that can be inserted in the body to treat diseases, perform
surgical procedures or take measurements (e.g. pressure)

112

Chapter 5. Patient Specific Geometries

and ICA. Balossino et al. [12] also found that the imposition of equal dirichlet

pressure at the exits was erroneous when a stenosis occurs in one of the carotid

branches. The same behaviour was reported in abdominal aortic bifurcations

[153]. Therefore, the free outlet (where there is no velocity profile imposed) was

chosen to impose a dirichlet pressure boundary condition (on the entire outlet

face). Hyun et al. [74] used a similar combination of pressure and velocity dirich­

let boundary conditions, with zero pressure outlet condition for the ECA. In this

research, several simulations 2 confirmed that the flow field and pressure differ­

ence (between ICA and ECA) remained the same irrespective of the point of

application of the dirichlet pressure boundary condition. It was observed that

imposing a zero pressure on the ICA outlet resulted in a negative pressure in

the ECA branch, while imposing zero pressure on the ECA outlet resulted in a

completely positive pressure field. However, the pressure difference at the exits

of ICA nd ECA remained approximately the same, irrespective of the location

of zero pressure imposition. Imposing zero pressure at a fixed distance from the

inlet, in the CCA, also resulted in the same pressure drop between the ICA and

ECA exits.

5.4 M esh convergence

Since the flow field is highly dependent on the geometry of the flow domain, it was

important to use meshes that were close representations of the true geometries.

In this research, high quality meshes containing up to 14 million tetrahedron

elements were used. The large number of mesh elements made it possible to

render smooth representations of the non-uniform cross sections found in carotid

bifurcations. The trimmed carotid bifurcation geometry presented in Figure 5-2

was considered to run a series of flow simulations (Geometry 1). Another impor­

2TCP768:p=0 on ICA exit; TCP771:p=0 on ECA exit; TCP770:P=0 at a fixed height from
the inlet in the CCA

113

Chapter 5. Patient Specific Geometries

tant mesh feature, especially with linear elements, is the steep velocity gradient

capturing capability. The no slip condition imposed on the walls, results in the

development of high shear stresses at the walls (WSS). These stresses get pro­

nounced at the bifurcation region, where the fast moving fluid mass gets skewed

towards the walls due to the flow division. In order to capture these gradients

accurately, the regions close to the wall along the entire volume of the mesh were

refined with smaller elements. These elements were added in a structured man­

ner via finite number of layers, called boundary layers. Starting off with a purely

unstructured mesh, i.e. a mesh with no boundary layers, convergence oriented

simulations were carried out for meshes with up to 12 boundary layers. The

boundary layers become clearly visible at the inflow/outflow boundaries. Figure

5-3 presents the top/plan view of the ECA exit to illustrate the boundary layers.

The velocity magnitudes and pressures in the entire domain were used to assess

convergence.

A flow split of 40:60 (ECA% : ICA%) was imposed on the internal and external

branches of the carotid bifurcation. This imposition was realised by applying

suitably constructed velocity profiles at the exits. A number of factors contribute

to the true flow split in the carotid bifurcations. These include heart beat period

(systole or diastole) [101], neck position and movement, stenosis [12], bifurcation

angle [111], overall carotid geometry, to name a few. Marshall et al. [97] also

found that around systole, the sum of ICA and ECA outflow was significantly

less than the CCA inflow. Although no conclusive evidence was presented in [97]

to explain the ratio of outflow to inflow being significantly less than 1, during

systole, it might be possible that distensible vessel walls lead to such apparent

mass loss. However, these effects disappear when the flow rates are time averaged

over the cardiac cycle. In light of ambiguity arising from the range and types of

flow splits available in literature, this research employs a constant flow split.

Although, it was previously mentioned that one exit velocity profile was sufficient

114

Chapter 5. Patient Specific Geometries

CCA

Figure 5-2: Geometry 1: Truncated carotid mesh used for assessing mesh conver­
gence

and realistic to impose, for backward compatibility here the velocity profiles are

imposed on all exits and a zero pressure was imposed on the ECA exit. A no

slip condition exists on all walls. A peak velocity magnitude of 54.9876 cm /s was

imposed at the CCA which corresponds to a mean flow rate of 1.45516 cm3/s.

The harmonics used in the construction of the velocity profile are presented in

Table 5.1. These resulted from the fast Fourier transform of a measured aortic

waveform [107, 17]. The period of the resulting transient wave was 0.61144 s,

which corresponds to a heart rate of 98.128 bpm (beats per minute). Flow rate

as a function of time for one cardiac cycle, is presented in Figure 5-4. All the

velocity profiles are in phase, because disturbances propagate instantaneously in

incompressible flows.

115

Chapter 5. Patient Specific Geometries

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5-3: Mesh boundary layers, as visible in the plan view of the ECA: (a)
No boundary layers (b) 3 boundary layers (c) 7 boundary layers (d) 8 boundary
layers (e) 9 boundary layers (f) 10 boundary layers (g) 11 boundary layers (i) 12
boundary layers

12
— CCA flow

 ECA flow
1

0 8

0 6E

■

I 04
■
£o 0.2
z

-o-o

-0.2

-0 4
0 .3
Time (s)

0 4 0 5 0 60 01 0 2

Figure 5-4: Cardiac cycle: velocity profile as a function of time (the filled circles
show the time points of interest for the plots of Figure 5-7)

116

Chapter 5. Patient Specific Geometries

Harmonic Frequency (Hz) Amplitude Phase (rad)
1 0 126.88125 0.00000
2 1.63548 219.04800 -1.59841
3 3.27097 156.06450 3.04933
4 4.90645 80.25450 1.81371
5 6.54193 57.64425 1.22483
6 8.17742 56.19338 -0.107859
7 9.81290 25.00121 -1.55024
8 11.44840 17.10540 -1.40587
9 13.08390 24.24746 -2.93862
10 14.71940 8.16308 1.45781
11 16.35480 10.90725 2.74547
12 17.99030 12.69634 0.490823
13 19.62580 2.756033 -2.48452
14 21.26130 5.983050 -0.254379
15 22.89680 5.026950 -2.84223
16 24.53230 2.558115 0.376408

Table 5.1: Harmonics used for the construction of the velocity profile used for
assessing convergence

Figures 5-5 and 5-6 present the results from meshes representing the domain

shown in Figure 5-2, but containing different number of boundary layers. The

peak and peak time averaged values were used in the construction of these plots.

Both velocity magnitudes and pressure converged really well. This becomes ev­

ident from the slope of the plot in the bottom figures of 5-5 and 5-6, which is

almost horizontal for the points concerning 11 and 12 boundary layers. With

respect to the 12 boundary layer case, the peak and time averaged errors for

the mesh with 11 boundary layers was found to be 0.07% and 0.03% for velocity

magnitudes and 0.04% and 0.06% for pressure, respectively. This demonstra­

tion of the invariance of solution variables with mesh refinement is expected and

physically realistic.

117

Chapter 5. Patient Specific Geometries

No boundarlayers
7 boundar layers
8 boundar layers
9 boundar layers
11 boundary layers
12 boundary layers

"t/T 150

Eo
0)
i/ i3
S’ 100
E£7
«
>
J£
® 50a.

0 5
Time (s)

37

36

35

34

2E+06
Nelem

Figure 5-5: C onvergence of velocity magnitudes as a function of boundary layers
for the geometry of Figure 5-2

5.4.0.1 Flow field - G eo m etry 1

d he visualization of flow field becomes challenging with large data sets like these.

D ata storage, even in binary/unform atted files, results in file sizes of several

gigabytes. Since a no slip condition is imposed on all the walls, all flow data

becomes visible only after extracting 2D slices from the 3D domain. Depending

on the location of the slices, some flow features might not get captured. Also,

since the simulations are transient, certain flow features may be visible in the

extracted slices only during certain sensitive instants in time. To be able to

select suitable slicing locations a t the correct instants of time is laborious and

118

Chapter 5. Patient Specific Geometries

No boundar layers
7 boundar layers
8 boundar layers
9 boundar layers
11 boundary layers
12 boundary layers

£ 60 0 0

2000

0 2
Time (s)

1300

1250

1200

1150

1100

1050

1000

Nelem

Figure 5-6: Convergence of pressure as a function of boundary layers for the
geometry of Figure 5-2

time consuming. Like in this case, the use of different number of boundary layers

for the same domain, exacerbates the visualization process.

Figure 5-7 presents the velocity and pressure contours, extracted at different

instants in time. A stream trace plot is also superimposed on the contours of

velocity magnitudes to show the trajectories of fluid particles. These results were

generated from the finest mesh, th a t contained 12 boundary layers. The prim ary

direction of flow within carotid bifurcations is from the CCA to the ICA /ECA .

Just at the start of the cardiac cycle the flow direction is briefly reversed. At

the s tart of systole, as heart pumps out the fluid mass, all the flow within the

119

Chapter 5. Patient Specific Geometries

a (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5-7: Comparison of velocity fields as a function of time, in an approx­
imate central, 2D axial slice: (a) Mid acceleration (t=0.0882 s), (b) Peak flow
(t= 0 .1215 s), (c) Mid deceleration (t=0.1882 s), (d) End deceleration (t=0.277 s),
(e) Mid acceleration during flow reversal (t=0.293 s), (f) Peak reversal (t=0.3039
s), (g) Rem nant flow start (t=0.347 s), (h) Mid rem nant flow (t=0.459 s) and (i)
Remnant flow end(t=0.6078 s)

120

Chapter 5. Patient Specific Geometries

carotid bifurcation is directed outwards (Figure 5-7a). The fluid accelerates as it

flows through the ECA, to maintain the specified flow rate under reduced flow

area. High pressures are developed at the CCA inlet relative to the exits. The

pressure drop between the CCA and ECA (pressure constrained) is greater than

th a t between CCA and ICA. Since the cross-sectional area of the ECA is smaller,

it exerts greater resistance to blood flow and a larger pressure drop occurs a t this

region. This pressure drop increases at peak flow (Figure 5-8a). A peak velocity

of 190.505 cm /s occurs in the ECA during peak flow.

000
-20)00
•40000
-eoooo
-300 CO -100000

-120000
-140000
-160000
1300 00

-2000 00
-220000

3600 00
4500 00
3600 00
250000
150000
50000

(a) (b)

Figure 5-8: Instantaneous pressure fields: (a) Peak forward flow (b) Peak reversed
flow

In the mid deceleration phase, a recirculation zone appears on the left side up­

stream of the bifurcation, owing to the geometry driven flow separation. The next

time zone of interest is the flow reversal phase, when the boundary conditions

drive the flow in the opposite direction for a short period. Around the end of

the deceleration phase, the recirculation zone significantly extends into the inside

of the domain and the peak velocity develops in the ICA. As the flow reversal

takes place, the recirculation zone occurs just below the bifurcation point, as the

fluid travelling towards the inlet from the 2 branches shears a pocket of fluid held

around the stagnation point 3 a t the bifurcation. However, at peak flow reversal,

S tagnation point: The valley formed between the ECA and the ICA, where the fluid is
brought to rest.

121

Chapter 5. Patient Specific Geometries

the streams travelling from the two exits coherently flow outwards, without any

flow separation. During this phase, i.e. diastole, as the flow enters the remnant

phase of very low flow, the high frequency flow reversals, induce a very compli­

cated flow field of small magnitudes (Figure 5-7g). The time until next diastole

witnesses the generation of multiple vortices close to the walls of the entire do­

main. These results suggest that flow disturbances occur at periods other than

peak flow, especially when there is flow reversal.

Figure 5-9 presents the wall shear stress and the oscillatory shear index. At the

bifurcation, where the majority of the fluid mass gets skewed towards the inner

wall of the ECA (Figure 5-10), large velocity gradients occur with respect to the

no slip walls, resulting in the largest wall shear stresses in this region. In this

case, the peak time averaged wall shear stress was found to be 1736.07 dynes/cm2.

The time averaged wall shear stress (WSS_Tavg) is defined as,

1 t = N

W S S „ T a v g = - ^ | | t i
^ t = 1

(5.1)

where, N is the number of time steps and t s is the surface traction vector, defined

as,

t s = t — (t • n)n (5.2)

where, n is the normal and t is the traction vector defined as,

t = cr • n (5.3)

where, cr is the cauchy stress tensor, defined as,

0 n 7-12 7"l3

T21 022 723

731 732 033

(5.4)

122

Chapter 5. Patient Specific Geometries

While high values of WSS have the potential of causing rupture in the ves­

sels, regions with low and oscillating WSS seems to promote the development

of atherosclerosis [25, 86].

The oscillatory shear index (OSI) is a dimensionless quantity lying between 0

and 0.5 [86]. OSI is a measure of the flow directionality over time. W hen the

flow mostly remains unidirectional, i.e. when there are no cyclic variations in the

WSS vector, its value tends to zero. Flow disturbances th a t result in secondary

flows and flow reversals make the OSI tend towards 0.5. A value of 0.5 indicates

180° deflection of the WSS direction. OSI is defined as,

O S I = I (i - Tmam
2 V Fabs

(5.5)

where, rmean is the mean wall shear stress, defined as,

t = N

E * .
t=l

(5.6)

and TabS — W SS_Tavg.

W SS_Ta»g

0 9 8
0 9
0 8 2
0 .7 4
0 6 6
0 5 8

I

Figure 5-9: (L) Normalised time averaged wall shear stress (R) Oscillatory shear
index

123

Chapter 5. Patient Specific Geometries

OSI predictions of Figure 5-9 are consistent with the velocity fields of Figure 5-7.

In the time instants selected, the flow remained mainly unidirectional in the ECA

entrance, therefore, the OSI in this region is expected to remain low. Just before

the bifurcation, in the CCA, the flow remains disturbed with travelling vortices

for m ajority of the cardiac cycle, making it the region of highest OSI. It can also

be observed tha t regions of high W SS_Tavg experience the lowest OSI and vice

versa. In the remaining sections of this chapter, 3 more carotid bifurcations will

be analysed.

Figure 5-10: Illustration of flow skewing at the ECA close to the bifurcation

5.5 G e o m e t ry 2

In this section, unlike the geometry considered for convergence testing, a more

complete carotid bifurcation geometry is considered (Figure 5-11), though it still

is a truncation of the carotids in situ. A slight narrowing of the CCA occurs

before the bifurcation point and a sharp bend feature was observed in the ECA

downstream of the bifurcation. The carotid bulb appears normal in the anterior

view, but is constricted when viewed from the rear. The mesh used to represent

this geometry consisted 6,934,199 tetrahedron elements and 1,185,109 nodes. Fol­

lowing the convergence results, meshes with 10 boundary layers will be considered

from this point onwards, unless otherwise stated. This provides an even balance

124

Chapter 5. Patient Specific Geometries

between accurate solution capturing and moderate simulation costs. There is also

some experiential bias in selecting 10 boundary layers.

The velocity profiles used for this geometry are slightly different and adopted

from the work of Holdsworth et al. [68], who characterised the blood velocity

waveforms in carotid arteries of 17 normal volunteers, analysing 3560 cardiac

cycles. The temporal flow variations and the resulting harmonics are presented

in Figure 3-14 and Table 3.1, respectively. An important difference between

this velocity profile with respect to the one used before, is the absence of flow

reversal. The current waveform is also slightly longer, with a period of 0.9195 s,

which corresponds to a heart rate of 65.2 bpm. As explained in Section 5.3, just

1 velocity profile is imposed here at the exit, which in this case is the exit plane

of the ICA. The zero dirichlet imposition on pressure will therefore apply on the

ECA exit plane. A total of 240 time steps were used to span the total period.

The total CPU-time consumed for this simulation 4 was 2,487,944.25 seconds on

72 processors, which corresponds to a wall-time 5 of an impressive 9.59 hours.

This involves solving a non-linear, sparse system of size 3,555,327 x 3,555,327, a

linear sparse system of size 1,185,109 x 1,185,109 and a correction of 3,555,327

degrees of freedom, in every time step, along with all the pre/post processing and

parallelization tasks.

5.5 .1 F low field - G eo m etry 2

Figure 5-13 presents the contours of velocity magnitude, plotted at several sec­

tions perpendicular to the length axis, at 7 different instants of important flow

transitions of the cardiac cycle. The single visible colour bar, based on peak flow,

is applicable to all time instants. As the flow approaches the bifurcation during

mid acceleration it deflects from the inner walls of both the ICA and ECA to-

4TCP877
5wall-time = CPU-timenprocs

125

Chapter 5. Patient Specific Geometries

Figure 5-11: Mesh 2: (L) Anterior (R) Posterior

wards the respective exits. This effect can be clearly seen in an animation across

time, where the fast moving chunk of fluid appears to be swaying from the inner

to the outer walls of the bifurcation, while travelling towards the exit. At peak

flow, the fluid accelerates through the ECA forming a zone of the fastest moving

fluid at the point where the ECA bends sharply. At peak flow, the velocity in

the ECA is 278.2 cm /s, while th a t in the ICA is around 185.79 cm /s. These

values are in very good agreement with the available ultrasound measurements,

for this very same geometry, in-vivo. The ultrasound readings predicted a peak

systolic velocity of 281 cm /s and 181 cm /s in the ECA and ICA, respectively

(Figure 5-12). This represents a m ean error of 1.8% between the numerical and

measured values. However, the location of the peak values within the ICA and

126

Chapter 5. Patient Specific Geometries

ECA was not available and hence could not be compared with the results of this

simulation.

For this geometry, the peak-inlet Reynolds number (based on the average inlet

velocity magnitudes a t peak flow) and average-inlet Reynolds number (based on

the time averaged inlet velocity magnitudes) were found to be 938 and 253, re­

spectively. Since the critical Reynolds numbers for this geometry (and in general,

for patient specific geometries) is difficult to experimentally establish, one cannot

make flow regime predictions based on the Reynolds number.

Figure 5-12: Ultrasound measurements for geometry 2

As the flow progresses into the mid deceleration phase, flow separation begins to

occur in the ICA, which becomes visible as patches of very slow moving concentric

and /o r crescent shaped regions in the flow field (visible in slices of the deceleration

phase and beyond). Figure 5-14 presents the secondary field, which is plotted by

eliminating the axial velocity component. Downstream of the bifurcation, both

in the ECA and ICA, small vortices are generated close to the wall, which decay

towards the exit. The orientation of particle traces throughout the length of the

ICA and ECA suggests th a t the fluid swirls in making its way to the exit.

Throughout the cardiac cycle, the peak domain velocity is maintained in the ECA.

Flow in the CCA is initially skewed towards the ECA, before hitting the narrowing

in the CCA upstream of the bifurcation. However, from the mid deceleration

phase until the end of cycle the flow is skewed towards the ICA. A series of

stream trace plots (coloured based on peak velocity magnitudes) are presented in

127

Chapter 5. Patient Specific Geometries

(a) (b) (c)

(d) (e)

Figure 5-13: Sectional velocity profiles for geometry 2 at various time instants:
(a) Mid acceleration (b) Peak flow (c) Mid deceleration (d) Minimum rem nant
flow (e) Peak remnant flow (f) Mid rem nant flow

128

Chapter 5. Patient Specific Geometries

Figure 5-14: Streamtraces of secondary flow revealing the flow disturbances.

Figure 5-15: Streamtrace plots coloured by velocity magnitudes: (a) Peak flow
(b) Lowest flow (c) Peak rem nant flow

Figure 5-15 to reveal the flow disturbances th a t arise during the cardiac cycle. At

peak flow, the fast moving particles travel in a smooth, undisturbed manner. At

the sinus bulb region, slow moving vortices are generated and directed diagonally

129

Chapter 5. Patient, Specific Geometries

opposite towards the inner wall of the ICA, as the fluid flows from the bifurcation

point to the exit. A similar effect can be observed 011 the opposite side, in the

ECA. Like with the first geometry, flow disturbances of small velocity magnitudes

arise in the rem nant flow phase of the cardiac cycle. Disturbed flow is maintained

in all the branches of the carotid bifurcation. Downstream of the bifurcation, a big

recirculation zone is formed in the ICA, while helical flow patterns are observed

along the entire length of the ECA. During peak flow in the rem nant phase,

the flow regains a much ordered state. Based on the results of geometry 1, it

appears tha t the flow field in geometry 2 would have been more disturbed, if a

flow reversal were to be imposed at the boundaries.

(a) (b) (c) (d)

Figure 5-16: Maps of time averaged normalised WSS and OSI: (a,c) Posterior
(b,d) Anterior

The time averaged WSS contours, along with the OSI map is presented in Figure

5-16. The largest wall shear stresses are localised at one location each, in the

ECA and ICA. Owing to the division of flow and the presence of a stagnation

point, high WSS values are expected a t the bifurcation. However, the sharp bend

feature in the ECA, downstream of the bifurcation and the unusually constricted

130

Chapter 5. Patient Specific Geometries

ICA, in the sinus bulb region seem to be the reason behind the sharp localization

of stresses in the 2 branches. However, on the other side of the sinus bulb, which

is normally shaped (without constriction), low time averaged WSS values are

observed, which is in line with the findings of papathanasopoulou et al. [120]. The

maximum time averaged WSS experienced in this geometry is 2017.51 dynes/cm2.

This value is higher than those quoted in the literature. The WSS predictions

of CFD studies are generally higher than the in-vivo measurements. This may

partly be due to the poor resolution of the scans [120], which is compensated in the

CFD world by the use of boundary layers. The OSI maps suggest that away from

the bifurcation, most of the regions in the CCA and ICA experience oscillatory

stresses. In the bifurcation zone, a pair of longitudinal bands of moderately

high OSI is observed, making them favourable sites for atherosclerotic plaque

deposition. In the WSS plots of Figure 5-16, these regions also have valleys of

low shear stresses appearing between peaks of high wall shear stresses, making

them suitable for plaque deposition.

5.6 Geom etry 3

The carotid geometry considered next (Figure 5-17) is relatively complicated in

shape and truncated farther away from the bifurcation zone. The ICA and ECA

are unusually curved in a semi circular manner as they make their way upwards

of the neck. The common trend of the ECA being smaller in cross-sectional

area than the ICA, is not valid for this geometry. The opposite seems to be the

case. In the ICA a number of constrictions and expansions occur in tandem, with

the smallest constriction occurring at approximately the mid length of the ICA.

Upstream of the bifurcation, in the CCA, a stenosis occurs, resulting in a sudden

reduction in the cross-sectional area. This geometry, by virtue of its atypical

configuration, exemplifies the importance of patient specific analyses.

131

Chapter 5. Patient Specific Geometries

on C - j
(e) (f)

o m
(m) (n)

magU

88
79
70
60
51
42
33
23
14
5

Figure 5-17: Sectional velocity profiles for geometry 3 at mid acceleration

Boundary conditions similar to the ones used for geometry 2, were employed.

The harmonics of Table 5.1 were used in the construction of velocity profiles. A

transient dirichlet velocity profile was imposed at the inlet and the exit (ECA).

Consequently, the zero dirichlet pressure boundary condition was imposed on

the ECA exit plane. A mesh with 10 boundary layers, 13,124,417 elements and

2,239,739 nodes, was used to represent geometry 3. The to tal CPU time consumed

with 72 processors was 6,424,563 seconds, which corresponds to a wall time of

24.78 hours.

5.6.1 F low field - G e o m e t r y 3

Figures 5-17 through 5-19 presents the velocity magnitudes a t different sections

along the length of the carotid bifurcation. The precise locations are presented in

Figure 5-17 (left). These sections were chosen based on the geometrical changes

occurring a t these locations. The size and angular orientation of these slices is

unchanged and represents the in-situ configurations. During mid acceleration,

132

Chapter 5. Patient Specific Geometries

the imposed Womersley profile is maintained only for a short distance from the

inlet, after which the geometrical variations induce skewing effects. These skewing

effects (towards the ECA), become more pronounced at the stenotic section C.

Downstream of the bifurcation, the flow skews towards the inner walls of the

ICA and ECA. A peak velocity of 97.32 cm /s occurs at the region of highest

contraction. Unlike before, where the peak domain velocities always occurred

very close to the bifurcation, the shape of geometry 3 pushed the peak closer

to the exit plane. The secondary or in-plane mid acceleration flow field (Figure

5-20a) reveals the in plane vortices of upto 55 cm /s occurring in the ICA close

to the bifurcation. Even higher magnitudes of secondary flow exists in the ECA,

close to the exit, since the ECA aligns itself almost perpendicular to the CCA

(such tha t the primary flow tends to occur in the secondary direction).

maglU

o
Figure 5-18: Sectional velocity profiles for geometry 3 a t peak flow

O Q Q %m I
(a) (b) (c) (d) (e) (f) — 16

(H) (i) (j) (k) (I) (m) (n)

Figure 5-19: Sectional velocity profiles for geometry 3 during the stage of lowest
flow

At peak flow, the velocity profiles (both primary (Figure 5-18) and secondary

133

Chapter 5. Patient Specific Geometries

(Figure 5-20b)) seem to inherit the spatial distributions from the mid-acceleration

phase, but the actual magnitudes are relatively higher. The peak velocity occurs

in section h with the velocity magnitude reaching 237.02 cm/s. The appearance

of high velocity fluid mass very close to the boundaries suggests that high shear

stresses will occur in this region. The peak secondary flow on the other hand,

appears in the ICA but close to the bifurcation. Secondary flow of upto 100

cm /s was observed. Ultrasound measurements, proximal to the bifurcation in

the ICA, were available for this geometry. The peak recorded velocity was 169

cm/s. As per the numerical predictions for this geometry at peak flow, the

maximum velocity magnitude occurs in/around section h, but this section is far

away from the bifurcation (not proximal, like in the ultrasound). Sections e and

f qualify better, to be at close proximity to the bifurcation. A series of 5 sections

(perpendicular to the length axis (Z)) were considered in the ICA, beginning from

the start of the ICA and ending approximately at section f. The average of peak

velocity magnitudes was found to be 168 cm/s. From slice f to slice h, the velocity

magnitude increases. Further towards the exit, the velocity magnitude decreases

and maintains a near constant peak value, owing the similar flow areas in that

region.

As the fluid decelerates into the mid deceleration phase, flow separation occurs

in the ECA, as can be observed from the plots of Figure 5-21. The in-plane

streamtraces suggest that fluid particles spiral into a stationary point (Figure

5-21a). This is merely an artefact of plotting a 2D streamtrace for a 3D flow

field. The volume lines 6 of Figure 5-20a clarify this behaviour. Since, flow near

the inner walls of the ECA is swirling as it makes its way towards the exit, the

sectional streamtraces appear to lock to a point. A recirculation zone also appears

close to the outer wall of the ECA as the fluid changes direction in traversing

twin pseudo semi circular paths, while travelling towards the exit.

6Volume line: A type of 3D streamline which is not confined to remain on a surface and
may travel through 3D volume data.

134

Chapter 5. Patient Specific Geometries

(d)

Figure 5-20: Sectional velocity profiles of the secondary flow field: (a) Mid accel­
eration (b) Peak flow (c) Least flow (d) Peak rem nant flow

135

Chapter 5. Patient Specific Geometries

Figure 5-21: Bifurcation region of geometry 3: sectional velocity profiles with
streamtraces (surface lines, volume lines and volume rods) superimposed, during
mid deceleration

In the time instant of least flow, flow separation occurs in almost the entire length

of the carotid (more pronounced towards the exits). These can be identified from

the crescent shaped, relatively fast moving patches in the sectional plots of Figure

5-19. The sectional velocity profiles in the low flow time instants tend to show

marked variations when compared to the high flow instants, when the bulk of the

fluid traverses coherently through the carotid bifurcation. The sectional plots

concerning the lowest flow phase (Figure 5-20c) show the presence of in-plane

vortices reaching magnitudes of up to 16 cm /s. The peak secondary flow appears

in the ICA in regions close to the bifurcation and in a couple of slices in between

the mid length and the exit plane.

As the flow progresses in to the peak rem nant phase, the prim ary flow field

becomes more ordered. Regions of flow separation are observed in multiple slices

136

Chapter 5. Patient Specific Geometries

of both the ICA and ECA, primarily where the geometrical variations result in

changes in flow direction (curvature effects). The secondary flow field (Figure

5-20d) at peak remnant flow, preserves the spatial distributions from the time

instant of least flow.

Figure 5-22 presents the time averaged WSS and OSI. Bands of highest wall

shear stresses occur in the CCA just before the bifurcation and in the ICA at

approximately mid lengths, where the flow direction changes significantly. In the

sectional plots for the primary flow field, the highest velocities were recorded in

this region during all time instants. The entire lumen in these regions was flooded

with fast moving fluid mass thereby resulting in large velocity gradients at the

walls. Two very localised spots of high time averaged WSS also appear very close

to the stagnation point, on either side. These are the points where the CCA jet

impacts the bifurcation and eventually deflects into the two outlet branches. The

peak time averaged WSS for geometry 3 was found to be 1421.86 dynes/cm2.

Most of the CCA and ECA experience low shear stresses at the walls during the

entire cardiac cycle. As expected, high OSI appears in the CCA in almost the

entire length before the stenosis. The ICA also experiences localised zones of

high OSI, typically in regions where local expansion occurs. Plotting sectional

streamtraces in these expanded locations close to the walls reveals the presence

small recirculation zones, thereby resulting in OSI spikes in these regions. A

streak of high OSI also appears in the stagnation region of the bifurcation, which

is not visible in the views presented in Figures 5-22c and 5-22d.

5.7 Geom etry 4

The carotid bifurcation considered in this section represents severe stenosis in

the ICA at the bifurcation region (Figure 5-23a). The mesh used to represent

this geometry also happened to be the largest mesh used in this research. It

137

Chapter 5. Patient Specific Geometries

(a) (b) (c) (d)

Figure 5-22: Time average WSS (normalized) and OSI maps for geometry 3: (a,c)
Anterior (b,d) Posterior

contained 10 boundary layers, 14,583,254 tetrahedron elements and 2,489,345

nodes. Unlike the previous geometries, the CCA is bent in the inlet region.

Since this bend occurs very close to the inlet the skewness effects are neutralised

as the fluid travels towards the bifurcation. Also, the ECA and ICA turn in

opposing directions towards the exit planes (Figure 5-23b). In the ECA, towards

the mid length, a short region of relatively large cross-sectional area appears.

The boundary conditions of geometry 3 were reused for this case. The to tal CPU

time consumed on 72 processors was 7,294,710 seconds, which corresponds to a

wall time of 28.1.4 hours.

5.7.1 F low field - G e o m e t r y 4

The plots in Figures 5-25 and 5-27 present the sectional velocity profiles and

streamtraces at different time instants. As the boundary conditions effect the

flow inside the carotid bifurcation, the fluid particles travel along simple, well

defined paths towards the exit. Half way through the mid acceleration phase, peak

138

Chapter 5. Patient Specific Geometries

120CD
11003
1000U
sooo
8000
7000
6000
TOC
400C
3000
2000
KDOC

(b)

Figure 5-23: Geometry 4 (with pressure contours during mid acceleration phase):
(a) Front view (b) Top view

velocities begin to appear mostly in the peripheral locations of the ECA. A peak

velocity of 64.23 cm /s was recorded in the mid acceleration phase. As the fluid

accelerates further, a recirculation zone begins to appear in the sinus region of

the ICA, close to the bifurcation. This recirculation zone launches fluid particles

towards the inner walls of the ICA via a slow moving helical jet, clearly visible in

Figure 5-25b. The bend feature present in the CCA inlet results in a pronounced

swirling effect as the velocity increases. As a result, the stream traces of relatively

slow moving particles tends to skew further, resulting in such particles to traverse

slightly longer paths towards the bifurcation. At peak flow, maximum velocity

magnitudes of 183.8 cm /s was observed in the ECA, close to the exit in a region

of localized narrowing (this is the first observable narrowing in the ECA when

viewed from the exit plane). Unlike for geometries 2 and 3, no accompanying

ultrasound data was available for this geometry (4).

139

Chapter 5. Patient Specific Geometries

(d) (e)

Figure 5-24: Vector plots of secondary field for Geometry 4 in the ECA (mid
length section): (a) Mid acceleration (b) Peak flow (c) Mid deceleration (d) Least
flow (e) Peak remnant flow

The recirculation zone in the sinus bulb of the ICA grows in size just past the

peak flow, before contracting in size. This is because a slight lag occurs between

the application of boundary conditions and their effects becoming visible within

the domain. The sectional velocity profiles of the mid deceleration phase are

remarkably different from those in the mid acceleration phase, especially in the

ICA. Although, the peak velocity is maintained a t nearly the same value of around

61 cm /s. In the slices close to the bifurcation, in the ICA, flow separation of

more than 50% occurs. This can be verified by the presence of relatively large,

blue (slow moving) sectional patches appearing adjacent to relatively smaller,

green (fast moving) patches, in the corresponding regions (Figure 5-25c). The

occurrence of the stenosis a t the ICA entrance seems to result in such extreme

flow separation. Since the velocity magnitudes in the CCA are smaller during

mid deceleration (than during mid acceleration), the fluid has less momentum

as it squeezes through the stenosis and is therefore less capable of driving the

140

Chapter 5. Patient Specific Geometries

Figure 5-25: Sectional velocity profiles for primary flow field of geometry 4: (a)
Mid acceleration (b) Peak flow (c) Mid deceleration (d) Least flow (e) Peak rem­
nant flow 1 4 1

Chapter 5. Patient Specific Geometries

recirculating mass (in the axial direction) that resides in the sinus bulb.

The time instant of least flow seems to give every slice (of Figure 5-25d) an oppor­

tunity to accommodate fast moving regions in the range of peak domain velocities

(21.96 cm/s). Unlike other time instants, since localization of the highest velocity

magnitudes doesn’t occur (from the point of view of length-wise distributions),

the brightest regions of every section, visibly trace the locus of fluid paths that

will be traversed by the bulk of the fluid. Given the geometry, it is somewhat

intuitive to see how the fluid bounces off from one wall to another in making its

way through the carotid bifurcation. The velocity distributions in the ICA, at

peak flow show an interesting characteristic. The recirculation zone extends to

almost 3 /4th the length of the ICA. It not only grows in size but begins to re­

circulate faster. The shearing effect from the fast moving fluid towards the inner

ICA wall contributes towards stirring up the recirculation zone with more energy

in the low flow phase. The recirculation in the anti-clockwise direction (Figure

5-26) confirms this. The blue patch that separates the fast moving patches in

the sections of the ICA represents the centre of the three dimensional recircula­

tion zone. Beyond the major recirculation zone of ICA during low flow, a second

recirculation zone begins to appear in the slices closer to the ICA exit. Some in­

termediate sections have flow separations occurring on 2 major locations resulting

in 3 coplanar and incoherent fluid masses, resulting in complex flow fields. Obvi­

ously these regions of recirculation represent regions of low wall shear stress and

possible sites for the development of plaque. However, since there was already a

stenosis at the ICA entrance, one needs to retrospectively analyse this situation.

Under the premise that low WSS results in stenosis, geometry 4 represents an

advanced (time wise) case and the converse of the premise also seems true. As the

flow progresses into the peak remnant phase, the peak velocities localize towards

the ECA exit and the recirculation zones in the ICA bulb shrink considerably in

size and velocity magnitudes.

142

Chapter 5. Patient Specific Geometries

Figure 5-26: Geometry 4: Evolution of recirculation zone during the phase of
least flow (Left branch is the ICA)

143

Chapter 5. Patient, Specific Geometries

magU

Figure 5-27: Streamtraces for geometry 4: (a) Mid acceleration (b) Peak flow (c)
Mid deceleration (d) Least flow (e) Peak rem nant flow

Figure 5-28 presents the normalised, time averaged wall shear stresses and oscil­

latory shear indices for geometry 4. Unlike other cases, the peak time averaged

wall shear stress is heavily localized in a single, tiny region appearing at the bifur­

cation, on the inner wall of the ECA. The peak value being 1495.63 dynes/cm 2.

The outer-bend region in the CCA, bifurcation zone and almost the entire ECA

experience moderate levels of wall shear stresses. Most of the CCA and ICA have

experience minimal shear stresses a t the walls. The least stresses are experienced

in the outer walls of the ICA, close to the sinus bulb region where extreme re­

circulation and flow separation occurs. This is supported by the high OSI values

appearing on most of the CCA and ICA. The ECA on the other hand just ex-

144

Chapter 5. Patient Specific Geometries

(a) (b) (c) (d)

Figure 5-28: Time average WSS (normalized) and OSI maps for geometry 4: (a,c)
Anterior (b,d) Posterior

perienc.es high OSI in the nodule 7 appearing at mid length, which can now be

predicted to contain at least one recirculation zone. Like before, high OSI spike

occurs in the stagnation region of the bifurcation.

5.8 S u m m a ry

This chapter introduced the human carotid bifurcation, their functions, position

in the human arterial network and the reason behind their selection for this re­

' Nodule: region of sudden expansion, relative to its surroundings

145

Chapter 5. Patient Specific Geometries

search. A note on the importance of boundary conditions was presented next.

Concentrating on specific regions of the vasculature often presents problems im­

posing boundary conditions on the extremities of the domain of interest. This

fact was illustrated from the point of view of carotid bifurcations and some of

the possible boundary conditions commonly used were presented. A full arterial

system modelling with the inclusion of the heart, provides an idealistic setting to

relieve the burden of applying realistic boundary conditions in studies like these.

Such systems, however are often low fidelity (1D/0D) and therefore their pre­

dictions are usually inaccurate. As mentioned before, measuring the boundary

conditions is an invasive option. A mesh convergence study from the point of view

of boundary layers in the wall regions was carried and the convergence of pressure

and velocity up to a solution was demonstrated for up to 12 boundary layers. A

total of 6 meshes were considered for the mesh/boundary-layer convergence study.

In the remaining sections of this chapter, 4 different carotid geometries (1 mesh

per geometry) were considered and their flow fields were presented and analysed.

Haemodynamic parameters like time averaged wall shear stress and oscillatory

shear index were calculated for all geometries considered.

Geometrically, every carotid bifurcation considered was unique. Geometry 1 was

a heavily truncated geometry with inclusions of CCA, ECA and ICA sections

very close to the bifurcation. It demonstrated all the features of a typical carotid

bifurcation with mild stenosis at the ECA entrance. Relative to Geometry 1, the

second geometry was truncated far away from the bifurcation and represents the

length usually used in carotid bifurcation studies. The ECA represented a sharp

bend feature, while the ICA had an occlusion close to the bifurcation which is

visible in the posterior view only. Geometry 3 was unusually curved at the exits

of the ECA and ICA and had inconsistent ECA-ICA sizes. The ICA had a

series of nodules along the entire length and the CCA had an unusual stenosis,

a short distance away from the bifurcation (towards the CCA inlet). The mesh

146

Chapter 5. Patient Specific Geometries

used to represent Geometry 4 was one of the largest with around 14.58 million

tetrahedron elements and 2.5 million nodes. Among the geometries considered,

it had the most severe stenosis, occurring at the bifurcation region of the ICA.

A nodule occurred in the mid-length section of the ECA and the ECA and ICA

exits point in different directions. Also the CCA was bent at the exit, making

this, the geometry with most peripheral bends.

At peak flow, the peak velocities are always observed to occur beyond the bi­

furcation. The localization was found to be mostly within the ECA, except for

the third carotid geometry, where the peak velocity occurred in the ICA. The

ECA and ICA of the third geometry were unusual in their relative sizes, which

explains the occurrence of the peak in the ICA instead of the ECA. The second

carotid geometry recorded the highest peak velocity among all the cases consid­

ered, the value being around 275 cm/s. The sharp bend in the ECA, seems to

be the reason behind this. Consequently, the highest time averaged wall shear

stresses also occur for this geometry (since the sharp bend results in skewing of

the sectional velocity magnitude at this region, very close to the inner wall, which

gets captured by the fine boundary layered mesh of this region). Ultrasound data

(velocity magnitude) was available for the second (ECA and ICA) and the third

(ICA only) carotid geometries considered. The mean error between the numerical

results and the ultrasound data, was found to be 1.41 %.

The medical data didn’t contain information regarding the precise locations,

where the peak velocity magnitudes occurred. However, as described below, in

each case the locations of peak velocities could be correlated to the changes in

geometry at those locations:

1. In the first geometry, the mild stenosis at the ECA and the fairly constant

cross-sectional area along the entire length results in the peak velocity mag­

nitude occurring along the entire ECA segment.

147

Chapter 5. Patient Specific Geometries

2. As mentioned before, in the second geometry the sharp bend causes local­

ization of high velocity magnitude in the ECA.

3. In the third carotid geometry, the section h, where the maximum velocities

occur, is a section of the smallest cross-sectional area in the entire section

(this zone may be likened to a converging-diverging nozzle) and therefore

the fluid accelerates to maintain the required flow rate, in travelling through

this constriction.

4. In the fourth carotid geometry, the fluid accelerates as it enters the ECA,

but begins to decelerate thereafter because of the presence of a nodule

(local expansion). Past the nodule, the ECA geometry begins to contract

to normal state and therefore the fluid accelerates to conserve mass. As the

fluid undergoes cycles of acceleration and deceleration, the smallest ECA

section close to exit records the maximum velocity magnitude at peak flow.

This suggests that the ECA constriction is more severe downstream of the

nodule.

The recirculation zones occurring in various geometries were also presented through

the streamtrace plots (both 2D and 3D), in this chapter. The sinus bulb region

of the ICA, was observed to be the common area for the flow separation to occur,

in all geometries. The flow separation and the consequent recirculation zones

shrink at peak flow and evidently show up during low flow and flow reversals. In

the fourth carotid geometry, a recirculation zone was also observed in the ECA.

Generally, recirculation zone(s) appear in regions where a localised contraction

or expansion exist. In order for these to show up, one must be careful in selecting

the seed (start) points for the generation of streamtraces. When flow reversal is

imposed, as in the case of the first carotid geometry, a recirculation zone appears

right below the bifurcation point. This is due to the shearing effect from the

fluid reversing from the ICA and ECA, on the pocket of fluid trapped below the

148

Chapter 5. Patient Specific Geometries

bifurcation.

The presence of vortices in the flow field may not be detected, unless the vortex is

of a relative large velocity magnitude. The small magnitude vortices that usually

occur are hidden under the influence of the dominant velocity components and

in-plane vector plots of secondary field reveal their presence (Figure 5-24). In­

plane, 2D streamlines may also be used to reveal the secret life of such vortices.

Plotting the contours of velocity magnitudes without the primary velocity com­

ponent (Figure 5-20) also helps in visualizing the vortices in a slightly different

way. Contrary to the contour plots of primary velocity field, where the sectional

slices indicate the velocity magnitudes approximately normal to the slices, the

secondary contours represent in-plane components and are therefore (somewhat)

representative of the in-plane vortices.

Maps of time averaged wall shear stress, as well as the oscillatory index were

plotted for every geometry considered in this chapter. The highest WSS_Tavg

appeared in regions where fast moving fluid mass was skewed toward the walls.

The peaks appeared at the bifurcation region, mostly. In geometry 2, the peak

also appeared in the sharp bend region. While, for geometry 3, multiple bands of

high shear stress occurs in the ICA at its mid section. These peaks were found to

occur in the regions of localized contractions of the ICA. The lowest wall shear

stresses occur in regions of the CCA and ICA. The opposite is true, just for the

third carotid geometry. The OSI values seem inversely proportional to the time

averaged WSS. Therefore, most of the carotid surface is flooded with moderately

high values of OSI throughout (again, with an exception for carotid geometry 3).

It would also be useful to see, how the WSS and OSI predictions change in the

absence of the abnormalities that are present in the carotid geometries considered.

Unless, a longitudinal study is undertaken the remodeling of arteries make it

difficult to predict the configuration of these geometries under normal conditions.

149

Chapter 6

Conclusions and Future Research

The global aim of this research was to provide solutions to cardiovascular prob­

lems from the points of view of mathematics and computer-modelling. Since

the dynamics of self-regulating living systems are complex and tightly coupled,

a mathematical description of all the components of such system was difficult

to incorporate in a single comprehensive model. Making suitable and realistic

assumptions, a framework that simulates blood flow within human carotid ar­

teries was developed, benchmarked and utilised to solve systems with millions of

degrees of freedom. The characteristic based split scheme was utilised to solve

the non-linear, transient and incompressible Navier-Stokes equations in their non­

conservative form. An attem pt was also made in the direction of developing a

monolithic version of the characteristic based split scheme, with the goal of mak­

ing this framework extensible to multi-physics problems, like FSI. The mono­

lithic framework of the CBS scheme generates a new stabilization term in the

mass conservation equation, that stabilizes the pressure field. This framework

has also been fully developed and has currently progressed to the performance

tuning phase, which is critical for solving large systems.

The entire framework was cast in a fully parallel, high performance computing

150

Chapter 6. Conclusions and Future Research

environment. Multi processor parallelism was established using the Message Pass­

ing Interface standard, which is currently used by all major supercomputers to

communicate messages across processors. PETSc which is a non-trivial, state of

the art toolkit (collection of libraries) for solving algebraic systems in parallel,

was successfully incorporated and utilized. Both MPI and PETSc were coherently

utilised in a Fortran90 software called IF E N s, which is an acronym for Implicit

Finite Element Navier-Stokes Solver. IFENs was developed from scratch dur­

ing this research. IFENs was an extension of another software developed during

this research, called SIFENs, i.e. serial IFENs. SIFENs started off as a purely

serial convection-diffusion equation solver. As SIFENs matured, multithreaded

parallelism was incorporated by the use of Intel Math Kernel Library (MKL).

Gradually, the sub components of SIFENs paved the way for the development of

the fully parallel Navier Stokes Solver - IFENs. Currently IFENs has been tested

on up to 256 processors. IFENs executes at appreciable speeds. A 240 step car­

diac cycle, executes on a computational domain with 14.583 million tetrahedron

elements in 15.6 hours with just 72 processors. This is definitely comparable and

perhaps better than explicit codes, which are known for their speed.

IFENs was utilized in this research for solving flow problems over biomedical

domains, but can be utilized as a general purpose tool for a variety of flow prob­

lems. IFENs is fully implicit and capable of constructing the jacobian matrix

while using the Newton like methods to solve the Navier-Stokes equations with

the non-linear, convective terms in the left hand matrix. This renders the software

to be highly efficient in solving non-linear equations. IFENs is capable of solving

the Navier-Stokes equations both in split and monolithic frameworks. Different

types of pressure stabilizations are also available to use. By far, more than 1000

recorded test cases for different problems have been executed using IFENs, on the

facilities of HPC Wales, which provided a generous CPU time of 150000 hours.

IFENs, with its current capabilities has been successfully demonstrated to solve

151

Chapter 6. Conclusions and Future Research

and provide realistic solutions to the problem of flow within human arteries.

However, in such mathematical models, the physics of the problem is highly de­

pendent on the imposed boundary conditions. These boundary conditions are

often unavailable or difficult to acquire from the human body. Even when such

measurements are available, their correctness is often under question as the toler­

ance bands are really large. The pressure and velocity boundary conditions that

were employed for the carotid arteries in this research yielded results consistent

with the evidences in literature. Regions of possible plaque deposition have been

identified in the geometries studied. However, validation with real patient data

seems like a mandatory step to be absolutely confident about the predictions

made. This must definitely be a future research direction. In the absence of med­

ical data, computational studies like these will not be able to make predictions

with high levels of confidence, which is essential in introducing this technology as

a usable tool to doctors and clinicians.

Since compliance of arteries play a damping role under pulsatile flow, incorpo­

rating the solid dynamics models to be able to simulate the interaction between

blood and the arterial walls would be more complete, for which IFENs already

serves as a starting point. Although, IFENs is currently closed source, undis­

tributed and solely developed by the author of this thesis.

Unlike conventional flow problems, arterial flow problems have an additional and

active feedback loop, whereby the arterial walls adapt to the changing flow by

sensing various parameters in the inner lining of the vessels called the endothelial

cells. These parameters range from flow quantities (like the wall shear stress and

oscillatory shear index, that were used in Chapter 5) to concentration of vari­

ous biochemical species in the blood stream (like Adenosin Diphosphate (ADP),

Adenosine Triphosphate (ATP), etc.) [78, 137]. This mono layer of endothelial

cells also acts as a selective barrier and controls the passage of materials to and

from the endothelium [36]. The endothelial cells respond to these stimuli via

152

Chapter 6. Conclusions and Future Research

eNOS (endothelial Nitric Oxide synthase) synthesis and calcium ion (Ca2+) sig­

nalling [126, 124, 125, 149]. Under normal conditions atheroprotective reactions

are elicited within the endothelial cells. When the endothelium ceases to perform

its intended function and enters a non-adaptive state, a state called endothelial

dysfunction is said to be attained. Endothelial function and bio-availability of

Nitric Oxide (NO) affect myocardial function, systemic and pulmonary hemody­

namics, and coronary and renal circulation [98]. As a m atter of fact, the 1998

Nobel prize in Physiology/Medicine was awarded to Robert Furchgott, Louis Ig-

narro and Ferid Murad for their independent discoveries that "a short-lived gas,

nitric oxide, NO, was endogenously produced and acted as a signaling molecule

between cells" [3]. The incorporation of endothelial dysfunction and signalling

models to the fluid simulation will therefore be valuable in better understanding

the causal mechanisms, of which only the effects are getting better understood

lately.

Following this direction of research, an implicit, parallel mass transport model

was developed using SIFENs and the results for the concentration of biochemical

species were benchmarked for idealised geometries. Also, the eNOS and calcium

ion signalling models presented in [124] were implemented and tested for idealised

geometries. The unison of the Navier Stokes solver - IFENs, the implicit mass

transport solver (for ATP/ADP) and the eNOS and Ca2+ simulator has resulted

in the addition of a one sided feedback mechanism to the problem of arterial

flow. It remains to run this collection of software for patient specific meshes

and to complete the feedback loop, which can be realised efficiently with the

incorporation of a solid mechanics framework for the remodelling of the walls.

153

A ppendix A

Sample M PI code explained

The MPI-based code enclosed in section 3.2.1.1 is considered here in this ap­

pendix. This code is analogous to a MWE x, intended for illustrating the frame­

work of message passing rather than a bug, that MWEs are generally associated

with. This code aims to provide an easy to understand and intuitive base on

which to build the actual parallel Finite Element application.

The code along with the 9 MPI subroutines used are briefly explained below:

1. Header

The header, here makes reference to the first 3 lines in the code. As with

non-MPI codes, the program keyword informs the compiler about the start

of the program and implicit none results in no assumptions being made by

the compiler about the data-type of variables based on the starting character

of their names. This is standard for Fortran90 programs. Line 3 however

is MPI related. It results in the inclusion of the header files necessary to

interface with the actual MPI implementation itself.

1 short for Minimal Working Example, in the field of computing

154

Chapter A. Sample MPI code explained

2. Standard D atatypes

Line 4 - Line 12. This is standard in Fortran90 and needs no additional

explanation. It must be noted that use of status (M PI_S TAT US_SIZE),

which would result in a syntax error in standard Fortran90, is valid when

the MPI header file has been included.

3. Basic m andatory calls

Line 13 - Line 15. These subroutines need to be invoked in every MPI

program.

M PI IN IT (1 arg)

This call initializes the MPI derived library. In Fortran90 there is just 1

argument to this call. This argument serves as an error-checking integer.

This is a strictly mandatory call and the actual program must preferably

start after invocation of this subroutine.

M PI COM M SIZE(3 args)

The abstract space formed by participating processors in an MPI environ­

ment is called a communicator. It is possible to have more than 1 communi­

cator in an MPI code. The code developed in this research uses just 1 com­

municator. The default communicator is named MPI_COMM_WORLD.

The M PI_COM M _SIZE subroutine finds out the total number of partici­

pating processors in a particular communicator. In this case, this number

is stored in the variable named numProcs

M PI COM M R A N K (3 args)

When having multiple processors to deal with, it becomes mandatory to

be able to index them and send/receive specific instructions/data. This

is made possible by processor ranks. Ranks may be treated equivalent to

names which aid in processor identification. When M PI_CO M M _RAN K

is invoked, the calling processor gets to know its rank in the communicator.

In this case, this number is stored in a variable named myrank.

155

Chapter A. Sample MPI code explained

4. Selective Printing

Line 16 - Line 18. To monitor the progress, it is often desirable to print

suitable messages at selected points in the code. Since in an MPI environ­

ment all statements in the source code are visible to all processors, it is

often tidy to print the progress monitoring statements in 1 processor only.

Now that we know the ranks of all processors, we can print conditionally

based on their ranks. In this case, the string Starting program gets printed

by rankO processor only.

5. Check 1

Line 19 - Line 23. Since this is a very specific program, it needs to be run

on 12 processors only. In these lines, every processor checks if the correct

number of processors are being used. If not, M PI_ABO RT gets invoked,

which is equivalent to the standard stop statement in Fortran90.

It might have been possible to perform this check in 1 processor only and

the invocation of M PI_AB O RT in just 1 processor would have resulted in

all other processors to abort. However, in the meanwhile, other processors

might have moved on to execute the remaining statements. In this code,

it is not strictly necessary to worry about synchronization. However, in

production codes, careful thought must be given to such situations. Either

the underlying design, must be neutral to the need for synchronization or

suitable means must be in place to prevent asynchronous behaviour.

6. Processor Rank Strings

Line 24 - Line 25. On occasions, where messages are printed by all proces­

sors, it is often important to know where the messages came from. To avoid

confusion, it is considered a good practise to print the name/rank of the

processor before every message is printed. To do this a write statement is

used. Instead of conventionally printing to file, it is possible to print also to

156

Chapter A. Sample MPI code explained

variables. Line 24 accomplishes this. Since processor ranks are 0 based by

default, for convenience the ranks are offset by 1, to get a 1 based indexing.

In this case, the variable myrank_char is used as an identifier at the start

of every printed message.

7. Processor Specific File Read

Line 27 - Line 36. Every processor (except the last processor, i.e. rank =

numProcs) is assigned to read a specific file. The names of each of these files

are similar and appended by the processor ranks to make the identification

obvious. Using the rank data from MPI_COMM_RANK subroutine, every

processor generates the names of the files to be opened by them and reads

its contents.

8. C onditional Task A llocation

Line 37 - Line 40. The result of this code is stored in a string called re-

sult_basket, which is initialized to a series of Xs prior to the commencement

of MPI communications, in rank 0 processor only.

9. M PI B C A ST (6 args)

Line 41 - Line 42. The M PI_BCAST subroutine is used to broadcast mes­

sages from a specified processor to all other processors in the communicator.

It may be used to communicate both standard and user defined data types.

The arguments include the variable to be broadcast, length, data type, rank

of broadcast root, communicator and error status, in the order of appear­

ance.

10. Com m unicate M essages

Line 44 - Line 63. The messages are prepared, sent and received in these

lines.

M PI R E C V (8 args)

As the name suggests, the M PI_RECV subroutine is used to receive mes-

157

Chapter A. Sample MPI code explained

sages from other processors. This must typically be accompanied by a

corresponding MPI_SEND subroutine. There are 8 arguments for the

M PI_RECV subroutine. These are variable in which to receive, length

of data, data type, rank of the processor from which to receive, tag, com­

municator, status, error status, in the order of appearance. This subroutine

is invoked in just the last processor, in which the result string is generated.

The M PI_RECV subroutine is of the blocking type, i.e. it returns only

after the message has been completely received.

M PI S E N D (7 args)

As the name suggests, this MPI subroutine is used to send messages to other

processors. This is typically associated with a corresponding M PI_RECV

subroutine. There are 7 arguments for this subroutine. These are variable

to send, length of data, data type, rank of the destination processor, tag,

communicator, error status, in the order of appearance. Due to the na­

ture of communications here, the MPI_SEND subroutine is invoked by all

processors except the last one.

11. Synchronization

Line 65. The MPI_BARRIER call may be used to synchronize all proces­

sors. Since every processor typically finishes its tasks in dissimilar times,

depending on the nature of the global problem, the results may be intolerant

to the absence of synchronization. Although the use of the MPI_BARRIER

call here is not mandatory, it is used to just illustrate its usage. This MPI

subroutine prevents code execution beyond the occurrence of M PI_BARRIER

call, in all processors. Only after all processors enter this call, will the code

execute beyond this point.

12. M PI FINALIZE

Line 69. Like M PI_INIT initializes the MPI library, the MPI_FINALIZE

library terminates the MPI library. It is a mandatory and correct way of

158

Chapter A. Sample MPI code explained

ending an MPI program. This must be invoked at the very end, but before

the Fortran end program line.

159

A ppendix B

Sample PE T Sc code explained

The PETSc code enclosed in Section 3.2.2.2 is considered here and a brief de­

scription of the code will be provided with the aim of highlighting the PETSc

components in the code. The 4 x 4 linear matrix system of Figure ?? is solved

with MPI parallelism, using the KSP objects of PETSc. A block wise description

of the code will be presented below:

1. Header

Lines 4 through 9. These are the standard header files that must be used in

every application intending to use PETSc components. There is a header

file specific to every object (e.g. Mat, Vec, KSP, SNES, etc.) tha t must

be loaded for these data types to be recognised by the compiler. Also,

these header lines begin with an include statement, preceded by a # , i.e.

these are preprocessor specific statements that are processed before the

compilation begins. It is therefore mandatory that the file name with which

these statements occur, have the F90 extension.

2. PE T Sc data typ e

Lines 11 through 15. Here all the variables that use PETSc data types are

defined.

160

Chapter B. Sample PETSc code explained

3. Fortran data types

Lines 17 through 19. The standard Fortran data types are associated with

the required variables here.

4. Initialization routines

Lines 21 through 23. Like in an MPI program, the scope for MPI parallelism

starts with an M PI IN IT call, in PETSc the equivalent is Petscln itia l-

ize. The first argument for P etscln itia lize could either be a dummy argu­

ment, called P E T S C _N U L L _C H A R A C T E R , or it could also be the

name of the options database file. This options file may be used to set differ­

ent solvers, preconditioners, matrix formats, etc. The M PI COM M R A N K

and M PI CO M M SIZE subroutines are already described in Appendix

A. The only difference exists in the name of the communicator, which in­

stead of being M P I_C O M M _W O R L D is called P E T SC _C O M M _W O R L D .

5. M atrix partitioning

Lines 25 through 26. Since the problem is so small, the matrix partitioning

information is manually set and selected in each processor based on the

processor rank.

6. Parallel M atrix G eneration

Line 28 through 30. Objects are created and destroyed, as and when nec­

essary. The names of the subroutine are quite descriptive and therefore

intuitive. The MatCreate subroutine generates a parallel matrix in the

communicator specified. Also, a name is assigned to this parallel matrix

(LHS). The sizes are set using MatSetSizes subroutine. One needs to pro­

vide the global size (total number of rows and columns) and the local size

(number of rows and columns owned by the processor that is calling this

subroutine). The call to MatSetUp, sets up the internal matrix data struc­

tures that will be used as the entries will be assembled into the matrix. The

161

Chapter B. Sample PETSc code explained

matrix being constructed here will serve as the main system matrix.

7. Parallel Vector G eneration

Line 32 through 35. Like for matrices, a similar procedure is adopted to

define, size and setup a parallel vector. The solution vector is generated

here. In addition, the right hand side vector is simply constructed by using

the VecDuplicate subroutine.

8. Population o f the parallel m atrix and vector

Line 37 through 54. The global indices (of the parallel matrix) in which

to insert the elemental matrices, are generated first (0 based indexing). In

this simple case, the values are added row wise, one after the other. The

same procedure is adopted for vectors too. This simple method is chosen for

illustrational purposes only. Efficient value insertions must occur for real

problems. When this step completes, the finite element assembly would

have completed automatically.

9. Parallel object assem bly

Line 56 through 59. Like the finite element assembly, one needs to perform

also the parallel object assembly in PETSc, to ensure that every processor

has updated entries, ready to be used for the computations of the next step.

10. Solve the linear system

Line 61 though 63. Before the linear system can be solved, a KSP object

must be created. This object must then be made aware of the matrix,

matrix preconditioner, right hand vector and the solution vector, before it

can solve the parallel system iteratively.

11. D isplay Line 65. To print solutions contained in parallel objects to files or

screens, object based *View commands are available.

12. Term ination Line 67 though 68. Like an MPI program terminates with

162

Chapter B. Sample PETSc code explained

a finalize statement, PETSc programs terminate with call to PetscFinalize.

The scope of the calling Fortran program is then brought to an end using

the usual end program statement.

163

A ppendix C

D etailed form ulation of

N avier-Stokes Equations

C .l Spatial discrertization of step 1

a«* a , i t
f N T - ^ d n + f N ^ ^ (u iU jr +1dQ - l- ! N T
Jn A t Jn oxi p Jn o x

i.e. T e rm l + T erralO + Term3 + T erm l 1 « 0

Term 1

A il*r - l\Ua
T erml = / N T dQ,Jn A t

= T - f N TNAu*dfl A t Jn 3

164

Chapter C. Detailed formulation of Navier-Stokes Equations

2 1 1 1 ' A uI

V 1 2 1 1 Auh
20(A t) 1 1 2 1

<

.
CO

<

1 1 1 2 An*

T e r m l = 20(K<)[M1{A^ } (C ' 2)

Term 10

n+l

+ dn
OXi OXi

TermlO = f N T——(uiiij)n+1dQ
Jn OXi

- i / +
Jn \ OXi)

(The divergence of velocity is 0 for incompressible flows)

The notion of the Newton iteration will be introduced here for the non-linear term,

which will be solved using a Newton_Krylov type solver in PETSc. The super­

scripts nn and nn+1 represent the Newton iterations. The terms at time level

n + l are actually equivalent to terms at the (nn + T)th Newton iteration, when the

Newton method has converged. The TermlO can therefore be written as,

r - / dunn+1\
TermlO = / N T (n^n+1— ------) dPl

Jn y OXi J

Noting that,

un+1 ~ unn+1, at Newton convergence, and

165

Chapter C. Detailed formulation of Navier-Stokes Equations

u n n + l _ u nn

TermlO

Term 10a

TermlOa -

Term 10b

+ 5u,

= f n N T (« " + S m) (u] n + 8uj) j dU

f N T
Jn

(
du7

unn 3 d du™
+ u™ — (5u j) + S u i— + Su

OXi1 dxi 1 dxi

TermlOa + TermlOb + TermlOc
\

f)nnn
N Tu™— ^ (m

n OXi- /Jn

■ /
Jn

N,

N 2

N 3

N a

> m N 2 N 3 7V4 <

Ui

u12

u*3
Ui

u31

d_
dxi { aTi No N a r <

u32 dfi,
u3 3

U74 j
r nn
2 1 1 1 Ui^ U3i

V 1 2 1 1 Ui2 d f } Uj2

20 1 1 2 1
<

Ui3

>
a d * , Na N s U33

1 1 1 2 U U ^ < kW74,

= ^ W] m nn{Di}{uj y (C.3)

TermlOb = f N Tu'ln -^—(SuAdQ
Jn OXi

166

Chapter C. Detailed formulation of Navier-Stokes Equations

(C.4)

Term 10c

Term 3

TermlOc
Aj.nn

N T6u i ^ d n
n OXj- L

v_
20
V
20

(C.5)

T erm3 =
“ /p J c,

= ~ ~ fp Jn OXi

N ^ ^ — dQ
p Jn OXi

d (dui dui 2 „ du n+l

dxj
+ - - S idxi 3~lJ dxi

dft

= - » f NT —
p Jn dxi

d (dui n+l

dxj
dn - » [N T j L (p .

p Jn OXi \ oXi

n+l

dto (C.6)

(the third term on the RHS reduces to zero from the mass conservation law for

incompressible flows)

Applying the mass conservation law after interchanging the derivatives in the first

term results in,

T erm3 =
P JCi

N T
d (dm

p Jn dxj \d x i
dQ - H f N T —

p Jn dxi
d (duj

dxi
dfi,

167

Chapter C. Detailed formulation of Navier-Stokes Equations

= - - / NT~ (P I dQ p Jn OXi V
d (dui

I dil

(C.7)

Again noting that, un+1 « unn+1 k unn+1 « unn + 5u,

n 0 \ nn+ 1

TermZ = - - f N t — (A] dQ
p Jn OXi \ uXi J

/ ^ » « I) * , _ e / * * (< & >) * ,
otrj \ a^i y p Jn OXi \ OXi)

P

P

(C.8)

Integrating by parts and neglecting the boundary integrals,

T erm3 = —
P

' r d N ? W r r dN^d(5uj) '
in 9x4 in 9 ^ 9 ^

T ermZ\ + T erm?>2 (C.9)

Term 3i

TermSi = = — [^ —̂—dVt
p Jn OXi OXi

- io Jn

d N T dunn
dxi dz

d N T d N
I a a d m j p Jn OXi uXi

nn
p dxi dxj i

nn

168

Chapter C. Detailed formulation of Navier-Stokes Equations

Ter m31 =

- V

(d N i
V dxi
d N 2 d N r
dxi dxi
d N i dNi
dxi dxi
d N i d N i
, dxi dxi

\ 2 dN-\ d N 2
) dxi dxi

p

dN-\ d N 2
dxi dxi
(d N 2 \ 2
\ dx i)

d N i d N 2
dxi dxi
d N i d N 2
dxi dxi

dNi dNi
dxi dxi
d N 2 d N i
dxi dxi
(d N i \ 2
\ dxi)

d N i d N i
dxi dxi

d Ni d N i
dxi dxi
d N 2 d N i
dxi dxi
d N i d N i
dxi dxi
(d N i \ 2V dxi) .

f

u j l

u h

u h

'U j i

(C.10)

Ter m3) ;

T erm32
= - / p

P
p Jn dx
p V
P

d N T dSu,
. dxi

{HaliSuj} (C.ll)

Term 11 ^

T e r m l l = [N Tu%+1^ — (J —{ U i U j d C l2p Jn k d x k \ d x i 3))

The incompressiblity condition leads to,

T e r m l l = f N Tu l +l~ (1* ^) dQ 2 p Jn d x k \ d x i)

Integrating by parts,

T e r m l l = ~ f / - (N Tunk+l) (u ^) d t o - y j f N Tunk+l (u ^) dT
2 p J n d x k \ d x x) 2 p J r \ d x j

Neglecting the boundary integral and using the incompressiblity condition again,

n+l

2p Jn~K dxk V“l dxiT e r m l l = ^ Jn K +1^ ~ I dQ

169

Chapter C. Detailed formulation of Navier-Stokes Equations

Noting that un+1 « unn+1 and unn+1 « unn + Su,

T e rm ll -

d N T
{uln + 5uk)—

2p Jn dxk
n n d u T n n ^ U j _ &

U ? —r ^ -------- h I t ? - r — ^ + S U i —r^---- b J it,-
dx* 1 dxi

d N T B6u
dxk dx-i dxk U% dxi ^ ak dx

3 nn & N T d u ™
3 + u?n —— fot,- J

dx,-

x d N T nndu™ d N T̂ m i f _ dN
L / JU fc kJJU ̂ \J Ji/ fc KJ Ju2, 1 / JU

= T e r m l la + T e rm l lb + T e r m l lc + T e r m l ld

(C.12)

Term 11a

T e r m l la =
A, ,

OXi
r d N T/ u l n ——

Jn o x k ujui

A t r nn __ d N T dvJ\n _
 / 7 / n n 7 / n n ______________ ^— ^ 7 0

2p Jn k 1 dxk dxi

Approximating as usual,

Atm r - ~ d N T (d N \
™ S - * r «

At
2p Jn Ni N 2 N 3 Na ><

Nnn /
Uki Hii

Uk2 f) ^12
s N i N 2 N 3 NT4 M

u kz I J CO•tS»
3

Uk4 ^ ^ 4 V. ’ /

d N T (d N
u\

dxk V dxi 3
dQ

170

Chapter C. Detailed formulation of Navier-Stokes Equations

A t
2P

Jn (NlUkl + N2uk2 + N 3uk3 + NiUki)nn N2 N3 N4

v nn

^ii

^ 2

Wt3

^ 4

d N T (d N
dxi

-u„
d x i 3

dQ

_ A t (
2 p Jn

^ i uki + NiN2Uk2 + NiNsUfo + NiN±Uki

N \N 2/iik1 + N%Ufa + NsNiU^ + N^^Ufa

AhA^w^ + A ^ A ^ + N^Ufa + N^NsUfa

NiN^Ufa + A ^ A ^ + N^N^Ufa + N%Ufa

nnJ / \
Ufa

U i2
> <

Ufa

/ U{4 \ /

At_V_
2p 20

A t] /
2p 20

“H Ufc2 -I- -|- Ufa

^ f c i d " 2v,fa - (- - | -

Ufa + Ufa + 2ttfe3 + Ufc4

^fci d - Ufa “I- Ŵ 3 ~|“ 2lLfa

{ A u x } r { d i } n^ m { £ > i } { u 3y

x n n 1 * >
U h

Ufa
> <

Ufa

Ufa

d N T (d N
u'

dxk V J

/cd/V
dx*, y dx,

u\ dQ

(C.13)

where A U X = <

2ufa + Ufa + Ufa + Ufc4

f̂ci d- 2ufa -\- Ufa Ufa

Ufa d - Ufa + 2Ufa +

U/ti + Ufa + Ufa + 2 Ufa
duced in the interest of space.

Term l i b

is an auxiliary vector, which is intro-

T erm l lb
_ A t r

2 p 7c2p Jn
d N T d5uj

u T —— u T dQ
dxi dxi

171

Chapter C. Detailed formulation of Navier-Stokes Equations

Term 11c

A tV_
2p 20

Uk2 d- ^^3 “I- ^^4

Uk i + 2 + Ufc4

Wfcl + Uk2 “f" 2 Ufcg + Ufa

f̂ci d- ̂ /c2 d- d- 2Ufa

d N T d N
d xk d x i Wj

T e rm ite - ^ f un n ^ l 5uM ^ dU
~ 2 p J a Uk d x * ' d X i dU

* f unn5u ^ l dj r dn
2 p J a Uk d U , d x k a Xi d

(2Ufa d“ ̂ 2̂ d- Ufa -|- Ufc
f̂ci d- 2Uk2 d- + U/j
f̂ci d- ̂ 2̂ d- 2Ufc3 -(- Itk,

Ufa d- Ufa d~ ̂ 3̂ d- 2lî 4 ̂

At V
2p 20

d N T d N ^
d x k d x i 3

(C.14)

(C. 15)

Term l i d

T e r ml l d = At
2p

/ 5uk^ - u T - ^ d Q
Jn o xk OXi

A t f nnf d N T d u f 1
— / Uj <5u*------
2p Jn axfc arE*

172

Chapter C. Detailed formulation of Navier-Stokes Equations

A t V d N T d N
2p 20 dxk dxi 3

2uix + Ui2 + Ui3 + UiA

+ 2 Ui2 + Ui3 + uu

Uiy + U{2 + 2 Ui3 + Ui4

Uiy “I- “I- Ui3 “I- 2U{4

= — { D l H D i H u j r i A U X j r i S u , }

Sui

(C. 16)

Step 1 in fully discrete fo rm

T erml + TermlO + T ermZ + T e rm l 1 = 0

==> T erm l + T ermlOa + TermlOb + TermlOc + Term3i

+Term32 + T e r m l la + T erm l lb + T e r m l lc + T e r m l ld = 0

~Q{Di}{uT)W]{5ik} + ^[Ai]{fi;}nn + y +

~̂{AUX}r{uir n{Dl}{Di}{uj}nn + — {AUXjriuir^DlHDiHSuj} +
^ { D l H b i H u ^ i A u x y r i S u i } + ^ { £ % } { £ > i } { 6 i } m { A 0 x } r { 6&k}« o

(C.17)

173

Chapter C. Detailed formulation of Navier-Stokes Equations

+ — {AUXWm^iDniDiHSuj} +

}{uj }nn{ A U X } T { S u i} + ^ { D l U D i U u ^ i A U X j r i S u , } =

- ^ [M m } nnW i K M " " - ^ [H a \ { u } } nn - ^ h {^ t / X } r {) i .r { £) T}0 . }{fi,r „

(C.18)

C.2 Spatial discrertization of step 2

A ^/n^ Apdn = - p J J Td£ d Q + A t L " T S1/ U (/ 1 / ^ 2 L / «X/ o «/ a L t / m/ <|

T ermm = T erm5 + T erm6 (C. 19)

Term m

Ter m m =

T ermm =

j g j j T A r d a

20Aic2

V
20Aic2

[M]{Ap}

2 1 1 1 Api

1 2 1 1
<

Ap2

1 1 2 1 Ap3

1 1 1 2 Ap4
v. /

(C.20)

Term 5

174

Chapter C. Detailed formulation of Navier-Stokes Equations

T erm5 =

T ermh =

- p f N T^ d Q .
Jn dxi
r - d N

—p / N T- — dQvJ
Jn dxi

" a m d N i d N i d N 4 '
' <dxi dxi dxi dxi

dNi 8 N 2 d N i d N A n i*
dxi dxi dxi dxi < U i l

d Ni d N i d N i d N j U *Ui3dxi dxi dxi dxi

dNi d N i d N i d N i
u tI *4. dxi dxi dxi dxi .

Vp
4

Term 6

r - d2p nn+1
Termft = A t / dQ

Jnn dxf

= A t f N T ^ d n + A t f N * ? - M d n
Jn dxj Jn 0 X7

Integrating by parts and neglecting the boundary integrals,

m a f d N T dpnn _ . r d N T d(5p)TermQ = —A t / —-------— dQ — A t / —-------— dQ
Jn OXi dxi Jn OXi oxi

= T e r m f t i + T e r m 62

Term 6 i

d N T dp
Term^i = —At [

Jn

nn

n dxi dxi
d N T d N

dQ

= - A t f — — dQ&
Jn Oxi Ox4

(C.21)

(C.22)

175

Chapter C. Detailed formulation of Navier-Stokes Equations

- V A t
d N T d N
dxi dxi

d N \
dxi

= - V A t

= - V A t

am.
dxi
d N 3

dxi
d N 4

dxi
d N ?
~dxft

dm dNi
dxi dxi
dm dNi
dxi dxi
dm dm
dxi dxi

p n

dm
dxi

dm
dxi

dm dm
dxi dxi

dNi

dm dm
dxi dxi
dm dm
dxi dxi

dm
dxi

dm
dxi

dm dm
dxi dxi
dm dm
dxi dxi

dNi
%

dm dm
dxi dxi

P i

P2

P3

P a

dm dm
dxj. dx<i
dm dm
dxi dxi
dm dm
dxi dxi

dNi
d x ?

' '

P i

P2
<

P3

P a \ /

= - V A (C.23)

Term 62

d N T d(Sp)
Terrnf)2 = —A t f A:

nn
dQ

n dxi dxi
= - V A tlHullSp}™ (C.24)

Step 2 in fu lly discrete fo rm

T erm m - Term5 + T erm 6

T ermm = T ermh + T erm6i + T erm§2

i.e.

176

Chapter C. Detailed formulation of Navier-Stokes Equations

^ j ^ [M] { A p } = ~ ^ [N D i] m - VAt[H ii\{p}nn - VAt[H im r n

i'e> 2 ^ [M] { A p } + T [N E > m } + V A t iH^ i sp}nn = ~ V A w m ™

C.3 Spatial discrertization of step 3

f N Tu"+1da - f N Tu*da + — [N T- ^ - d n = o
Jn J Jn J p Jn oXj

Term7 + TermS + Term9 = 0

Term 7

Term7 = [N Tu’'+1dQ
Jn J

= [N Tu T +ldO,
Jn J

= [N Tv%ndQ + t N TSUida
Jn J Jn

= ^ m { u j } nn+ (C.2 5)

Term 8

T erm 8 = - f N Tu*dtt
Jn J

= (c - 26)

Term 9

177

Chapter C. Detailed formulation of Navier-Stokes Equations

Term9 = — f N T ^ ^ — dCl
Jn oXj

A t r ~ Q r^ n n + l

— f N T%- dQp Jn OXj

* [If r W l dn + ** [
p Jn OXj p Jn OXj

Term9\ + T erm92

dQ

Term 9i

Term 9l = — f N T^ — dQ
p Jn OXj

= / ^ N d Q pp Jn OXj

Term 92

Term% = — f N T ^ - d Q .p Jn OXj
A t v

= - — ^ { Di N \ i 5p}

Step 3 in fully discrete fo rm

Term7 + T ermS + T erm9 = 0

T erm l + T ermS + T erm9\ + T erm92 = 0

178

Chapter C. Detailed formulation of Navier-Stokes Equations

+ E - h [M]{ q } - - — {DjNKSp} « 0

In summary the fully discrete form of steps 1 through 3 are as follows,

s tep 1

^ y [M] { A f i * } + }{««,} + ^ { D M u ^ U M U S u i } +

t y l H u R S G , } + ~ { A U X } r { u i } nn{ D l } { D i} {5u j } +

| ^ { b l } { D i } { u j } nn{ A U X } T { S u i } + — { D l H D i H u j r ^ A U X j r i S u , } =

-h [M]{« j}""{A}{%}nn - ^ [H u K u j } ™ - Y p ^ { A u x } T { u i } nn{ b Tk } { b i } { u j r n

(C.27)

s tep 2

^ h _ [M] { A p } + Y l [NDi\{Ol} + yA t[A i]{5p}"n = - V A t [H ii]{P}nn (C.28)

179

Chapter C. Detailed formulation of Navier-Stokes Equations

s tep 3

k[M]{<% } - h[JW]{flj} - ^ Y - [D jN]{5p} « _ E [Af]{fl,}-» + ^ t Y - l D j N]{p™}

C .3.1 M on o lith isin g step

Writing the step 3 equation in terms of ’i’ index, to make the substitution from

step 3 into step 2 possible.

S tep 3 in t e rm s o f i

^ W M S U i } - h [M]{un - * p L [D tN \ m « + ^ [DiN]{pnn}

{ft*} = {6Ui} - + {ft*}"" - y ~ [M - ‘] [A J V] { ^ .29)

Substitute (C.29) in (C.27) and Eq. (C.29) in Eq. (C.28),

20Ar JL JJ 4p JJl J 20A r Jl •'J 4p

+ h{A}{flr}[W]{«fli} + y [HiiRSuj} +

— {AUXjrm^DtHbiHSuj} + — {DlHDiH^lAUXjriSui} +

— { D l H D i H u ^ A U X j r i S u , } = -k[M]{fii}""{A}{%}nn - y [^K^r +

180

Chapter C. Detailed formulation of Navier-Stokes Equations

- ^ ^ { A V X } T { u ir n{ b l } { D i}{uj r n (C.30)

^ - 2[M] { A p } ^ + ~-[NDi\ ({5U,} - — { M - ^ N j i S p } + {ft,}"") -
Y^[NDi] (^ [M ~ 1][DiN}{pnn})j + V A t [H ii]{Sp}nn = - V A t [H it\ {p } nn

(C.31)

Rearranging,

(j Q{Di}{uT}[M] + ^ - { D l H D i m r ^ A U X } ^ {«*}

(2 m [M] + ^ M W i } nn{Di} + y [Hu] + ~ { A U X } r { u i } nn{ D l }{ A }) { « ,} +

(~ ~ { D l } { b i } { u i } nn{ A U X } A {6uk} + (J-p W D ^ {Sp} «

~ ^ A t [M]{ili}nn ~ TPlNDj]{pnn} ~ ^ [M K«i}"n(A }{% }nn -

(C.32)

+ (- ^ [j v a h m - ' h a jv] + V A t[A d) W «

-^■[NDi] ^ [M - ‘][A JV]{r"} j - VAt[Hu]{p}nn - l- ^ [N D i}{ui}nn (C.33)

181

Chapter C. Detailed formulation of Navier-Stokes Equations

Just the 5 terms are retained in the LHS to form the Jacobain matrix and the terms

at Newton iteration nn are moved to the RHS.

C.4 Monolithic equations without indices

Equations (C.32) and (C.33) represent the fully discrete form of incompressible

Navier-Stokes equations, in monolithic form and will be expanded in this section

to get the index-free form, that makes the coding process easier.

j = 1, i = 1 to 3 & k — 1 to 3 in (C.32) leads to,

^ { D 1}{ur}[M]{5u1} + ^ { D 2}{ur}[M]{Su2} + ~ { D 3}{uT}{M}{5u3} +

+ 2 0 ^ ({“ i} n"{^M + (“2}”"{-D2} + { fts }" " -^ })) {<5fii} +

t y [H n + H22 + + ^ { N D ^ m * - -

^ [M] ({«!}“ *{/?!} + m nn{D2} + -

t y [H u + H22 + H33]{fii}"n + (C-34)

i.e.

ai{(5ui} + a 2{8u2} + « 3 {Ju3} + (3{5p} = 7 (C.35)

j = 2, i = 1 to 3 & k = l to 3 in (C.32) leads to,

+ ^ { D 3} { u T } m { 5 u 3} +

(2m[M] + S[M] 2}+{fiart̂ })) +
~ ~ [H n + H22 + H3i]{8u2} + ¥-[ND 2]{5p} « - 2 ^ - [M \ { < h } nn ~ ^ { N D 2}{pnn} -

182

Chapter C. Detailed formulation of Navier-Stokes Equations

^ [m] (R r p i } + {<i2r n{D2} + {fi2}"n -

y [# n + H22 + H33]{u2}™ + ^ X ^ [M] - K } (C.36)

i.e.

+ S^Su-z} + S3 { } + t{Sp} — C (C.37)

j = 3, i = l to 3 & k = l to 3 in (C.32) leads to,

+ ^ { D 2} { u T } [m ^ } + | j +

(2 0 A t ^ + 2 0 ^ ({“ i}n"{ A } + {u2}nn{D2} + {u3}nn{D3})J {i5u3} +

y [Hn + # 2 2 + # 33]{5fi3} + ^ - { N D 3]{Sp} » - J ^ - [M]{ f i3}™ - Y-[ND 3]{p™} -

^ [M] ({«!}"»{A } + {u2}nn{D2} + {«3}""{jD3}) {u3}nn -

y [Hu + H22 + H33]{u3}™ + (C.38)

i.e.

77i{Jui} + 772(^ 2 } + 773(^ 3 } + 9{Sp} = l (C.39)

no j, i = 1 to 3 in (C.33) leads to,

Vo Vo Vo
- f l N D ^ d u , } + - f [N D 2]{5u2} + - ^ [N D 3\{5u3} + VA t[H n + H22 + ff33]{<*p} -

([tV A H M -^A iV] + [ND2][M~1][D2N] + [N D ^ M - ^ D s N]) {<¥} «

([NDJIM-'JIDiN] + [N D iH M -^D iN] + [N D ^ M - ^ D s N]) {p}nn -

VA t[H u + H22 + H33]{p}nn - ~ { N D i] { u i } nn - N D 2]{u2}nn - N D 3]{u3}nn

(C.40)

183

Chapter C. Detailed formulation of Navier-Stokes Equations

i.e.

K,{ui}n+1 + A{u2}n+1 + n { u $ } n+1 + v { p } n+l = £ (C.41)

In matrix form,

cq 0.2 Os P Sui
/ N
7

S3 e Su2 c
< > = i

e Su3 i

K A I/ 5p A.

(C.42)

For linear tetrahedron elements, every matrix entry is a matrix of size (4*4) and

every vector entry is a vector of size (4*1).

C.5 Non-linear context

A typical non-linear system may be represented as,

f M) = o

and the update of the Newton iteration is,

<t>n+ 1 = <t>„~ J ~

(C.43)

(C.44)

The SNES (Scalable Nonlinear Equation Solver) solvers in PETSc approximately

solve,

f'{4>) A<f> = - m (C.45)

184

Chapter C. Detailed formulation of Navier-Stokes Equations

In general, the jacobian matrix, may be written as,

du\
dA
du2

--

dA
du3

dA
dp

d/2
du\

d h
du2

d h
du3

dj2
dp

d h
du\

d h
dU2

d h
dU3

d h
dp

d h
. d u i

d h
du 2

d h
d u 3

d A
dp .

(C.46)

Since the system in Eq. (C.42) has been formulated in terms of 5u, the system ma­

trix itself serves as the Jacobian matrix, making the code highly efficient. Therefore,

/ '(*) = [j] =

Oil &3 P

($1 82 J3 ^

m r}2 773 0

K, X f l V

(C.47)

It should be noted here, that the RHS in Eq. (C.42) is equivalent to the matrix

vector product of the system matrix and the solution vector at a guess, had the

system be formulated in terms of u instead of 5u.

C.6 Definitions

[NDi] =
d_

dxi (iV, N2 N3 JV4

dN±. d N 2 dN3 dm
dxi dxi dxi dxi

dNi d N 2 dN3 dm
dxi dxi dxi dxi

d Ni dNy. dm dm
dxi dxi dxi dxi

d Ni d N 2 dm dm
_ dxi dxi d xi dxi .

(C.48)

185

Chapter C. Detailed formulation of Navier-Stokes Equations

N\

N2

n 3

d N i d N i d N i d N i
dxi dxi dxi dxi

d N 2 d N 2 d N 2 d N 2
dxi dxi dxi dxi

dN* d N 3 dN* dN*
d%i dxi dxi dxi

d N 4 d N 4 d N 4 d N i
. dxi dx% dxi dxi

(C.49)

186

A ppendix D

CSR m atrix and preallocation

exam ple

In this appendix, a small pseudo sparse matrix system is considered. The CSR

sparse matrix representation will be described, followed by an accurate preallo­

cation calculation. The following matrix system is considered in this appendix.

Its rows are assumed to be contiguously partitioned across 3 processors.

Prod) 1 2

0 3

0 0

4 5

0

0 A B \ C

P ro d 0 0 6 0 0 rs>/ D E F

0 0 0 8 9 G B \ I

Proc2 0 10 0 0 11

D .l CSR representation

CSR is an acronym for the Compressed Sparse Row storage representation. It

is almost identical to the yale format. W ithin the PETSc framework, the CSR

representation is called the AIJ format. This format is used to efficiently store

187

Chapter D. CSR matrix and preallocation example

matrices when the number of non zero entries (NNZ) are significantly smaller

than the number of zero entries, i.e. when the matrix is sparse. Memory saving

occurs by virtue of CSR storage, if,

„ m (n — 1) — 1
N N Z < — ------- ------

2

where m and n are the number of rows and columns, respectively.

The CSR format stores a sparse matrix as a collection three ID arrays - CSRval,

CSRcol and CSRrow. The CSRval array stores all the non-zero entries, the

CSRcol array stores the column index of the non-zero entries and the CSRrow

array stores the indices at which every row starts. The CSRval array is simply

written by making a list of all non-zero entries occurring in the matrix in a row

wise manner from left to right. The number of entries in CSRval array is therefore

equal to NNZ. As the CSRval array is being generated, a simultaneous record of

the corresponding column indices generates the CSRcol array. Consequently, the

length of CSRval array is also equal to NNZ. The CSRrow array is relatively

complicated to construct. Depending on whether a 1 based or 0 based indexing

is being used, the first entry of the CSRrow array will be 1 or 0, respectively.

1 based indexing is used here. For the second entry, the number of non-zeros

occurring in row 1 are counted and this number is incremented with the previous

entry (i.e. 1), to get the second entry of the CSRrow array. The same procedure

is repeated for the remaining rows. The number of entries in the CSRrow array

is one more than the number of rows. The data contained in the last entry of

the CSRrow array is one more than the total number of non-zeros in the original

sparse matrix.

The CSR representation of the matrix appearing in Eq. D .l is,

CSRval = s i 2 3 4 5 6 8 9 10 11

188

Chapter D. CSR matrix and preallocation example

CSRcol = | l 2 2 3 4 3 4 5 2 5 |

CSRrow = | l 3 6 7 9 11

From the preallocation point of view, the CSRrow data may be used to calculate

the exact number of non-zeros in every row of the sparse matrix. This can be

simply done by taking the difference of consecutive entries. From the matrix

partitioning information, this data can be made patch specific. As described in

Section D.2, the NNZ data for diagonal and off-diagonal blocks may be generated

by also taking into consideration the column numbers of the non-zero entries from

the CSRcol array.

D.2 Preallocation

In Eq. D.l, the solid lines represent the matrix partitioning across the partic­

ipating processors and the dotted lines separate the diagonal (D) blocks from

the off-diagonal (OD) ones. This distinction will usually be required to be made

during the preallocation of memory for matrices in PETSc, as each processor

stores the diagonal and off-diagonal blocks as separate serial matrices. The RHS

of Eq. D.l, represents the block matrix form of the matrix on the LHS. The sub

matrices [A], [B] and [C] are owned by ProcO (first processor), [D], [E] and [F]

are owned by Procl (second processor) and [G], [H] and [I] are owned by Proc2

(third processor). For ProcO, [A] is the diagonal block and [B] and [C] are the

off-diagonal blocks. For Procl, [E] is the diagonal block and [D] and [F] are the

off-diagonal blocks. Similarly, for Proc2, [I] is the diagonal block and [G] and

[H] are the off-diagonal blocks. By counting the number of non-zeros occurring

in every row of both the diagonal and off-diagonal blocks of all processors, the

required preallocation data is constructed.

189

Chapter D. CSR matrix and preallocation example

Proc rank N N Z d N N Z od
P0 (2,1) (0,2)
PI (1,1) (0,1)
P2 (1) (1)

Table D.l: Matrix preallocation data

As an example, the second processor (Proc 1) is considered. Since just 1 entry

occurs in the first (6) and second (8) row of sub matrix [E], N N Z p = [1,1]. In

sub matrices P] and [F], put together, no non-zero entries appear in the first

row and just 1 entry (9) occurs in the second row, therefore, N N Z o d — [0,1]- In

summary, the complete preallocation data is presented in Table D.l.

190

A ppendix E

Closed form expressions

In this appendix, the closed form expressions for the integral of shape functions

enclosed for the case of linear, 4 noded, tetrahedral elements, that were employed

in construction of Finite element meshes used in this research.

E .l Integral of shape functions

The following closed form expression may be used for evaluating the typical inte­

grals. This prevents the need to perform numerical integration, thereby making

the computations less expensive.

and the shape function derivatives with respect to all spatial dimensions will be

(E.1)

191

Chapter E. Closed form expressions

E.2 Shape function derivatives

In cartesian coordinates, the shape functions for linear tetrahedral elements are

given by,

N i =

No

N* =

where

RI =

1 xi yi zi
1 x 2 V2 z2

1 X3 2/3 Z3

1 x4 y 4 z4

X2 2/2 2 2 1 2/2 ^ 2 1 X 2 Z2 1 X 2 2/2
1 1 1 1

“ +R[X 3 2/3 2 3
" R

1 2/3
X +] A i

1 X 3 Z3 y - Ri 1 x 3 2/3 2

x 4 2/4 z 4 1 2/4 Z4 1 x 4 Z4 1 x 4 2/4

Xi 2/1 Zl 1 2/1 Zl 1 Xl Zl 1 Xl 2/1
1 1 1 1

" "Ri X 3 2/3 Z3 + Rl 1 2/3 Z3 1 X 3 Z3 y + Ri 1 x 3 2/3 z

x 4 2/4 Z4 1 2 /4 Z4 1 x 4 Z4 1 x 4 2/4

Xi 2 /i Z1 1 2/1 Zl 1 X i Zl 1 Xl 2/1
1 1 1 1

X2 2/2 Z2 "Ri 1 2/2 Z2 1 X 2 z 2 y - Ri 1 X2 2/2 z

X4 2/4 Z4 1 2/4 Z4 1 x 4 Z4 1 x 4 2/4

X] 2/1 Z1 1 2/1 z 1 1 X l Zl 1 Xl 2/11 1 1 1
X 2 2/2 Z2 + R' 1 2/2 Z2 X"RJ 1 X 2 Z2 2/ + Ri 1 X2 2/2 z

X 3 2/3 Z3 1 2/3 Z3 1 X 3 Z3 1 x 3 2/3

(E.2)

(E.3)

Applying the following row operations, we can simplify the calculation,

R'i — R i — R2

R 2 = R2 — R3

192

Chapter E. Closed form expressions

Therefore,

Ro — R 3 — R 4

= 1

1 x 1 2/1 zi

1 x 2 2/2 z 2

1 x 3 y 3 z 3

1 x 4 y 4 £4

0 {xi - x 2) (2/1 - 2/2) (zi - z 2)

0 (x 2 - x 3) (2/2 - 2/3) (z2 - z 3)

0 (x 3 - x 4) (2/3 - 2/4) (z3 - z 4)

1 x 4 2/4 z 4

(x i - x 2) (2/1 - 2/2) (z i - z 2)

(x 2 - x 3) (2/2 - 2/3) (z 2 - z 3)

(x 3 - x 4) (2/3 - 2/4) (z3 - Z4)

\A \= (z4 - z2)(x2y3 - x3y2) + {zx - z3){x4y2 - x 2y4) + (zi - z4)(x3y4 - x 4y3)

+ (z3 - z2)(x42/1 - x Yy4) + (z2 - z4)(x3yi - x 4y3) + (z3 - z4)(x iy2 - x 22/i)

(E.4)

Next, the shape function derivatives are enclosed,

d N 1 1

Ri
1 2/2 ^2

1 2/3 2 3

1 2/4 24
14

(2/3̂ 4 - 2/4̂ 3) + (2/2̂ 4 - 2/4̂ 2) - {y2z3 - y3z2)\

193

Chapter E. Closed form expressions

1 2/1 *1
d N 2 1

dx " + R
1 2/3 *3 —

1 2/4 *4

1 2/1 *1

03 CO 1

dx " ~ R
1 2/2 *2

1 2/4 *4

1 2/1 *1
dN± 1

dx " + R
1 2/2 *2 —

1 2/3 *3

1 £2 *2
d N x 1

dy " + R
1 £3 *3

1 £4 *4

1 £1 *1
dN 2 1

dy ” ~ R
1 £3 *3

1 £4 *4

1 £1 *1
dN 3 1

dy ” + R
1 £2 *2 ■—

1 £4 *4

1 £1 *1
dN A 1

dy ~ ~ R
1 £2 *2

1 £3 *3

1 £2 2/2
d N x 1
dz “ ~ R

1 £3 2/3

1 £4 2/4

1 £1 2/1
dN 2 1

dz _ + R
1 £3 2/3

1 £4 2/4

■ (2 /4* 1 “ 2/ 1 * 4) + (2/ 3 * 1 - 2/ 1 * 3) - (2 / 3 * 4 - 2/ 4 * 3)]

[- (2/ 1 * 2 - 2/ 2 * 1) + (2/ 4 * 2 - 2/ 2 * 4) - (2/ 4 * 1 - 2/ 1 * 4)]

[(2/ 2 * 3 - 2/ 3 * 2) + (2/ 1 * 3 - 2/ 3 * 1) - (2/ 1 * 2 - 2/ 2 * 1)]

R M * 3 “ * 4) + ^ (* 4 - * 2) + Z 4 (* 2 - * 3)]

- 1 ^ 1 N (* 4 - * l) + 3^ 4(* 1 - * 3) + X ! (Z 3 ~ ZA)}

1
= j ^ | [Xa { Z i - *2) + X l (* 2 - 2 4) + ^ 2 (2:4 - -Zl)]

[£ i(z 2 - *3) + ^ (* 3 - * 1) + Z 3 (* 1 - *2)]

= “ 2 /3) + X 3 (2 /2 - 2 /4) + £ 4 (2 / 3 - 2 /2)]

— M 2 / i - 2 /4) + £ 4 (2 / 3 - 2 / l) + Z l (2 / 4 - 2/ 3)]

194

Chapter E. Closed form expressions

dN 3
dz

dN 4
dz

1
R i

= +
RI

1 Xl y i

1 £2 2/2

1 x 4 2/4

1 x i 2/1

1 £2 2/2

1 £3 2/3

j ^ M 2/2 - 2/ i) + ^1(2/4 - 2/2) + £2(2/1 - 2/4)]

] - ^ [£ 1 (2/3 - 2/2) + £2(3/1 - 2/3) + £ 3 (2/2 - 2/l)]

195

Bibliography

[1] M PI implementation of CFD program PHOENICS. Oct 1994.

[2] Intel math kernel library reference manual. Technical Report 630813-
052US, Intel Corporation, 2012. URL h t tp s : / / s o f tw a r e . in te l .c o m /
e n -u s /a r t ic le s /in te l-m a th -k e rn e l- lib ra ry -d o c u m e n ta tio n .

[3] The nobel prize in phsiology or medicine 1998: Award ceremony speech,
2014. URL h ttp ://w w w .n o b e lp rize .o rg /n o b e l_ p rizes/m ed ic in e /
lau re a te s /1 9 9 8 /p re se n ta tio n -sp e e c h .html.

[4] C. Alberto Figueroa, Seungik Baek, Charles A. Taylor, and Jay D.
Humphrey. A computational framework for fluid-solid-growth modeling
in cardiovascular simulations. Computer methods in applied mechanics and
engineering, 198(d5) :3583—3602, 2009.

[5] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. Algorithm
837: Amd, an approximate minimum degree ordering algorithm. ACM
Trans. Math. Softw., 30(3):381-388, September 2004. ISSN 0098-3500. doi:
10.1145/1024074.1024081. URL h ttp ://d o i.acm .o rg /1 0 .1 1 4 5 /1 0 2 4 0 7 4 .
1024081.

[6] Matteo Astorino, Jean-Frederic Gerbeau, Olivier Pantz, and Karim-
Frederic Traore. Fluid-structure interaction and multi-body contact: ap­
plication to aortic valves. Computer Methods in Applied Mechanics and
Engineering, 198(45):3603-3612, 2009.

[7] A.K. Aziz, Baltimore County. Division of Mathematics University of Mary­
land, and United States. Office of Naval Research. The Mathematical
Foundations of the Finite Element Method with Applications to Partial
Differential Equations. Academic Press Rapid Manuscript Reproduction.
Academic Press, 1972. URL http://books.google.co.uk/books?id=
7PZQAAAAMAAJ.

[8] Ivo Babuska. The finite element method with penalty. Mathematics of
computation, 27(122):221-228, 1973.

196

BIBLIOGRAPHY

[9] Ivo Babuska and Theofanis Strouboulis. The finite element method and its
reliability. Oxford university press, 2001.

[10] Allison H. Baker, Elizabeth R. Jessup, and Thomas Manteuffel. A tech­
nique for accelerating the convergence of restarted gmres. SIAM Journal
on Matrix Analysis and Applications, 26(4):962-984, 2005.

[11] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Pe­
ter Brune, Kris Buschelman, Victor Eijkhout, William D. Gropp, Di-
nesh Kaushik, Matthew G. Knepley, Lois Curfman Mclnnes, Karl Rupp,
Barry F. Smith, and Hong Zhang. PETSc users manual. Technical Re­
port ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014. URL
h t t p : //www.mcs.a n l.g o v /p e tsc .

[12] R. Balossino, G. Pennati, F. Migliavacca, L. Formaggia, A. Veneziani,
M. Tuveri, and G. Dubini. Computational models to predict stenosis growth
in carotid arteries: Which is the role of boundary conditions? Computer
methods in biomechanics and biomedical engineering, 12(1):113—123, 2009.

[13] Klaus-Jurgen Bathe. The inf-sup condition and its evaluation for mixed
finite element methods. Computers & structures, 79(2):243-252, 2001.

[14] Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang.
Patient-specific isogeometric fluid-structure interaction analysis of thoracic
aortic blood flow due to implantation of the jarvik 2000 left ventricular as­
sist device. Computer Methods in Applied Mechanics and Engineering, 198
(45):3534—3550, 2009.

[15] Michele Benzi and Maxim A. Olshanskii. An augmented lagrangian-based
approach to the oseen problem. SIAM Journal on Scientific Computing, 28
(6):2095—2113, 2006.

[16] Sonja Berner. Parallel methods for verified global optimization practice and
theory. Journal of Global Optimization, 9(1) :1—22, 1996.

[17] R.L.T. Bevan, P. Nithiarasu, R. Van Loon, I. Sazonov, H. Luckraz, and
A. Garnham. Application of a locally conservative galerkin (leg) method
for modelling blood flow through a patient-specific carotid bifurcation. In­
ternational Journal for Numerical Methods in Fluids, 64(10-12): 1274-1295,
2010.

[18] Rupak Biswas, Dochan Kwak, Cetin Kiris, and Scott Lawrence. Impact
of the Columbia supercomputer on nasa space and exploration missions. In
Space Mission Challenges for Information Technology, 2006. SM C-IT 2006.
Second IEEE International Conference on, pages 8-pp. IEEE, 2006.

197

BIBLIOGRAPHY

[19] Pavel B. Bochev, Clark R. Dohrmann, andl Max D. Gunzburger. Stabi­
lization of low-order mixed finite elements fcor the stokes equations. SIAM
Journal on Numerical Analysis, 44(1):82—lO'l, 2006.

[20] S.S. Bossers, M. Cibis, F.J. Gijsen, M. Scihokking, J.L. Strengers, R.F.
Verhaart, A. Moelker, J.J. Wentsel, and W.A. Helbing. Computational
fluid dynamics in fontan patients to evaluate power loss during simulated
exercise. Heart, 100:696-701, 2014.

[21] Lorenzo Botti, Marina Piccinelli, Bogdan E:ne-Iordache, Andrea Remuzzi,
and Luca Antiga. An adaptive mesh refinement solver for large-scale sim­
ulation of biological flows. International Journal for Numerical Methods in
Biomedical Engineering, 26(1):86—100, 2010.

[22] Xiao-Chuan Cai, David E Keyes, and Venkatasubramanian Venkatakrish-
nan. Newton-krylov-schwarz: An implicit solver for cfd. Technical report,
DTIC Document, 1995.

[23] James A. Cardie. A modification of the petrov-galerkin method for the
transient convection-diffusion equation. International journal for numerical
methods in engineering, 38(2): 171-181, 1995.

[24] Juan R Cebral, Christopher M Putman, Marcus T Alley, Thomas Hope,
Roland Bammer, and Fernando Calamante. Hemodynamics in normal cere­
bral arteries: qualitative comparison of 4d phase-contrast magnetic reso­
nance and image-based computational fluid dynamics. Journal of engineer­
ing mathematics, 64(4):367-378, 2009.

[25] Yiannis S. Chatzizisis, Michael Jonas, Ahmet U. Coskun, Roy Beigel, Ben­
jamin V. Stone, Charles Maynard, Ross G. Gerrity, William Daley, Camp­
bell Rogers, Elazer R. Edelman, et al. Prediction of the localization of
high-risk coronary atherosclerotic plaques on the basis of low endothelial
shear stress an intravascular ultrasound and histopathology natural history
study. Circulation, 117(8):993—1002, 2008.

[26] YK Cheung and OC Zinkiewicz. Plates and tanks on elastic foundation-
saATan application of finite element method. International Journal of
Solids and structures, 1 (4) :451—461, 1965.

[27] A. J. Chorin. Numerical solution of navier-stokes equations. Math, comput.,
22:745-762, 1968.

[28] A. J. Chorin. On the convergence of discrete approximation to the navier-
stokes equations. Math, comput., 23:341-353, 1969.

198

BIBLIOGRAPHY

[29] Alexandre Joel Chorin. A numerical method for solving incompressible
viscous flow problems. Journal of computational physics, 2(1): 12—26, 1967.

[30] TJ Chung. Finite element analysis in fluid dynamics. NASA STI/Recon
Technical Report A, 78:44102, 1978.

[31] T.J. Chung. Computational Fluid Dynamics. Cambridge University Press,
2002. ISBN 9780521594165. URL h ttp :/ /b o o k s .g o o g le , co.uk/books?
id=UnlvG37lYq4C.

[32] Jonathan R Clausen, Daniel A Reasor, and Cyrus K Aidun. Parallel per­
formance of a lattice-boltzmann/finite element cellular blood flow solver on
the ibm blue gene/p architecture. Computer physics communications, 181
(6):1013-1020, 2010.

[33] Bernardo Cockburn and Chi-Wang Shu. The local discontinuous galerkin
method for time-dependent convection-diffusion systems. SIAM Journal on
Numerical Analysis, 35(6):2440-2463, 1998.

[34] Ramon Codina. Comparison of some finite element methods for solving
the diffusion-convection-reaction equation. Computer Methods in Applied
Mechanics and Engineering, 156(1): 185—210, 1998.

[35] Ramon Codina, Eugenio Onate, and Miguel Cervera. The intrinsic time
for the streamline upwind/petrov-galerkin formulation using quadratic el­
ements. Computer Methods in Applied Mechanics and Enqineering 94(2):
239-262, 1992.

[36] A. Comerford, M.J. Plank, and T. David. Endothelial nitric oxide synthase
and calcium production in arterial geometries: an integrated fluid mechan­
ics/cell model. Journal of biomechanical engineering, 130(l):0110l0, 2008.

[37] R Courant. Uber partielle differenzengleichungen. In Atti Gongr. Int. Mat.
Bologna, volume 3, pages 83-89. 1928.

[38] Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api
for shared-memory programming. Computational Science & Engineering,
IEEE , 5(1):46—55, 1998.

[39] Enzo A Dari, Mariano I Cantero, and Raul A Feijoo. Computationa] arterial
flow modeling using a parallel navier-stokes solver. In European Congress
on Computational Methods in Applied Science and Engineering, Bcrcelona,
Spain, 2000.

[40] M. K. Denham and M. A. Patrik. Laminar flew over a downstream-lacing in
a two-dimensional flow channel. Transactions of the Institution of Chemical
Engineers, 52:361-367, 1974.

199

BIBLIOGRAPHY

[41] PETSc developers. Petsc documentation: Faq, 2014. URL h ttp ://w w w .
mcs. a n l .gov /petsc /docum entation /f aq.htm l.

[42] E. Dick. Introduction to finite volume methods in computational fluid
dynamics. In JohnF. Wendt, editor, Computational Fluid Dynamics,
pages 275-301. Springer Berlin Heidelberg, 2009. ISBN 978-3-540-85055-7.
doi: 10.1007/978-3-540-85056-4_ll. URL h ttp : / /d x .d o i .o rg /1 0 .1 0 0 7 /
978-3-540-85056-4_ll.

[43] Jean Donea. A taylor-galerkin method for convective transport problems.
International Journal for Numerical Methods in Engineering, 20(1): 101-
119, 1984.

[44] Suchuan Dong, Joseph Insley, Nicholas T Karonis, Michael E Papka, Justin
Binns, and George Karniadakis. Simulating and visualizing the human
arterial system on the teragrid. Future Generation Computer Systems, 22
(8): 1011—1017, 2006.

[45] J. Douglas, Jr. and T. Dupont. Galerkin methods for parabolic equations.
SIAM Journal on Numerical Analysis, 7(4):575-626, 1970. doi: 10.1137/
0707048. URL h ttp ://d x .d o i.o rg /1 0 .1 1 3 7 /0 7 0 7 0 4 8 .

[46] Jim Douglas, Jr and Thomas F. Russell. Numerical methods for convection-
dominated diffusion problems based on combining the method of charac­
teristics with finite element or finite difference procedures. SIAM Journal
on Numerical Analysis, 19(5):871—885, 1982.

[47] Maksymilian Dryja and Olof Widlund. An additive variant of the Schwarz
alternating method for the case of many subregions. Ultracomputer Re­
search Laboratory, Univ., Courant Inst, of Mathematical Sciences, Division
of Computer Science, 1987.

[48] K. Dumont, J. Vierendeels, R. Kaminsky, G. Nooten van, P. Verdonck,
and D. Bluestein. Comparison of the hemodynamic and thrombogenic per­
formance of two bileaflet mechanical heart valves using a cfd/fsi model.
Journal of Biomechanical Engineering, 129(4):558-565, 2007.

[49] Howard Elman, Victoria E. Howie, John Shadid, Robert Shuttleworth, and
Ray Tuminaro. Block preconditioners based on approximate commutators.
SIAM Journal on Scientific Computing, 27(5): 1651-1668, 2006.

[50] Howard Elman, Victoria E. Howie, John Shadid, David Silvester, and Ray
Tuminaro. Least squares preconditioners for stabilized discretizations of
the navier-stokes equations. SIAM Journal on Scientific Computing, 30(1):
290-311, 2007.

200

BIBLIOGRAPHY

[51] Howard Elman, David Silvester, and Andy Wathen. Finite elements and
fast iterative solvers: with applications in incompressible fluid dynamics.
Oxford University Press, 2014.

[52] V. Filardi. Carotid artery stenosis near a bifurcation investigated by fluid
dynamic analyses. The neuroradiology journal, 26(4):439-453, 2013.

[53] Paul F Fischer and Henry M Tufo. High-performance spectral element algo­
rithms and implementations. Parallel Computational Fluid Dynamics. To­
wards Teraflops, Optimization and Novel Formulations, pages 17-26, 1999.

[54] F. Fontan and E. Baudet. Surgical repair of trisucpid atresia. Thorax, 26
(3): 240-248, 1971.

[55] Luca Formaggia, Jean-Frederic Gerbeau, Fabio Nobile, and Alfio Quar-
teroni. On the coupling of 3d and Id navier-stokes equations for flow
problems in compliant vessels. Computer Methods in Applied Mechanics
and Engineering, 191 (6):561-582, 2001.

[56] Message P Forum. Mpi: A message-passing interface standard. Technical
report, Knoxville, TN, USA, 1994.

[57] Morton H. Friedman, Owen J. Deters, Frank F. Mark, C. Brent Bargeron,
and Grover M. Hutchins. Arterial geometry affects hemodynamics: a po­
tential risk factor for atherosclerosis. Atherosclerosis, 46(2):225—231, 1983.

[58] Augusto Cesar Galeao and Eduardo Gomes Dutra do Carmo. A consis­
tent approximate upwind petrov-galerkin method for convection-dominated
problems. Computer Methods in Applied Mechanics and Engineering, 68(1):
83-95, 1988.

[59] Thomas George, Anshul Gupta, and Vivek Sarin. An empirical analysis
of iterative solver performance for spd systems. IBM TJ Watson Research
Center, Tech. Rep. RC24737, 2009.

[60] Christophe Geuzaine and Jean-Francois Remade. Gmsh reference manual.
Technical Report 2.8, 2014. URL h ttp ://g e u z .o rg /g m sh /d o c /te x in fo /
gm sh.pdf.

[61] U. Ghia, K. N. Ghia, and C. T. Shin. High-re solutions for incompressible
flow using the navier-stokes equations and a multigrid method. Journal of
Computational Physics, 48:387-411, 1982.

[62] Trushar Gohil, Robert HP McGregor, Dominik Szczerba, Kathrin Burck-
hardt, Krishnamurthy Muralidhar, and Gabor Szekely. Simulation of os­
cillatory flow in an aortic bifurcation using fvm and fern: A comparative

201

BIBLIOGRAPHY

study of implementation strategies. International Journal for Numerical
Methods in Fluids, 66(8): 1037-1067, 2011.

[63] H.L. Goldsmith and T. Karino. Mechanically induced thromboemboli in
quantitative cardiovascular studies - clinical and research applications of
engineering principles. Hwang NHC, Gross DR, Patel DJ (eds), pages 289-
351, 1978.

[64] D.M. Hawken, H.R. Tamaddon-Jahromi, P. Townsend, and M.F. Webster.
A taylor-galerkin-based algorithm for viscous incompressible flow. Inter­
national Journal for Numerical Methods in Fluids, 10(3):327-351, 1990.

[65] J.C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz, and A.R. Mitchell. An
’upwind’ finite element scheme for two-dimensional convective transport
equation. International Journal for Numerical Methods in Enqineerinq, 11
(1):131-143, 1977.

[66] Amy Henderson, Jim Ahrens, and Charles Law. The paraview guide, version
4.2. Technical report, Kitware Inc.

[67] Joe Hoffman and Steven Frankel. Numerical Methods for Engineers and
Scientists. McGraw-Hill, New York, 2001.

[68] D.W. Holdsworth, C.J.D. Norley, R. Frayne, D.A. Steinman, and B.K.
Rutt. Characterization of common carotid artery blood-flow waveforms in
normal human subjects. Physiological measurement, 20(3):219, 1999.

[69] G Horzeaux, R Aubry, M Vazquez, and H Calmet. Large-scale cfd in cere­
bral hemodynamics: Characterizing arterial flow. In 1st International Con­
ference on Computational & Mathematical Biomedical Engineering (CMBE
2009).

[70] Thomas J.R. Hughes and A. Brooks. A theoretical framework for petrov-
galerkin methods with discontinuous weighting functions: Application to
the streamline-upwind procedure. Finite elements in fluids, 4:47-65, 1982.

[71] Thomas J.R. Hughes and Alec Brooks. A multidimensional upwind scheme
with no crosswind diffusion. Finite element methods for convection domi­
nated flows, AMD , 34:19-35, 1979.

[72] Thomas J.R. Hughes, Wing Kam Liu, and Alec Brooks. Finite element
analysis of incompressible viscous flows by the penalty function formulation.
Journal of Computational Physics, 30(l):l-60, 1979.

[73] Thomas J.R. Hughes, Leopoldo P. Franca, and Gregory M. Hulbert. A
new finite element formulation for computational fluid dynamics: Viii. the

202

BIBLIOGRAPHY

galerkin/least-squares method for advective-diffusive equations. Computer
Methods in Applied Mechanics and Engineering, 73(2): 173-189, 1989.

[74] Sinjae Hyun, Clement Kleinstreuer, and Joseph P. Archie Jr. Computa­
tional analysis of effects of external carotid artery flow and occlusion on
adverse carotid bifurcation hemodynamics. Journal of vascular surgery, 37
(6): 1248—1254, 2003.

[75] Amtec Engineering Inc. Tecplot user’s manual, version 10. Technical report,
2003. URL h t t p : //www. t e c p lo t . com/.

[76] Kitware Inc. Vtk file formats for vtk version 4.2 - an excerpt from the vtk
user’s guide, 2014. URL http://www.vtk.org/VTK/img/file-formats.
pdf.

[77] I. C. F. Ipsen and C. D. Meyer. The idea behind krylov methods. In
American Mathematical Monthly.

[78] Karin John and Abdul I. Barakat. Modulation of atp /adp concentration at
the endothelial surface by shear stress: effect of flow-induced atp release.
Annals of biomedical engineering, 29(9):740-751, 2001.

[79] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Com­
putational Fluid Dynamics: Second Edition. Numerical Mathematics and
Scientific Computation. OUP Oxford, 2013. ISBN 9780199671366. URL
h t t p : / /books.google.co.uk/books?id=71epAgAAQBAJ.

[80] G. Karypis and V. Kumar. Metis: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing or­
derings of sparse matrices, version 4.0. Technical report, University of Min­
nesota, 1998.

[81] George Karypis and Kirk Schloegel. Parallel graph partitioning and sparse
matrix ordering library. Technical report, University of Minnesota, 2013.

[82] David Kay, Daniel Loghin, and Andrew Wathen. A preconditioner for the
steady-state navier-stokes equations. SIAM Journal on Scientific Comput­
ing, 24(l):237-256, 2002.

[83] D.W. Kelly, S. Nakazawa, O.C. Zienkiewicz, and J.C. Heinrich. A note
on upwinding and anisotropic balancing dissipation in finite element ap­
proximations to convective diffusion problems. International journal for
numerical methods in engineering, 15(11):1705—1711, 1980.

[84] Chang Sung Kim, Cetin Kiris, Dochan Kwak, and Tim David. Numerical
models of human circulatory system under altered gravity: brain circula­
tion. Paper A IA A , 1092, 2004.

203

BIBLIOGRAPHY

[85] Hyun Jin Kim, C. A. Figueroa, T.J.R. Hughes, K.E. Jansen, and C.A.
Taylor. Augmented lagrangian method for constraining the shape of velocity
profiles at outlet boundaries for three-dimensional finite element simulations
of blood flow. Computer Methods in Applied Mechanics and Engineering,
198(45) :3551—3566, 2009.

[86] David N. Ku, Don P. Giddens, Christopher K. Zarins, and Seymour Glagov.
Pulsatile flow and atherosclerosis in the human carotid bifurcation, posi­
tive correlation between plaque location and low oscillating shear stress.
Arteriosclerosis, Thrombosis, and Vascular Biology, 5(3):293-302, 1985.

[87] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Intro­
duction to parallel computing: design and analysis o f algorithms. Benjam­
in/Cummings Publishing Company Redwood City, CA, 1994.

[88] Adamos Kyriakou, Esra Neufeld, Dominik Szczerba, Wolfgang Kainz,
Roger Luechinger, Sebastian Kozerke, Robert McGregor, and Niels
Kuster. Patient-specific simulations and measurements of the magneto-
hemodynamic effect in human primary vessels. Physiological measurement,
33(2): 117, 2012.

[89] Peter Lax and Burton Wendroff. Systems of conservation laws. Communi­
cations on Pure and Applied mathematics, 13(2) :217—237, 1960.

[90] F. Thomson Leighton. Introduction to parallel algorithms and architectures.
Morgan Kaufmann San Francisco, 1992.

[91] Wai-Hung Liu and Andrew H. Sherman. Comparative analysis of the
cuthill-mckee and the reverse cuthill-mckee ordering algorithms for sparse
matrices. SIAM Journal on Numerical Analysis, 13(2): 198-213, 1976.

[92] Rainald Lohner, K. Morgan, and Olgierd C. Zienkiewicz. The solution
of non-linear hyperbolic equation systems by the finite element method.
International Journal for Numerical Methods in Fluids, 4(11): 1043—1063,
1984.

[93] Robert W MacCormack. Numerical solution of the interaction of a shock
wave with a laminar boundary layer. In Proceedings of the second interna­
tional conference on numerical methods in fluid dynamics, pages 151-163.
Springer, 1971.

[94] Andre Macdonald, Anne G. Osborn, and Jeff Ross. Diagnostic and surgical
imaging anatomy: Brain, head and neck, spine, 2006.

[95] User mailing list and newsgroup. Vim documentation: vim faq, 2014. URL
h t t p : //v im doc. sourcef o rg e . net/h tm ldoc/v im f aq . html.

204

BIBLIOGRAPHY

[96] Emilie Marchandise, Paolo Crosetto, Christophe Geuzaine, Jean-Frangois
Remade, and Emilie Sauvage. Quality open source mesh generation for
cardiovascular flow simulations. In Modeling of Physiological Flows, pages
395-414. Springer, 2012.

[97] Ian Marshall, Panorea Papathanasopoulou, and Karolina Wartolowska.
Carotid flow rates and flow division at the bifurcation in healthy volun­
teers. Physiological measurement, 25(3):691, 2004.

[98] Catherine N. Marti, Mihai Gheorghiade, Andreas P. Kalogeropoulos, Vasi-
liki V. Georgiopoulou, Arshed A. Quyyumi, and Javed Butler. Endothelial
dysfunction, arterial stiffness, and heart failure. Journal of the American
College of Cardiology, 60(16): 1455—1469, 2012.

[99] C. Matter, E. Nagel, M. Stuber, P. Boesiger, and O.M. Hess. Assessment of
systolic and diastolic lv function by mr myocardial tagging. Basic research
in cardiology, 91(1):23—28, 1996.

[100] Mihai Mihaescu, Shanmugam Murugappan, Maninder Kalra, Sid Khosla,
and Ephraim Gutmark. Large eddy simulation and reynolds-averaged
navier-stokes modeling of flow in a realistic pharyngeal airway model: An
investigation of obstructive sleep apnea. Journal of biomechanics, 41(10):
2279-2288, 2008.

[101] Jaques S. Milner, Jennifer A. Moore, Brian K. Rutt, and David A. Stein-
man. Hemodynamics of human carotid artery bifurcations: computational
studies with models reconstructed from magnetic resonance imaging of nor­
mal subjects. Journal of Vascular Surgery, 28(1): 143-156, 1998.

[102] JJ Monaghan. Particle methods for hydrodynamics. Computer Physics
Reports, 3(2):71—124, 1985.

[103] M1NEO Motomiya and TAKESHI Karino. Flow patterns in the human
carotid artery bifurcation. Stroke, 15(l):50-56, 1984.

[104] Heinz Muhlenbein, Martina Gorges-Schleuter, and Ottm ar Kramer. Evo­
lution algorithms in combinatorial optimization. Parallel Computing, 7(1):
65-85, 1988.

[105] Kazuhiro Muramatsu, Shun Doi, Takumi Washio, and Toshiyuki Nakata.
Cenju-3 parallel computer and its application to cfd. In Parallel Architec­
tures, Algorithms and Networks, 199f.(ISPAN), International Symposium
on, pages 318-325. IEEE, 1994.

205

BIBLIOGRAPHY

[106] Fernando Mut, Susan Wright, Christopher Putman, Giorgio Ascoli, and
Juan Cebral. Image-based modeling of the hemodynamics in cerebral ar­
terial trees. In SPIE Medical Imaging, pages 72620I-72620I. International
Society for Optics and Photonics, 2009.

[107] J.P. Mynard and P. Nithiarasu. A Id arterial blood flow model incorporat­
ing ventricular pressure, aortic valve and regional coronary flow using the
locally conservative galerkin (leg) method. Communications in numerical
methods in engineering, 24:367-417, 2008. doi: 10.1002/cnm .lll7.

[108] Jagat Narula, Mani A. Vannan, and Anthony N. DeMaria. Of that waltz
in my heart. Journal of the American College of Cardiology, 49(8):917-920,
2007.

[109] R.M. Nerem. Arterial fluid dynamics and interactions with the vessel walls.
Structure and Function of the Circulation, 2:719-835, 1981.

[110] R.M. Nerem and J.F. Cornhill. The role of fluid mechanics in atherogenesis.
Journal of biomechanical engineering, 102(3): 181—189, 1980.

[111] Kien T. Nguyen, Christopher D. Clark, Thomas J. Chancellor, and Dim-
itrios V. Papavassiliou. Carotid geometry effects on blood flow and on risk
for vascular disease. Journal of biomechanics, 41 (1): 11—19, 2008.

[112] P. Nithiarasu. An efficient artificial compressibility (ac) scheme based on
the characteristic based split (cbs) method for incompressible flows. Inter­
national Journal for Numerical Methods in Engineering, 56(13):1815-1845,
2003.

[113] P. Nithiarasu and C.-B. Liu. An artificial compressibility based characteris­
tic based split (cbs) scheme for steady and unsteady turbulent incompress­
ible flows. Computer methods in applied mechanics and engineering, 195
(23):2961-2982, 2006.

[114] Fabio Nobile, Matteo Pozzoli, and Christian Vergara. Time accurate par­
titioned algorithms for the solution of fluid-structure interaction problems
in haemodynamics. Computers & Fluids, 86:470-482, 2013.

[115] Noncommunicable Diseases and Mental Health. Global status report on
noncommunicable diseases. Technical Report 9789241564229, World Health
Organization, 2010. URL http://www.who. in t/n m h /p u b lica tio n s /n cd _
re p o r t_ fu ll_ e n .pdf.

[116] John Tinsley Oden and Noboru Kikuchi. Theory of variational inequalities
with applications to problems of flow through porous media. International
Journal of Engineering Science, 18(10):1173-1284, 1980.

206

BIBLIOGRAPHY

[117] Eugenio Onate. Derivation of stabilized equations for numerical solution of
advective-diffusive transport and fluid flow problems. Computer Methods
in Applied Mechanics and Engineering, 151(1):233—265, 1998.

[118] Eugenio Onate. A stabilized finite element method for incompressible vis­
cous flows using a finite increment calculus formulation. Computer Methods
in Applied Mechanics and Engineering, 182(3):355-370, 2000.

[119] Eugenio Onate, Sergio R. Idelsohn, and Carlos A. Felippa. Consistent pres­
sure laplacian stabilization for incompressible continua via higher-order fi­
nite calculus. International Journal for Numerical Methods in Engineering,
87(1-5): 171—195, 2011.

[120] Panorea Papathanasopoulou, Shunzhi Zhao, Uwe Kohler, Malcolm B.
Robertson, Quan Long, Peter Hoskins, X. Yun Xu, and Ian Marshall. Mri
measurement of time-resolved wall shear stress vectors in a carotid bifur­
cation model, and comparison with cfd predictions. Journal of Magnetic
Resonance Imaging, 17(2): 153-162, 2003.

[121] K Perktold and R Peter. Numerical 3d-simulation of pulsatile wall shear
stress in an arterial t-bifurcation model. Journal of biomedical engineering,
12(1) :2—12, 1990.

[122] Ingemar Persson. Performance analysis of a cfd-code on the ibm-sp2. Tech­
nical report, Citeseer, 1995.

[123] Olivier Pironneau. On the transport-diffusion algorithm and its applications
to the navier-stokes equations. Numerische Mathematik, 38(3) :309—332,
1982.

[124] Michael J. Plank, David J.N. Wall, and Tim David. Atherosclerosis and
calcium signalling in endothelial cells. Progress in biophysics and molecular
biology, 91(3):287-313, 2006.

[125] M.J. Plank, A. Comerford, T. David, and D.J.N Wall. Concentration of
blood-borne agonists at the endothelium. Proceedings of the Royal Soci­
ety A: Mathematical, Physical and Engineering Science, 462(2066):671—688,
2006.

[126] M.J Plank, D.J.N Wall, and T. David. The role of endothelial calcium and
nitric oxide in the localisation of atherosclerosis. Mathematical biosciences,
207(1): 26—39, 2007.

[127] P. Hendrik Pretorius, Michael A. King, Benjamin M.W. Tsui, Karen J.
LaCroix, and Weishi Xia. A mathematical model of motion of the heart
for use in generating source and attenuation maps for simulating emission
imaging. Medical Physics, 26(11):2323—2332, 1999.

207

BIBLIOGRAPHY

[128] Abtin Rahimian, Ilya Lashuk, Shravan Veerapaneni, Aparna Chan-
dramowlishwaran, Dhairya Malhotra, Logan Moon, Rahul Sampath,
Aashay Shringarpure, Jeffrey Vetter, Richard Vuduc, et al. Petascale direct
numerical simulation of blood flow on 200k cores and heterogeneous archi­
tectures. In Proceedings of the 2010 AC M /IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis, pages
1-11. IEEE Computer Society, 2010.

[129] V. Nageshwara Rao and Vipin Kumar. Superlinear speedup in parallel
state-space search. In Foundations of Software Technology and Theoretical
Computer Science, pages 161-174. Springer, 1988.

[130] L.F. Richardson. The approximate arithematical solution by finite differ­
ences of physical problems involving differential equations, with an appli­
cation to the stresses in a masonry dam. Phil. Trans. R. Soc. London Ser.
A, 210:307-357, 1910.

[131] CCM Rindt, AA Van Steenhoven, JD Janssen, RS Reneman, and A Segal.
A numerical analysis of steady flow in a three-dimensional model of the
carotid artery bifurcation. Journal of biomechanics, 23(5):461—473, 1990.

[132] David P. Rodgers. Improvements in multiprocessor system design. In ACM
SIGARCH Computer Architecture News, volume 13, pages 225-231. IEEE
Computer Society Press, 1985.

[133] Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 7(3):856—869, July 1986. ISSN 0196-5204. doi: 10.1137/0907058.
URL h t tp : / /d x .d o i .o r g /1 0 .1137/0907058.

[134] Igor Sazonov, Si Yong Yeo, Rhodri L. T. Bevan, Xianghua Xie, Raoul
van Loon, and Perumal Nithiarasu. Modelling pipeline for subject-specific
arterial blood flow - a review. International Journal for Numerical Methods
in Biomedical Engineering, 27(12): 1868—1910, 2011. ISSN 2040-7947. doi:
10.1002/ cnm. 1446.

[135] Partho P. Sengupta, Jagat Narula, and Y. Chandrashekhar. The dynamic
vortex of a beating heart: Wring out the old and ring in the new!aLU.
Journal of the American College of Cardiology, 64(16):1722-1724, 2014.

[136] Farzin Shakib and Thomas J.R. Hughes. A new finite element formula­
tion for computational fluid dynamics: Ix. fourier analysis of space-time
galerkin/least-squares algorithms. Computer Methods in Applied Mechan­
ics and Engineering, 87(l):35-58, 1991.

208

BIBLIOGRAPHY

[137] JIAN Shen, FRANCIS W. Luscinskas, ANDREW Connolly, C. Forbes
Dewey Jr, and M.A. Gimbrone Jr. Fluid shear stress modulates cytoso­
lic free calcium in vascular endothelial cells. Am J Physiol, 262(2 P t 1):
C384-90, 1992.

[138] Tony W.H. Sheu, S.K. Wang, and S.F. Tsai. Finite element analysis of
particle motion in steady inspiratory airflow. Computer methods in applied
mechanics and engineering, 191 (25):2681—2698, 2002.

[139] Yuan Shi. Program scalability analysis. In International Conference on Dis­
tributed and Parallel Processing, Geogetown University, Washington DC,
1997.

[140] David Silvester, Howard Elman, David Kay, and Andrew Wathen. Efficient
preconditioning of the linearized navier-stokes equations for incompressible
flow. Journal of Computational and Applied Mathematics, 128(1):261—279,
2001 .

[141] Ewald Speckenmeyer, Burkhard Monien, and Oliver Vornberger. Superlin-
ear speedup for parallel backtracking. In Supercomputing, pages 985-993.
Springer, 1988.

[142] J.S. Stroud, S. A. Berger, and D. Saloner. Numerical analysis of flow through
a severely stenotic carotid artery bifurcation. Journal of biomechanical
engineering, 124(1) :9—20, 2002.

[143] Kumar K. Tamma and Raju R. Namburu. A new finite element based lax-
wendroff/taylor-galerkin methodology for computational dynamics. Com­
puter methods in applied mechanics and engineering, 71 (2): 137-150, 1988.

[144] Charles A. Taylor, Thomas J.R. Hughes, and Christopher K. Zarins. Finite
element modeling of blood flow in arteries. Computer methods in applied
mechanics and engineering, 158(1):155-196, 1998.

[145] Tayfun E. Tezduyar. Stabilized finite element formulations for incompress­
ible flow computations. Advances in applied mechanics, 28:1-44, 1991.

[146] Tayfun E. Tezduyar, Sanjay Mittal, S.E. Ray, and R. Shih. Incompress­
ible flow computations with stabilized bilinear and linear equal-order-
interpolation velocity-pressure elements. Computer Methods in Applied Me­
chanics and Engineering, 95(2):221—242, 1992.

[147] Tayfun E. Tezduyar, Matthew Schwaab, and Sunil Sathe. Sequentially-
coupled arterial fluid-structure interaction (scafsi) technique. Computer
Methods in Applied Mechanics and Engineering, 198(45):3524—3533, 2009.

209

BIBLIOGRAPHY

[148] Ryo Torii, Marie Oshima, Toshio Kobayashi, Kiyoshi Takagi, and Tayfun E.
Tezduyar. Fluid-structure interaction modeling of blood flow and cerebral
aneurysm: significance of artery and aneurysm shapes. Computer Methods
in Applied Mechanics and Engineering, 198(45) :3613—3621, 2009.

[149] Q-K Tran and H. Watanabe. Calcium signalling in the endothelium. In
The Vascular Endothelium /, pages 145-187. Springer, 2006.

[150] Sheffield Teaching Hospitals NHS Foundation Trust. Carotid artery dis­
ease, 2014. URL h ttp :/ /w w w .s th .n h s .u k /c lie n tf ile s /F ile /p d 4 7 2 7 _
C aro tid A rte ry D isease .pdf.

[151] Henry M Tufo and Paul F Fischer. Terascale spectral element algorithms
and implementations. In Proceedings of the 1999 ACM /IEEE conference
on Supercomputing, page 68. ACM, 1999.

[152] S.A. Urquiza, P.J. Blanco, M.J. Venere, and R.A. Feijoo. Multidimensional
modelling for the carotid artery blood flow. Computer Methods in Applied
Mechanics and Engineering, 195(33):4002-4017, 2006.

[153] Irene E. Vignon-Clementel, C. Alberto Figueroa, Kenneth E. Jansen, and
Charles A. Taylor. Outflow boundary conditions for three-dimensional finite
element modeling of blood flow and pressure in arteries. Computer methods
in applied mechanics and engineering, 195(29):3776-3796, 2006.

[154] C. Vuik, G. Segal, et al. A comparison of preconditioners for incompress­
ible navier-stokes solvers. International Journal for Numerical methods in
fluids, 57(12): 1731—1751, 2008.

[155] T. John Wilson, Wei Wang, H. Augustus Hellerstedt, C. David Zawieja,
and E. James Moore. Confocal image-based computational modeling of
nitric oxide transport in a rat mesenteric lymphatic vessel. Journal of
biomechanical engineering, 135. doi: 10.1115/1.4023986.

[156] C.-C. Yu and Juan Carlos Heinrich. Petrov-galerkin methods for the time-
dependent convective transport equation. International journal for numer­
ical methods in engineering, 23(5):883-901, 1986.

[157] C.-C. Yu and Juan Carlos Heinrich. Petrov-galerkin method for multidi­
mensional, time-dependent, convective-diffusion equations. International
Journal for numerical methods in engineering, 24(11):2201-2215, 1987.

[158] Fuzhen Zhang. The Schur complement and its applications, volume 4.
Springer, 2006.

210

BIBLIOGRAPHY

[159] O. C. Zienkiewicz and Y. K. Cheung. The finite element method for analysis
of elastic isotropic and orthotropic slabs. In ICE Proceedings, volume 28,
pages 471-488. Thomas Telford, 1964.

[160] O. C. Zienkiewicz and R. Codina. Search for a general fluid mechanics
algorithm. Frontiers of Computational Fluid Dynamics, pages 101-113,
1995.

[161] O. C. Zienkiewicz and R. Codina. A general algorithm for compressible
and incompressible flow, part i. the split characteristic based scheme. Int.
J. Num. Meth. Fluids, 20:869-885, 1995.

[162] O.C. Zienkiewicz and R.L. Taylor. The finite element method. Volume 3.
Fluid dynamics. Butterworth-Heinemann, 2000.

211

