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Summary

In this research, the finite element method (FEM) was used to solve the non­
linear, incompressible, transient, three dimensional Navier-Stokes equations in 
their non-conservative form. Linear tetrahedron elements were employed with the 
elegant, equal order interpolation for both pressure and velocity. The characteris­
tic based split scheme was formulated in a fully implicit manner to circumvent the 
time step restrictions of the classical explicit formulations. The monolithic (single 
step, fully coupled solution procedure for pressures and velocity) form of the CBS 
scheme was also derived and its suitability was positively demonstrated. Casting 
the CBS scheme in a monolithic framework, results in the generation of a pres­
sure stabilization term in the mass conservation equation, thereby circumventing 
the LBB restriction by the elimination of the zero pressure block. An account of 
all the steps involved in discretizing the Navier-Stokes equations (both in split 
and monolithic frameworks) was presented in meticulous detail, which included 
the derivation of the convective and pressure stabilization terms, linearization of 
the non-linear terms and the consequent derivation of the highly efficient analyt­
ical jacobian matrix, along with the temporal and spatial discretizations of the 
corresponding terms.

The monolithic and the split version of the CBS scheme were integrated into a 
parallel, scalable and extensible Fortran90 software called IFENs. The develop­
ment of IFENs started during the course of this research and all of its components 
have been designed and implemented by the author of this thesis. Multi proces­
sor parallelism was achieved using the Intel® implementation of the most widely 
used/preferred, Message Passing Interface (MPI) standard. The parallel support 
needed for the use of a variety of parallel, linear, iterative solvers belonging to 
the Krylov subspace family (e.g. GMRES and its variants, CG, BiCG, BiCG- 
stab, etc.), parallel non linear solvers belonging to the Newton-Krylov family (line 
search newton, trust region newton, nonlinear GMRES, etc.) and parallel precon­
ditioners (incomplete LU, Additive Shwarz Method - ASM, algebraic multigrid, 
etc.), was provided by the incorporation of PETSc into IFENs. PETSc is a state 
of the art, non-trivial toolkit, which represents a collection of several parallel 
libraries useful in high performance scientific computing. Keeping in mind the 
specific requirements of IFENs, a custom mesh partitioner was implemented. It 
operated on meshes that were renumbered using bandwidth reducing algorithms 
like Revere Cuthill Mckee. The possibility of using established domain decom­
position libraries like ParMETIS was explored and demonstrated to be counter 
productive for the demands of this research.
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After the preliminary testing and validation of the procedures adopted before 
and during the execution of IFENs, large, high definition domains representa­
tive of human arteries (specifically, carotid bifurcations, found in the neck) were 
considered and the complete incompressible set of Navier-Stokes equations were 
solved for pressure and velocity fields. During the tenure of this research more 
than 1000 recorded parallel test cases were executed to test various components of 
IFENs, as well as various simulations representative of a wide variety of problems. 
IFENs can easily handle meshes with tens of millions of elements. The largest 
mesh used for the purpose of this research contained 14.58 million tetrahedrons 
and 2.489 million nodes, which on average required just 7 minutes per timestep, 
while executing the classical split framework of the CBS scheme. Results from 
the simulation of 9 carotid meshes, representative of 4 carotid geometries were 
presented and found to be in good agreement with the available ultrasound data. 
The flow fields were analysed and post processed using different techniques for 
each case. The haemodynamic wall parameters like time averaged wall shear 
stress and oscillatory shear index were calculated and mapped onto the corre­
sponding boundary nodes. The region in the carotid bifurcation susceptible to 
the deposition of plaques and consequent stenosis were pointed out and other 
anomalies were highlighted.
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Chapter 1

Introduction

1.1 Background

In the modern times, mathematical modellinghas come to become an integral part 

of various areas related to engineering, natural sciences and social sciences. These 

range from low fidelity models designed to only roughly capture the trends, to high 

fidelity models which mimic the underlying physics/mechanism within very close 

tolerances. Computational Fluid Dynamics (CFD) is one such discipline where 

numerical approximation methods like the Finite Element Method (FEM), Fi­

nite Volume Method (FVM), Finite Difference Method (FDM), Spectral Element 

Method (SEM) [7, 79, 42, 31]etc., are typically utilized to analyze and accurately 

solve complex problems of fluid flow, heat transfer and related phenomena using 

digital computers. Central to the mathematical description of fluid flow are the 

Navier-Stokes equations, which are presented in detail in Chapter 2. These are 

a set of conservation laws and are widely used for simulating fluid flow in a wide 

variety of applications.

1



Chapter 1. Introduction

1.2 Brief historical overview and applications

Just over a century ago, in 1910, Lewis Pry Richardson, presented one of the first 

studies on the use of finite differences for stress analysis of a masonry dam [130], 

at the Royal society of London. Less than two decades later, in 1928, the very first 

CFD applications of FDM began to appear. Some of these early contributions 

include the contributions from Courant, Friedrichs, and Lewy in 1928 [37]; Evans 

and Harlow in 1957 [102]; Lax and Wendroff in 1960 [89] and MacCormack in 

1969 [93]. FEM applications to CFD appeared much later in 1965 with the works 

of Zienkiewicz and Cheung [159, 26], Oden in 1972 [116], Chung in 1978 [30], to 

name a few.

The emergence of digital computers in the early 1950s ushered the development 

of modern CFD. The advent of cheap and fast computational resources over the 

recent past has contributed to the success and popularity of CFD techniques 

for large, real world applications. Some common applications of CFD include 

flow simulations around aircrafts, spacecrafts, vehicles and ships; weather fore­

casting, reservoir modelling, electronic heat sink design, manufacturing process 

simulation, ventilation systems design, etc. The past few years have also wit­

nessed a rise in the use of CFD techniques for biomedical applications. To date, 

several studies in the literature use Navier-Stokes equations, in some form, to 

predict and analyze complex flow mechanisms within the human body. Some 

common biomedical applications of CFD include vessel specific flow simulations 

(e.g. carotid [144, 55, 152], aorta [14, 85], cerebral arteries [148, 147] etc.), full 

arterial system simulations [107], fontan circulation [54, 20], cardiac and arterial 

remodeling [4], nasal airway simulations [138, 113, 100], lymph flow simulations 

[155], valve function [6, 48], etc.
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Chapter 1. Introduction

1.3 Finite Element M ethod

In this research, the finite element method, which has received considerable at­

tention, both in academia and industry, has been employed to solve the incom­

pressible Navier Stokes equations. FEM is a common choice in the field of CAE 

(Computer Aided Engineering). FEM can easily accommodate complex geome­

tries and unstructured meshes without the need for coordinate transformations, 

like that needed in FDM. Also, the Neumann boundary conditions can be conve­

niently and naturally imposed due to the occurrence of the first order derivatives 

after integration by parts (unlike FDM). As illustrated in [31], the finite volume 

method can be formulated both from FDM and FEM. For simple, one-dimensional 

problems, the finite difference/volume/element methods give identical algebraic 

equations. Making a choice between the use of different methods like FEM, FVM, 

FDM, etc. often depends on the nature of problem, available computational re­

sources, geometry, mathematical and computational background; personal and 

experiential preferences, etc., and continues to remain a topic of debate.

The basic theme of the finite element method divides the domain of interest into 

a finite number of sub domains that have a finite number of connections with 

the neighbouring elements. This information is contained in what is called as 

the finite element mesh. The mesh contains information regarding nodes (non­

physical points on the domain) and elements (region enclosed by a set of nodes 

- line in ID, area in 2D and volume in 3D). As a result of splitting the domain, 

the original continuous problem with an infinite number of unknowns can be 

represented with a finite, solvable number of degrees of freedom. Typically, the 

variational or weak form of the governing equations is derived next using a suitable 

approach, for e.g. Galerkin Method [45], where the residual is weighted by the 

shape functions and integrated over the entire domain. This integral is set equal 

to zero to imply minimization of the errors. After assembling the contributions

3
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from all the discrete elements that encompass the original domain, along with the 

simultaneous or post-assembly application of boundary conditions, an algebraic 

system representative of the weighted residual integral is ready to be solved. 

Sometimes, the arising matrices are lumped to get a matrix-free solution strategy. 

When a consistent matrix system is retained, suitable solvers (direct or iterative) 

must be used depending on the problem size.

When the Galerkin formulation is used for the solution of incompressible Navier 

Stokes equations, a couple of numerical instabilities arise. One results in oscilla­

tory velocity field, while the other results in spurious pressure oscillations. The 

non self-adjoint1 unsymmetric convective terms result in node to node oscillations 

in velocity, especially in convection dominated flows. The second instability is en­

countered when the same order of shape functions are used for both pressure and 

velocity. The equal order interpolations for both pressure and velocity results in 

the violation of the inf-sup or Ladyzhenskaya-Babuska-Breezi (LBB) restriction 

[9, 13], which is a condition for well posedness. Prom an engineering perspective, 

the LBB violation may be associated with the presence of zero diagonal terms, 

when visualising the discretized Navier-Stokes equations as an algebraic matrix 

system of the form [j4]{;c} =  {6}, with,

A =
C G 

D  0
(i.i)

where, C, G and D are the discrete mass-convection-diffusion, pressure gradient 

and divergence sub-matrices/operators, respectively. The systems of the form 

represented in Equation (1.1) are called saddle point problems, which imply the 

presence of a zero block on the diagonal [154].

1 self-adjoint: Consider an operator L — Pqj^z +  P i ^  +  P^u. Its self adjoint operator is, 

pX =  £ s ( Pou) -  i ( p i u) +  p zu =  Po ^  +  (2Po ~ p i )%  +  (p o ~ p i +  p 2)• For self adjoincy, 
L^u — Lu. In this case, when, P0 =  Pi(  = >  P0 =  p \i p o ~ Pi +  P2 =  L will be self 
adjoint.
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As illustrated in [162], the standard Galerkin spatial discretization has the effect 

of introducing negative diffusion by virtue of a central difference like approxima­

tion of the convective terms. Diffusion terms are known to introduce stability, 

hence with less overall diffusion in the standard Galerkin procedure, instabili­

ties arise, especially when the Peclet number is high. In order to address the 

convective instability, several techniques have already been proposed, some of 

these were inspired by the Finite Difference community. Starting off with the 

steady-state assumption, one can list methods like, Petrov Galerkin method (PG) 

[65, 58, 162], streamline-upwind petrov Galerkin (SUPG) [71, 70, 83] (also referred 

to as streamline balancing diffusion), Galerkin least square approximation (GLS) 

[73, 136], and finite increment calculus method (FIC) [117, 118].

All the methods mentioned above result in approximations that are similar or 

comparable to that obtained with the Petrov-Galerkin method. Adopting the 

concept of one-sided finite differencing or up-winding, the PG stabilization was 

developed. With respect to the standard Galerkin procedure, the PG method 

employs different weighting functions, which have the effect of introducing ad­

ditional numerical diffusion/damping, thereby addressing the issue of convective 

instability. When considering multiple spatial dimensions, the SUPG method 

turns out to be superior as it adds the balancing diffusion in the direction of the 

resultant velocity, i.e. in an anisotropic manner. This is also consistent with the 

idea tha t information propagates in the direction of velocity, which the Finite 

Difference community originally used while introducing the one-sided difference 

approximations.

For solving time dependent equations, the steady state strategies of the PG based 

methods have been accordingly adopted [156, 157, 35, 33, 23]. From the point of 

view of explict treatments, the PG methods are difficult to use as they result in 

non-symmetrical mass matrices, which are non-trivial to lump. Therefore, the use 

of methods like Taylor Galerkin (TG) [64, 43, 143] and more importantly, Char­

5
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acteristic Galerkin (CG) [46, 123, 92] have been suggested by Zienkiewicz et al. 

[162]. Codina [34] compared these two methods along with some other methods 

to reveal the similarity between them. He concluded that just the operator acting 

on the test functions set each of the methods apart, consequently providing dif­

ferent stabilizing effects. In methods like TG and CG, the temporal discretization 

precedes spatial discretization. As a result of performing the temporal discretiza­

tion in these methods, there is a natural introduction of the balancing diffusion 

like terms of the PG family, which provide convective stabilization.

The characteristic-type methods are based on the wave nature of the equations 

and convect the spatial coordinates along the characteristic. Doing so, the non- 

adjoint terms get eliminated (and therefore, Galerkin spatial approximations are 

optimal in the energy norm sense [162] ), but a need to update the mesh arises. 

Since updating the mesh is computationally expensive and distorted elements 

might result in multi dimensions, a local Taylor expansion is generally used, which 

is described in Chapter 2. For solving the Navier Stokes equations, an extension 

of CG, called Characteristic Based Split (CBS) scheme is available. The splitting 

strategy used here follows from the finite difference work of Chorin [27, 28], for 

incompressible flows. In the search for a unified scheme for both compressible 

and incompressible flows, Zienkiewicz and Codina [160, 161] adapted Chorin’s 

split into a finite element setting and introduced the CBS algorithm in 1995.

The split being referred to, in the CBS scheme relates to the treatment of the 

pressure terms in the momentum conservation equation and hence to the de­

coupling of pressure and velocity fields. Two different variants of the split are 

available in the CBS framework. In one, all the pressure gradient terms are re­

moved (split A), while in the other, those pressure gradient terms corresponding 

to the start of step (time step n) are retained (split B). Although the second split 

appears to be more accurate, it is not the preferred choice, because it imposes 

restrictions on the nature of permissible interpolating functions for pressure and

6



Chapter 1. Introduction

velocity, in light of the LBB restriction. Therefore, using the split A of the CBS 

scheme, the LBB restriction, whose violation leads to oscillatory pressure fields, 

gets automatically addressed. Schemes that separate the pressure terms from the 

momentum equation during the solution phase, are referred to as projection/s­

plit schemes. Whereas, schemes that retain all pressure terms, as they appear 

in the Navier-Stokes equations, are referred to as monolithic schemes (although 

this term is more commonly used in the fluid structure interaction (FSI) com­

munity to indicate that the fluid and solid equations are solved together). In 

the monolithic framework, a range of different pressure stabilization techniques 

are available to satisfy the LBB restriction, when equal order interpolations for 

velocity and pressure are desired.

The pressure stabilizations in the monolithic framework are mostly themed around 

augmenting the mass conservation equation appropriately, in order to eliminate 

the zero pressure contribution. This results in the equations becoming nearly 

incompressible. A very intuitive pressure stabilization, inspired from the solid 

mechanics community would be to just add a pressure term, scaled by a penalty 

number in the mass conservation equation. This is however a crude solution and 

sensitive to the choice of the scaling factor chosen. The penalty method [8, 72], on 

the other hand circumvents the LBB restriction by eliminating the mass conser­

vation equation altogether, with modification to the momentum balance equation 

and suitably imposing a constraint on the divergence of velocity, in the process. 

Another pressure stabilization introduces the second order, pressure laplacian in 

the mass conservation equation [119]. Another simple augmentation was sug­

gested in [19, 50]. Here, a local averaging operator was used to construct a local 

matrix that was subtracted from the local mass matrix and assembled into the 

mass conservation equation. Chorin [29] introduced the artificial compressibility 

method for steady flows. Nithiarasu [112] extended the artificial compressibil­

ity method to the CBS scheme, where the transient density term in the mass

7
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conservation equation was replaced by an equivalent pressure term (scaled suit­

ably). The petrov-galerkin based methods have a pressure stabilized version 

called pressure stabilized petrov galerkin (PSPG) [145, 146], where the residual 

of the momentum conservation equation is used to populate the pressure block 

in the mass conservation equation. The community of iterative algebraic solvers 

view the problem of constructing the pressure stabilizer, from a preconditioning 

view point. This is a rather algebraic way of solving physical problems, but they 

have been successful in constructing block preconditioning strategies that suit­

ably remove the zero block of Equation (1.1) and result in accurate, convergent 

systems. The purely algebraic considerations are often portrayed positively in 

such treatments, as they render the possibility of providing a black box like solu­

tion to potential users. Most of these preconditioners are based on constructing 

an approximation of the Schurcomplement [158] in an inexpensive manner. Such 

preconditioners include the least squares commutator (LSC), pressure convection 

diffusion (PCD), Augmented Lagrangian (AL) [15] etc, which have been described 

in [49, 82, 140, 15, 51] and the references within. In [154], another strategy called 

the SILU preconditioner is proposed, though for discretizations obeying the LBB 

condition. The SILU proposition is in regard to a particular arrangement of de­

grees of freedom, such that pivoting will not be necessary and the performance of 

SILU has been shown to be comparable to the block preconditioners mentioned 

before.

1.4 Aims and objectives

As briefly illustrated in the previous section, there are a number of possible 

schemes and their combinations to consider while numerically approximating the 

incompressible Navier-Stokes equations, each with its own merits and limitations. 

Following the past success and experience with the CBS scheme, it was chosen
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to be used for this research. Also, a monolithic version of the CBS scheme was 

intended to be introduced with the aim of providing a single step solution. It was 

also intended to develop a computational framework in which these schemes could 

be efficiently and easily implemented for running large problems with millions of 

degrees of freedom. The major application of interest for this research was the 

flow within human arteries, especially the carotid bifurcations [150]. As a starting 

point, the fully implicit version of the CBS scheme would be considered and 

the framework essential for both split and monolithic versions will be developed 

simultaneously. This framework will be developed in a parallel, high performance 

computing environment. Prom a broader perspective, the monolithic framework 

not only circumvents the splitting errors but also provides the opportunity to 

easily make the code extensible for multi-physics applications like FSI.

1.5 M otivation - a biomedical view

As per the World Health Organization (WHO), cardiovascular diseases are the 

leading cause of deaths, globally [115]. As per the British Heart Foundation 

(BHF), coronary heart disease is the UK’s single biggest killer. Various com­

plex biochemical reactions (known and possibly unknown) result in conditions 

favourable for the deposition of plaque within the arteries that restrict blood 

flow. This condition is referred to as Atherosclerosis. A mathematical modelling 

approach that can truly represent and predict the flow inside arteries would be 

highly valuable in this regard. Such techniques can potentially enrich the medical 

decision-making process, which is mostly experiential in nature. Another impor­

tant benefit of using such techniques is their inherently non-invasive nature. This 

implies that important and life saving predictions can be made without breaking 

the surface of the skin or inserting probes/sensors into the body. Furthermore, 

given the highly adaptive nature of the human body, every patient may be consid­
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ered a unique system and use of such mathematical techniques have the potential 

of delivering non-generalized, highly patient-specific treatments.

Many computational studies can be found in literature, that attem pt to simulate 

blood flow in human arteries like carotids. However, the mesh used in most of 

these studies is generally not a very good representation of the real anatomical 

geometry [152, 144, 85]. These models are mostly idealised and roughly/approx­

imately represent the true shape. Since, slight geometric variations will result in 

considerable variation in the flow field and the combination of a couple of such 

variations can result in a completely new flow field, this is a serious problem. 

Also the meshes are generally not densely packed and do not contain refinement 

at the walls for capturing the high gradients that exist on these locations. Meshes 

with less than 100,000 tetrahedron elements and just a few thousand nodes have 

commonly been observed, to be used for carotid bifurcations. W ith such coarse 

meshes there is no point in seeking a high fidelity solution from the model. Also, 

many studies to date rely on commercial packages to solve the Navier-Stokes 

equations. This strategy comes with many constraints that are imposed by the 

software publisher, in the interest of selling the software to a wider user base. 

The closed source nature of these programs also imply that the fluid solvers get 

invisible to the users and it becomes impossible to make changes to the scheme 

to meet the requirements of the problem. In this research however, very ac­

curate representation of the actual carotid anatomy is captured from the scans 

and structured boundary layers (upto 12) have been used with tens of millions 

of tetrahedrons in a single carotid mesh. A custom parallel solver called IFENs 

was also developed, which could easily accommodate these multi-million element 

meshes and give results in reasonable wall times.

10
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1.5.1 P rob lem  size

Ideally, such an approach would realize at the cost of being extremely multi 

physics. One would need a fluid solver, solid solver, fluid-solid coupling strat­

egy, endothelial solver, several chemical kinetics kernels, remodelling strategies 

and an efficient implementation and parallelization of each of the components in 

an extensible, modular and strongly coupled computer code. To complete the 

perspective, it should be possible to run the entire multi physics engine on the 

entire human arterial system in all spatial dimensions and time, in realistic wall 

times 2. The realization of such an ideal model will not only require collaboration 

between groups of mechanical engineers, chemists, computer scientists, doctors 

and managers, but also extensive real world validation using patient data. With 

all technology developed, validation against patient data alone involves months 

of applications for approvals from the local Research Ethics Committee and the 

R&D offices. This illustrates the mammoth problem size and gives a holistic 

view of the components that must be employed in making accurate predictions 

for systems, such as the human circulatory system.

Realistically, such a complete solution would not be generally possible due to 

constraints of available resources. However, various groups around the world 

model specific sub-components based on certain assumptions, that substitute 

for the absence of the highly comprehensive, high fidelity framework mentioned 

before.

1.6 Assum ptions

The following assumptions have been made in this research:

• The fluid is incompressible and Newtonian.

2Execution time of a parallel code as measured on a wall clock (different from CPU time)

11
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• The flow field is laminar.

•  The walls of the arteries are rigid, i.e. they do not deflect or deform under 

the action of stresses generated by the pulsatile flow.

• CGS units are used throughout this thesis, unless stated otherwise.

1.7 A note on application of parallel com puting  

to arterial flows

Being an active medical problem, blood flow simulations are increasingly being 

pursued by various computational groups around the world. As more realistic 

predictions are desired in 4D (space and time), the problem size inherently in­

creases and therefore adoption of efficient methods like parallelization become 

mandatory, to get accurate, timely solutions. In as early as 1989, three dimen­

sional simulations of the carotid bifurcations were being performed with the aid 

of parallel and vector processing techniques [131, 121].

In early 1990s, a standard for message passing between a grid of participat­

ing processors on distributed memory systems was conceived and put together. 

This standard came to be known as the Message Passing Interface (MPI) [56]. 

The MPI paradigm was realized to be a very natural and convenient parallel 

computing model for CFD applications and started being adopted in mid 1990s 

[1, 22, 105, 122]. Applications relating to arterial flows soon followed [151, 53, 39].

Another parallelization paradigm, called Open Multi-Processing (OpenMP) [38], 

was introduced in October 1997. This parallelization paradigm employs multi­

threading, in which, a specified number of slave threads are forked by a master 

thread. With respect to MPI programs, OpenMP compatible program are rela­

tively simpler for the end users to program. All interprocessor communications

12
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are managed automatically under the OpenMP framework and therefore only 

trivial changes need to be made to parallelize serial codes. Although OpenMP 

has been utilized for blood flow applications [62, 106, 24], problems regarding 

portability, robustness and scalability exist.

The shortcomings of OpenMP get elegantly addressed by the MPI standard and 

has therefore became a popular choice for large problems. In the last decade, 

several groups have relied solely on MPI for parallelization [44, 17, 21, 32]. Hy­

brid MPI-openMP models have also become a popular choice for many bio-fluid 

simulations [84, 69, 18]. Such a hybridization seems simpler to implement for 

existing MPI codes, than for existing OpenMP codes.

Implicit and monolithic methods have recently gained popularity and are be­

ing adopted for arterial flows. Since large algebraic systems need to be usually 

solved, the parallelization process becomes more complicated. However, several 

libraries currently exist with varied capabilities to efficiently solve the algebraic 

systems arising in implicit discretizations. Some groups tend to program and par­

allelize algebraic solvers, but considering the libraries and toolkits that already 

provide accurate, efficient and scalable solver-preconditioner combinations, the 

recommended approach is to interface with existing tools. Many studies have 

successfully taken this path [88, 128, 96, 114] by employing libraries/toolkits like 

PETSc, Trilinos, Hypre, etc.

1.8 Thesis outline

A total of six chapters and 5 appendices constitute this thesis. A brief description 

about each of these chapters is presented in the following parts of this section. 

This chapter provides background and introduction to the matters of interest to 

this research. Starting with the chronological events that led to the modern CFD, 

a brief introduction of the available numerical schemes for dealing with incom­
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pressible Navier-Stokes equations are presented. The main focus of this research 

and a motivation for considering bio-medical problem appears next, along with 

the grand nature of this problem. This chapter ends by providing an outline of 

this thesis.

Chapter 2 is dedicated to the mathematical formulations used in this research for 

solving the incompressible Navier- Stokes equations. It derives the Characteristic 

Based Split scheme in the split form and introduces the monolithic version of 

the CBS scheme. Since the fully implicit version of CBS is used, the inherent 

linearization required for the convective terms is presented next. This leads to 

the derivation of the jacobian matrix that is directly used in the Newton-Krylov 

solvers employed in this research. The aim of this chapter is to start with the 

continuous Navier-Stokes equations and derive their fully discrete forms, such 

that they can be directly coded.

Chapter 3 presents the computational framework in which the schemes derived 

in Chapter 2 were processed. The libraries used for realizing the parallel support 

needed were described along with 2 sample codes. The elegance and simplicity 

with which these samples present the parallel framework and execute typical 

tasks performed in a finite element application, justify their presence in the main 

body. Domain decomposition strategies used in this research appear next. A 

justification of a custom partitioner written for this research is also provided. 

The PETSc matrix preallocation concept is presented next. The Fortran90 code 

that was developed from scratch during this research is described in detail but is 

not exhaustive, in the interest of brevity. A description of mandatory supporting 

tasks that need to be performed, while running a typical simulation, with the 

code developed in this research is also provided for completeness. The aim of 

this chapter is to provide working knowledge of the parallel computing paradigm 

and to illustrate the ways in which MPI based parallelism was achieved in this 

research work. Considering the complexity of this step, majority of the time was

14
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spent in writing and developing this framework.

Chapter 4 illustrates several tests that were performed to assess the correctness 

of both the scheme as well as its implementation within the code. These ranged 

from standard problems like lid driven cavity, backward facing step, flow past 

cylinder to certain other tests that were intended to evaluate the effects of mesh 

renumbering, parallelization, number of processors used, etc. The main aim of 

this chapter was to validate results of test problems against benchmark data.

Chapter 5 presents the results obtained when the Navier-Stokes equations are 

solved over complex biomedical domains, specifically the Carotid bifurcation. 

Four different meshes, acquired and reconstructed from real patients will be used. 

Typically each of these meshes had close to a million degrees of freedom to solve, 

for which parallelization was critical. Various Haemodynamic parameters were 

also calculated for each of the cases and the results were analysed. The main 

aim of this chapter was to illustrate the application of the code developed in this 

research to real world, bio-medical applications to get meaningful results.

Chapter 6 presents the conclusions that could be derived from the present re­

search. It summarises the achievements of this research and lists the major mile­

stones of this project. A list of possible future research directions along with the 

current limitations are also presented. A number of appendices are presented 

after this chapter.

Appendices A and B provide explanations of the sample MPI and PETSc codes, 

presented in Chapter 3. The function of various subroutines along with the idea 

behind the codes are explained. Appendix C includes all the spatial discretization 

steps that were omitted from Chapter 2. Appendix D explains the construction 

of a commonly used sparse matrix storage format, called the Compressed Sparse 

Row (CSR) format. Also, the matrix preallocation strategy is explained. CSR 

construction is described to present the possibility of using CSR data for preal­
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locating matrices in PETSc. Finally, in Appendix E, the closed form expressions 

(for linear four noded tetrahedron elements are presented) that may be used 

for the efficient evaluation of the shape function integrals as well as the shape 

function derivatives, are presented.
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Chapter 2

Governing Equations

2.1 Introduction

This chapter describes the formulations used to mathematically describe the flow 

of fluids. The goal of this chapter is to derive the fully discrete form of the Navier- 

Stokes equation. These fully discrete forms, resulting from the Finite Element 

Method, serve as a basis for the computer code that syntactically encodes the 

governing equations. The formulations will be presented in terms of the primitive 

variables (velocities and pressure). A monolithic as well as a split version will be 

presented. The convective and diffusive terms will be treated fully implicitly and 

hence a large and sparse system of linear equations needs to be solved, at least 

once, in every time step. However, a couple of Newton iterations will be typically 

required per time step. Also, the stabilization techniques used will be presented 

to complete the formulation.
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2.2 Navier-Stokes equations

The combined efforts of Claude Louis Marie Henri Navier, Euler, Cauchy, Pois- 

son, Barre de Saint- Venant and George Gabriel Stokes led to the derivation of 

the Navier-Stokes equations in a manner that is currently understood. The three 

dimensional, transient Navier-Stokes equations may be written in fully conserva­

tive standard form as shown in Eq. (2.1). For clarity the non-tensorial notation 

is adopted.

d $  dFi dG\

where in general ^  is a basic dependent, vector-valued variable, Fi is the convec­

tive flux, Gi is the diffusive flux and Q is the source vector.

In the expanded form,

d_
dt

p
/ >
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Tij = I1
duj dun 

+
dxj ' dxi

2 duk 
S ijdxk

(2 .2)

(2.3)

where, p is the density, iq, u2 and u3 represent the three velocity components, 

p is the pressure, E  is the total energy per unit mass, <5 represents kronecker 

delta, H  is the enthalpy, r  represents the deviatoric stress, p  is the dynamic vis­

cosity, k is the isotropic thermal conductivity, T  is the absolute temperature, qn 

represents the heat source terms per unit volume and g represents the body force.
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Equation (2.2) represents the mass conservation, three momentum conservation 

and energy equations, in the same order (from top). Since the changes in density 

with time are negligible in blood flow applications, it is safe to assume the in­

compressibility condition. As a consequence of incompressibility, there are only 

four unknowns and hence we can ignore the energy equation. The mass and 

momentum conservation under the incompressibility condition, may be written 

as,

Mass Conservation

Momentum Conservation

duj d . . 1  &Tji 1 dp -
~dt +  ”  P f a i  +  ~p~dxi ' =

The convective term is differentiated to get the non-conservative form (which is 

safe to use since we are not dealing with high-speed flows where shock capturing 

is important),

duj dui duj 1 drji 1 dp _
+ U j—  +Ui—± -  - —±- +

at oxi dxi p dxi p oxi

Since the divergence of velocity is equal to zero (from Eq. (2.4)),

duj duj 1 dTj i 1 dp _  
dt ' dxi p dxi p dx, **

On removing the kronecker delta from the above equation, the derivative index
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for p changes from i to j, as Sij = 1, only if i = j ,

duj duj 1 dr a 1 dp .^ + ^ - ^ - - - ^  +  - - ^  =  0 2.5
o t  O X i P  O X i p  O X j

Since Eq. (2.5) is not self-adjoint due to the convective term, this equation, as 

is, cannot be derived from any variational principle.

2.3 Characteristic Based Split (CBS) algorithm

The CBS algorithm is based on the split process initially proposed by Chorin 

[27, 28] in the Finite Difference context. In this research, the algorithm pro­

posed by Zienkiewicz and Codina [160, 161], which is a rather general approach 

to numerically solving Navier-Stokes equations, is used. Starting off with the 

discretization in the time domain, the actual splitting followed by the spatial 

discretization, will be presented.

2.3 .1  T im e d iscretiza tio n

The momentum conservation equation will now be dicretized in time to get its 

semi-discrete form, using the Characteristic Galerkin scheme. In doing so, the 

convective stabilization will also be established.

To simplify the derivation, in the succeeding part of this section, the continu­

ous form of the momentum conservation equation will be shown to be similar to 

the reduced, scalar form of Navier-Stokes equation. The characteristic Galerkin 

scheme will then be derived for the one dimensional, scalar Navier-Stokes equa­

tions and extended to the vector form of Navier-Stokes.
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Rewriting the full Navier-Stokes equation, as in Eq.(2.1),

d $  dFi dGi „
s ^  +  Q " 0

If,

then,

$  =  ; Ft =  U d  ; Gj =  - k ^  ; Q =  Q fc )  (2.6)

In one spatial dimension,

d(f) d  . . 5 ( .  d<j)\
~dt +  d i {U4>)~ d i \ k d i ] + Q  =  {)

Like before, since divergence of velocity is zero, the non-conservation form yields,

The continuous form of the momentum equation (Eq. (2.5)) is similar to the 

reduced NS equations (Eq. (2.8)), provided the pressure term in Eq. (2.5) is 

treated as a source term. Hence, the temporal discretization of Eq. (2.8) will be 

presented in the following section and extended to Eq.(2.5).

2.3.1.1 Characteristic Galerkin Schem e

Eq. (2.8), is indeed the convection-diffusion equation, which in this section will 

be discretized in the time domain. Characteristic Galerkin procedure involves a 

local Taylor expansion illustrated in the figure 2-1. We can write equation (2.8)

21



Chapter 2. Governing Equations

along the characteristic as,

dt ( * ' ( * ) > * ) - < ? ( < )  =  0 (2-9)

Figure 2-1: Visualizing the Characteristic-Galerkin procedure

In the moving coordinate x 'y the convective acceleration term disappears and the 

source and diffusion terms are averaged along the characteristic. In the absence 

of the convective term, Eq. (2.9) is fully self-adjoint and Galerkin spatial approx­

imation is optimal. Time discretization of Eq. (2.9) along the characteristic gives

(Fig- 2-1),

^ (r+1 -  4>n l*-{) « e
n+1

+ ( i - 0 ) A ( k dl
dx  I dx - Q

x —6
(2.10)

where 9 is equal to zero for explicit forms, between zero and unity for semi-implicit 

and unity for fully implicit forms. Here, 6 will be preserved until the end to 

maintain generality. The version of time discretization selected here, is first order
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accurate.If the moving coordinates are retained, the mesh needs to be updated, 

which is a cumbersome process. Hence, the moving coordinate is eliminated by 

spatially Taylor expanding the three terms that need to be evaluated at (x — S) 

inEq.  (2.10).

r \ x - t

<*-•>!(*£ x —8

(1 -  0)Q\x-s

2 - ( i Mdx \ dx

(:
dQ’

+ 0(52)

(2 .11)

Substituting Eqs. (2.11) in Eq. (2.10),

d_ (  a * '
dx \  dx j Q

n + 1

r (*r)~dx \ ox

+(1 -  0){S)
dQn
dx

a - m n) 

(2 . 12)

Rearranging,

6 d(t>n 52 d2(\?
A t  dx

+e
2 A t  d x2

s  * s H
n+1

dx  V dx
-  (1 -  0)(Q»)

+ ( l - 0 ) ( 5 )
dQ'
dx

(2.13)
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where, S is the horizontal distance travelled along the x axis and is simply given 

by,

S = U At  (2.14)

where, U is the average velocity along the characteristic and is chosen to be 

written as,

U =
Un+l + Un L g

Again, Taylor expanding, to get rid of the moving coordinate, i.e.,

U
J /n+ l +  ( j j n  _  A t U n dU p^

(2.15)

Substituting (2.15) in (2.14),

6 =  A tUn+i - A #  W
2 dx

(2.16)

where, Un+ 21 _  ljn + l +Ur

Substituting for 5 from Eq. (2.16) into Eq. (2.13),

Acf) 
A t

j j n + \  _
2 dx

d(pn
dx

4 - i  +  f u - u -  ( * £ ) ' -  %

+e I  (*£)-«
n+1

+(1 - 6 ) ( A tUn+i -  ^ UndUni  9Q’

A  ( k ^
dx \ dx - ( 1  - m n)

dx  / dx
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Neglecting the higher order terms,

A(f> 
At

2A t

2 dx dx

h  (A t2Un+iU n+i )  ^  A / V J

+e
n+l

dx2

- ( A W l X l - . t l j K *

+(1 -  *) ( A W +  ^

50 '
dx

(2.17)

Simplifying and getting rid of the Un+ 2 notation,

d(j)nA <f> 
At

f /n+ i j j n  A  t T d U n
 1 u ------

2 2 dx2
1

+  2

I P
>

1 c-
t*

+9 \-dx

dx

n+l

At
"2
At

d_  ( t r «  +  [ /» )  (1 _  e)

+ — (1 -d) (un+1 + un)
dx
dQn
dx

A  ( k dJ L
dx  V dx

(2.18)

Fully  E xp lic it  case

In Eq. (2.18), put 9 = 0 and change all terms on the RHS that are to be evaluated 

at time level (n+l)  to time level n,

A (j) 
At

At dUn
Un -------Un- ; - -

2 dx
9 r  +  ^  (4(C/")2)

- A  tur

dx

dx

d2(f)n
dx2

r ( #dx \ dx
dQ'

-  (Qn) +  AO/n+ 4 2 .1 9 )  
ox

25



Chapter 2. Governing Equations

Rearranging,

A0 
A t

A tU  — +  A tU

ox ox ox1

(2 .20)

A cj) 
A t

U
d(j)
dx 2 dx

' u d/ - 2 ^ - ( k d/ ) + 2Q 
dx dx \ dx

Sem i Im plicit case

In Eq. (2.18), put 6 =  |  and using the substitution 

all terms on the RHS at time level (n +

=  ()n+2 , evaluate

A(f) 
At

Un+ 2 -  — UA  t„ „ d U r

+
1 d
2 dx  V dx

k dJ X -

dx
A t

d(f)n
dx

+ ^  ( i r + i )

Un+ I d 
2~dx

2
d

ix2 d2(j>n 1 
+  2d x2 £(*£)-«

n+l

dx  \ 5a:

writing, | d_
dx V,v eta - Q

n+l
+ as &(*£)-«

n+4

A0
At

_ ^ u n~
2 5a;

2 d2(f)r
dx

- — Un+i —
2 dx

k
dx  V dx

2
A t

dx2 +
T  (4dx  V dx

in+i
<3

(2 .22)

Rearranging,

A</>
At dx

— Un+i —  
2 5a:

n + | ' A t
H— —

2

5a; I dx 2 5a:

IT*
5 t/n 5</>n 
5a: 5a:

IX 2 d2(f)T
dx2

(2.23)
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Writing all the left over terms at time level n as (n +

A4> 
A t dx dx

n+

u d(f)n
dx ~ r ( #dx  \ dx

n+i

+  Q

Fully Im plicit case

In Eq. (2.18), put 9 = 1 and change all terms on the RHS that are to be evaluated 

at time level n to time level (n+l),

A(f> 
A t

t /n+ l  _  A t
2 dx

9 <t>n+1 +  At ((^+1)2) 9 '2<t>
dx dx2

+
n+l

+  0 (2.24)

Rearranging,

A 4  
A t

V 9A _
dx

n+l

+
n+l

In summary, the time discretization using the characteristic Galerkin scheme, re­

sults in the following semi-discrete equations. The second square-bracketed term 

in the RHS of the following 3 equations represents the convective stabilization.

Fully Explicit

A  (p 
At U 7 T -dx 2 dx u\rdx

+  2 Q
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Sem i Implicit

A(/> 
A t

n+%2 A t  +i d
+  Y i r

n+±

Fully Implicit

A </> 
A t ° S - s ( ‘ s ) +«

n+l

+ M  (“S'
n+l

(2.25)

Since a fully implicit scheme is being formulated, Eq. (2.25) will be considered 

from this point forward.

2.3.1.2 Extension to  m ulti dim ensions (3D)

Eq. (2.25) represents the semi-discrete form of Eq. (2.8) and it may be written 

in three dimensional indicial notation as,

A (f>  
A t 'dx< f e l  d x j  W

n+l

+ - u k d 2 u M )
d x k V l d x i )

n+l

(2.26)

2.3.1.3 E xtension to  the m om entum  equation

Eq. (2.26) represents the semi-discrete form of Eq. (2.8) in multi dimensions. 

Eq. (2.8) was similar in form to momentum equation represented by Eq. (2.5). 

Therefore, with a few modifications, Eq (2.26) can serve as the time discretization 

for the momentum equation.

First, replace <fi by Uj and Q by Q”,+6>2, in Eq (2.26),

AUj_
A t

dU<
Ui

d  ( B U j  
1 k-

dxn dxn \  d x

n+l

+Q"+°2+
A t d
r>
2  u x k

U<S ty
dx,

n+l

(2.27)
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where, Q™+e2 may be evaluated at t = t + ^ A t .  Setting 92 =  1 and replacing Q™+1

by ^P~n+1} the final semi-discrete form of the momentum equation is obtained,dx

A Uj 
A t

dul _ _ d _  (  &%_
1 dx< d x ,■ I + dxu

n+l

+
A t d
2 C/Xfc

3 0 ,'
cte,

1 n+l

(2.28)

Replacing the diffusion term by deviatoric stress and noting that Ui = pUi,

A Uj
A t

du^ 1 dr., ,  1 <9p
&Ci p dxj p dxj

n+l

+
A tuk  d (  duj

Uj,'
2 p dxk V dxi

n+l

(2.29)

In summary,

Momentum Equation: 
duj du, 1 dTjj 1 dp 
dt 1 dxi p dxi p dxj

Semi Discrete Momentum Equation:

u]+1 -  u j
A t dxi p dxj p dx

n+ldu< 1 dr  a 1 dp At Uk d
u,

du.

3 J 2 p dx k \ dx

n+l

2 .3 .2  T h e sp lit

The core idea here is to separate the pressure terms from the semi-discrete mo­

mentum equation. Two version of this split are available in an explicit case. We 

could either remove the pressure gradient terms altogether (called split A) or re­

tain the pressure gradient term corresponding to the beginning of the step, i.e. at 

time level n (called split B). However, split B has restrictions on the nature of in­

terpolating functions that can be used for pressure and velocities. The restriction 

arises as a result of violating the Ladyzenskaja-Babuska-Brezzi (LBB) condition. 

For stability, the mass conservation equation must have a small non-zero pres­

sure contribution. Split A has the tendancy of augmenting the mass conservation
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equation with a small pressure term and hence circumvents the LBB restriction. 

Split B on the other hand results in a zero pressure block, violating the LBB re­

striction and hence must be used with caution. In the fully implicit case however, 

there is only one pressure gradient term and there is just one possible split.

Step 1

Remove all pressure terms from Eq. (2.29) and introduce the intermediate fields 

(velocity) represented by superscript *

A u* d , . 1 drji* A  t u t  d (  . d u j \  n .
— j- + 1— (u*u*) - — K i r 1 ~ °  (2.31A t  dxi 3 p dxi 2 p  dxk \  dxi J

where, Au* = u* —

Step 3

While deriving, it is convenient to present the step 3 before step 2. However, while 

coding, the correct order is used. In this step, the pressure term is recovered by 

subtracting Eq. (2.29) from Eq. (2.31).

A Uj -  Au* 1 dp
~\~ —~ ~  u

A t  p d x

(2-32)
3 P UXj

Step 2

From mass conservation and gas law,

A p _  1 Ap _  du?+e
At ~ c? At -  P dx< (2'33)
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Equation (2.32) may be written as,

(2.34)

(2.35)

2 .3 .3  S patia l d iscretiza tio n

The three steps of the CBS scheme are now ready to be discretized spatially. The 

standard Galerkin procedure, which is fully justified to be used with the char­

acteristic Galerkin time discretization, is employed. A very detailed account of 

the spatial discretization, considering 4 noded, linear tetrahedron finite elements 

is given in Appendix C. In appendix C, the final expressions that are actually 

coded are derived and presented meticulously. Here just a few details are pre­

sented.

n+l ^  ★ _
u i ~  u i

A t dp
p dxi

Assuming 9 = 1 and substituting equation (2.34) in (2.33),

l_Ap _  du* d2p 
c2 A t  ^  dx, dx2

Spatial discretization using the standard Galerkin method, results in the following 

forms for steps 1 through 3,

/  W M  +  ^  _  i p i *  _  * *  9  C p ) )  dn  „  0 (2.36)
Jn I A t  dxi p dxi 2 p dxk V &x i )  J

/ + ( - ' S  +  A1§ ) ' ” “ 0 (2 3 7 )

L  « ' ) m  •* / +  ( ” »■ - t e ) *  (2 381
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Just the non-linear convective acceleration term will be spatially discretized in the 

next section ( 2.3.3.1). As indicated before, the remaining terms are discretized 

in appendix C.

2.3.3.1 Linearization

Since a fully implicit treatment is sought for in this research, the non-linear 

convective acceleration and convective stabilization terms are linearized, deriving 

the Jacobian matrix in the process, which in turn is utilized by the Non-linear 

solvers in PETSc to realize the Krylov-Newton-like solver(s). Considering a non­

linear system of the form,

m  = 0 (2.39)

the update of a Newton iteration is given by,

^nn+l = pin _  (2.40)

where, the subscript nn  represents the newton iteration counter.

The SNES (Scalable Nonlinear Equation Solver) objects in PETSc approximately 

solve,

JA ^  =  -f(4>) (2.41)

where, J  =  /'(</>), A</> =  <f)nn+1 — 4>nn and the end of step update being,

4>n n + 1 =  ^nn T  A 0

Equation (2.41) is solved iteratively until 0nn+i is equivalent to (f)nn within a suit­

able tolerance, at which point the Newton solver is considered to have converged.

In the light of Eq. (2.41), which is completely linear, the non-linear solver may
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be viewed as a set of linear solves. Since the non-linear solution is centred around

solving a set of linear systems formulated in terms of change in unknowns rather 

than the unknown variables themselves, in order to build a system in terms of 

consistent unknowns, the linear terms need to be, so called linearized.

Next, only the non-linear convective acceleration term (Term 10) of Eq. (2.36) 

will be linearized and spatially discretized. The same treatment may be extended 

to the rest of the terms with suitable modifications. Noting that at Newton con­

vergence, un+1 «  unn+\  the convective term may be written in non-conservative 

form as,

Approximating terms at Newton iteration nn +1  as (and dropping the superscript 

* for convenience),

nn+ 1
Tprm  1 fl (2.42)

u n n + l  _  u nn +  ^

we may rewrite Eq. (2.42) as,

Term 10

V /

i d\L'For 4 noded, linear tetrahedron elements, we may approximate u™n and as,

(2.43)

f u r ( 2.44)
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and therefore TermlO takes the following form,

TermlO =  / N T (NuD ( g a r ) + (Nu,r ( g * * , ) + (N<5ui) ( g a r ' dfl

(2.45)

Finally, term 10 takes the following fully discrete form (the superscript”is dropped 

for convenience),

TermlO1 =  ^ [M ]{ ii i}’“ {D l}{u i }“ *+ ^ [M ]{u ,}" “{ D l}{<5ui } + ^ { D ,} { i iJ “}[M]{«ii4}

(2.46)

where, [M]

2 1 1 1  

1 2  1 1  

1 1 2  1 

1 1 1 2

a n d D i = ( M i  m  ay* dN±\
OX% uXi uXi OX-i J

Following a similar treatment for the rest of the terms, the 3 steps of the CBS 

scheme my be written in the fully discrete form as,

step 1

+  ^ [ M ] { u i} nn{Di}{5uj} + +

+ ^ { A U X j r i u i r i D l H D i K S u j }  +

—  { D l H D i U u j r ^ A U X } ™ ^ }  +  ^ { D l H D i H u ^ i A U X ^ S u k }  =

}{u j}nn -  g i ^ ] { % r  -  ^ h {j4{/ x } r { t f j ,*’*{£)n { A } { % r

(2.47)

1variables enclosed within [.], represent matrices, while those within {.}, represent vectors.

34



Chapter 2. Governing Equations

step 2

^ ^ [ M ] { A p }  +  Y £ [NDi]{u*} + V A t l H ^ S p } ' = - V A t[ H ii]{p}nn (2.48)

step 3

V V A t V V A t V
- [ M } { 6 u j } - - [ M } { u * } -  —  - { D j N}{5p} «  - - { M ) { u j Y n+ —  - [ D j N}{pnn}
20 20 P 4 20 P 4

(2.49)

where A U X  = <

2 Wfci +  +  wfc3 +  uU

'U'ki 4~ “I-

Ukx 4- u*;2 +  2u^3 +  UkA 

f̂ci 4~ -(- ti/jg -j- 2

The index-free, fully expanded form of the above equation will be presented in 

the next section (2.4) for the monolithic case. By removing the pressure terms 

from the monolithic case, the fully expanded form of stepl can be obtained. For 

steps 2 and 3, a similar expansion procedure may be used. It must be noted that 

the system matrix arising from Equation (2.47), is actually the jacobian matrix 

that can be directly used by the nonlinear solver.

2.4 M onolithic CBS scheme

The three steps of the actual characteristic based split scheme may be recombined 

suitably to establish its monolithic counterpart. In monolithizing the split CBS 

scheme, a pressure stabilization term is automatically established. This pressure 

stabilization term augments the mass-conservation equation and thereby prevents 

the zero diagonal pressure block in the system matrix. By substituting step3 into 

steps 1 and 2, the momentum and mass conservations equations, respectively,
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may be recovered. The final form is presented below 

X  momentum equation,

+  ^ { D 2}{ur}[M ]{8u2} +  ^ { D 3}{ur}[M ]{8u3} +

(x L [M] + J)1'M ] ({fil}” { D l }  +  {“2}nn{D>} + W  +
^ [ f fx x  +  # 2 2  +  H ^ S u , }  +  ^ [ N D j m  »  -  -

^ [ m ]  + {fi2r { ^ } + {«3n c 3}) {u i}nn -

y  [ffn +  H22 + i?33]{«1}nn + (2.50)

i.e.

ai{Sui}  +  a 2 {^U2 } +  <a3 {£u3} +  P{5p} = 7  (2.51)

Y  momentum equation,

^ { £ ,iH «r}[M ]{.5« 1 } + ^ { c 2 }{ur}[M ]{<»2 } + +

( ^ O A t ^  +  2 0 ^  +  { ^ " " { A i}  + {“ 3}"n{£,3})) {<̂“ 2 } +

+  H22 + H33]{Su2} + ^ { N D 2]{5p} «  - ^ M { f i 2 }nn -  -̂p [ND2]{p™} -  

^ [ M ]  ({fli}"“{I>i} +  {u2}nn{D2} + {u3}™{D3}) {u2}™ -

y  [ffxx +  # 2 2  +  H33]{u2}™ + ^ Z _ [ M ] { u n2} (2.52)

i.e.

£i{£fii} +  M ^ }  +  £3 ( ^ 3 } +  e{(5p} =  C (2.53)

Z momentum equation,

T t A H f i n M W  + T{Dj}{fi5»}[Af]{5fl2} +  T { D s}{<jy}[A#]{ifls} +
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( 2S& t[M] +  h [M] +  +  {Us}nn{D 3}) ĵ {5u3} +

t y [ H u +  H22 +  +  -̂p [ND3]{5p} «  -  -  (^[ND3]{pnn} -

~ [ M]  ( R ^ R i }  +  {u vYn{D 2} +  {«,}""{!?»}) R } ™  -

f y [ H u  + H22 +  H33){u3}”n + ^ 7 ^ [ M ] R }  (2.54)

i.e.

rji{5ui} +  r)2{5u2} +  773( ^ 3 } +  0{5p} = i (2.55)

Mass conservation (augmented automatically),

'— [NDi]{5ui} +  ^ [ N D 2]{5fi2} +  ^ [ N D 3]{Su3} + V A t[H n + H22 +  H33]{Sp} -

([W A H M -'IRTV ] +  [ND2][M -l}{D2N] +  {Sp} «

( [NDJ l M- ^ l DrN]  + {N D ^ M ^ ^ N ]  + [ jV R lM ^ R iiV ])  {p}nn -  

VAt [ Hn  +  H22 + H33]{p}nn -  ^ [A fO i]{« i}"n -  ^ { N D 2}{u2}nn -  ^ - { N D 3]{u3}nn 

(2.56)

i.e.

*R}”+1 + AR}n+1 + mR}"+1 + H P } n+1 =  Z (2.57)

In block matrix form, a single element system may be represented as,

ai & 2 Of3 P
( * 'I
5ui

' ' 
7

Si S2 3̂ e Su2 C< > =  <
m e Su3 i

K A V Sp\ j A .
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For linear tetrahedron elements, every block-matrix entry is a sub-matrix of size 

(4 x 4) and every vector entry is a vector of size (4 x 1). The degrees of freedom 

are trivially arranged one after the other, on a nodal basis.

2.5 Summary

Starting off with the Navier-Stokes equations, this chapter derived their fully 

discrete forms both in monolithic and split frameworks, as obtained from the 

characteristic based split algorithm. The time discretization was presented first 

for a simplified form of Navier-Stokes equations using the characteristic Galerkin 

scheme in explicit, semi-implicit and fully implicit forms. The convective stabi­

lization term was derived in the process. The semi-discrete form was then ex­

tended to three dimensions and consequently to the momentum equation. Next, 

the splitting of pressure from the momentum equation as prescribed by the CBS 

scheme was performed in a 3 step procedure, which includes solving for intermedi­

ate velocity fields by removing pressure terms from the momentum conservation 

equation, pressure-poisson solve and correcting the intermediate velocity fields (in 

the same order). Each of the terms in each of the three steps were then consid­

ered separately and discretized spatially using the standard Galerkin procedure. 

The linearization procedure used for the non-linear convective and convective 

stabilization terms was presented next. As a result an analytical jacobian ma­

trix was derived, which could be readily used in the Newton-like methods to 

solve the resulting non-linear algebraic set of equations. A monolithic version of 

the CBS scheme was presented next, which results in an additional term in the 

mass conservation equation. This additional term acts as a pressure stabilization 

and renders the possibility of using equal order interpolations for pressure and 

velocity. Some details of the derivation have been moved to Appendix C.
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Com putational Framework

3.1 Introduction

This chapter deals with the computer implementation of the discretized Navier 

Stokes equations derived in chapter 2. A pre-processing-enabled Fortran90 code 

was written from scratch and parallelized using the MPI standard. The paral­

lel support needed for the use of pre-programmed linear solvers (e.g. Conjugate 

Gradient, Biconjugate gradient, Generalized Minimal Residual Method, etc.) was 

realized by interfacing Intel® Math Kernel Library (IMKL) [2] and Portable Ex­

tensible Toolkit for Scientific Computation (PETSc) [11] with the code developed 

for this research. The structure of the code, libraries used and the additional steps 

that inherently need to be performed in a parallel framework will be described 

in this chapter. A sample parallel code each for MPI and PETSc are also pre­

sented in this chapter. These are specifically written to be included here as they 

elegantly demonstrate the usage of MPI and PETSc to establish the foundation 

for the development of a parallel FE application in a succinct and encouraging 

manner.

In the most simplest terms, the Fortran90 code houses a nesting of a loop over
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elements followed by an iterative linear/non-linear solve, within a loop over time, 

all in a parallel framework. The loop over elements constructs the element level 

matrices and vectors and assembles them suitably into the global matrix and 

vector. The global matrix and vector constitute the left hand side (LHS) matrix 

and right hand side (RHS) vector of a linear system, which the iterative solver 

attempts to solve using iterative methods belonging to the Krylov family [77], 

along with a suitable preconditioner. The loop over time helps solve transient 

problems.

To conveniently test various schemes and strategies in the same code, the fortran 

preprocessor, "fpp" was also used. Conditional compilation without the over­

head of invoking traditional "if statement" in a nested-loop environment was an 

important motivation for the incorporation of a compiler preprocessor.

IMKL was only used in the very early versions of the code to solve linear systems 

using the preconditioned GMRES [133] method. Although, the IMKL implemen­

tation was parallel, it was limited to threading using OpenMP, i.e. it was able to 

only utilize multiple cores available in a single processor, but couldn’t parallelize 

across several processors, like that supported in an MPI environment. Since the 

primary problems of interest for this research were expected to involve the use of 

high definition meshes with millions of elements, multi processor parallelism was 

essential and consequently the use of IMKL was discontinued.

3.2 Parallelization

The primary motivators for code parallelization were speed and memory. Since 

this research was expected to use large patient specific meshes with millions of 

degrees of freedom, the run time and memory requirements would make the 

computations infeasible with traditional serial computers.
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Parallelization is a vast area. Not only can one find several different types of 

parallel computers but also several types of classifications for parallel computers. 

Some common classifications are based on instruction and data stream, structure 

of computers, memory access and grain size. For a thorough introduction to 

parallel computers, the reader is directed to standard texts on this subject [87, 90].

The Single Program Multiple Data (SPMD) programming style is used for the 

code developed in this research. SPMD is a common style for message-passing 

programming on distributed memory computer architectures. In SPMD, all the 

participating processors receive the same copy of the executable, but operate 

on a different data set. Despite receiving the same code, individual processors 

can perform dissimilar tasks, if necessary. This capability requires generic task 

allocation based on the processor ranks/IDs.

For conventional serial programs, the coding process may be perceived as writing 

along with a simultaneous mental simulation of the effects of the statements being 

written. The coder constantly thinks from the processor’s viewpoint and writes 

code that performs the actions dictated by the algorithm. This is eventually 

achieved by a sequence of syntactical characters that encompass the body of the 

code. Every line in the code executes one after the other, in an orderly fashion. 

However, when writing parallel MPI codes, the situation is more complicated. 

Depending on the per-processor-load, every processor invariably executes a dif­

ferent line of the code and completes its task in a certain wall-time, dissimilar 

to other processors. Some sort of synchronization, either implicit or explicit is 

essential for the problems of interest for this research. Since all the processors get 

a copy of the same code, data must be suitably arranged/distributed and must be 

accessed with generic variable names and indices. The sample MPI code enclosed 

in section 3.2.1.1 will attem pt to illustrate this.
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3.2 .1  M P I

MPI is not a library/implementation/language. It is a set of specifications that 

prospective message-passing library interface developers may adhere to. The col­

laborative efforts of 40 American and European organizations resulted in the MPI 

standard. MPI started off in 1992 as being a conglomeration of the attractive fea­

tures of a number of existing message passing systems. Over the years, the MPI 

standard incorporated new types of functionalities and is being widely used. A 

number of MPI implementations are currently available (e.g. MPICH, winmpich, 

HP MPI, IBM’s MPI, Intel MPI, etc.). This research work uses the implemen­

tation from Intel® Corporation. The latest version is the MPI-3.0, which is a 

major update to the MPI standard.

Right from the start, the developers of the MPI standard aimed at allowing easy 

integration with programs written in Fortran and C, thus making the use of MPI 

in this research work, not very atypical. There are around 370 subroutines in 

a typical MPI implementation, although the exact numbers are specific to the 

implementation in question. Generally, an MPI code uses/needs far less than the 

total number of subroutines available. Simply stated, these MPI subroutines give 

a coder the ability to simultaneously employ a group of communicating processors 

to perform a collection of tasks.

3.2.1.1 Sample M PI code

A simple MPI code is presented in this section with a level of complexity to 

illustrate basic inter-processor communications in an MPI environment. This 

sample code is presented with the aim of illustrating the basic framework that 

may be used in a parallel Finite Element application.
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program thesis_samp1e_mpi
implicit none 
include ’m p i f .h ’

integer,parameter 
integer 
integer 
integer
character(charlen) 
character(charlen) 
character(LEN=l)

call MPI_INIT(ierr)
call MPI_C0MM_SIZE(MPI_C0MM_W0RLD , numProcs, ierr) 
call MPI_COMM_RANK(MPI_C0MM_W0RLD, myrank, ierr) 
if (myrank.e q .0)then

write(*,*)’Starting program’
endif !myrank
if (numProcs.n e .msglen+1)then

write(*,*)’Incorrect number of processors u sed!’
write(*,*)’Rerun with 12 processors’
call MPI_AB0RT(MPI_C0MM_W0RLD ,errorcode , ierr)

endif !numProcs
write(myrank_char , ’ (I) ’)myrank + l 
myrank_char = adjust1(myrank_char)
! Every processor reads a suitable data file, 
dest = numProcs - 1 
if (myrank . ne . dest) then

base_name = ’sample_mpi ’ 
ext = ’ . dat ’
proc_specific_name = trim(base_name)//’_ ’// &

trim(myrank_char)//trim(ext) 
unitno = 10 + myrank + (l*numProcs) 
open(unitno,file=proc_specific_name,status=’o l d ’) 
read(unitno , *) my_character 

endif !myrank 
if (myrank.e q .0)then

result_basket(:) = ’X ’
write (*,*) ’result_basket=’ ,result_basket

endif !myrank
call MPI_BCAST(result_basket ,msglen,MPI_CHARACTER , 0 , &

MPI_C0MM_W0RLD,ierr)
! Prepare the message to send

charlen=20,msglen=ll 
myrank,numProcs ,ierr,unitno ,tag , i 
status(MPI_STATUS_SIZE) ,errorcode 
source,dest
myrank_char,my_character,i_char 
base_name ,proc_specific_name , ext 
result_basket(msglen),msg
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msg = trim(my_character) 
if (myrank.e q .dest)then 

do i = 1,numProcs-1
! Receive message
call MPI_RECV(result_basket(i), 1, MPI_CHARACTER, &

i-1, 1, MPI_C0MM_W0RLD, status, ierr)
write(i_char, ’ (I) ’)i 
i_char = adjust1 ( i_char)
write (*,*) ’ [P12] ’ , ’ReceivedMessageFrom [P J ,trim(i_char) , ’ ]
! Track progress
write(*,*)’result_basket=’,result_basket

enddo !i 
endif !myrank 
if (my rank . ne . dest) then

! Send message
call MPI_SEND(trim(msg) , 1, MPI_CHARACTER , dest

MPI_C0MM_W0RLD , 
write(*,*)’[P’,trim(myrank_char), ’] sent message:’, &

trim(msg),’ to [P12] ’
endif
! Synchronization
call MPI_BARRIER(MPI_COMM_WORLD,ierr) 
if (myrank.e q .0)then

write(*,*)’Ending program’ 
endif !myrank 
call MPI_FINALIZE(ierr) 
end program thesis_sample_mpi

1 , & 
ierr)

H E L L 0 W O R L D'
1 2 3 4 5 6 7 8 9 10 1t

Test String

Processor 
Ranks

Figure 3-1: Character-Processor mapping for the MPI sample program

The sample code enclosed above makes use of 9 MPI subroutines and is expected 

to run in a parallel MPI environment on 12 processors. This code simply gen­

erates a string th a t reads HELLO _W O RLD . However, the string is assembled 

non-trivially in parallel to illustrate the participation of various processors. Fig­

ure 3-1 presents the processor-alphabet mapping. The use of 12 processors for
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such a simple task is unnecessary and is intended here for purely illustrational 

purposes. Processors 1-11 read a processor-specific file. Each of these files contain 

an alphabet of the HELLO_WORLD  string. After every processor has its string 

(i.e. message to communicate), the message is sent to the 12th processor which 

acts as a container for the final string being constructed.

3.2.1.2 Sam ple code output

The output enclosed below shows how the assembly process progresses to com­

pletion.

Starting program 
result basket=XXXXXXXXXXX
[PI] sent message:H to [P12]
[P2] sent message:E to [P12]
[P3] sent message:L to [P12]
[P4] sent message:L to [P12]
[P5] sent message:0 to [P12]
[P6] sent message:_ to [PI 2]
[P7] sent message:W to [PI 2]
[P8] sent message:0 to [P12]
[P9] sent message:R to [P12]
[P10] sent message:L to [P12] 
[PI1] sent message:D to [P12] 
[P12]received message from [PI] 
result_basket=HXXXXXXXXXX 
[P12]received message from [P2] 
result_basket=HEXXXXXXXXX 
[P12]received message from [P3]

result_basket=HELXXXXXXXX
[P12]received message from [P4]
result_basket=HELLXXXXXXX
[P12]received message from [P5]
result_basket=HELLOXXXXXX
[P12]received message from [P6]
result_basket=HELLO_XXXXX
[P12] received message from [P7]
result_basket=HELLO_WXXXX
[P12]received message from [P8]
result_basket=HELLO_WOXXX
[P12]received message from [P9]
result_basket=HELLO_WORXX
[P12]received message from [P10]
result_basket=HELLO_WORLX
[P12]received message from [Pll]
result_basket=HELLO_WORLD
Ending program
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A detailed explanation of the sample program is provided in Appendix A.

Although a message passing library is sufficient to parallelize a code, it is not 

sufficient to solve the linear systems arising as a result of the discretization of 

Navier-Stokes equations. Several libraries specialize in providing parallel itera­

tive solvers and pre-conditioners, but two of the most powerful ones are PETSc 

(Argonne National Laboratory, IL, USA) and Trilinos (Sandia National Labora­

tory, USA). It is often worth the effort to spend time in learning to use these 

non-trivial libraries that to program the solvers and pre-conditioners (especially 

in parallel).

3 .2 .2  P E T S c

PETSc is an open source suite of data structures and routines for parallel so­

lution of large-scale scientific applications modeled by partial differential equa­

tions. It supports MPI, shared memory pthreads, and GPUs1 through CUDA2 

or OpenCL3, as well as hybrid MPI-shared memory pthreads or MPI-GPU paral­

lelism. PETSc provides interfaces for programs written in Fortran, C, C + +  and 

python.

PETSc is currently run by a group of around 12 very enthusiastic and motivated 

scientists. Even with such a limited number of active developers a new ver­

sion/update is rolled out several times in a year. The current version of PETSc 

is 3.5, released in June 2014. It is worth noting the excellent support provided by 

this dedicated team. Almost all support queries are dealt with, in the same hour 

at no charge! Also, extensive documentation is available, both in the form of a 

user manual and online manual pages. Using PETSc is far more complicated and 

involved when compared to other conventional libraries. It by no means is a plug

1 Graphics Processing Unit
2Compute Unified Device Architecture
3Open Computing Language
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and play library from the user’s perspective. Although the number of subroutines 

is ballooning, it is in the range of a few thousand. Having access to quick and 

direct support under these conditions is highly valuable.

The PETSc team  employ and encourage the "use as much as you like" ideology. 

This lets users control the extent of PETSc’s involvement in their application 

programs. In this work, PETSc is purely used to solve the linear and non-linear 

systems arising from the discretized Navier-Stokes equations. Although, the us­

age seems minimal, the consequences of using PETSc penetrate several layers 

upwards into the code and considerably change its overall structure. This makes 

PETSc ideally suited to be employed in the early phases of application program 

development. Although possible, incorporating PETSc in an existing code is 

rather cumbersome.

3.2.2.1 B uild ing  blocks of P E T S c

Index Set sMatr ices Vec tors

BLAS MPI

Applicat ion Code s

KSP
(Krylov S u b sp a c e  M e t h o d s)

PC

(Precondi t ioners )

SNES
(Nonl inear  Equat ion Solvers) (Time Steppers )

Figure 3-2: Hierarchical organisation of PETSc libraries

Figure 3-2 shows the libraries present in PETSc. Each library consists of an ab­

stract interface, which is a set of calling sequences with a specific set of arguments.
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A brief description of all the libraries is presented below.

Vector, denoted by Vec, is one of the simplest objects in PETSc. As the name 

suggests, it is used to store the solutions and RHS (Right Hand Side) of linear 

systems. These vectors may be sequential or parallel. Although specific subrou­

tines are provided to create both sequential (VecCreateSeq(args)) and parallel 

(VecCreateMPI(args)) vectors, it is considered a good practise to use the generic 

vector generation subroutine - VecCreate(args). Depending on the number of 

processors employed, the VecCreate subroutine can automatically generate the 

required type of vector. This simple subroutine selection criterion may also be 

extended to other objects in PETSc. Another benefit of using generic object 

generation subroutines is the ability to explicitly control their behaviour by using 

suitable options in the PETSc options database. Since the options database file 

is external to the source code, different settings may be tested without having to 

recompile the entire code. Just for the Vec object alone around 250 subroutines 

are available. This gives an idea about the scale and extent of PETSc.

Index Set, denoted by IS, is a set of indexing integers used to define scatters, 

gathers and similar operations on vectors and matrices. Scatters and gathers refer 

to operations where a specific subset of a vector is either selected for insertion 

or to update/add to a subset of another vector. Although, ISs are useful for 

problems involving unstructured meshes, they haven’t been currently employed 

in the code developed in this research. PETSc provides around 170 IS related 

subroutines.

Matrix, denoted by Mat, provides a variety of matrix implementations to cater for 

a wide range of applications. Sequential and parallel versions of both dense and 

sparse matrices are provided. The default matrix representation within PETSc 

is the AIJ format (Yale Sparse Matrix format or Compressed Sparse Row (CSR) 

format ). The Mat objects are used to store the Jacobian and system matrices 

arising while solving non-linear and linear systems. In order to efficiently use
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this object for systems with large number of overall degrees of freedom, memory 

preallocation is of paramount importance. The matrix assembly performance 

can be increased by more than a factor of 50 if correct preallocation data is 

specified. The preallocation data essentially consists of the number of non-zero 

entries occurring in the matrix, both in the diagonal and the off-diagonal blocks, 

for each row of the matrix owned by every processor. PETSc currently provides 

around 460 Mat specific subroutines.

KSP, represents the scalable-linear-equation-solvers component available in PETSc 

to access parallel and sequential, direct and iterative solvers for non-singular sys­

tems of the form [A]{:r} — {b}. Some of the methods available under KSP are 

Richardson, Chebyshev, Conjugate Gradient, BiConjugate Gradient, Generalized 

Minimal Residual, Generalized Conjugate Residual, BiConjugate Gradient Sta­

bilized, Conjugate Gradient Squared, Transpose-Free Quasi-Minimal Residual, 

Conjugate Residual and Least Squares. The elegance of this library lies in the 

fact that the same code, without recompiling, can be used to test each of the 

methods listed above, with just a change in the options database file. Standard 

convergence monitoring is provided for all methods. However, if there is a need 

for a special convergence monitoring test to be included, PETSc provides for 

subroutines which can invoke a user-defined monitoring routine and hence alter 

the behaviour of the method as per the new test. There are currently 252 KSP 

subroutines in the PETSc toolkit.

PC, provides access to a variety of preconditioners, which are typically used to 

accelerate the convergence rate of iterative methods. All KSP implementations 

available in PETSc default to left preconditioning. Using suitable options in the 

options database file of PETSc, right preconditioning may be activated for some 

methods. Preconditioners like Jacobi, block Jacobi, SOR (Successive Over Relax­

ation Gauss Seidel), Incomplete LU, Incomplete Cholesky, Additive Schwarz and 

Algebraic Multigrid are available in PETSc. Some preconditioners are difficult
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to use when compared to others. There are around 270 PC subroutines currently 

available. One can also use matrix element based preconditioners in the LLNL 

package hypre.

SNES, stands for Scalable Nonlinear Equation Solvers and provides access to 

various non-linear solvers within PETSc. These include Newton like methods 

which internally employ the Krylov solvers described earlier. There are around 

300 SNES subroutines currently available. SNES may be used to create a generic 

framework to solve both linear and non-linear equations, which is helpful for de­

veloping general, multi purpose applications. Various methods like the line search 

and trust region Newton methods, non-linear Richardson, non-linear conjugate 

gradient, non-linear GMRES, etc are available within SNES. Typically the SNES 

solvers are capable of calculating the jacobian matrix using finite differences, but 

for large problems it is faster and efficient to provide a subroutine to evaluate 

the jacobian. One also needs to provide a subroutine to calculate the non-linear 

function. PETSc can invoke external user defined subroutines for the jacobian 

and function evaluations, as necessary during the solution process.

TS, provides access to frameworks for solving ODEs and DAEs that arise by 

virtue of discretization of the time dependent partial differential equations. Im- 

plict, Explicit and mixed implicit and explicit methods are available currently. 

Provisions for pseudo time stepping has also been implemented for steady state 

problems. Since, the primary motivation behind employing PETSc in this re­

search was to gain access to parallel solvers and pre-conditioners, the TS library 

was not used.

3.2.2.2 Sam ple PE TSc code

The sample code enclosed below, iteratively calculates the solution to a dense 

4 ★ 4 linear system in parallel on 2 processors, using GMRES. Although simple,
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this sample PETSc code is an attem pt to provide a taster of PETSc. Some MPI 

subroutines will be used in the process, though it is not mandatory. The following 

linear system is solved in the sample PETSc code,

Vec 1Mat 1 Vec 2

0.6667
Proc 0

-1.1795

0.4359
Proc 1

1.8462
KSP

Figure 3-3: Sample linear system: Elements of KSP along with parallel object 
partitioning

program thesis_sample_petsc 
implicit none
! PETSc specific include files 
#include <finclude/petscsys.h>
# include <finclude/petscviewer.h>
#include <finclude/petscvec.h>
#include <finclude/petscvec.h90>
#include <finclude/petscmat.h>
#include <finclude/petscksp.h>
! PETSc data types
Mat LHS
Vec RHS , x
KSP ksp
PetscErrorCode ierr
PetscMPIInt myrank,numProcs
! Fortran data types
integer,parameter :: nnodes=4
integer :: i ,partition_info (2 , 2) ,def1,idxm(4)
double precision :: values(4)
! PETSc Initialization - Auto initialization of MPI 
call PetscInitialize(PETSC_NULL_CHARACTER,ierr) 
call MPI_COMM_RANK(PETSC_C0MM_W0RLD,myrank,ierr) 
call MPI_COMM_SIZE(PETSC_C0MM_WORLD,numProcs,ierr)
! Set matrix partition
part ition_info(1,:) = (/I,2/);partition_info(2,:) = ( / 3 , 4 / )  
defl = partition_info(myrank+1,2)-partition_info(myrank+1,1)+1
! Generate parallel matrix
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call MatCreate(PETSC_COMM_WORLD,LHS,ierr)
call Mat Set Sizes (LHS , def 1 , def 1 , nnodes , nnodes , ierr)
call MatSetUp(LHS,ierr)
! Generate parallel right hand side and solution vector
call VecCreate(PETSC_COMM_WORLD,RHS,ierr)
call VecSetSizes (RHS , def 1 , nnodes , ierr)
call VecSetUp(RHS,ierr)
call VecDuplicate(RHS,x ,ierr)
! Set dummy values in parallel matrix and vector 
idxm = (/l,2,3,4/) ; idxm = idxm - 1
if (myrank.e q .0)then

values = (/l,2,3,4/)
call MatSetValues (LHS ,1,0,4, idxm , values , INSERT_VALUES , ierr) 
values = (/4,3,5,2/)
call MatSetValues (LHS ,1,1,4, idxm , values , INSERT_VALUES , ierr) 
values = (/7,5,3,2/)
call VecSetValues(RHS,2,idxm (1:2) ,values (1:2) , &

INSERT_VALUES,ierr)
else

values = (/1,3,5,2/)
call MatSetValues (LHS ,1,2,4, idxm , values , INSERT_VALUES , ierr) 
values = (/6,4,2,1/)
call MatSetValues (LHS ,1,3,4, idxm , values , INSERT_VALUES , ierr) 
values = (/7,5,3,2/)
call VecSetValues(RHS,2,idxm (3:4) ,values (3:4) , &

INSERT_VALUES,ierr)
endif !myrank
! Parallel object assembly
call MatAssemblyBegin(LHS,MAT_FINAL_ASSEMBLY,ierr) 
call MatAssemblyEnd(LHS,MAT_FINAL_ASSEMBLY,ierr) 
call VecAssemblyBegin(RHS,ierr) 
call VecAssemblyEnd(RHS,ierr)
! Call krylov solver
call KSPCreate(PETSC_COMM_WORLD,ksp,ierr)
call KSPSetOperators(ksp,LHS,LHS,SAME_N0NZER0_PATTERN,ierr) 
call KSPSolve (ksp , RHS , x , ierr)
! Display solution vector
call VecView(x,PETSC_VIEWER_STDOUT_WORLD,ierr)
! Terminate Petsc
call PetscFinalize(ierr)
end program
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Even for such a simple program around 20 PETSc subroutines had to be used, 

most of which are mandatory to use and many more become both mandatory and 

necessary when writing an entire finite element application. A brief explanation 

of the entire sample code is provided in Appendix B.

3 .2 .3  D om ain  d eco m p o sitio n

The basic paradigm in most parallel computing frameworks is that a large problem 

can be divided into smaller, simultaneously solvable sub problems. The process 

of suitably breaking down the problem into smaller parts or partitions is referred 

to as domain decomposition or partitioning. An application which performs this 

task is called a partitioner. The domain, in this case is represented by the mesh. 

The partitioner typically reads this mesh and splits it into the desired number 

of partitions, each representing a sub domain for the participating processors to 

assume ownership of, and process. It must also be mentioned that the use of a 

SPMD framework usually necessitates the partitioning of the global domain.

/ V

Node based partition

FFH * ♦ > */ ' \
Element based partition

Figure 3-4: Types of mesh partitioning

Two different types of partitioning are possible. These are node based (edge 

cut) and element based (vertex cut). As illustrated in Figure 3-4, node based 

partitioning cuts the mesh across element faces, whereas the element based par­

titioning cuts the mesh along element faces. The element based partitioning is 

adopted in this research. This type of partitioning is also in line with the finite
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element method, where the element level matrices are constructed in a loop and 

assembled into the global matrices. With the interface nodes 4 being duplicated 

across communicating processors, the finite element assembly operation may be 

viewed as the incorporation of contributions from various super elements. All el­

ements contained in a certain processor/partition/patch are collectively referred 

to as a super element.

The initial choice for partitioning meshes was ParMETIS [81]. It is an MPI 

based parallel library written in C, with various implementations of partitioning 

algorithms for unstructured meshes. ParMETIS was the successor of the popular 

METIS library [80], which implemented multilevel partitioning and fill-reducing 

ordering algorithms.

For use in parallel frameworks, partitioners must typically ensure:

1. Load balancing: The sub domains generated by a partitioner must roughly 

contain equal number of elements. This ensures that all processors get 

evenly loaded, ensuring that they can complete their respective tasks in 

approximately the same length of time. An important implication of sat­

isfying this condition is that the processors will have to spend little time 

while waiting for the slowest processor to complete.

2. Minimising communications: Processors communicate only when they do 

not have the required information. This typically occurs at the interface, 

along which the mesh will be cut. A partitioning scheme that can reduce the 

number of these interface nodes, therefore directly addresses the problem 

of reducing communication across participating processors.

Although, the above conditions were elegantly addressed by ParMETIS, another 

problem was encountered. Since, the code developed in this research used PETSc,

4Interface nodes: Nodes along which the mesh is cut in an element based strategy. Conse­
quently, these nodes are duplicated across adjacent mesh partitions.
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another type of partitioning - matrix partitioning, had to be addressed. In the 

PETSc framework, the matrix arising from the linear system is partitioned across 

participating processors in a row-wise manner. Although, users can specify the 

ownership limits for every processor, they must be contiguous. This might get 

addressed in future releases, but remains a constraint in the PETSc version 3.4.0 

employed in this research. The contiguity constraint implies that the ParMETIS 

partitions could not be directly used within the PETSc framework, in an efficient 

manner. The inefficiency creeps from the fact that the majority of the element 

level matrix entries generated in a certain processor might get assembled within 

global matrix entries that belong to other processor(s), i.e. many off-processor 

assembly operations might occur. Such off-processor assembly operations add to 

the communication overhead. It is therefore necessary to also ensure that the 

partitioner decomposes the domain by minimising the number of off-processor 

assembly operations. This problem is illustrated in the following section.

3.2.3.1 Illustration of inconsistency betw een ParM ETIS m esh parti­

tions and PE TSc m atrix partitions

For the purpose of this illustration, a tetrahedral mesh representative of a cuboid, 

is considered. The mesh is assumed to be partitioned into 16 sub domains and has 

refinement towards one of the long faces. Assuming the standard approach, if one 

was to mesh with Gmsh and partition straight with ParMETIS, then the resulting 

inconsistency with respect to the PETSc matrix partitioning is illustrated in 

Figure 3-5. If we consider patch number 16 of the ParMETIS partition (right), 

and compare the corresponding region in the figure on the left showing the PETSc 

partition, it is obvious that the processor 16 will generate element level matrices 

that will need to be assembled in processors 2,3,8 and 9. It turns out that all 

assembly operations from processor 16, will be in other processors leading to 

communications overhead. The same is the case with almost all the remaining
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processors.

Figure 3-5: Left: PETSc m atrix partition projected 011 the mesh. Right:
ParMETIS partition

In Figure 3-6 various slices are extracted along the cuboid to reveal the presence 

of such inconsistency not just on the surface, but even on the inside of the cuboid.

Figure 3-6: Slice extraction from various sections of the domain in Figure 3-5

The quality of the initial mesh may be improved by renumbering the mesh, so 

that the node numbers of interconnected nodes are close to each other. In other 

words, the random distribution of node numbers occurring in the first plot of 

Figure 3-6 can be corrected. This is also traditionally referred to as reducing 

the bandwidth of the matrix, which may be visualized by plotting the sparsity 

structure of the matrix. Techniques like Cuthill Mckee, Reverse Cuthill Mckee 

[91], Minimum degree perm utation [5], etc. are available to reduce the matrix 

bandwidth. Figure 3-7 presents the results of partitioning, when the Reverse
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Cuthill Mckee (RCM) renumbering scheme is adopted. Although, RCM helps 

cluster the nodes, the problem of inconsistency between the two partitions is not 

addressed.

ParMETIS partition 2 6 10 14PETSc partition 2 5 8 11 14

Figure 3-7: Comparison of PETSc and ParM ETIS partition with RCM prepro­
cessing

The benefit of using RCM renumbering becomes apparent by plotting the spar­

sity structure of the finite element system matrix. The sparsity structure pre 

and post renumbering are presented in Figure 3-8. The m atrix bandwidth after 

RCM renumbering gets reduced by 92%. Such an elegantly renumbered mesh 

will inherently result in a reduction in the MPI communications by virtue of clus­

tered entries along the diagonal. Also, diagonal dominance leads to better rates 

of convergence [67]. However, the inconsistency between the mesh and m atrix 

partitioning still exists.

Another strategy was implemented with the aim of making the mesh and m atrix 

partitions coherent. For this purpose, an MPI Fortran renumberer was w ritten 

and was intended to operate on the mesh after partitioning it. A global list of 

interface nodes on all processors was first constructed and assigned to the first 

patch in the mesh, after renumbering them. W ith the interface nodes being dealt 

with, all the nodes th a t remained in the remaining patches would be under the 

exclusive ownership of the patch/processor in which they appear. This implies 

th a t a top-down approach could easily be employed to renumber the nodes such

57



Chapter 3. Computational Framework

t ip 4 Sparsity  pattern of the original m esn BancVndtn= 26554 0 * io 4 Sparsity  pattern after applying RCM renumbering BancM-idh=2096

0  6

1

1 5

2

2 5

0 0  5 1 1 5 2 2  5

Figure 3-8: Sparsity pattern  of the finite element system matrix. Left: Before 
RCM renumbering. Right: After RCM renumbering

that the consistency between mesh and m atrix partitions could be achieved.

Figure 3-9: Partition renumbering scheme on 4 patches. (Left) PETSc partition 
(Right) ParM ETIS partition

In other words, the range of nodes contained in a mesh-patch th a t gets assigned 

to a specific processor would be the same as the range of m atrix rows owned by 

th a t processor. Assuming four partitions, the partition contours before and after 

partition-renum bering are presented in Figure 3-9. The box type sparsity pattern  

arising out of this approach is presented in Figure 3-10. Although, this approach 

(renumbering the mesh patches) appears to generate consistent partitions, the 

first processor is heavily loaded, since all interface nodes appear in it. This leads
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to  poor load balancing.
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Figure 3-10: Sparsity pattern  of the partitioned renumbered finite element system 
m atrix

To circumvent the overloading of the first processor, it is possible to distribute 

the interface nodes equally amongst all processors. However, this will lead to a 

slightly more cumbersome renumbering strategy. Also, the m atrix bandwidth is 

relatively larger in the partition-renum bering case when compared against RCM 

renumbering, leading to performance penalties.

3.2.3.2 C u rre n t w orking s tra te g y

In order to amalgamate the benefits of RCM renumbering along with a parti­

tioning scheme that permits coherence between mesh and m atrix partitions, a 

custom partitioner was implemented serially. This partitioner first applies RCM 

renumbering on the un-partitioned mesh and then partitions the nodal block in 

a mesh, like th a t done in PETSc. As a result of partitioning the nodal block in 

this manner, mesh patches consistent with the matrix partitions are obtained. 

Next, the elements are partitioned. This is not trivially done, because the ele­

ment ownership depends on the nodal ownership. The following rules apply when
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partitioning the elements:

1. Pure ownership: An element with all of its nodes in a certain partition, 

belongs to that partition.

2. Biased shared ownership: An element with nodes belonging to multiple 

patches will get assigned to the patch in which majority of its nodes lie.

3. Unbiased shared ownership: An element whose nodes are equally shared 

across multiple patches gets assigned to either of the patches.

4. Poor ownership: An element whose every node is in a different processor, 

currently terminates the program, as this indicates excessive partitioning 

of the mesh concerned. If the partitioner runs before RCM renumbering, 

then most of the elements are expected to fall in this category and hence 

this check currently terminates the program.

While partitioning the elements in accordance with the above rules, a simulta­

neous record of nodes that need to be duplicated in various patches is made. 

This step becomes essential when dealing with elements whose nodes are under 

shared ownership (for completeness of information while constructing element 

level matrices). Finally, the boundary block is partitioned based on the element 

partitioning data, since every boundary element will be independently associated 

with an inside element. This completes the mesh partitioning process. The parti­

tioned mesh is then written to processor specific files with the header (containing 

local mesh size), local connectivity information, local nodal coordinate informa­

tion along with the duplicated nodes and the local boundary information, in the 

same order. For convenience, the node and element numbers appearing in the 

mesh patches are global, i.e. fully consistent with the un-partitioned mesh. The 

partitioning results for a Carotid mesh containing 16 partitions is presented in 

Figure 3-11.
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Figure 3-11: Renumbering a carotid mesh, (a) Sparsity pattern  before and after 
renumbering (b) Patch contours

3.2 .4  P E T S c  m a t r ix  p re a l lo c a t io n

Preallocating memory to the parallel matrices within PETSc is an efficiency mea­

sure th a t can increase the performance by a factor of more than  50 [41]. In the 

absence of preallocation data, PETSc defaults to dynamically allocating memory. 

This means th a t every time a new non-zero entry is encountered, all the entries 

are copied from the old location to a new, larger location. This becomes very 

expensive when dealing with large systems. In the early stages of code devel­

opment, the CSR (Compressed Sparse Row) sparse m atrix representation of the 

system matrix was generated to aid in preallocation (see appendix D). As per the
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standard CSR representation, the difference of consecutive entries of the CSR- 

row array gives the exact number of non-zero matrix entries in every row of the 

matrix. Splitting this data further into the exact number of non-zeros appear­

ing in the diagonal and off-diagonal blocks of every row in the matrix, results in 

an accurate preallocation. Cases where exact preallocation data is unavailable, 

inaccurate overestimation is cheaper than underestimation, the former involving 

significantly smaller or no data movement. The calculation of preallocation data 

for a small pseudo-sparse system is presented in Appendix D.

3.3 Code overview

A brief description of the main code developed in this research (IFENs) will be 

provided in this section. As mentioned before, this code is written in Fortran90 

and parallelized using the MPI standard and PETSc. There are several ways of 

using PETSc in a Fortran code. Here one of the recommended approaches, called 

"Classic Fortran 90 style" is used. In this approach, various PETSc header files 

are included at the top of the program using the fortran preprocessor. Apart 

from the above mentioned use of the preprocessor (automatically invoked using 

the F90 file extension rather than the f90 extension), it was used to conditionally 

omit or include various sections of the code before compiling. This is beneficial 

from the point of view of making the code multi purpose, without having to 

invoke traditional if statements several times in a loop. Also, the code can be 

elegantly made portable to take care of platform specific source text.

Figure 3-12 gives an outline of the main code developed in this research. In the 

remaining part of this section some details of the code are provided, which by 

no means is exhaustive. The code starts off by defining variables that control 

the actions of the preprocessor. These variables are defined by what are called 

as ‘preprocessor directives’, that must begin with #  in the first column of the
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Figure 3-12: Overview of the parallel multi purpose Navier-Stokes Solver
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desired source line. After the initial definition, the conditional directives are used 

(similar to typical conditional statements) to control visibility of source lines to 

the compiler. The Fortran variables defined by the preprocessor are now ready 

to be used in any source location beyond the initial definition. The variables 

that need to be visible globally in all subroutines are defined next within Fortran 

module(s). The actual program starts now with the typical ‘program’keyword. 

PETSc specific header files are loaded next, which in turn  loads the MPI header 

files by default. Hence, there is no strict need to separately initialize MPI. Al­

though MPI may be explicitly initialized, if desired. The standard PETSc data 

types like Mat, Vec, KSP, PC, SNES, etc. are defined next, followed by the defi­

nition of standard Fortran data types. The validity of the values set in each of the 

preprocessor specific variables are tested next and a record of the current options 

are made in appropriate log files. If any of the checks fail, the code aborts via 

M P I _ A B O R T . Since in a supercomputing environment, running simulations 

is not interactive, any data that needs to be entered through the keyboard, is 

placed in the right order in a file called the options file, which will be accessed 

by the code, every time it expects to read data from the keyboard. This way an 

interactive code can be dealt, without problems in a job scheduler driven pro­

gram execution environment. All the options are read in the rank 0 processor 

only, which broadcasts the data to the remaining processors. If vectors whose 

sizes are not known a priori, need to be transmitted, then care must be taken to 

first broadcast their size, allocate variables based on this size (in the receiving 

processors) and finally broadcast the vector entries. This will require the use of 

processor specific task allocation (based on processor ranks). Depending on the 

number of processors requested, the sequential or the partitioned mesh will be 

read next. The format of the partitioned files depends on the partitioner used, 

for which checks have been included. Each processor reads a specific mesh file as­

signed to it, there by reading the mesh in parallel. In cases where velocity profiles 

are being imposed, these are read from separate files (depending on the number
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of boundaries). If the velocity profiles file are meant to impose transient dirich- 

let boundary conditions, then the file format changes significantly and therefore 

the code flow is adjusted to invoke the appropriate file readers. Currently, the 

velocity profiles are read sequentially and the required data is broadcast to the 

remaining processors. This completes the preprocessing stage.

The processing stage starts off in preparation for the application of boundary 

conditions. Every boundary is assigned a specific flag in the mesh. The options 

file mentioned before activates the boundaries on which to apply the required 

boundary conditions. A list of nodes occurring on each of the active bound­

aries is made, so that these can be prevented from being included in the parallel 

matrix, under the elimination approach of handling the dirichlet boundary condi­

tions. Since there are multiple degrees of freedom (DOF) per node, the nodes list 

generated here must be suitably augmented. Two different arrangement of DOF 

are currently permitted in the system matrix. Either all DOF corresponding to 

a node appear together [ul,vl,wl,pl,....,un,vn,wn,pn] or a certain DOF-type for 

all nodes appear together [ul,...un,vl,...vn,wl,...,wn,pl,...pn]. Once a list of all 

dirichlet nodes is made, corresponding lists of boundary flags and values are also 

made. These arrays/lists are useful for incorporating the contributions from non­

zero dirichlet boundary conditions in the RHS vector. Since this list generation 

process is a one time affair and is also very efficient by virtue of associative lists, 

which helps in direct/search-free indexing, this step is performed sequentially and 

the lists are broadcast to the remaining processors. In general, light weight and 

serially efficient operations that are performed outside the tim e loop may 

be run sequentially, if the parallelization is non-trivial with the data structures 

being used. Provisions for the inclusion of no de-specific-values to successfully im­

pose the steady velocity profiles is included at this point. However, for transient 

velocity profiles, the values need to imposed inside the time loop.

The contiguous matrix partitioning is calculated next, based on the size of the
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augmented-reduced 5 system. Special provisions are set in place to repeat this 

process when the code is set to run in the split mode, because the step 2 of the 

CBS scheme involves a pressure-Poisson solve, which would require just one DOF 

per node unlike the CBS step 1 (which requires three). From the point of view 

of calculating the contributions that need to be assembled into the RHS vector, 

another array of contributing elements is generated. For these elements, the exact 

nodes that need to be considered is also pre computed and stored. In the split 

framework, the corresponding arrays for the pressure system are also generated 

and stored. Next, the volumes and shape function derivatives with respect to all 

spatial dimensions are calculated for all the elements in the mesh (the expressions 

for which, are presented in Appendix E). The quality of the mesh is also evaluated 

at this point, by calculating the smallest edge length.

The matrix preallocation data for all the matrices involved, is calculated next 

and fed into PETSc via suitable routines. The parallel matrices and vectors are 

generated and their sizes (global and local) are set suitably in all processors. The 

initial conditions are set next, via data entered in the options file. For restarting 

a simulation from an intermediate calculation, there are arrangements in place 

to read in the last known solution as initial conditions and restart the simulation 

from the point of exit. This is a useful feature for carrying long simulations that 

cannot complete within the specified wall-time limits of the job scheduler or in 

cases where a job gets killed after running for substantial lengths of time. When 

using the monolithic framework, various other data structures are generated to 

calculate and hold the pressure stabilization matrices.

After all the data structures are ready to aid the actual computations, the loop

5Augmented: The mesh assumes one DOF per nodes in the numbering of nodes. This data 
needs to be suitably modified depending on the number of DOF per node.
Reduced: After augmenting the node numbering, care must be taken to remove the dirichlet 
boundary nodes, by generating suitable mapping between the node numbers in the full and 
reduced systems.
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over time begins. This loop over time is nested within a Reynolds loop6. Reynolds 

loop may be activated when a better initial guess is required for the Newton 

solvers. Setting the maximum number of Reynolds steps to one, the typical time 

loop environment can be activated.

In the time loop, the parallel matrices and vectors are initialized. Before the 

spatial loop starts all the data that would be needed in the construction of the 

elemental matrices and vectors is off-loaded from the parallel PETSc Vec objects 

into standard Fortran arrays. Depending on the type of solvers selected, in the 

very first time step, the required linear (KSP) and non-linear (SNES) objects 

are created. This is a one time operation, as these objects can be reused during 

consequent time and/or Reynolds steps. Subroutines that are specifically writ­

ten for the generation of non-linear function and the Jacobian matrix, are made 

aware to PETSc at this point using the SNESSetFunction and SNESSetJacobian 

subroutines. In the non-linear mode, the spatial loops are hidden inside the sub­

routines specified by the SNESSetFunction and SNESSetJacobian subroutines. 

The SNESSet functions mentioned here are limited in terms of the number of ar­

guments they allow. Therefore, data other than that allowed by these arguments 

will need to be made visible via other means. If the extra data needed is a PETSc 

data type, then a user defined context is provided as an optional argument to 

the concerned subroutines. Analogous to the concept of structs in C, the various 

parallel objects needed must be packaged into this single argument. If the addi­

tional data needed is a Fortran data type, then suitable Fortran modules must 

be employed to make these variables visible in the user defined routines.

The subroutines that evaluate the non-linear function and the Jacobian matrix 

are constructed based on equations C.27 through C.29 in the split framework and 

equations 2.50 through 2.57 in the monolithic framework. In these subroutines

6Analogous to the concept of load steps in solid mechanics, the reynolds loop gradually 
approaches the actual velocities in desired number of velocity steps
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there are 2 notions of old solution. One being the previous time step solution and 

other being the previous Newton iteration solution. Given the old solution, these 

subroutines construct 16 x 16 elemental matrices and 16 x 1 elemental vectors 

(monolithic) or 12 x 12 elemental matrices and 12 x 1 elemental vectors (split). 

These elemental quantities are assembled into the global, parallel matrices and 

vectors by assigning the global indices in which they must be added. In PETSc, 

when Mat or Vec entries need to be selectively suppressed (while encountering 

dirichlet nodes), a negative index needs to be assigned. Although, this is the 

default behaviour for matrices, the vector objects can exhibit this behaviour by 

turning on the V E C _ I G N O R E _ N E G A T I V E _ I N D I C E S  option using the 

VecSetOption sub routine. All the elemental matrix-vector and vector-vector 

multiplications are done without using the intrinsic matmul function in Fortran. 

For matrix-vector operations involving the parallel PETSc objects, subroutine 

like MatAXPY and VecAXPY may be used, where, AXPY denotes the standard 

A  * X  +  Y  operation of several standard linear algebra libraries. In the PETSc 

framework, apart from the finite element assembly, all parallel objects need to 

be assembled to ensure that they contain valid entries in them (data may be 

cached). Setting appropriate values of the pre processor directive results in ap­

propriate pressure stabilization matrices being constructed and assembled, in the 

monolithic framework. Finally, the function to invoke the actual non-linear solver 

(SNESSolve) is called. This subroutine automatically controls the invocation of 

the subroutines for the construction of the function and the jacobian matrix, 

during the solution process until convergence is achieved. Crucial information 

regarding the solution process may be obtained using appropriate flags in the 

options-database file.

While using PETSc, various options can be hard coded into the program. For 

flexibility, a file called the options-database file may be used to override these 

options. Depending on the object whose options need to be overridden, it is
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therefore a good practice to include the *SetFromOptions sub routine for the 

concerned objects in the source, which activates the overriding procedures. The 

name of the object needs to be prepended to the SetFromOptions string to get the 

actual subroutine to invoke. These options can override the hard coded options 

by the use of * SetFromOptions sub routine. The options-database file is made 

visible to PETSc by providing its path and name while initializing PETSc. For 

transient simulations, the steady state convergence checks are performed next, the 

post-processing routines to invoke file writes are called before executing the next 

time step. ASCII Tecplot and binary ParaView writers have been programmed 

to visualize the results.

However, in the split framework the pressure-poisson solve (step 2) as well as 

the velocity correction (step 3) need to be performed before moving to the next 

time step. Provisions are made to be able to solve the intermediate velocity field 

of step 1 via a semi-implicit scheme (convective terms in the RHS and diffusion 

terms in the matrix). Equation specific coding is also performed to be able to 

run the Laplace, Stokes and Burgers equations in addition to the Navier-Stokes 

equations. The current version of the code is packaged into a code-folding enabled 

(when viewed in Vim [95]), single file, with the main program and all sub routines 

in a bit more than 10000 lines. Despite the massive line count for a single file, the 

code folding technique makes it possible to see the overall hierarchical structure 

and specific sections may be opened, while others are hidden.

3.4 Operation sequence

Typical steps that are generally performed while setting up simulations are pre­

sented in this section. Depending on the simulation being run, extra data might 

be needed, which is suitably read using the problem specific components in the 

code.
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3.4 .1  M esh in g

Construction of the computational domain, i.e. the finite element meshing is 

the first step. For simple/idealized geometries, the 3D meshing package, Gmsh 

was utilized. The mesh format of Gmsh is converted into a format compatible 

with the IFENs solver, using a translator routine, specifically written for this 

purpose. Once the mesh is translated, the current working strategy requires it 

to be renumbered to reduce the bandwidth of the resulting system matrix, as 

mentioned before. The mesh is then partitioned using a custom serial routine 

specifically written for this purpose.

For patient-specific meshes additional steps need to be performed. A good repre­

sentation of the vessel geometries is required to accurately predict the flow within 

them. Non-invasive data acquisition methods like computed tomography (CT) 

and magnetic resonance imaging (MRI) are usually utilized to get the initial pa­

tient data, which is basically an image set. The next step is to reconstruct the 

geometries. This involves extracting the surface/wall of the geometry from the 

image, i.e. to separate the vessel from the rest of the image, commonly referred to 

as segmentation. The implicit deformable model (IDM), based on the geometric 

potential force (GPF) field, was used to generate the meshes used in this research. 

An overview of the available segmentation methods along with their limitations 

and the IDM-GPF method have been presented in [134]. This reference also 

describes the surface and volume meshing strategy along with the mesh cosmet­

ics/smoothing procedures. The entire sequence of operations is summarized in 

Figure 3-13. Once the patient specific mesh is ready, like for the idealized geome­

tries the renumbering and partitioning programs need to operate on the mesh.
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Figure 3-13: Patient specific meshing [134]: (a) CT scan of a carotid artery 
(b) Segmentation using IDM-GPF method (c) Surface meshing (d) Surface mesh 
refinement (e) Generation of boundary layers near the walls (f) Volume meshing 
(g) Final mesh, with mesh visible in the lower half

3.4.2 G e n e ra t io n  o f  b o u n d a r y  c o n d i t io n  d a t a

This step is directly related to imposing dirichlet conditions a t the boundaries. 

These boundary conditions may be constant, function of time and /o r space. For 

constant boundary conditions, using a suitable flag-value mapping in the pro­

gram options file will be sufficient. For conditions th a t change in space, for e.g. 

imposing a fully developed poiseuille profile a t the inlet of a cylindrical pipe, a 

MATLAB script is used to generate the relevant values and the X,Y and Z com­

ponents of the velocity profile are w ritten to a da ta  file. This file is read through
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the right selection of preprocessor directives and using the boundary flag data, 

the required profile is imposed. However, for cases where the solution variable is a 

function of both space and time, e.g. imposing a womerslev profile on non-circular 

boundary, the work flow involves additional steps, which are described in detail 

in subsections 5.1 through 5.5 of [134]. The velocity profile typically imposed for 

the carotid geometries considered in this research are shown in Figure 3-14. The 

harmonics used in the construction of this velocity profile are presented in Table 

3.1
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Figure 3-14: Typical velocity profiles for carotids [134]: (a) 2D inlet velocity 
profiles as a function of space and time (b) 3D peak velocity profiles at the 
boundaries
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O u t l e t  1

3.4 .3  J o b  s e tu p

The Navier-Stokes solver of this research was developed and executed on the 

supercomputing facilities of HPC Wales. The Load Sharing Facility (LSF) system 

is used there to schedule and execute workloads over the HPC environment. The 

workload consists of so called jobs which are generated and subm itted by users 

to run their simulations. This job submission script is used by LSF scheduler to
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Harmonic Frequency (Hz) Amplitude Phase (rad)
0 0.0000000e+000 4.6926373e+001 0.0000000e+000
1 1.0875476e+000 2.1524133e+001 -1.1757456e+000
2 2.1750952e+000 1.7614591e+001 -1.6399569e+000
3 3.2626427e+000 1.2147710e+001 -2.4126155e+000
4 4.3501903e+000 6.7678515e+000 -2.5923204e+000
5 5.4377379e+000 9.0132960e+000 -2.8654415e+000
6 6.5252855e+000 8.0155307e+000 2.5792239e+000
7 7.6128331e+000 4.4200926e+000 2.0271286e+000
8 8.7003806e+000 3.5711419e+000 1.9278901e+000
9 9.7879282e+000 3.4320565e+000 1.3878100e+000
10 1.0875476e+001 2.3272178e-(-000 7.7936298e-001
11 1.1963023e+001 1.4287817e+000 6.2628156e-001
12 1.3050571e+001 1.5817702e+000 3.5279629e-001
13 1.4138119e+001 1.2964663e+000 -3.6075375e-001
14 1.5225666e+001 7.1691449e-001 -7.5219771e-001
15 1.6313214e+001 6.4928471e-001 -8.7984983e-001
16 1.7400761e+001 5.5890994e-001 -1.4506194e+000
17 1.8488309e+001 3.5656742e-001 -1.8778747e+000
18 1.9575856e+001 2.7656662e-001 -2.0518077e+000
19 2.0663404e+001 2.5371520e-001 -2.4611692e+000
20 2.1750952e+001 1.8540847e-001 -2.9991421e+000
21 2.2838499e+001 1.1846889e-001 3.0061654e+000
22 2.3926047e+001 1.0273053e-001 2.7403593e+000
23 2.5013594e+001 7.7012238e-002 2.2301464e+000
24 2.6101142e+001 4.9128254e-002 1.9239422e+000

Table 3.1: Harmonics used for the construction of the velocity profile in 3-14

access all the mandatory information required for it to schedule and execute jobs. 

This includes information about the number of processors to use, maximum wall 

time, queue name and execution mode. These are specified as directives to the 

job scheduler in the header section of the script. The paths and names of the 

executable along with all the input and output files are also included here. Any 

modules that may be required by the executable may be loaded here.

The job submission script also makes reference to another file, called the program 

options file. In the program options file, all the queries from the read(*,*) state­
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ments of the source code are addressed (to substitute for the data entered by users 

at runtime in an interactive environment). Another file specific to PETSc, called, 

the options database file must be appropriately updated to suit the requirement of 

the simulation being run. Once the source code has been compiled with suitable 

flags and libraries, the job submission script is ready to be submitted. Depending 

on the work load, the program will be executed. Various commands are available 

to check the status of a job, post submission. The code itself writes a log file 

which is updated intermittently during the execution phase of the program.

3 .4 .4  P o st-p ro cessin g

Currently, the output from all processors is assembled together in a single file. 

Depending on the nature of simulations, a single solution block or multiple time 

blocks are appended to the same file. The results were analysed and required 

quantities were calculated using custom programs and subroutines. These were 

written in either Fortran or MATLAB, depending on the problem size. For visu­

alizing the results, both Tecplot [75] and ParaView [66] were employed. Currently 

ASCII tecplot and/or binary vtk [76] files are generated. These steps generally 

complete the process of running a simulation.

3.5 PETSc specific details

For the fully implicit solution of the incompressible Navier-Stokes equations, the 

so called, Newton-Krylov framework was used both in the split and monolithic 

versions of the CBS implementation. With the non-linear function, as well as the 

jacobian matrix being derived, PETSc invokes its krylov solvers in every Newton 

iteration to find a better approximation of the solution. Variants of the Newton 

method, like line search and trust region are generally used. In this research,

74



Chapter 3. Computational Framework

the initial success with Newton line search resulted in that being chosen as the 

default non-linear solver. The restarted GMRES as well as the Loose GMRES - 

LGMRES [10] have been usually used in this research. The ASM preconditioner 

[47] was found to perform well with the chosen combination of solvers.

3.6 Summary

This chapter presented the computational framework in which the discretized 

Navier-Stokes equations were solved. Starting with a brief introduction to par­

allel computing, MPI and PETSc toolkit were introduced along with two basis 

examples. The domain decomposition process suitable in a matrix environment 

was then described along with the transition from the use of ParMETIS to a cus­

tom partitioner. A brief note on matrix preallocation was provided next, followed 

by an example in Appendix D. A description of the IFENs solver, developed in 

this research was also included. This helped highlight some of the important 

steps. Finally, the operation sequence involved in the execution of a typical sim­

ulation was described. This included meshing, generation of boundary condition 

data, parallel environment job setup and post-processing of the results.
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Benchmarking

4.1 Introduction

Chapter 3 described the framework used for computing solutions to the dicretized 

form of Navier-Stokes equations derived in Chapter 2. The current chapter aims 

to verify the overall correctness of the scheme and the code developed in this 

research. Various aspects like mesh renumbering, iterative solver framework, 

parallelization, number of processors, scheme and code, etc. may be separately 

subjected to validation. Simulations set up to check these aspects, as well as the 

results are presented in the following sections.

4.2 M esh renumbering

As already illustrated in chapter 3, mesh renumbering is an efficiency measure, 

which improves convergence, while using iterative solvers. The solutions obtained 

by using a mesh generated with gmsh [60] were compared with those obtained by 

using the same mesh renumbered with RCM1. This test was performed serially 

Reverse Cuthill Mckee
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(nprocs= l) using the non-monolithic formulation. The convection and diffusion 

terms were retained in the LHS matrix, hence employing the SNES objects to 

realize the Newton-Krylov solvers.

Figure 4-1: Mesh used for checking renumbering

The mesh used for checking the correctness of mesh renumbering is shown in Fig­

ure 4-1. It represents a 3D, internal-flow domain cast in the shape of characters 

C,F and D, connected in a wav to result in some back flow. A uniform unit flow 

field was imposed along the X axis at the base of the character, C and a dirichlet 

boundary condition was imposed for pressure on just one node at approximately 

the mid height of character, D. A no slip condition was imposed on all boundaries. 

This domain had no outlet. The dirichlet boundary condition on pressure in the 

character D attracts  the flow, by virtue of being visible as a low resistance point 

to the fluid.

Figure 4-2 presents the steady state pressure contours, with the streamtraces 

superimposed. The solutions before and after renumbering are identical. To make 

2D comparisons, a slice was first extracted at mid thickness, i.e. Z =  0.25cm.
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Velocities and pressures were then extracted along the X axis a t a height of 

2.815cm. This comparison for velocity and pressure is presented in Figures 4-3a 

and 4-3b respectively. The extracted data  was found to be in good agreement, 

reflecting the correctness of the renumbering algorithm. Also, both the cases 

converged to a steady state in 37 time steps.

The renumbering procedure was subjected to a couple of similar tests and the 

results with and without renumbering was observed to  be identical in all the cases 

(results not presented).

(b)

(c) ( d )

Figure 4-2: Comparison of pressures and velocity magnitude contours and stream- 
traces at steady state. (a,c) Gmsh numbering (b,d) RCM renumbering

4.3 I te ra t iv e  l inear solvers

All problems considered in this research (linear and non-linear) made use of it­

erative solvers, which in most cases was GMRES and its variants. Although, the 

iterative solver(s) were not coded, it is a good practise to check for any bugs in the
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Figure 4-3: Checking renumbering (a) Velocity magnitudes (b) Pressure

library itself, PETSc in this case. Direct linear solvers (also available in PETSc) 

served as benchmarks. The solvers were validated in serial because PETSc by 

default doesn't provide for a parallel direct solver. Although, this is possible by 

interfacing with suitable external libraries (e.g. SuperLU, MUMPS, e.t.c). For 

the purpose of this test, the Newton-Krylov and pure Krylov solvers use GMRES 

(iterative) to test both the direct and iterative solution procedures. It might seem 

counter intuitive, but the key to realizing a direct solver in the PETSc framework 

is to  use LU as a preconditioner with an iterative solver. W hen a direct precon­

ditioner is used with an iterative solver, convergence is achieved in one iteration.

A simple bifurcation with a rectangular cross-section was used to test the itera­

tive solvers. A 0.5cm x 0.5cm parent branch bifurcates into 2 daughter branches 

of cross-sections 0.5cm, x 0.3cm, and 0.5cm, x 0.2cm. The overall length of the 

domain is 5cm. A uniform vertical velocity of 1 cm /s was imposed a t the inlet 

(V =  0cm), a zero dirichlet pressure condition was imposed on both the exits 

(Y  =  5cm) and a no slip condition on all walls.
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(b)

Figure 4-4: Comparison of direct and iterative solutions a t steady state, (a) Left 
- Mesh; C en tre  - Velocity magnitudes in the X Y  plane at Z  =  0.25cm with 
the iterative solver; R igh t - Wall pressure obtained with the iterative solver, (b) 
Left - Comparison of velocity and pressure at the bifurcation; C en te r - Velocity 
magnitudes at corresponding locations with a direct solver; R igh t - Pressure 
contours on the walls as obtained with the direct solver.

A coarse mesh consisting of only 9218 tetrahedrons and 2299 nodes was used 

for this test. Figure 4-4 presents the mesh, pressure and velocity contours (with 

both iterative and direct solvers) and a comparison of pressures and velocities ex-
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tracted along a horizontal line at the bifurcation (in the X Y  plane at Z  = 0.25cm 

and at a height of Y  =  2.5cm). The direct and iterative solutions were found to 

be in good agreement over all time steps. Both simulations converged to a steady 

state in 22 time steps. While the direct solver required a wall time of 112.53 s, 

the iterative solver required 110.69 s. This test seems to represent a break-even 

point in terms of the computational load, since the execution times of direct and 

iterative solvers was almost equal. For smaller systems, direct solvers are known 

to outperform iterative solvers. As the size of the system increases, the itera­

tive solvers outperform direct solvers (both in terms of speed and memory), by a 

large margin. The direct solution procedures become prohibitively expensive for 

moderately large systems and one easily gets into situations where direct solvers 

will no longer be able to give a solution.

Generally, in the world of iterative solvers, a large number of combinations of 

iterative linear and non-linear solvers; and preconditioners are available. For 

every iterative linear solver, one can use a combination of different non-linear 

solvers and preconditioners, resulting in a very huge number of possible settings, 

when tested methodically. The same is valid, exclusively for the remaining 2 

components. Also, each of the 3 components mentioned above, invariably have 

one or more parameters to adjust, resulting in an even larger number of possible 

combinations. A detailed study of these combinations is not performed, but since 

the PETSc framework is being used, as required, a particular combination can 

easily be realized (in most cases, without even recompiling the code!). A rigorous 

analysis of this kind has been presented in the work of George et al [59].

The main aim here is to only check for consistency between solutions generated 

from direct and iterative procedures. The physical interpretation of the solution 

is not important in this context. Since a coarse mesh is used, the solutions indeed 

are not very smooth. In the succeeding sections of this chapter, the actual solution
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will become im portant.

4.4 P a ra lle l iza tio n

Since a parallel code was developed in this research it was necessary to validate 

the parallelization. The solutions obtained by running the code with just one pro­

cessor are representative of executing a purely serial code, and hence these were 

used as benchmark data  to validate the parallelization (both MPI and PETSc 

components). In testing for parallelization, the domain decomposition algorithm 

gets automatically tested.

Timestep

Figure 4-5: Inputs for validating parallelization. (a) Surface mesh (b) Inlet section 
depicting structured refinement at the walls (c) Transient velocity profile imposed 
at the inlet plane
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Flow through a pipe of prismatic cross-section was considered to validate the 

parallelization. A medium quality mesh with 8 boundary layers as shown in 

Figure 4-5 was used. It consisted of 169666 tetrahedrons and 30088 nodes. A 

transient velocity profile was imposed at the inlet plane with a peak velocity of 

83.051cm/s. A total of 50 time steps were run in this test, with a constant time 

step of 0.01839s.

a
8 4 0  
76 5 
69 1 
61 6 
5 4 2  
46 7 
39 3 
31 8 
24 4 
1 69

2850 0 
2595 5 
2340 9 
20864 
1831 8 
1577 3 
13227 
10682 

8136  
5591 
304 5 

5 0 0

=

(b)

Figure 4-6: Comparison of solutions obtained in serial and parallel, (a) Serial (b) 
Parallel

The pressures and velocities at peak flow, obtained from the serial and parallel 

runs are presented in Figure (4-6). The primitive variables are also tracked at 

2 nodes throughout the transient cycle. Node 4033, which is approximately at 

the centre of the pipe, and node 7433, which is located proximal to the center of 

the exit plane, are tracked in time (Figure 4-7 ). All the solutions obtained from 

serial and parallel runs are found to be in good agreement with each other over 

the entire transient cycle.
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8  500

Time s tepTime step

(a) (b)

Figure 4-7: Transient solution tracking at nodes 4033 (located at approximately 
the central exit region) and 7433 (located in the mid length region, close to  wall).

4.5 N u m b e r  of p ro cesso rs

While solving linear systems in parallel, there is a possibility of the solution 

changing slightly as a function of the number of processors used. The PETSc 

documentation states tha t this is because of the use of M PI_ALLREDUCE(args) 

command for computing the inner products and norms. Depending on the size 

of local data, the values will get computed and arrive at a given processor in a 

certain order, which might change every time the system is solved under simi­

lar conditions. Owing to the non-associativity of floating point arithm etic, the 

computed quantity may be slightly different. These errors gradually build up 

over time. Also, the algorithm for most preconditioners, with the exception of 

Jacobi, is different for different number of processors, which will consequently re­

sult in greater differences in the solution computed [41]. Under these conditions 

it becomes necessary to assess the effect of the number of processors used.

For the purpose of testing the effect of number of processors on the solution, the 

t est case of transient flow through a pipe similar to the one used for validating the 

parallelization is used. The simulation is repeated for the number of processors
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Figure 4-8: Change in solution as a function of number of processors, (a) Velocity 
error measure (b) Pressure error measure

ranging from 36 to 80. For a thorough comparison of the solution, the following 

error measure is calculated for both velocity magnitude and pressure. These are 

plotted in Figure 4-8.

, ( V E ti Ke/, -
error =  logi 0 --------------------------

V n J

where, uref l is the nodal solution obtained using 1 processor, it* is the nodal 

solution obtained in parallel and n is the number of nodes in the mesh. The 

change in solution variables was found to be within acceptable limits. The error 

in pressure shows a convergent trend, over the processor space th a t was possible 

to be used for this problem. The errors in velocity on the other hand behave even 

better and are orders of magnitude smaller than those encountered in pressure.

The inherent design of this test imposed a limit on the number of processors 

being used to  80. On one hand, since the reference solution was provided by 

the single processor serial run, the mesh had to be small enough to complete in
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Figure 4-9: Illustration of the effect of over partitioning the mesh, on wall time

reasonable time. Since the mesh was small, excessive partitioning resulted in a 

critical point, beyond which the MPI communications become more expensive 

than the actual calculation itself. In this case this critical point was in the range 

of 70-80 processors. W ith 80 processors, the time to complete the simulation was 

unreasonably high, as shown in Figure 4-9. Considering that all computations 

were timed and only a limited number of CPU hours were available to use, this 

mesh was not partitioned beyond 80 parts. Close to the range of 70-80 processors 

the number of shared matrix entries far exceeds the number of local entries leading 

to an increased MPI communications load. For a well arranged banded matrix, 

the critical point mentioned before is reached when the size of matrix partition 

tends towards the bandwidth of the matrix.

4.6 Schem es a n d  code

To validate the code and the m athem atical schemes encoded within, several stan­

dard benchmark problems were executed. These were single lid driven cavity, 

backward facing step, flow past a cylinder and flow through a pipe. All prob­

lems were three dimensional and steady, with the exception of flow past a cylin­

der. Flow past cylinder is also the only external flow case, while the remaining
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benchmarks represent internal flow domains. The lid driven cavity is completely 

enclosed, i.e. no flow occurs across the cavity boundaries. For the case of a back­

ward facing step and flow through a pipe, fluid enters and leaves the domain, like 

in carotid bifurcations.

Figure 4-10: 3D Lid driven cavity mesh
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Figure 4-11: 3D Lid driven cavity a t Re = 100
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(c) (d)

Figure 4-12: Lid driven cavity a t Re =  100: (a) Horizontal velocity contours 
(b) Vertical velocity contours (c) Pressure contours (d) Stream trace plot of the 
velocity held

4.6.1 S ing le  lid d r iv e n  ca v ity

This is one of the most widely used benchmarks for testing new schemes and 

codes. A cuboid of size 1.0 cm x 1.0 cm x 0.1 cm, constitutes the com putational 

domain in this test case. The mesh used is presented in Figure 4-10. It contains 

52999 nodes, 293784 tetrahedrons and was partitioned into 36 sub domains. The 

top face of the cuboid is called the lid. A positive, non-zero horizontal velocity
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component is imposed on the lid while a no slip condition is imposed on the 

three remaining rectangular lids. A zero dirichlet pressure is imposed on a single 

node, in the nort-east quadrant of the cuboid (imposing zero pressure on any 

of the bottom corners, prevents the formation of a recirculation zone at that 

corner. This is because such a point represents the least pressure with respect 

to its surroundings, hence attracting the fluid towards it). The moving lid drives 

the flow within the cavity, in the clockwise direction, forming a primary vortex 

occupying most of the cavity. At the bottom corners two recirculation zones also 

appear as the flow separates and shears the trapped fluid pockets. Such flow 

features are often encountered in complicated patient specific geometries and 

therefore the lid driven cavity is a representative test case. Results from Ghia et. 

al. [61] are commonly used as reference data for this problem. For quantitative 

comparisons, results along the vertical and horizontal, geometric centres were 

compared against the reference solutions. These are presented in Figures 4-11 

and 4-13 for Reynolds numbers of 100 and 400 respectively. The results were 

found to be in good agreement with the reference solution. The plots of Figure 

4-12 present the horizontal and vertical velocity contours; pressure contours and 

the streamtrace plots for a Reynolds number of 100. Figure 4-14 presents a similar 

set of plots for a Reynolds number of 400.

4 .6 .2  B ackw ard facing step

This is an important benchmark as it contains a sudden change in cross sectional 

area at the step, in combination with channel flow features away from the step. 

Since the patient specific meshes presented in chapter 5, represent very complex 

tubular geometries, this benchmark is also representative of flow fields expected 

in carotid geometries. The mesh used, along with the horizontal velocity and 

pressure contours are presented in Figure 4-15.
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Figure 4-13: 3D Lid driven cavity at Re — 400

The backward facing geometry is formed by subtracting a cuboid of size 4L x 

1L x 1L from a bigger cuboid of size 40L x 3L x 1L, such th a t the left bottom  

vertices of both the cuboids coincide. Here, L is the step height and is chosen 

to be 0.1 cm. The mesh used contains 52934 nodes, 287631 tetrahedronsand was 

partitioned into 36 sub-domains.

For validation, experimental results from Denham and Patrick [40] were used. 

The experimental velocity profile imposed at the inlet is not exactly parabolic. 

For obtaining the numerical results, the experimental values were suitably inter­

polated. To reduce the errors from interpolation the mesh was refined at the 

inlet. However, due to the unstructured nature of the mesh, slight differences 

exist along the thickness and hence the velocity profile imposed at the inlet is 

slightly different from the experimental profile. The numerical horizontal veloc­

ity component at 6 different sections along the length of the domain (in the mid 

Z plane)were compared with corresponding values from [40] and found to be in 

good agreement with each other. This comparison is presented in Figure 4-16.
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(c)  ( d)

Figure 4-14: Lid driven cavity at- Re=400: (a) Horizontal velocity contours (b) 
Vertical velocity contours (c) Pressure contours (d) Stream trace plot of the ve­
locity field

4.6 .3  F low  p a s t  a  c y l in d e r

This is an external flow, transient benchmark and provides an opportunity to test 

the evolution of solution in time. The region around the cylinder is represented 

by a rectangular domain, whose length and width are 25D and 10D  respectively,
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Figure 4-15: Backward facing step at Re — 229. Top: Mesh used. Centre: 
Horizontal velocity contours. Bottom: Pressure contour lines

where, D =  1.0 cm, is the diameter of the cylinder. In order to capture the 

vortex shedding downstream of the cylinder, the mesh along the centreline region 

is refined (Figure 4-17). The mesh contained 17382 nodes, 69948 tetrahedrons 

and was partitioned into 32 sub-domains.

The horizontal and vertical velocity contours; pressure contours, as well as the 

stream trace in the vicinity of the cylinder are presented in Figures 4-18,4-19,4-20 

and 4-2la. The vertical velocity is tracked through the entire time period (250 

s) and plotted in Figure 4-2lb. The Strouhal number for this case was found to 

be 0.14, which is lesser than the expected value of 0.165. The underestim ation 

of the Strouhal number occurs because the fluid is not constrained in the vertical 

direction at the horizontal walls. As a result, the vortex shedding results in some 

mass loss at the walls, especially in the regions close to the cylinder. This overall 

has an effect of reducing the primary velocity component (horizontal) th a t is 

experienced bv the cylinder. As a result the frequency of vortex shedding will be
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Figure 4-16: Validating the velocity distributions at various sections (up to a 
length of 14.586L) for a backward facing step at Re =  229

slightly smaller, which consequently explains the underestim ation of the Strouhal 

number.

4 .6 .4  F low  th r o u g h  a p r i s m a t ic  p ip e

A steady flow through a circular pipe of uniform cross-section is considered here. 

A uniform velocity profile is imposed at the inlet and the length of the pipe is 

sufficient for the flow to transition into a fully developed flow. A zero dirichlet 

boundary condition is imposed on the entire exit plane. A no slip condition is 

imposed on the walls. A summary of the problem definition along with the quality 

of the mesh used for this test is presented in Figure 4-22.

The developed region spanning 6 <  x  < 10, along the pipe length is considered 

as the test section for validating against the analytical pressure drop, where the 

flow is fully developed. In this case, the entrance length for laminar flow may be 

evaluated from the following relation,

= 0.0 6Re (4.1)
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Figure 4-17: Mesh used for flow past a cylinder

Figure 4-18: Flow past a cylinder: Horizontal velocity contours
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Figure 4-19: Flow past a cylinder: Vertical velocity contours

Figure 4-20: Flow past a cylinder: Pressure contours
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Figure 4-21: Flow past a cylinder: (a) Streamlines imposed on horizontal velocity 
contour in the vicinity of the cylinder (b) Time history of vertical velocity at a 
central exit node

where, le is the entrance length, D is the diameter and Re is the reynolds number. 

Since D  =  1 cmand Re = 100, the entrance length would be 6cm.

The pressure and sectional velocity contours are presented in Figure 4-23. The 

velocity profiles a t various sections along the length are presented in Figure 4-24. 

The numerical velocity profile a t the exit was found to be in very good agreement 

with the fully developed, analytical velocity profile. The pressure distribution 

along the test length is presented in Figure 4-25. The predicted pressure drop 

was in close agreement with the analytical pressure drop, given bv the Hagen- 

Poiseuille equation,

A P  =
8/iLQ

7TV'
(4.2)

where, A P  is the pressure drop, L is the pipe length, /i id the dynamic viscosity,
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Figure 4-22: Flow through a prismatic pipe: Problem definition and com puta­
tional domain
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Figure 4-23: Flow through a prismatic pipe: Pressure and sectional velocity 
contours

Q is the volumetric flow rate and r is the radius.

4.6 .5  S ca lab il i ty

Ideally, in a parallel computing environment, the wall time requirements must get 

halved as the number of processors used are doubled. This property represents 

how well a parallel code scales in performance, by virtue of parallelization under 

similar test conditions. A scalability study therefore measures the quality of 

parallelization. A common metric used in scalability studies, is called speedup,
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Figure 4-24: Flow through a prismatic pipe: Velocity profiles at various sections 
along the pipe length
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Figure 4-25: Flow through a prismatic pipe: Pressure distribution along the pipe 
length in the test section of the pipe

S. In this context, speedup may be defined as,

where, Ts denotes the wall time with 1 processor (serial) and Tp represents the 

wall time in parallel. Ideal speedup occurs, when,

S = p

where, p represents the number of processors.

Generally, ideal speedup is easily achieved in situations where there is no or neg­

ligible interprocessor communication. These are some times refereed to as embar­

rassingly parallel problems. Computer graphics rendering is one such example. 

Such problems are usually rare. A parallel code renders itself to be potentially 

able to scale linearly/ideally, when there are no/negligible serial components. In

[dpLAnalytical = 14.68 g/cm .sA2 
[dp] Numerical = 14.65 g/cm .sA2
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cases, where serial components are prevalent in a parallel application, there is a 

limit on speedup imposed by the serial components. Irrespective of the quality of 

parallelization, the quickest such a program will complete will always be greater 

than the time required to perform the serial operation(s). Amdahl’s law [132] 

summarises this in an equation form as,

S<P> -  5 7 T j b s j  <«>

where, B  E [0,1], represents the serial fraction of the program.

Also, matrix-free schemes (e.g. explicit) render themselves to scale linearly or 

better (moderately super-linear). Super linear speedup is said to occur when 

the speedup exceeds the number of processors employed (S  > p). Although 

rare, these speedups are possible. If a problem gets so small after partitioning 

that it can completely fit into the cache memory, which is the fastest computer 

memory, then superlinear speedup occurs, as the data access is tremendously 

efficient. Techniques like backtracking [141], searching large data sets [129] and 

neural network based optimizations [104] lend themselves to superlinear speedup. 

However, superlinear speedups must be handled with caution. If not caused 

by the situations listed above, it most likely indicates a very inefficient serial 

implementation [16, 139].

In order to demonstrate the parallel performance of the code developed in this 

research, two scalability studies are presented in this section - low range (LR) 

scalability and high range (HR) scalability. The LR2 tests were carried out with 

1, 2, 4, 8, 16 and 32 processors, with a carotid mesh that contained 323856 tetra­

hedrons and 57234 nodes. The HR3 tests were executed on 36, 72 and 144 pro­

cessors, with a carotid mesh containing 4014037 tetrahedrons and 695605 nodes. 

The reasons for splitting this test into 2 ranges are similar to those mentioned

2Job codes - 1:TCP885; 2:TCP884; 4:TCP883; 8:TCP882; 16:TCP881; 32:TCP880
3Job codes - 36:TCP780; 72:TCP778; 144:TCP892
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in section 4.5, i.e., the mesh must be small enough to  be able to complete in 

reasonable times, but big enough to prevent excessive communication overhead 

due to over partitioning.
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Figure 4-26: Low range scalability results: Wall time and speedup comparisons

The scalability tests were carried out on the facilities of HPC Wales, Bangor. A 

to tal of 10 tim e steps were run in each case and the I/O  from the code was limited 

to just the essential data. W ithin every time step, several Newton-Krvlov and 

pure-krylov iterations are performed. The iteration data  is presented in Tables 

4.1 and 4.2 . Two different time samples were extracted in the LR study. Since 

some operations related to applying boundary conditions were performed seri­

ally outside the time loop, the first set of time measurements d idn’t include this 

phase of the code. Also, the first time step is relatively expensive as the m atrix 

preallocation is performed, this too was excluded from the first measurement set.

These results are presented on the top half of 4-26. In the second set of measure­

ments, all preprocessing operations, along with the first tim estep are included, 

to assess the overall performance. These results are presented in the bottom  half 

of Figure 4-26. In both types of sampling of the low range study, the scalability
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nprocs T1 T2 T3 T4 T5
NKi Ki NKi Ki NKi Ki NKi Ki NKi Ki

1 7,34 1210 5,47 1484 4,38 862 3,31 675 3,31 760
2 7,34 1238 5,47 1355 4,38 848 3,31 674 3,31 721
4 7,34 1276 5,48 1310 4,41 839 3,31 680 3,31 737
8 7,34 1392 5,48 1330 4,41 858 3,31 677 3,32 718
16 7,34 1590 5,49 1433 4,41 1001 3,31 683 3,33 866
32 7,34 1132 5,52 1413 4,46 885 3,37 695 3,36 1024

Table 4.1: Iteration history (T :T im e  s tep ; N K iiN ew ton  K ry lo v - ite ra tio n s . F o r m a t= ( i , j )  i= n e w to n  ite ra t io n s  a n d
j =  c u m u la tiv e  k ry lo v  it e r a t io n s  in  i n ew to n  ite ra t io n s ; K i:K ry lo v  ite ra t io n s )

nprocs T6 T7 T8 T9 T10
NKi Ki NKi Ki NKi Ki NKi Ki NKi Ki

1 3,32 0801 3,33 0660 3,33 0682 4,48 714 4,51 892
2 3,32 780 3,33 662 3,33 686 4,48 715 4,51 899
4 3,32 894 3,33 656 3,35 660 4,48 655 4,51 775
8 3,33 866 3,35 694 3,35 741 4,49 687 4,52 927
16 3,35 752 3,36 862 3,37 905 4,53 965 4,56 769
32 3,38 764 3,39 748 3,41 887 4,57 932 4,61 1014

Table 4.2: Iteration history with 1 to 32 processors: Time steps 6 to 10

was found to be near linear. This is also indicative of the overall good qual­

ity, appropriate serial fraction selection and serial efficient routines, in the code. 

With 32 partitions of the medium sized mesh, the local matrix patches would 

approach the matrix bandwidth, resulting in increased MPI communication. As 

a result, sub-optimal speedup is expected around the range of 32 processors, for 

the mesh employed. However, the average parallelization efficiency for the LR 

tests, considering both types of time sampling was found to be 105.13%.

For the HR scalability test, a complete simulation ranging the entire cardiac 

cycle was executed. No special arrangements, like limiting the amount of I/O  or 

selective time sampling were employed. As a result, the true scalability or working 

scalability tha t would be experienced while running real problems with the code, 

will get demonstrated. The wall time and speedup results for the HR scalability
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Figure 4-27: High range scalability results: Wall time and speedup comparisons

test are presented in Figure 4-27. The HR scalability was not performed on 

less than  36 processors, as a result there was insufficient data for the speedup 

calculation (i.e. serial time, Ts). In light of the corresponding linear speedup in 

the low range tests, it was assumed tha t the serial time for the high range case, 

could be extrapolated form the time required for the simulation to run with 36 

processors. The average parallelization efficiency for the HR tests was found to 

be 86.43%, while the overall parallelization efficiency for both the low and high 

range scalability tests was found to be 96%.

The localised sub-linear speedup may be improved bv pursuing the following 

directions:

• The PETSc toolkit can be complied in two modes - debug and non-debug. 

For performance measurements, the non-debug mode is recommended. In 

the debug mode, large number of additional checks are performed, which 

can negatively reflect upon the code performance. For the version of PETSc 

currently being used on HPC Wales clusters, only the debug version was 

found to run successfully. Therefore, there is scope for further improve­

ment by just using a different compiled version of PETSc, when it becomes
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available in due course.

• Since just iterative solvers are employed for solving the algebraic systems 

resulting from the discretization, the overall scalability is a function of not 

just the quality of parallelization but also of the convergence of the solvers 

employed, which in turn depends on the quality of the preconditioners used. 

Therefore, unless scalability studies are neutral to solver-preconditioner 

choices, the speedup figures for codes involving iterative solvers must be 

looked at with this paradigm in mind. Although cumbersome, measuring 

the scalability for all possible combinations of solvers and preconditioners 

will help visualize the true scaling exhibited by such codes.

• By further optimising the domain decomposition strategy employed, it 

might be possible to prevent localized sub-linear behaviour in the exces­

sive partitioning limits (which are mesh dependent).

4.7 M onolithic treatm ent for pressure

In this section, unlike the previous cases which used the CBS scheme in its clas­

sical - split version, the monolithic scheme proposed in section 2.4 will be used. 

The process of monolithising the CBS scheme, generates pressure stabilization 

terms in the mass conservation equation thereby circumventing the LBB restric­

tion while using equal order interpolations for both velocity and pressure.

Since this is a single equation framework, the usual (split) code flow changes and 

therefore the single equation framework is tested first via the solution of a simple 

Laplace equation on a cuboidal domain4. This test is not strictly necessary but is 

merely used to test the single equation components of the code. Dirichlet bound­

ary conditions are imposed on each of the four rectangular lids. A unit dirichlet

4TCP192
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Figure 4-28: Testing the single equation framework of IFENS by solving the 
poisson equation on a 3D cuboidal domain: (a) Contour plot with the mesh 
superimposed (b) Comparison of the numerical and analytical solutions along 
several polylines

boundary condition is imposed on the north lid. The east, west and south facing 

lids have a zero dirichlet boundary condition imposed. The numerical solution is 

presented in Figure 4-28a. A very coarse, nearly-uniform mesh (superimposed on
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the solution contours), with just 6210 tetrahedron elements and 2192 nodes was 

used for this test. A comparison with the analytical solution, which is given by,

"  / 2(1 -  ( - 1)"): i n ( n - K X \ s i n h { ^ )  

h  \  ™  U i  s in k  ( * £ )
(4.4)

was performed by extracting data along multiple lines from a 2D slice (z =  zmax =  

0.1 units). A good agreement was observed between the numerical and analytical 

results (Figure 4-28b), except at the regions close to the left and right edges 

of the north lid. At the north corners, the coarseness of the mesh results in 

poor application of dirichlet boundary conditions and poor capturing of the high 

gradients that exist in this neighbourhood of the domain. Also, the average value 

of phi in the domain centre along the entire thickness was found to be 0.2487 

units, which is expected to converge to the expected value of 0.25 units, with 

mesh refinement.

4 .7 .1  F low  through  pipe: M on olith ic  C B S  fram ew ork for 

so lv in g  N S eq u ation s5

The problem being considered here is identical to the one considered in Section 

4.6.4. The performance of the monolithic scheme is assessed here. Figure 4-29 

presents the sectional horizontal velocity contours and wall pressure contours. 

The overall solution was found to be over damped. Even though a parabolic 

profile is developed at the exit and mass conservation is achieved, the maximum 

horizontal velocity at the exit is 5.95 cm/s, as opposed to the expected value of 

6.602 cm/s. The same was the case with the pressure drop in the fully developed 

section. The numerical pressure drop was found to be 13.5 dynes/cm2, while 

the analytical value is 14.68 dynes/cm2. These represent an average error of

5TCP915
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Figure 4-29: Testing the monolithic CBS scheme implemented within IFENS for 
the problem of flow through a prismatic pipe at Re =  100: (a) Sectional velocity 
magnitude contours (b) Wall pressure contours

8.95%. A similar damped behaviour was observed for transient simulations like 

flow past cylinder. However, the current results from the monolithic framework 

seem promising and will be pursued in the future.

4.8 S u m m a ry

In this chapter, various validation scenarios were presented from the point of view 

of checking the overall correctness of the solution procedure used in this research. 

Various aspects like mesh renumbering, iterative linear solvers, parallelizat.ion and 

effect of number of processors were considered and verified to be correct by run­

ning simulations tailored to test specific aspects. In order to check the correctness 

of the schemes and the parallel software th a t was w ritten from scratch to encode 

these schemes (IFENs), the four common benchmarks, namely lid driven cavity, 

backward facing step, flow past cylinder and flow through a prismatic tube, were 

executed and benchmarked. Two scalability studies were also presented and the
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overall parallelization efficiency for the low and high range scalability tests was 

found to be 96 %. Finally, the single equatio framework of IFENs was tested 

via solution of the Laplace equation. Flow through arteries being the primary 

application of this research, the test case of flow through a prismatic tube was 

repeated for validating the CBS scheme in its monolithic form.
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Patient Specific G eom etries

5.1 Introduction

W ith the fluid solver/software developed in this research being validated in Chap­

ter 4, this chapter utilizes the software to solve Navier-Stokes equations on high 

definition computational domains, representative of carotid bifurcations within 

real patients. These meshes are three dimensional and are made up of tens of 

millions of linear tetrahedral elements, typically with structured refinement near 

the walls to accurately capture the steep velocity gradients experienced in these 

regions.

5.2 Carotid anatomy

A reference to the carotid typically includes 3 vessels - common carotid artery 

(CCA - parent vessel), internal carotid artery (ICA - branch 1) and external 

carotid artery (ECA - branch 2) which together constitute a bifurcation. These 

carotid bifurcations occur in pairs on either side of the neck. Their typical ap­

pearance and placement within the human arterial tree is shown in the MR-
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Angiograph of Figure 5-1 [94]. The left and the right CCA differ in their points 

of origin. While the left CCA originates directly from the Aorta, the right CCA 

emanates after an extra level of branching. The ICAs supply oxygenated blood 

to the brain while the ECAs supply blood to the face, scalp, skull, and meninges, 

hence carotids play an especially important role. Severe blockage or narrowing 

of the carotid artery (stenosis) may therefore lead to stroke. The medical liter­

ature suggests that regions such as entrances of branching arteries, like carotid 

bifurcations, and bends, tend to develop conditions favourable for atherosclerosis 

[103, 63, 109, 52, 110, 57]. Another region of interest in the carotid arteries is 

called the carotid sinus or bulb. It is usually located in the ICA, near the bi­

furcation region. The carotid sinus contains baroreceptors that modulate blood 

pressure. The complex heamodynamic patterns found in these regions seem to 

promote the deposition of platelet thrombi and biochemical reactions in the inner 

lining of the vessels. The propensity of carotid bifurcations to develop stenosis, 

as well as their clinical importance led them to be chosen as the zone of study 

for this research.

5.3 Boundary conditions

As illustrated in Figure 5-1, carotid bifurcations are not terminal vessels. They 

occur in the midst of a complex, branching vessel network. The ICAs form a 

bridge between the CCA and the circle of willis. The circle of willis is a com­

plex branching network that supplies blood to the brain, as a result there will be 

a back pressure experienced within the ICA, towards the bifurcation. The ECA 

on the other hand, trifurcates and bifurcates away from the carotid bifurcation, 

resulting in a cumulative back pressure in the ECA close to the bifurcation. Since 

the CCA is directly connected to the Aorta, which is relatively larger in diam­

eter, flow disturbances exist in the inlet section of the carotid bifurcation, due
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Figure 5-1: Location of carotid bifurcation in the neck [94]. Legend: (1) Brachio­
cephalic trunk (4) Right Common carotid artery (5) Right internal carotid artery 
(7) Left internal carotid artery (8) Left external carotid artery (9) Left common 
carotid artery (11)Aorta

to the sudden change in cross-sectional area. This makes the process of impos­

ing boundary conditions highly non-trivial in com putational studies like these. 

Ideally, pressure and /or velocity measurements at the extremities of the bifurca­

tions under consideration, will be valuable. However, such detailed readings often 

involve complicated procedures (e.g. 4D flow MR imaging) and use of invasive
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devices (like catheters *). Also, the heart itself pumps blood by a wringing motion 

tha t is often likened in the literature to the wringing of a wet towel [127, 99]. A 

pair of crescent shaped vortices are formed in the left atrium, which make their 

way into the Aorta and the pulmonary artery [108, 135]. This suggests there 

would be some vorticity effects retained in the blood entering the CCA, on either 

sides, which must be accounted for in the construction of the inlet velocity profile 

of the CCA. No velocity or pressure boundary data was available for the carotid 

geometries being used in this research. The way forward under these conditions 

is to assert a paradigm which demonstrates the potential of predicting physiologi­

cally correct results, when the correct boundary conditions will become available. 

Until then, surrogate data serve to substitute for the real boundary conditions. 

This may result in the solution lying in a space away from the physiological range, 

but this is merely an artefact of inputting erroneous data into the model.

Under these conditions, the velocity profile generator referenced in 3.4.2 was em­

ployed to generate a physiologically realistic, pulsatile velocity profiles across the 

boundary faces (Womersley profiles). Some studies, for e.g. [17] impose a Wom- 

ersley profile on both exits. However, from the point of view of imposing a flow 

split across the two branches, just imposing one velocity profile is sufficient. Ow­

ing to the property of mass conservation, the flow at the other exit gets adjusted 

automatically. Doing so, the system is less constrained by not imposing the spa­

tial distributions in velocity at the other exit. This lets the system naturally 

develop a velocity gradient along the face of the free outlet.

In split schemes, like the CBS, it becomes mandatory to also impose a dirich- 

let pressure boundary condition in the pressure poisson solve of step 2. Some 

studies, for e.g. [142], use equal pressures at both the exits, which seems unreal­

istic considering the unequal back pressures from the downstream beds of ECA

1 Catheters are medical devices that can be inserted in the body to treat diseases, perform 
surgical procedures or take measurements (e.g. pressure)
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and ICA. Balossino et al. [12] also found that the imposition of equal dirichlet 

pressure at the exits was erroneous when a stenosis occurs in one of the carotid 

branches. The same behaviour was reported in abdominal aortic bifurcations 

[153]. Therefore, the free outlet (where there is no velocity profile imposed) was 

chosen to impose a dirichlet pressure boundary condition (on the entire outlet 

face). Hyun et al. [74] used a similar combination of pressure and velocity dirich­

let boundary conditions, with zero pressure outlet condition for the ECA. In this 

research, several simulations 2 confirmed that the flow field and pressure differ­

ence (between ICA and ECA) remained the same irrespective of the point of 

application of the dirichlet pressure boundary condition. It was observed that 

imposing a zero pressure on the ICA outlet resulted in a negative pressure in 

the ECA branch, while imposing zero pressure on the ECA outlet resulted in a 

completely positive pressure field. However, the pressure difference at the exits 

of ICA nd ECA remained approximately the same, irrespective of the location 

of zero pressure imposition. Imposing zero pressure at a fixed distance from the 

inlet, in the CCA, also resulted in the same pressure drop between the ICA and 

ECA exits.

5.4 M esh convergence

Since the flow field is highly dependent on the geometry of the flow domain, it was 

important to use meshes that were close representations of the true geometries. 

In this research, high quality meshes containing up to 14 million tetrahedron 

elements were used. The large number of mesh elements made it possible to 

render smooth representations of the non-uniform cross sections found in carotid 

bifurcations. The trimmed carotid bifurcation geometry presented in Figure 5-2 

was considered to run a series of flow simulations (Geometry 1). Another impor­

2TCP768:p=0 on ICA exit; TCP771:p=0 on ECA exit; TCP770:P=0 at a fixed height from 
the inlet in the CCA
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tant mesh feature, especially with linear elements, is the steep velocity gradient 

capturing capability. The no slip condition imposed on the walls, results in the 

development of high shear stresses at the walls (WSS). These stresses get pro­

nounced at the bifurcation region, where the fast moving fluid mass gets skewed 

towards the walls due to the flow division. In order to capture these gradients 

accurately, the regions close to the wall along the entire volume of the mesh were 

refined with smaller elements. These elements were added in a structured man­

ner via finite number of layers, called boundary layers. Starting off with a purely 

unstructured mesh, i.e. a mesh with no boundary layers, convergence oriented 

simulations were carried out for meshes with up to 12 boundary layers. The 

boundary layers become clearly visible at the inflow/outflow boundaries. Figure 

5-3 presents the top/plan view of the ECA exit to illustrate the boundary layers. 

The velocity magnitudes and pressures in the entire domain were used to assess 

convergence.

A flow split of 40:60 (ECA% : ICA%) was imposed on the internal and external 

branches of the carotid bifurcation. This imposition was realised by applying 

suitably constructed velocity profiles at the exits. A number of factors contribute 

to the true flow split in the carotid bifurcations. These include heart beat period 

(systole or diastole) [101], neck position and movement, stenosis [12], bifurcation 

angle [111], overall carotid geometry, to name a few. Marshall et al. [97] also 

found that around systole, the sum of ICA and ECA outflow was significantly 

less than the CCA inflow. Although no conclusive evidence was presented in [97] 

to explain the ratio of outflow to inflow being significantly less than 1, during 

systole, it might be possible that distensible vessel walls lead to such apparent 

mass loss. However, these effects disappear when the flow rates are time averaged 

over the cardiac cycle. In light of ambiguity arising from the range and types of 

flow splits available in literature, this research employs a constant flow split.

Although, it was previously mentioned that one exit velocity profile was sufficient
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CCA

Figure 5-2: Geometry 1: Truncated carotid mesh used for assessing mesh conver­
gence

and realistic to impose, for backward compatibility here the velocity profiles are 

imposed on all exits and a zero pressure was imposed on the ECA exit. A no 

slip condition exists on all walls. A peak velocity magnitude of 54.9876 cm /s was 

imposed at the CCA which corresponds to a mean flow rate  of 1.45516 cm3/s. 

The harmonics used in the construction of the velocity profile are presented in 

Table 5.1. These resulted from the fast Fourier transform of a measured aortic 

waveform [107, 17]. The period of the resulting transient wave was 0.61144 s, 

which corresponds to a heart rate of 98.128 bpm (beats per minute). Flow rate 

as a function of time for one cardiac cycle, is presented in Figure 5-4. All the 

velocity profiles are in phase, because disturbances propagate instantaneously in 

incompressible flows.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5-3: Mesh boundary layers, as visible in the plan view of the ECA: (a) 
No boundary layers (b) 3 boundary layers (c) 7 boundary layers (d) 8 boundary 
layers (e) 9 boundary layers (f) 10 boundary layers (g) 11 boundary layers (i) 12 
boundary layers
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Figure 5-4: Cardiac cycle: velocity profile as a function of time (the filled circles 
show the time points of interest for the plots of Figure 5-7 )
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Harmonic Frequency (Hz) Amplitude Phase (rad)
1 0 126.88125 0.00000
2 1.63548 219.04800 -1.59841
3 3.27097 156.06450 3.04933
4 4.90645 80.25450 1.81371
5 6.54193 57.64425 1.22483
6 8.17742 56.19338 -0.107859
7 9.81290 25.00121 -1.55024
8 11.44840 17.10540 -1.40587
9 13.08390 24.24746 -2.93862
10 14.71940 8.16308 1.45781
11 16.35480 10.90725 2.74547
12 17.99030 12.69634 0.490823
13 19.62580 2.756033 -2.48452
14 21.26130 5.983050 -0.254379
15 22.89680 5.026950 -2.84223
16 24.53230 2.558115 0.376408

Table 5.1: Harmonics used for the construction of the velocity profile used for 
assessing convergence

Figures 5-5 and 5-6 present the results from meshes representing the domain 

shown in Figure 5-2, but containing different number of boundary layers. The 

peak and peak time averaged values were used in the construction of these plots. 

Both velocity magnitudes and pressure converged really well. This becomes ev­

ident from the slope of the plot in the bottom figures of 5-5 and 5-6, which is 

almost horizontal for the points concerning 11 and 12 boundary layers. With 

respect to the 12 boundary layer case, the peak and time averaged errors for 

the mesh with 11 boundary layers was found to be 0.07% and 0.03% for velocity 

magnitudes and 0.04% and 0.06% for pressure, respectively. This demonstra­

tion of the invariance of solution variables with mesh refinement is expected and 

physically realistic.
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Figure 5-5: C onvergence of velocity magnitudes as a function of boundary layers 
for the geometry of Figure 5-2

5.4.0.1 Flow field - G eo m etry  1

d he visualization of flow field becomes challenging with large data  sets like these. 

D ata storage, even in binary/unform atted files, results in file sizes of several 

gigabytes. Since a no slip condition is imposed on all the walls, all flow data  

becomes visible only after extracting 2D slices from the 3D domain. Depending 

on the location of the slices, some flow features might not get captured. Also, 

since the simulations are transient, certain flow features may be visible in the 

extracted slices only during certain sensitive instants in time. To be able to 

select suitable slicing locations a t the correct instants of time is laborious and
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Figure 5-6: Convergence of pressure as a function of boundary layers for the 
geometry of Figure 5-2

time consuming. Like in this case, the use of different number of boundary layers 

for the same domain, exacerbates the visualization process.

Figure 5-7 presents the velocity and pressure contours, extracted at different 

instants in time. A stream trace plot is also superimposed on the contours of 

velocity magnitudes to show the trajectories of fluid particles. These results were 

generated from the finest mesh, th a t contained 12 boundary layers. The prim ary 

direction of flow within carotid bifurcations is from the CCA to the ICA /ECA . 

Just at the start of the cardiac cycle the flow direction is briefly reversed. At 

the s tart of systole, as heart pumps out the fluid mass, all the flow within the
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a (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5-7: Comparison of velocity fields as a function of time, in an approx­
imate central, 2D axial slice: (a) Mid acceleration (t=0.0882 s), (b) Peak flow 
( t= 0 .1215 s), (c) Mid deceleration (t=0.1882 s), (d) End deceleration (t=0.277 s), 
(e) Mid acceleration during flow reversal (t=0.293 s), (f) Peak reversal (t=0.3039 
s), (g) Rem nant flow start (t=0.347 s), (h) Mid rem nant flow (t=0.459 s) and (i) 
Remnant flow end(t=0.6078 s)
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carotid bifurcation is directed outwards (Figure 5-7a). The fluid accelerates as it 

flows through the ECA, to maintain the specified flow rate under reduced flow 

area. High pressures are developed at the CCA inlet relative to the exits. The 

pressure drop between the CCA and ECA (pressure constrained) is greater than 

th a t between CCA and ICA. Since the cross-sectional area of the ECA is smaller, 

it exerts greater resistance to blood flow and a larger pressure drop occurs a t this 

region. This pressure drop increases at peak flow (Figure 5-8a). A peak velocity 

of 190.505 cm /s occurs in the ECA during peak flow.
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-20)00
•40000
-eoooo
-300 CO -100000 

-120000 
-140000 
-160000 
1300 00 

-2000 00 
-220000

3600 00 
4500 00 
3600 00 
250000 
150000 
50000

(a) (b)

Figure 5-8: Instantaneous pressure fields: (a) Peak forward flow (b) Peak reversed 
flow

In the mid deceleration phase, a recirculation zone appears on the left side up­

stream  of the bifurcation, owing to the geometry driven flow separation. The next 

time zone of interest is the flow reversal phase, when the boundary conditions 

drive the flow in the opposite direction for a short period. Around the end of 

the deceleration phase, the recirculation zone significantly extends into the inside 

of the domain and the peak velocity develops in the ICA. As the flow reversal 

takes place, the recirculation zone occurs just below the bifurcation point, as the 

fluid travelling towards the inlet from the 2 branches shears a pocket of fluid held 

around the stagnation point 3 a t the bifurcation. However, at peak flow reversal,

S tagnation  point: The valley formed between the ECA and the ICA, where the fluid is 
brought to rest.
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the streams travelling from the two exits coherently flow outwards, without any 

flow separation. During this phase, i.e. diastole, as the flow enters the remnant 

phase of very low flow, the high frequency flow reversals, induce a very compli­

cated flow field of small magnitudes (Figure 5-7g). The time until next diastole 

witnesses the generation of multiple vortices close to the walls of the entire do­

main. These results suggest that flow disturbances occur at periods other than 

peak flow, especially when there is flow reversal.

Figure 5-9 presents the wall shear stress and the oscillatory shear index. At the 

bifurcation, where the majority of the fluid mass gets skewed towards the inner 

wall of the ECA (Figure 5-10), large velocity gradients occur with respect to the 

no slip walls, resulting in the largest wall shear stresses in this region. In this 

case, the peak time averaged wall shear stress was found to be 1736.07 dynes/cm2. 

The time averaged wall shear stress (WSS_Tavg) is defined as,

1 t = N

W S S „ T a v g = - ^ | | t i
^  t = 1

(5.1)

where, N  is the number of time steps and t s is the surface traction vector, defined 

as,

t s =  t — (t • n)n (5.2)

where, n is the normal and t is the traction vector defined as,

t =  cr • n (5.3)

where, cr is the cauchy stress tensor, defined as,

0 n 7-12 7"l3

T21 022 723

731 732 033

(5.4)
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While high values of WSS have the potential of causing rupture in the ves­

sels, regions with low and oscillating WSS seems to promote the development 

of atherosclerosis [25, 86].

The oscillatory shear index (OSI) is a dimensionless quantity lying between 0 

and 0.5 [86]. OSI is a measure of the flow directionality over time. W hen the 

flow mostly remains unidirectional, i.e. when there are no cyclic variations in the 

WSS vector, its value tends to zero. Flow disturbances th a t result in secondary 

flows and flow reversals make the OSI tend towards 0.5. A value of 0.5 indicates 

180° deflection of the WSS direction. OSI is defined as,

O S I  =  I  ( i  -  Tmam
2 V Fabs

(5.5)

where, rmean is the mean wall shear stress, defined as,

t = N

E * .
t=l

(5.6)

and TabS — W SS_Tavg.

W SS_Ta»g 

0 9 8  
0 9  
0 8 2  
0 .7 4  
0 6 6  
0 5 8

I

Figure 5-9: (L) Normalised time averaged wall shear stress (R) Oscillatory shear 
index
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OSI predictions of Figure 5-9 are consistent with the velocity fields of Figure 5-7. 

In the time instants selected, the flow remained mainly unidirectional in the ECA 

entrance, therefore, the OSI in this region is expected to remain low. Just before 

the bifurcation, in the CCA, the flow remains disturbed with travelling vortices 

for m ajority of the cardiac cycle, making it the region of highest OSI. It can also 

be observed tha t regions of high W SS_Tavg experience the lowest OSI and vice 

versa. In the remaining sections of this chapter, 3 more carotid bifurcations will 

be analysed.

Figure 5-10: Illustration of flow skewing at the ECA close to  the bifurcation

5.5 G e o m e t ry  2

In this section, unlike the geometry considered for convergence testing, a more 

complete carotid bifurcation geometry is considered (Figure 5-11), though it still 

is a truncation of the carotids in situ. A slight narrowing of the CCA occurs 

before the bifurcation point and a sharp bend feature was observed in the ECA 

downstream of the bifurcation. The carotid bulb appears normal in the anterior 

view, but is constricted when viewed from the rear. The mesh used to represent 

this geometry consisted 6,934,199 tetrahedron elements and 1,185,109 nodes. Fol­

lowing the convergence results, meshes with 10 boundary layers will be considered 

from this point onwards, unless otherwise stated. This provides an even balance
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between accurate solution capturing and moderate simulation costs. There is also 

some experiential bias in selecting 10 boundary layers.

The velocity profiles used for this geometry are slightly different and adopted 

from the work of Holdsworth et al. [68], who characterised the blood velocity 

waveforms in carotid arteries of 17 normal volunteers, analysing 3560 cardiac 

cycles. The temporal flow variations and the resulting harmonics are presented 

in Figure 3-14 and Table 3.1, respectively. An important difference between 

this velocity profile with respect to the one used before, is the absence of flow 

reversal. The current waveform is also slightly longer, with a period of 0.9195 s, 

which corresponds to a heart rate of 65.2 bpm. As explained in Section 5.3, just 

1 velocity profile is imposed here at the exit, which in this case is the exit plane 

of the ICA. The zero dirichlet imposition on pressure will therefore apply on the 

ECA exit plane. A total of 240 time steps were used to span the total period. 

The total CPU-time consumed for this simulation 4 was 2,487,944.25 seconds on 

72 processors, which corresponds to a wall-time 5 of an impressive 9.59 hours. 

This involves solving a non-linear, sparse system of size 3,555,327 x 3,555,327, a 

linear sparse system of size 1,185,109 x 1,185,109 and a correction of 3,555,327 

degrees of freedom, in every time step, along with all the pre/post processing and 

parallelization tasks.

5.5 .1  F low  field - G eo m etry  2

Figure 5-13 presents the contours of velocity magnitude, plotted at several sec­

tions perpendicular to the length axis, at 7 different instants of important flow 

transitions of the cardiac cycle. The single visible colour bar, based on peak flow, 

is applicable to all time instants. As the flow approaches the bifurcation during

mid acceleration it deflects from the inner walls of both the ICA and ECA to-

4TCP877
5wall-time =  CPU-timenprocs
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Figure 5-11: Mesh 2: (L) Anterior (R) Posterior

wards the respective exits. This effect can be clearly seen in an animation across 

time, where the fast moving chunk of fluid appears to be swaying from the inner 

to the outer walls of the bifurcation, while travelling towards the exit. At peak 

flow, the fluid accelerates through the ECA forming a zone of the fastest moving 

fluid at the point where the ECA bends sharply. At peak flow, the velocity in 

the ECA is 278.2 cm /s, while th a t in the ICA is around 185.79 cm /s. These 

values are in very good agreement with the available ultrasound measurements, 

for this very same geometry, in-vivo. The ultrasound readings predicted a peak 

systolic velocity of 281 cm /s and 181 cm /s in the ECA and ICA, respectively 

(Figure 5-12). This represents a m ean error of 1.8% between the numerical and 

measured values. However, the location of the peak values within the ICA and
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ECA was not available and hence could not be compared with the results of this 

simulation.

For this geometry, the peak-inlet Reynolds number (based on the average inlet 

velocity magnitudes a t peak flow) and average-inlet Reynolds number (based on 

the time averaged inlet velocity magnitudes) were found to be 938 and 253, re­

spectively. Since the critical Reynolds numbers for this geometry (and in general, 

for patient specific geometries) is difficult to experimentally establish, one cannot 

make flow regime predictions based on the Reynolds number.

Figure 5-12: Ultrasound measurements for geometry 2

As the flow progresses into the mid deceleration phase, flow separation begins to 

occur in the ICA, which becomes visible as patches of very slow moving concentric 

and /o r crescent shaped regions in the flow field (visible in slices of the deceleration 

phase and beyond). Figure 5-14 presents the secondary field, which is plotted by 

eliminating the axial velocity component. Downstream of the bifurcation, both 

in the ECA and ICA, small vortices are generated close to the wall, which decay 

towards the exit. The orientation of particle traces throughout the length of the 

ICA and ECA suggests th a t the fluid swirls in making its way to the exit.

Throughout the cardiac cycle, the peak domain velocity is maintained in the ECA. 

Flow in the CCA is initially skewed towards the ECA, before hitting the narrowing 

in the CCA upstream  of the bifurcation. However, from the mid deceleration 

phase until the end of cycle the flow is skewed towards the ICA. A series of 

stream trace plots (coloured based on peak velocity magnitudes) are presented in
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(a) (b) ( c )

(d) (e)

Figure 5-13: Sectional velocity profiles for geometry 2 at various time instants: 
(a) Mid acceleration (b) Peak flow (c) Mid deceleration (d) Minimum rem nant 
flow (e) Peak remnant flow (f) Mid rem nant flow
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Figure 5-14: Streamtraces of secondary flow revealing the flow disturbances.

Figure 5-15: Streamtrace plots coloured by velocity magnitudes: (a) Peak flow 
(b) Lowest flow (c) Peak rem nant flow

Figure 5-15 to reveal the flow disturbances th a t arise during the cardiac cycle. At 

peak flow, the fast moving particles travel in a smooth, undisturbed manner. At 

the sinus bulb region, slow moving vortices are generated and directed diagonally
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opposite towards the inner wall of the ICA, as the fluid flows from the bifurcation 

point to the exit. A similar effect can be observed 011 the opposite side, in the 

ECA. Like with the first geometry, flow disturbances of small velocity magnitudes 

arise in the rem nant flow phase of the cardiac cycle. Disturbed flow is maintained 

in all the branches of the carotid bifurcation. Downstream of the bifurcation, a big 

recirculation zone is formed in the ICA, while helical flow patterns are observed 

along the entire length of the ECA. During peak flow in the rem nant phase, 

the flow regains a much ordered state. Based on the results of geometry 1, it 

appears tha t the flow field in geometry 2 would have been more disturbed, if a 

flow reversal were to be imposed at the boundaries.

(a) (b) (c) (d)

Figure 5-16: Maps of time averaged normalised WSS and OSI: (a,c) Posterior 
(b,d) Anterior

The time averaged WSS contours, along with the OSI map is presented in Figure 

5-16. The largest wall shear stresses are localised at one location each, in the 

ECA and ICA. Owing to the division of flow and the presence of a stagnation 

point, high WSS values are expected a t the bifurcation. However, the sharp bend 

feature in the ECA, downstream of the bifurcation and the unusually constricted
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ICA, in the sinus bulb region seem to be the reason behind the sharp localization 

of stresses in the 2 branches. However, on the other side of the sinus bulb, which 

is normally shaped (without constriction), low time averaged WSS values are 

observed, which is in line with the findings of papathanasopoulou et al. [120]. The 

maximum time averaged WSS experienced in this geometry is 2017.51 dynes/cm2. 

This value is higher than those quoted in the literature. The WSS predictions 

of CFD studies are generally higher than the in-vivo measurements. This may 

partly be due to the poor resolution of the scans [120], which is compensated in the 

CFD world by the use of boundary layers. The OSI maps suggest that away from 

the bifurcation, most of the regions in the CCA and ICA experience oscillatory 

stresses. In the bifurcation zone, a pair of longitudinal bands of moderately 

high OSI is observed, making them favourable sites for atherosclerotic plaque 

deposition. In the WSS plots of Figure 5-16, these regions also have valleys of 

low shear stresses appearing between peaks of high wall shear stresses, making 

them suitable for plaque deposition.

5.6 Geom etry 3

The carotid geometry considered next (Figure 5-17) is relatively complicated in 

shape and truncated farther away from the bifurcation zone. The ICA and ECA 

are unusually curved in a semi circular manner as they make their way upwards 

of the neck. The common trend of the ECA being smaller in cross-sectional 

area than the ICA, is not valid for this geometry. The opposite seems to be the 

case. In the ICA a number of constrictions and expansions occur in tandem, with 

the smallest constriction occurring at approximately the mid length of the ICA. 

Upstream of the bifurcation, in the CCA, a stenosis occurs, resulting in a sudden 

reduction in the cross-sectional area. This geometry, by virtue of its atypical 

configuration, exemplifies the importance of patient specific analyses.
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Figure 5-17: Sectional velocity profiles for geometry 3 at mid acceleration

Boundary conditions similar to the ones used for geometry 2, were employed. 

The harmonics of Table 5.1 were used in the construction of velocity profiles. A 

transient dirichlet velocity profile was imposed at the inlet and the exit (ECA). 

Consequently, the zero dirichlet pressure boundary condition was imposed on 

the ECA exit plane. A mesh with 10 boundary layers, 13,124,417 elements and 

2,239,739 nodes, was used to represent geometry 3. The to tal CPU time consumed 

with 72 processors was 6,424,563 seconds, which corresponds to a wall time of 

24.78 hours.

5.6.1 F low  field - G e o m e t r y  3

Figures 5-17 through 5-19 presents the velocity magnitudes a t different sections 

along the length of the carotid bifurcation. The precise locations are presented in 

Figure 5-17 (left). These sections were chosen based on the geometrical changes 

occurring a t these locations. The size and angular orientation of these slices is 

unchanged and represents the in-situ configurations. During mid acceleration,
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the imposed Womersley profile is maintained only for a short distance from the 

inlet, after which the geometrical variations induce skewing effects. These skewing 

effects (towards the ECA), become more pronounced at the stenotic section C. 

Downstream of the bifurcation, the flow skews towards the inner walls of the 

ICA and ECA. A peak velocity of 97.32 cm /s occurs at the region of highest 

contraction. Unlike before, where the peak domain velocities always occurred 

very close to the bifurcation, the shape of geometry 3 pushed the peak closer 

to the exit plane. The secondary or in-plane mid acceleration flow field (Figure 

5-20a) reveals the in plane vortices of upto 55 cm /s occurring in the ICA close 

to the bifurcation. Even higher magnitudes of secondary flow exists in the ECA, 

close to the exit, since the ECA aligns itself almost perpendicular to the CCA 

(such tha t the primary flow tends to occur in the secondary direction).

maglU

o
Figure 5-18: Sectional velocity profiles for geometry 3 a t peak flow
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Figure 5-19: Sectional velocity profiles for geometry 3 during the stage of lowest 
flow

At peak flow, the velocity profiles (both primary (Figure 5-18) and secondary
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(Figure 5-20b)) seem to inherit the spatial distributions from the mid-acceleration 

phase, but the actual magnitudes are relatively higher. The peak velocity occurs 

in section h with the velocity magnitude reaching 237.02 cm/s. The appearance 

of high velocity fluid mass very close to the boundaries suggests that high shear 

stresses will occur in this region. The peak secondary flow on the other hand, 

appears in the ICA but close to the bifurcation. Secondary flow of upto 100 

cm /s was observed. Ultrasound measurements, proximal to the bifurcation in 

the ICA, were available for this geometry. The peak recorded velocity was 169 

cm/s. As per the numerical predictions for this geometry at peak flow, the 

maximum velocity magnitude occurs in/around section h, but this section is far 

away from the bifurcation (not proximal, like in the ultrasound). Sections e and 

f qualify better, to be at close proximity to the bifurcation. A series of 5 sections 

(perpendicular to the length axis (Z)) were considered in the ICA, beginning from 

the start of the ICA and ending approximately at section f. The average of peak 

velocity magnitudes was found to be 168 cm/s. From slice f to slice h, the velocity 

magnitude increases. Further towards the exit, the velocity magnitude decreases 

and maintains a near constant peak value, owing the similar flow areas in that 

region.

As the fluid decelerates into the mid deceleration phase, flow separation occurs 

in the ECA, as can be observed from the plots of Figure 5-21. The in-plane 

streamtraces suggest that fluid particles spiral into a stationary point (Figure 

5-21a). This is merely an artefact of plotting a 2D streamtrace for a 3D flow 

field. The volume lines 6 of Figure 5-20a clarify this behaviour. Since, flow near 

the inner walls of the ECA is swirling as it makes its way towards the exit, the 

sectional streamtraces appear to lock to a point. A recirculation zone also appears 

close to the outer wall of the ECA as the fluid changes direction in traversing 

twin pseudo semi circular paths, while travelling towards the exit.

6Volume line: A type of 3D streamline which is not confined to remain on a surface and 
may travel through 3D volume data.
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( d )

Figure 5-20: Sectional velocity profiles of the secondary flow field: (a) Mid accel­
eration (b) Peak flow (c) Least flow (d) Peak rem nant flow
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Figure 5-21: Bifurcation region of geometry 3: sectional velocity profiles with 
streamtraces (surface lines, volume lines and volume rods) superimposed, during 
mid deceleration

In the time instant of least flow, flow separation occurs in almost the entire length 

of the carotid (more pronounced towards the exits). These can be identified from 

the crescent shaped, relatively fast moving patches in the sectional plots of Figure 

5-19. The sectional velocity profiles in the low flow time instants tend to show 

marked variations when compared to the high flow instants, when the bulk of the 

fluid traverses coherently through the carotid bifurcation. The sectional plots 

concerning the lowest flow phase (Figure 5-20c) show the presence of in-plane 

vortices reaching magnitudes of up to 16 cm /s. The peak secondary flow appears 

in the ICA in regions close to the bifurcation and in a couple of slices in between 

the mid length and the exit plane.

As the flow progresses in to the peak rem nant phase, the prim ary flow field 

becomes more ordered. Regions of flow separation are observed in multiple slices
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of both the ICA and ECA, primarily where the geometrical variations result in 

changes in flow direction (curvature effects). The secondary flow field (Figure 

5-20d) at peak remnant flow, preserves the spatial distributions from the time 

instant of least flow.

Figure 5-22 presents the time averaged WSS and OSI. Bands of highest wall 

shear stresses occur in the CCA just before the bifurcation and in the ICA at 

approximately mid lengths, where the flow direction changes significantly. In the 

sectional plots for the primary flow field, the highest velocities were recorded in 

this region during all time instants. The entire lumen in these regions was flooded 

with fast moving fluid mass thereby resulting in large velocity gradients at the 

walls. Two very localised spots of high time averaged WSS also appear very close 

to the stagnation point, on either side. These are the points where the CCA jet 

impacts the bifurcation and eventually deflects into the two outlet branches. The 

peak time averaged WSS for geometry 3 was found to be 1421.86 dynes/cm2. 

Most of the CCA and ECA experience low shear stresses at the walls during the 

entire cardiac cycle. As expected, high OSI appears in the CCA in almost the 

entire length before the stenosis. The ICA also experiences localised zones of 

high OSI, typically in regions where local expansion occurs. Plotting sectional 

streamtraces in these expanded locations close to the walls reveals the presence 

small recirculation zones, thereby resulting in OSI spikes in these regions. A 

streak of high OSI also appears in the stagnation region of the bifurcation, which 

is not visible in the views presented in Figures 5-22c and 5-22d.

5.7 Geom etry 4

The carotid bifurcation considered in this section represents severe stenosis in 

the ICA at the bifurcation region (Figure 5-23a). The mesh used to represent 

this geometry also happened to be the largest mesh used in this research. It
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(a) (b) (c) (d)

Figure 5-22: Time average WSS (normalized) and OSI maps for geometry 3: (a,c) 
Anterior (b,d) Posterior

contained 10 boundary layers, 14,583,254 tetrahedron elements and 2,489,345 

nodes. Unlike the previous geometries, the CCA is bent in the inlet region. 

Since this bend occurs very close to the inlet the skewness effects are neutralised 

as the fluid travels towards the bifurcation. Also, the ECA and ICA turn in 

opposing directions towards the exit planes (Figure 5-23b). In the ECA, towards 

the mid length, a short region of relatively large cross-sectional area appears. 

The boundary conditions of geometry 3 were reused for this case. The to tal CPU 

time consumed on 72 processors was 7,294,710 seconds, which corresponds to a 

wall time of 28.1.4 hours.

5.7.1 F low  field - G e o m e t r y  4

The plots in Figures 5-25 and 5-27 present the sectional velocity profiles and 

streamtraces at different time instants. As the boundary conditions effect the 

flow inside the carotid bifurcation, the fluid particles travel along simple, well 

defined paths towards the exit. Half way through the mid acceleration phase, peak
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(b)

Figure 5-23: Geometry 4 (with pressure contours during mid acceleration phase): 
(a) Front view (b) Top view

velocities begin to appear mostly in the peripheral locations of the ECA. A peak 

velocity of 64.23 cm /s was recorded in the mid acceleration phase. As the fluid 

accelerates further, a recirculation zone begins to appear in the sinus region of 

the ICA, close to the bifurcation. This recirculation zone launches fluid particles 

towards the inner walls of the ICA via a slow moving helical jet, clearly visible in 

Figure 5-25b. The bend feature present in the CCA inlet results in a pronounced 

swirling effect as the velocity increases. As a result, the stream traces of relatively 

slow moving particles tends to skew further, resulting in such particles to traverse 

slightly longer paths towards the bifurcation. At peak flow, maximum velocity 

magnitudes of 183.8 cm /s was observed in the ECA, close to the exit in a region 

of localized narrowing (this is the first observable narrowing in the ECA when 

viewed from the exit plane). Unlike for geometries 2 and 3, no accompanying 

ultrasound data was available for this geometry (4).
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(d) (e)

Figure 5-24: Vector plots of secondary field for Geometry 4 in the ECA (mid 
length section): (a) Mid acceleration (b) Peak flow (c) Mid deceleration (d) Least 
flow (e) Peak remnant flow

The recirculation zone in the sinus bulb of the ICA grows in size just past the 

peak flow, before contracting in size. This is because a slight lag occurs between 

the application of boundary conditions and their effects becoming visible within 

the domain. The sectional velocity profiles of the mid deceleration phase are 

remarkably different from those in the mid acceleration phase, especially in the 

ICA. Although, the peak velocity is maintained a t nearly the same value of around 

61 cm /s. In the slices close to the bifurcation, in the ICA, flow separation of 

more than 50% occurs. This can be verified by the presence of relatively large, 

blue (slow moving) sectional patches appearing adjacent to relatively smaller, 

green (fast moving) patches, in the corresponding regions (Figure 5-25c). The 

occurrence of the stenosis a t the ICA entrance seems to result in such extreme 

flow separation. Since the velocity magnitudes in the CCA are smaller during 

mid deceleration (than during mid acceleration), the fluid has less momentum 

as it squeezes through the stenosis and is therefore less capable of driving the
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Figure 5-25: Sectional velocity profiles for primary flow field of geometry 4: (a) 
Mid acceleration (b) Peak flow (c) Mid deceleration (d) Least flow (e) Peak rem­
nant flow 1 4 1
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recirculating mass (in the axial direction) that resides in the sinus bulb.

The time instant of least flow seems to give every slice (of Figure 5-25d) an oppor­

tunity to accommodate fast moving regions in the range of peak domain velocities 

(21.96 cm/s). Unlike other time instants, since localization of the highest velocity 

magnitudes doesn’t occur (from the point of view of length-wise distributions), 

the brightest regions of every section, visibly trace the locus of fluid paths that 

will be traversed by the bulk of the fluid. Given the geometry, it is somewhat 

intuitive to see how the fluid bounces off from one wall to another in making its 

way through the carotid bifurcation. The velocity distributions in the ICA, at 

peak flow show an interesting characteristic. The recirculation zone extends to 

almost 3 /4th the length of the ICA. It not only grows in size but begins to re­

circulate faster. The shearing effect from the fast moving fluid towards the inner 

ICA wall contributes towards stirring up the recirculation zone with more energy 

in the low flow phase. The recirculation in the anti-clockwise direction (Figure 

5-26) confirms this. The blue patch that separates the fast moving patches in 

the sections of the ICA represents the centre of the three dimensional recircula­

tion zone. Beyond the major recirculation zone of ICA during low flow, a second 

recirculation zone begins to appear in the slices closer to the ICA exit. Some in­

termediate sections have flow separations occurring on 2 major locations resulting 

in 3 coplanar and incoherent fluid masses, resulting in complex flow fields. Obvi­

ously these regions of recirculation represent regions of low wall shear stress and 

possible sites for the development of plaque. However, since there was already a 

stenosis at the ICA entrance, one needs to retrospectively analyse this situation. 

Under the premise that low WSS results in stenosis, geometry 4 represents an 

advanced (time wise) case and the converse of the premise also seems true. As the 

flow progresses into the peak remnant phase, the peak velocities localize towards 

the ECA exit and the recirculation zones in the ICA bulb shrink considerably in 

size and velocity magnitudes.

142



Chapter 5. Patient Specific Geometries

Figure 5-26: Geometry 4: Evolution of recirculation zone during the phase of 
least flow (Left branch is the ICA)
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magU

Figure 5-27: Streamtraces for geometry 4: (a) Mid acceleration (b) Peak flow (c) 
Mid deceleration (d) Least flow (e) Peak rem nant flow

Figure 5-28 presents the normalised, time averaged wall shear stresses and oscil­

latory shear indices for geometry 4. Unlike other cases, the peak time averaged 

wall shear stress is heavily localized in a single, tiny region appearing at the bifur­

cation, on the inner wall of the ECA. The peak value being 1495.63 dynes/cm 2. 

The outer-bend region in the CCA, bifurcation zone and almost the entire ECA 

experience moderate levels of wall shear stresses. Most of the CCA and ICA have 

experience minimal shear stresses a t the walls. The least stresses are experienced 

in the outer walls of the ICA, close to the sinus bulb region where extreme re­

circulation and flow separation occurs. This is supported by the high OSI values 

appearing on most of the CCA and ICA. The ECA on the other hand just ex-
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(a) (b) (c) (d)

Figure 5-28: Time average WSS (normalized) and OSI maps for geometry 4: (a,c) 
Anterior (b,d) Posterior

perienc.es high OSI in the nodule 7 appearing at mid length, which can now be 

predicted to contain at least one recirculation zone. Like before, high OSI spike 

occurs in the stagnation region of the bifurcation.

5.8 S u m m a ry

This chapter introduced the human carotid bifurcation, their functions, position

in the human arterial network and the reason behind their selection for this re­

' Nodule: region of sudden expansion, relative to its surroundings
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search. A note on the importance of boundary conditions was presented next. 

Concentrating on specific regions of the vasculature often presents problems im­

posing boundary conditions on the extremities of the domain of interest. This 

fact was illustrated from the point of view of carotid bifurcations and some of 

the possible boundary conditions commonly used were presented. A full arterial 

system modelling with the inclusion of the heart, provides an idealistic setting to 

relieve the burden of applying realistic boundary conditions in studies like these. 

Such systems, however are often low fidelity (1D/0D) and therefore their pre­

dictions are usually inaccurate. As mentioned before, measuring the boundary 

conditions is an invasive option. A mesh convergence study from the point of view 

of boundary layers in the wall regions was carried and the convergence of pressure 

and velocity up to a solution was demonstrated for up to 12 boundary layers. A 

total of 6 meshes were considered for the mesh/boundary-layer convergence study. 

In the remaining sections of this chapter, 4 different carotid geometries (1 mesh 

per geometry) were considered and their flow fields were presented and analysed. 

Haemodynamic parameters like time averaged wall shear stress and oscillatory 

shear index were calculated for all geometries considered.

Geometrically, every carotid bifurcation considered was unique. Geometry 1 was 

a heavily truncated geometry with inclusions of CCA, ECA and ICA sections 

very close to the bifurcation. It demonstrated all the features of a typical carotid 

bifurcation with mild stenosis at the ECA entrance. Relative to Geometry 1, the 

second geometry was truncated far away from the bifurcation and represents the 

length usually used in carotid bifurcation studies. The ECA represented a sharp 

bend feature, while the ICA had an occlusion close to the bifurcation which is 

visible in the posterior view only. Geometry 3 was unusually curved at the exits 

of the ECA and ICA and had inconsistent ECA-ICA sizes. The ICA had a 

series of nodules along the entire length and the CCA had an unusual stenosis, 

a short distance away from the bifurcation (towards the CCA inlet). The mesh
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used to represent Geometry 4 was one of the largest with around 14.58 million 

tetrahedron elements and 2.5 million nodes. Among the geometries considered, 

it had the most severe stenosis, occurring at the bifurcation region of the ICA. 

A nodule occurred in the mid-length section of the ECA and the ECA and ICA 

exits point in different directions. Also the CCA was bent at the exit, making 

this, the geometry with most peripheral bends.

At peak flow, the peak velocities are always observed to occur beyond the bi­

furcation. The localization was found to be mostly within the ECA, except for 

the third carotid geometry, where the peak velocity occurred in the ICA. The 

ECA and ICA of the third geometry were unusual in their relative sizes, which 

explains the occurrence of the peak in the ICA instead of the ECA. The second 

carotid geometry recorded the highest peak velocity among all the cases consid­

ered, the value being around 275 cm/s. The sharp bend in the ECA, seems to 

be the reason behind this. Consequently, the highest time averaged wall shear 

stresses also occur for this geometry (since the sharp bend results in skewing of 

the sectional velocity magnitude at this region, very close to the inner wall, which 

gets captured by the fine boundary layered mesh of this region). Ultrasound data 

(velocity magnitude) was available for the second (ECA and ICA) and the third 

(ICA only) carotid geometries considered. The mean error between the numerical 

results and the ultrasound data, was found to be 1.41 %.

The medical data didn’t contain information regarding the precise locations, 

where the peak velocity magnitudes occurred. However, as described below, in 

each case the locations of peak velocities could be correlated to the changes in 

geometry at those locations:

1. In the first geometry, the mild stenosis at the ECA and the fairly constant 

cross-sectional area along the entire length results in the peak velocity mag­

nitude occurring along the entire ECA segment.
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2. As mentioned before, in the second geometry the sharp bend causes local­

ization of high velocity magnitude in the ECA.

3. In the third carotid geometry, the section h, where the maximum velocities 

occur, is a section of the smallest cross-sectional area in the entire section 

(this zone may be likened to a converging-diverging nozzle) and therefore 

the fluid accelerates to maintain the required flow rate, in travelling through 

this constriction.

4. In the fourth carotid geometry, the fluid accelerates as it enters the ECA, 

but begins to decelerate thereafter because of the presence of a nodule 

(local expansion). Past the nodule, the ECA geometry begins to contract 

to normal state and therefore the fluid accelerates to conserve mass. As the 

fluid undergoes cycles of acceleration and deceleration, the smallest ECA 

section close to exit records the maximum velocity magnitude at peak flow. 

This suggests that the ECA constriction is more severe downstream of the 

nodule.

The recirculation zones occurring in various geometries were also presented through 

the streamtrace plots (both 2D and 3D), in this chapter. The sinus bulb region 

of the ICA, was observed to be the common area for the flow separation to occur, 

in all geometries. The flow separation and the consequent recirculation zones 

shrink at peak flow and evidently show up during low flow and flow reversals. In 

the fourth carotid geometry, a recirculation zone was also observed in the ECA. 

Generally, recirculation zone(s) appear in regions where a localised contraction 

or expansion exist. In order for these to show up, one must be careful in selecting 

the seed (start) points for the generation of streamtraces. When flow reversal is 

imposed, as in the case of the first carotid geometry, a recirculation zone appears 

right below the bifurcation point. This is due to the shearing effect from the 

fluid reversing from the ICA and ECA, on the pocket of fluid trapped below the
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bifurcation.

The presence of vortices in the flow field may not be detected, unless the vortex is 

of a relative large velocity magnitude. The small magnitude vortices that usually 

occur are hidden under the influence of the dominant velocity components and 

in-plane vector plots of secondary field reveal their presence (Figure 5-24). In­

plane, 2D streamlines may also be used to reveal the secret life of such vortices. 

Plotting the contours of velocity magnitudes without the primary velocity com­

ponent (Figure 5-20) also helps in visualizing the vortices in a slightly different 

way. Contrary to the contour plots of primary velocity field, where the sectional 

slices indicate the velocity magnitudes approximately normal to the slices, the 

secondary contours represent in-plane components and are therefore (somewhat) 

representative of the in-plane vortices.

Maps of time averaged wall shear stress, as well as the oscillatory index were 

plotted for every geometry considered in this chapter. The highest WSS_Tavg 

appeared in regions where fast moving fluid mass was skewed toward the walls. 

The peaks appeared at the bifurcation region, mostly. In geometry 2, the peak 

also appeared in the sharp bend region. While, for geometry 3, multiple bands of 

high shear stress occurs in the ICA at its mid section. These peaks were found to 

occur in the regions of localized contractions of the ICA. The lowest wall shear 

stresses occur in regions of the CCA and ICA. The opposite is true, just for the 

third carotid geometry. The OSI values seem inversely proportional to the time 

averaged WSS. Therefore, most of the carotid surface is flooded with moderately 

high values of OSI throughout (again, with an exception for carotid geometry 3).

It would also be useful to see, how the WSS and OSI predictions change in the 

absence of the abnormalities that are present in the carotid geometries considered. 

Unless, a longitudinal study is undertaken the remodeling of arteries make it 

difficult to predict the configuration of these geometries under normal conditions.
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Conclusions and Future Research

The global aim of this research was to provide solutions to cardiovascular prob­

lems from the points of view of mathematics and computer-modelling. Since 

the dynamics of self-regulating living systems are complex and tightly coupled, 

a mathematical description of all the components of such system was difficult 

to incorporate in a single comprehensive model. Making suitable and realistic 

assumptions, a framework that simulates blood flow within human carotid ar­

teries was developed, benchmarked and utilised to solve systems with millions of 

degrees of freedom. The characteristic based split scheme was utilised to solve 

the non-linear, transient and incompressible Navier-Stokes equations in their non­

conservative form. An attem pt was also made in the direction of developing a 

monolithic version of the characteristic based split scheme, with the goal of mak­

ing this framework extensible to multi-physics problems, like FSI. The mono­

lithic framework of the CBS scheme generates a new stabilization term in the 

mass conservation equation, that stabilizes the pressure field. This framework 

has also been fully developed and has currently progressed to the performance 

tuning phase, which is critical for solving large systems.

The entire framework was cast in a fully parallel, high performance computing

150



Chapter 6. Conclusions and Future Research

environment. Multi processor parallelism was established using the Message Pass­

ing Interface standard, which is currently used by all major supercomputers to 

communicate messages across processors. PETSc which is a non-trivial, state of 

the art toolkit (collection of libraries) for solving algebraic systems in parallel, 

was successfully incorporated and utilized. Both MPI and PETSc were coherently 

utilised in a Fortran90 software called IF E N s, which is an acronym for Implicit 

Finite Element Navier-Stokes Solver. IFENs was developed from scratch dur­

ing this research. IFENs was an extension of another software developed during 

this research, called SIFENs, i.e. serial IFENs. SIFENs started off as a purely 

serial convection-diffusion equation solver. As SIFENs matured, multithreaded 

parallelism was incorporated by the use of Intel Math Kernel Library (MKL). 

Gradually, the sub components of SIFENs paved the way for the development of 

the fully parallel Navier Stokes Solver - IFENs. Currently IFENs has been tested 

on up to 256 processors. IFENs executes at appreciable speeds. A 240 step car­

diac cycle, executes on a computational domain with 14.583 million tetrahedron 

elements in 15.6 hours with just 72 processors. This is definitely comparable and 

perhaps better than explicit codes, which are known for their speed.

IFENs was utilized in this research for solving flow problems over biomedical 

domains, but can be utilized as a general purpose tool for a variety of flow prob­

lems. IFENs is fully implicit and capable of constructing the jacobian matrix 

while using the Newton like methods to solve the Navier-Stokes equations with 

the non-linear, convective terms in the left hand matrix. This renders the software 

to be highly efficient in solving non-linear equations. IFENs is capable of solving 

the Navier-Stokes equations both in split and monolithic frameworks. Different 

types of pressure stabilizations are also available to use. By far, more than 1000 

recorded test cases for different problems have been executed using IFENs, on the 

facilities of HPC Wales, which provided a generous CPU time of 150000 hours.

IFENs, with its current capabilities has been successfully demonstrated to solve
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and provide realistic solutions to the problem of flow within human arteries. 

However, in such mathematical models, the physics of the problem is highly de­

pendent on the imposed boundary conditions. These boundary conditions are 

often unavailable or difficult to acquire from the human body. Even when such 

measurements are available, their correctness is often under question as the toler­

ance bands are really large. The pressure and velocity boundary conditions that 

were employed for the carotid arteries in this research yielded results consistent 

with the evidences in literature. Regions of possible plaque deposition have been 

identified in the geometries studied. However, validation with real patient data 

seems like a mandatory step to be absolutely confident about the predictions 

made. This must definitely be a future research direction. In the absence of med­

ical data, computational studies like these will not be able to make predictions 

with high levels of confidence, which is essential in introducing this technology as 

a usable tool to doctors and clinicians.

Since compliance of arteries play a damping role under pulsatile flow, incorpo­

rating the solid dynamics models to be able to simulate the interaction between 

blood and the arterial walls would be more complete, for which IFENs already 

serves as a starting point. Although, IFENs is currently closed source, undis­

tributed and solely developed by the author of this thesis.

Unlike conventional flow problems, arterial flow problems have an additional and 

active feedback loop, whereby the arterial walls adapt to the changing flow by 

sensing various parameters in the inner lining of the vessels called the endothelial 

cells. These parameters range from flow quantities (like the wall shear stress and 

oscillatory shear index, that were used in Chapter 5) to concentration of vari­

ous biochemical species in the blood stream (like Adenosin Diphosphate (ADP), 

Adenosine Triphosphate (ATP), etc.) [78, 137]. This mono layer of endothelial 

cells also acts as a selective barrier and controls the passage of materials to and 

from the endothelium [36]. The endothelial cells respond to these stimuli via
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eNOS (endothelial Nitric Oxide synthase) synthesis and calcium ion (Ca2+) sig­

nalling [126, 124, 125, 149]. Under normal conditions atheroprotective reactions 

are elicited within the endothelial cells. When the endothelium ceases to perform 

its intended function and enters a non-adaptive state, a state called endothelial 

dysfunction is said to be attained. Endothelial function and bio-availability of 

Nitric Oxide (NO) affect myocardial function, systemic and pulmonary hemody­

namics, and coronary and renal circulation [98]. As a m atter of fact, the 1998 

Nobel prize in Physiology/Medicine was awarded to Robert Furchgott, Louis Ig- 

narro and Ferid Murad for their independent discoveries that "a short-lived gas, 

nitric oxide, NO, was endogenously produced and acted as a signaling molecule 

between cells" [3]. The incorporation of endothelial dysfunction and signalling 

models to the fluid simulation will therefore be valuable in better understanding 

the causal mechanisms, of which only the effects are getting better understood 

lately.

Following this direction of research, an implicit, parallel mass transport model 

was developed using SIFENs and the results for the concentration of biochemical 

species were benchmarked for idealised geometries. Also, the eNOS and calcium 

ion signalling models presented in [124] were implemented and tested for idealised 

geometries. The unison of the Navier Stokes solver - IFENs, the implicit mass 

transport solver (for ATP/ADP) and the eNOS and Ca2+ simulator has resulted 

in the addition of a one sided feedback mechanism to the problem of arterial 

flow. It remains to run this collection of software for patient specific meshes 

and to complete the feedback loop, which can be realised efficiently with the 

incorporation of a solid mechanics framework for the remodelling of the walls.
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A ppendix A

Sample M PI code explained

The MPI-based code enclosed in section 3.2.1.1 is considered here in this ap­

pendix. This code is analogous to a MWE x, intended for illustrating the frame­

work of message passing rather than a bug, that MWEs are generally associated 

with. This code aims to provide an easy to understand and intuitive base on 

which to build the actual parallel Finite Element application.

The code along with the 9 MPI subroutines used are briefly explained below:

1. Header

The header, here makes reference to the first 3 lines in the code. As with 

non-MPI codes, the program keyword informs the compiler about the start 

of the program and implicit none results in no assumptions being made by 

the compiler about the data-type of variables based on the starting character 

of their names. This is standard for Fortran90 programs. Line 3 however 

is MPI related. It results in the inclusion of the header files necessary to 

interface with the actual MPI implementation itself.

1 short for Minimal Working Example, in the field of computing
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2. Standard D atatypes

Line 4 - Line 12. This is standard in Fortran90 and needs no additional 

explanation. It must be noted that use of status (M PI_S TAT US_SIZE), 

which would result in a syntax error in standard Fortran90, is valid when 

the MPI header file has been included.

3. Basic m andatory calls

Line 13 - Line 15. These subroutines need to be invoked in every MPI 

program.

M PI IN IT (1 arg)

This call initializes the MPI derived library. In Fortran90 there is just 1 

argument to this call. This argument serves as an error-checking integer. 

This is a strictly mandatory call and the actual program must preferably 

start after invocation of this subroutine.

M PI COM M  SIZE(3 args)

The abstract space formed by participating processors in an MPI environ­

ment is called a communicator. It is possible to have more than 1 communi­

cator in an MPI code. The code developed in this research uses just 1 com­

municator. The default communicator is named MPI_COMM_WORLD. 

The M PI_COM M _SIZE  subroutine finds out the total number of partici­

pating processors in a particular communicator. In this case, this number 

is stored in the variable named numProcs

M PI COM M  R A N K  (3 args)

When having multiple processors to deal with, it becomes mandatory to 

be able to index them and send/receive specific instructions/data. This 

is made possible by processor ranks. Ranks may be treated equivalent to 

names which aid in processor identification. When M PI_CO M M _RAN K  

is invoked, the calling processor gets to know its rank in the communicator. 

In this case, this number is stored in a variable named myrank.
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4. Selective Printing

Line 16 - Line 18. To monitor the progress, it is often desirable to print 

suitable messages at selected points in the code. Since in an MPI environ­

ment all statements in the source code are visible to all processors, it is 

often tidy to print the progress monitoring statements in 1 processor only. 

Now that we know the ranks of all processors, we can print conditionally 

based on their ranks. In this case, the string Starting program gets printed 

by rankO processor only.

5. Check 1

Line 19 - Line 23. Since this is a very specific program, it needs to be run 

on 12 processors only. In these lines, every processor checks if the correct 

number of processors are being used. If not, M PI_ABO RT  gets invoked, 

which is equivalent to the standard stop statement in Fortran90.

It might have been possible to perform this check in 1 processor only and 

the invocation of M PI_AB O RT  in just 1 processor would have resulted in 

all other processors to abort. However, in the meanwhile, other processors 

might have moved on to execute the remaining statements. In this code, 

it is not strictly necessary to worry about synchronization. However, in 

production codes, careful thought must be given to such situations. Either 

the underlying design, must be neutral to the need for synchronization or 

suitable means must be in place to prevent asynchronous behaviour.

6. Processor Rank Strings

Line 24 - Line 25. On occasions, where messages are printed by all proces­

sors, it is often important to know where the messages came from. To avoid 

confusion, it is considered a good practise to print the name/rank of the 

processor before every message is printed. To do this a write statement is 

used. Instead of conventionally printing to file, it is possible to print also to
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variables. Line 24 accomplishes this. Since processor ranks are 0 based by 

default, for convenience the ranks are offset by 1, to get a 1 based indexing. 

In this case, the variable myrank_char is used as an identifier at the start 

of every printed message.

7. Processor Specific File Read

Line 27 - Line 36. Every processor (except the last processor, i.e. rank =  

numProcs) is assigned to read a specific file. The names of each of these files 

are similar and appended by the processor ranks to make the identification 

obvious. Using the rank data from MPI_COMM_RANK subroutine, every 

processor generates the names of the files to be opened by them and reads 

its contents.

8. C onditional Task A llocation

Line 37 - Line 40. The result of this code is stored in a string called re- 

sult_basket, which is initialized to a series of Xs prior to the commencement 

of MPI communications, in rank 0 processor only.

9. M PI B C A ST (6 args)

Line 41 - Line 42. The M PI_BCAST subroutine is used to broadcast mes­

sages from a specified processor to all other processors in the communicator. 

It may be used to communicate both standard and user defined data types. 

The arguments include the variable to be broadcast, length, data type, rank 

of broadcast root, communicator and error status, in the order of appear­

ance.

10. Com m unicate M essages

Line 44 - Line 63. The messages are prepared, sent and received in these 

lines.

M PI R E C V (8 args)

As the name suggests, the M PI_RECV subroutine is used to receive mes-
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sages from other processors. This must typically be accompanied by a 

corresponding MPI_SEND subroutine. There are 8 arguments for the 

M PI_RECV subroutine. These are variable in which to receive, length 

of data, data type, rank of the processor from which to receive, tag, com­

municator, status, error status, in the order of appearance. This subroutine 

is invoked in just the last processor, in which the result string is generated. 

The M PI_RECV subroutine is of the blocking type, i.e. it returns only 

after the message has been completely received.

M PI S E N D (7 args)

As the name suggests, this MPI subroutine is used to send messages to other 

processors. This is typically associated with a corresponding M PI_RECV 

subroutine. There are 7 arguments for this subroutine. These are variable 

to send, length of data, data type, rank of the destination processor, tag, 

communicator, error status, in the order of appearance. Due to the na­

ture of communications here, the MPI_SEND subroutine is invoked by all 

processors except the last one.

11. Synchronization

Line 65. The MPI_BARRIER call may be used to synchronize all proces­

sors. Since every processor typically finishes its tasks in dissimilar times, 

depending on the nature of the global problem, the results may be intolerant 

to the absence of synchronization. Although the use of the MPI_BARRIER 

call here is not mandatory, it is used to just illustrate its usage. This MPI 

subroutine prevents code execution beyond the occurrence of M PI_BARRIER 

call, in all processors. Only after all processors enter this call, will the code 

execute beyond this point.

12. M PI FINALIZE

Line 69. Like M PI_INIT initializes the MPI library, the MPI_FINALIZE 

library terminates the MPI library. It is a mandatory and correct way of
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ending an MPI program. This must be invoked at the very end, but before 

the Fortran end program line.
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Sample PE T Sc code explained

The PETSc code enclosed in Section 3.2.2.2 is considered here and a brief de­

scription of the code will be provided with the aim of highlighting the PETSc 

components in the code. The 4 x 4  linear matrix system of Figure ?? is solved 

with MPI parallelism, using the KSP objects of PETSc. A block wise description 

of the code will be presented below:

1. Header

Lines 4 through 9. These are the standard header files that must be used in 

every application intending to use PETSc components. There is a header 

file specific to every object (e.g. Mat, Vec, KSP, SNES, etc.) tha t must 

be loaded for these data types to be recognised by the compiler. Also, 

these header lines begin with an include statement, preceded by a # ,  i.e. 

these are preprocessor specific statements that are processed before the 

compilation begins. It is therefore mandatory that the file name with which 

these statements occur, have the F90 extension.

2. PE T Sc data typ e

Lines 11 through 15. Here all the variables that use PETSc data types are 

defined.
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3. Fortran data types

Lines 17 through 19. The standard Fortran data types are associated with 

the required variables here.

4. Initialization routines

Lines 21 through 23. Like in an MPI program, the scope for MPI parallelism

starts with an M PI IN IT  call, in PETSc the equivalent is Petscln itia l-

ize. The first argument for P etscln itia lize could either be a dummy argu­

ment, called P E T S C _N U L L _C H A R A C T E R , or it could also be the 

name of the options database file. This options file may be used to set differ­

ent solvers, preconditioners, matrix formats, etc. The M PI COM M  R A N K

and M PI CO M M  SIZE subroutines are already described in Appendix

A. The only difference exists in the name of the communicator, which in­

stead of being M P I_C O M M _W O R L D  is called P E T SC _C O M M _W O R L D .

5. M atrix partitioning

Lines 25 through 26. Since the problem is so small, the matrix partitioning 

information is manually set and selected in each processor based on the 

processor rank.

6. Parallel M atrix G eneration

Line 28 through 30. Objects are created and destroyed, as and when nec­

essary. The names of the subroutine are quite descriptive and therefore 

intuitive. The MatCreate subroutine generates a parallel matrix in the 

communicator specified. Also, a name is assigned to this parallel matrix 

(LHS). The sizes are set using MatSetSizes subroutine. One needs to pro­

vide the global size (total number of rows and columns) and the local size 

(number of rows and columns owned by the processor that is calling this 

subroutine). The call to MatSetUp, sets up the internal matrix data struc­

tures that will be used as the entries will be assembled into the matrix. The
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matrix being constructed here will serve as the main system matrix.

7. Parallel Vector G eneration

Line 32 through 35. Like for matrices, a similar procedure is adopted to 

define, size and setup a parallel vector. The solution vector is generated 

here. In addition, the right hand side vector is simply constructed by using 

the VecDuplicate subroutine.

8. Population o f the parallel m atrix and vector

Line 37 through 54. The global indices (of the parallel matrix) in which 

to insert the elemental matrices, are generated first (0 based indexing). In 

this simple case, the values are added row wise, one after the other. The 

same procedure is adopted for vectors too. This simple method is chosen for 

illustrational purposes only. Efficient value insertions must occur for real 

problems. When this step completes, the finite element assembly would 

have completed automatically.

9. Parallel object assem bly

Line 56 through 59. Like the finite element assembly, one needs to perform 

also the parallel object assembly in PETSc, to ensure that every processor 

has updated entries, ready to be used for the computations of the next step.

10. Solve the linear system

Line 61 though 63. Before the linear system can be solved, a KSP object 

must be created. This object must then be made aware of the matrix, 

matrix preconditioner, right hand vector and the solution vector, before it 

can solve the parallel system iteratively.

11. D isplay Line 65. To print solutions contained in parallel objects to files or 

screens, object based *View commands are available.

12. Term ination Line 67 though 68. Like an MPI program terminates with
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a finalize statement, PETSc programs terminate with call to PetscFinalize. 

The scope of the calling Fortran program is then brought to an end using 

the usual end program statement.
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A ppendix C

D etailed  form ulation of 

N avier-Stokes Equations
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(The divergence of velocity is 0 for incompressible flows)

The notion of the Newton iteration will be introduced here for the non-linear term, 

which will be solved using a Newton_Krylov type solver in PETSc. The super­

scripts nn and nn+1 represent the Newton iterations. The terms at time level 

n +  l are actually equivalent to terms at the (nn +  T)th Newton iteration, when the 

Newton method has converged. The TermlO can therefore be written as,

r - /  dunn+1\
TermlO =  /  N T ( n^n+1— ------) dPl

Jn y OXi J

Noting that,

un+1 ~  unn+1, at Newton convergence, and
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(the third term on the RHS reduces to zero from the mass conservation law for 

incompressible flows)

Applying the mass conservation law after interchanging the derivatives in the first 

term results in,

T  erm3 =
P JCi

N T
d ( dm

p Jn dxj \d x i
dQ -  H f  N T —

p Jn dxi
d ( duj

dxi
dfi,

167



Chapter C. Detailed formulation of Navier-Stokes Equations

= - -  /  NT~  ( P  I dQ p Jn OXi V
d ( dui

I dil

(C.7)

Again noting that, un+1 «  unn+1 k  unn+1 «  unn +  5u,

n 0 \  nn+ 1

TermZ = - -  f N t — ( A ]  dQ 
p Jn OXi \  uXi J

/  ^ » « I ) * , _  e  /  * *  ( < & > )  * ,
otrj \  a^i y p Jn OXi \  OXi )

P

P

(C.8)

Integrating by parts and neglecting the boundary integrals,
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Chapter C. Detailed formulation of Navier-Stokes Equations

Noting that un+1 «  unn+1 and unn+1 «  unn +  Su,

T e rm ll -

d N T
{uln + 5uk)—  

2p Jn dxk
n n d u T  n n ^ U j  _ &

U ?  —r ^ -------- h I t ?  - r — ^  +  S U i —r^---- b J it,-
dx* 1 dxi 

d N T B6u
dxk dx-i dxk U% dxi ^  ak dx

3 nn & N T  d u ™
3 +  u?n —— fot,- J

dx,-

x d N T nndu™ d N T̂ m i f  _ dN
L / JU fc kJJU  ̂ \J Ji/ fc KJ Ju2, 1 / JU

= T e r m l la  +  T e rm l lb  +  T e r m l lc  +  T e r m l ld

(C.12)

Term 11a

T e r m l la  =
A, ,

OXi
r d N T/ u l n ——

Jn o x k ujui

A t  r nn __ d N T dvJ\n _
  /  7 / n n 7 / n n ______________ ^— ^ 7 0

2p Jn k 1 dxk dxi

Approximating as usual, 

Atm  r - ~ d N T ( d N  \
™  S - * r  «

At 
2p Jn Ni N 2 N 3 Na ><

Nnn /
Uki Hii

Uk2 f ) ^12
s N i  N 2 N 3 NT4 M

u kz I J CO•tS»
3

Uk4 ^ ^ 4  V. ’ /

d N T ( d N
u\

dxk V dxi 3
dQ
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Chapter C. Detailed formulation of Navier-Stokes Equations

A t  
2P

Jn (NlUkl + N2uk2 + N 3uk3 + NiUki)nn N2 N3 N4

v nn

^ii

^ 2

Wt3

^ 4

d N T ( d N
dxi

-u„
d x i  3

dQ

_  A t  (  
2 p Jn

^ i uki +  NiN2Uk2 +  NiNsUfo +  NiN±Uki 

N \N 2/iik1 +  N%Ufa +  NsNiU^  +  N^^Ufa  

AhA^w^ +  A ^ A ^  +  N^Ufa +  N^NsUfa 

NiN^Ufa +  A ^ A ^  +  N^N^Ufa +  N%Ufa

nnJ / \
Ufa

U i2
> <

Ufa

/ U{4 \  /

At_V_
2p 20

A t] /
2p 20

“H Ufc2 -I- -|- Ufa

^ f c i  d "  2v,fa - ( -  - | -

Ufa +  Ufa +  2ttfe3 +  Ufc4 

^fci d - Ufa  “I- Ŵ 3 ~|“ 2lLfa

{ A u x } r { d i } n^ m { £ > i } { u 3y

x n n 1 * >
U h

Ufa
> <

Ufa

Ufa

d N T ( d N
u'

dxk V J

/cd/V 
dx*, y dx,

u\ dQ

(C.13)

where A U X  =  <

2ufa +  Ufa +  Ufa +  Ufc4 

f̂ci d- 2ufa -\- Ufa Ufa 

Ufa d - Ufa  +  2Ufa  +

U/ti +  Ufa +  Ufa +  2 Ufa
duced in the interest of space.

Term l i b

is an auxiliary vector, which is intro-

T erm l lb
_  A t  r 

2 p 7c2p Jn
d N T d5uj 

u T  ——  u T  dQ
dxi dxi
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Term 11c

A tV_
2p 20

Uk2 d- ^^3 “I- ^^4 

Uk i +  2 +  Ufc4

Wfcl +  Uk2 “f" 2 Ufcg +  Ufa 

f̂ci d- ̂ /c2 d- d- 2Ufa

d N T d N  
d xk  d x i  Wj

T e rm ite -  ^  f  un n ^ l 5uM ^ dU
~  2 p J a Uk d x * ' d X i dU

*  f  unn5u ^ l dj r dn
2 p J a Uk d U , d x k a Xi d  

( 2Ufa d“ ̂ 2̂ d- Ufa -|- Ufc 
f̂ci d- 2Uk2 d- + U/j 
f̂ci d- ̂ 2̂ d- 2Ufc3 -(- Itk, 

Ufa d- Ufa d~ ̂ 3̂ d- 2lî 4 ̂

At V
2p 20

d N T d N ^  
d x k  d x i  3

(C.14)

(C. 15)

Term l i d

T e r ml l d = At
2p

/ 5uk^ - u T - ^ d Q  
Jn o xk  OXi

A t  f  nnf d N T d u f 1
—  /  Uj <5u*------
2p Jn axfc arE*
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Chapter C. Detailed formulation of Navier-Stokes Equations

A t  V  d N T d N
2p 20 dxk dxi 3

2uix +  Ui2 +  Ui3 +  UiA 

+  2 Ui2 +  Ui3 +  uu 

Uiy +  U{2 +  2 Ui3 +  Ui4

Uiy “I- “I- Ui3 “I- 2U{4

= — { D l H D i H u j r i A U X j r i S u , }

Sui

(C. 16)

Step 1 in fully  discrete fo rm

T  erml  +  TermlO +  T  ermZ +  T  e rm l 1 =  0 

==> T erm l +  T ermlOa +  TermlOb +  TermlOc +  Term3i 

+Term32 +  T e r m l la  +  T erm l  lb +  T e r m l lc  +  T e r m l ld  = 0

~Q{Di}{uT)W]{5ik} + ^[Ai]{fi;}nn + y  +

~̂{AUX}r{uir n{Dl}{Di}{uj}nn + — {AUXjriuir^DlHDiHSuj} +
^ { D l H b i H u ^ i A u x y r i S u i }  + ^ { £ % } { £ > i } { 6 i } m { A 0 x } r { 6&k}« o

(C.17)
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Chapter C. Detailed formulation of Navier-Stokes Equations

+ — {AUXWm^iDniDiHSuj}  +

}{uj }nn{ A U X } T { S u i} + ^ { D l U D i U u ^ i A U X j r i S u , }  =

- ^ [ M m } nnW i K M " "  -  ^ [ H a \ { u } } nn -  ^ h {^ t / X } r { ) i .r { £ ) T}0 . }{fi,r „

(C.18)

C.2 Spatial discrertization of step 2

A ^/n^ Apdn = - p J J Td£ d Q + A t L " T S1/ U  ( / 1 / ^ 2  L /  «X/  o «/  a  L t /  m/  <|

T  ermm = T  erm5 +  T  erm6 (C. 19)

Term m

Ter m m  =

T  ermm =

j g  j j T A r d a

20Aic2

V
20Aic2

[M]{Ap}

2 1 1 1 Api

1 2 1 1
<

Ap2

1 1 2 1 Ap3

1 1 1 2 Ap4
v. /

(C.20)

Term 5
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Chapter C. Detailed formulation of Navier-Stokes Equations

T  erm5 =

T  ermh =

- p  f  N T^ d Q .  
Jn dxi
r - d N  

—p / N T- — dQvJ 
Jn dxi

" a m d N i d N i d N 4 '
' <dxi dxi dxi dxi

dNi 8 N 2 d N i d N A n i*
dxi dxi dxi dxi < U i l

d Ni d N i d N i d N j U *Ui3dxi dxi dxi dxi

dNi d N i d N i d N i
u tI *4. dxi dxi dxi dxi  .

Vp
4

Term 6

r - d2p nn+1 
Termft =  A t  /  dQ

Jnn dxf

=  A t f  N T ^ d n  + A t  f  N * ? - M d n  
Jn dxj Jn 0 X7

Integrating by parts and neglecting the boundary integrals,

m a f  d N T dpnn _ . r d N T d(5p)TermQ = —A t  / —-------— dQ — A t  / —-------— dQ
Jn OXi dxi Jn OXi oxi

= T e r m f t i + T e r m 62

Term  6 i

d N T dp
Term^i  =  —At [  

Jn

nn

n dxi dxi 
d N T d N

dQ

= - A t  f  — — dQ& 
Jn Oxi Ox4

(C.21)

(C.22)
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Chapter C. Detailed formulation of Navier-Stokes Equations

- V A t
d N T d N
dxi dxi

d N \  
dxi

=  - V A t

= - V A t

am.
dxi
d N 3

dxi
d N 4  

dxi
d N ?
~dxft

dm dNi 
dxi dxi
dm dNi
dxi dxi
dm dm
dxi dxi

p n

dm
dxi

dm
dxi

dm dm
dxi dxi

dNi

dm dm
dxi dxi
dm dm
dxi  dxi

dm
dxi

dm
dxi

dm dm
dxi dxi
dm dm
dxi dxi

dNi
%

dm dm
dxi dxi

P i

P2

P3

P a

dm dm
dxj. dx<i
dm dm
dxi dxi
dm dm
dxi dxi

dNi 
d x ?

' '

P i

P2
<

P3

P a \  /

= - V A (C.23)

Term  62

d N T d(Sp)
Terrnf)2 = —A t f  A:

nn
dQ

n dxi dxi
= - V A  tlHullSp}™ (C.24)

Step 2 in fu lly  discrete fo rm

T erm m  - Term5  +  T erm 6 

T  ermm  =  T  ermh +  T  erm6i +  T  erm§2

i.e.

176



Chapter C. Detailed formulation of Navier-Stokes Equations

^ j ^ [ M ] { A p }  =  ~ ^ [ N D i] m  -  VAt[H ii\{p}nn -  VAt[H im r n 

i'e> 2 ^ [ M ] { A p } + T [ N E > m } + V A t iH^ i sp}nn = ~ V A w m ™

C.3 Spatial discrertization of step 3

f  N Tu"+1da  -  f  N Tu*da +  —  [  N T- ^ - d n  =  o
Jn J Jn J p Jn oXj

Term7  +  TermS  +  Term9  =  0

Term  7

Term7 = [  N Tu’'+1dQ
Jn J

= [  N Tu T +ldO,
Jn J

= [  N Tv%ndQ + t  N TSUida
Jn J Jn

=  ^ m { u j } nn+ (C.2 5 )

Term 8

T erm 8 = -  f  N Tu*dtt 
Jn J

=  ( c - 26 )

Term 9
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Chapter C. Detailed formulation of Navier-Stokes Equations

Term9 = —  f  N T ^ ^ — dCl 
Jn oXj

A  t  r  ~ Q r^ n n + l

—  f  N T%- dQp Jn OXj

*  [  If r W l dn + ** [
p Jn OXj p Jn OXj

Term9\  +  T  erm92

dQ

Term  9i

Term 9l =  —  f  N T^ — dQ 
p Jn OXj

=  /  ^ N d Q pp  Jn OXj

Term  92

Term% = —  f  N T ^ - d Q .p Jn OXj
A t v

=  - — ^ { Di N \ i 5p}

Step 3 in fully  discrete fo rm

Term7  +  T  ermS +  T  erm9 =  0 

T  erm l  +  T  ermS  +  T  erm9\ +  T  erm92 =  0
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Chapter C. Detailed formulation of Navier-Stokes Equations

+  E -  h [ M ]{ q }  -  -  — {DjNKSp} «  0

In summary the fully discrete form of steps 1 through 3 are as follows,

s tep  1

^ y [ M ] { A f i * }  +  }{««,} +  ^ { D M u ^ U M U S u i }  +

t y l H u R S G , }  +  ~ { A U X } r { u i } nn{ D l } { D i} {5u j } +

| ^ { b l } { D i } { u j } nn{ A U X } T { S u i } +  — { D l H D i H u j r ^ A U X j r i S u , }  = 

-h [M ]{« j}""{A}{%}nn -  ^ [ H u K u j } ™  -  Y p ^ { A u x } T { u i } nn{ b Tk } { b i } { u j r n

(C.27)

s tep  2

^ h _ [ M ] { A p }  +  Y l [NDi\{Ol} +  yA t[A i]{5p}"n =  - V A t [ H ii]{P}nn (C.28)
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Chapter C. Detailed formulation of Navier-Stokes Equations

s tep  3

k[M ]{<% } -  h[JW]{flj} -  ^ Y - [ D jN ]{5p} «  _ E [Af]{fl,}-» +  ^ t Y - l D j N ]{p™}

C .3.1  M on o lith isin g  step

Writing the step 3 equation in terms of ’i’ index, to make the substitution from 

step 3 into step 2 possible.

S tep  3 in  t e rm s  o f  i

^ W M S U i }  -  h  [M]{un -  * p L [ D tN \ m  «  +  ^ [DiN]{pnn}

{ft*} =  {6Ui} -  + {ft*}"" -  y  ~ [ M - ‘] [ A J V ] { ^ .29)

Substitute (C.29) in (C.27) and Eq. (C.29) in Eq. (C.28),

20Ar JL JJ 4p JJl J 20A r  Jl •'J 4p

+ h{A}{flr}[W]{«fli} + y  [HiiRSuj} +

— {AUXjrm^DtHbiHSuj}  + — {DlHDiH^lAUXjriSui} +

— { D l H D i H u ^ A U X j r i S u , }  = -k[M]{fii}""{A}{%}nn - y  [^K^r +
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Chapter C. Detailed formulation of Navier-Stokes Equations

-  ^ ^ { A V X } T { u ir n{ b l } { D i}{uj r n (C.30)

^ - 2[ M ] { A p } ^ + ~-[NDi\ ({5U,} - — { M - ^ N j i S p } + {ft,}"") -
Y^[NDi] ( ^ [ M ~ 1][DiN}{pnn} )j + V A t [ H ii]{Sp}nn =  - V A t [ H it\ {p } nn

(C.31)

Rearranging,

( j Q{Di}{uT}[M]  +  ^ - { D l H D i m r ^ A U X } ^  {«*}

( 2 m [M] + ^ M W i } nn{Di} + y  [Hu] + ~ { A U X } r { u i } nn{ D l }{ A }) { « ,}  +  

( ~ ~ { D l } { b i } { u i } nn{ A U X } A  {6uk} +  (J-p W D ^  {Sp} «  

~ ^ A t [M]{ili}nn ~ TPlNDj]{pnn} ~  ^ [ M K«i}"n(A }{% }nn -

(C.32)

+  ( - ^ [ j v a h m - ' h a jv ] +  V A t[A d) W  «

-^■[NDi] ^ [ M - ‘][A JV ]{r"} j -  VAt[Hu]{p}nn -  l- ^ [ N D i}{ui}nn (C.33)
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Chapter C. Detailed formulation of Navier-Stokes Equations

Just the 5 terms are retained in the LHS to form the Jacobain matrix and the terms 

at Newton iteration nn  are moved to the RHS.

C.4 Monolithic equations without indices

Equations (C.32) and (C.33) represent the fully discrete form of incompressible 

Navier-Stokes equations, in monolithic form and will be expanded in this section 

to get the index-free form, that makes the coding process easier.

j  = 1, i = 1 to 3 & k — 1 to 3 in (C.32) leads to,

^ { D 1}{ur}[M ]{5u1} + ^ { D 2}{ur}[M]{Su2} + ~ { D 3}{uT}{M}{5u3} +

+  2 0 ^  ({“ i} n"{^M +  ( “2}”"{-D2} +  { fts }" " -^ } ))  {<5fii} +  

t y [ H n  +  H22 +  +  ^ { N D ^ m  *  -  -

^ [M ]  ({«!}“ *{/?!} +  m nn{D2} + -

t y [ H u  + H22 + H33]{fii}"n +  (C-34)

i.e.

ai{(5ui} +  a 2{8u2} +  « 3 {Ju3} +  (3{5p} = 7  (C.35)

j  = 2, i = 1 to 3 & k  = l  to 3 in (C.32) leads to,

+ ^ { D 3} { u T } m { 5 u 3} +

(2m[M] + S[M] 2}+{fiart̂ })) +
~ ~ [ H n  +  H22 +  H3i ]{8u2} +  ¥-[ND 2]{5p} «  - 2 ^ - [ M \ { < h } nn ~  ^ { N D 2}{pnn} -
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Chapter C. Detailed formulation of Navier-Stokes Equations

^ [ m ]  ( R r p i } + {<i2r n{D2} + {fi2}"n -

y  [# n  +  H22 + H33]{u2}™ +  ^ X ^ [ M ] - K }  (C.36)

i.e.

+  S^Su-z} +  S3 { }  +  t{Sp} — C (C.37)

j  = 3, i = l  to 3 & k  = l to 3 in (C.32) leads to,

+  ^ { D 2} { u T } [ m ^ }  +  | j  +

( 2 0 A t ^  +  2 0 ^  ({“ i}n"{ A }  +  {u2}nn{D2} +  {u3}nn{D3})J {i5u3} +  

y  [Hn +  # 2 2  +  # 33]{5fi3} +  ^ - { N D 3]{Sp} »  -  J ^ - [M ]{ f i3}™ -  Y-[ND 3]{p™} -

^ [ M ]  ({«!}"»{A }  +  {u2}nn{D2} +  {«3}""{jD3}) {u3}nn -

y  [Hu  +  H22 + H33]{u3}™ +  (C.38)

i.e.

77i{Jui} +  772( ^ 2 } +  773( ^ 3 } +  9{Sp} =  l (C.39)

no j, i = 1 to 3 in (C.33) leads to,

Vo Vo Vo
- f l N D ^ d u , }  +  - f [ N D 2]{5u2} +  - ^ [ N D 3\{5u3} +  VA t[H n  +  H22 +  ff33]{<*p} -  

([tV A H M -^A iV ] +  [ND2][M~1][D2N] + [ N D ^ M - ^ D s N ] )  {<¥} «

([NDJIM-'JIDiN] + [N D iH M -^D iN ]  + [ N D ^ M - ^ D s N ] )  {p}nn -

VA t[H u  + H22 + H33]{p}nn -  ~ { N D i ] { u i } nn -  N D 2]{u2}nn -  N D 3]{u3}nn

(C.40)

183



Chapter C. Detailed formulation of Navier-Stokes Equations

i.e.

K,{ui}n+1 + A{u2}n+1 + n { u $ } n+1 + v { p } n+l =  £ (C.41)

In matrix form,

cq 0.2 Os P Sui
/  N
7

S3 e Su2 c
< > =  i

e Su3 i

K A I/ 5p A.

(C.42)

For linear tetrahedron elements, every matrix entry is a matrix of size (4*4) and 

every vector entry is a vector of size (4*1).

C.5 Non-linear context

A typical non-linear system may be represented as,

f M )  = o

and the update of the Newton iteration is,

<t>n+ 1 =  <t>„~ J ~

(C.43)

(C.44)

The SNES (Scalable Nonlinear Equation Solver) solvers in PETSc approximately 

solve,

f'{4>) A<f> =  - m  (C.45)
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In general, the jacobian matrix, may be written as,

du\
dA
du2

--

dA
du3

dA
dp

d/2
du\

d h
du2

d h
du3

dj2
dp

d h
du\

d h
dU2

d h
dU3

d h
dp

d h
. d u i

d h
du 2

d h
d u  3

d A
dp  .

(C.46)

Since the system in Eq. (C.42) has been formulated in terms of 5u, the system ma­

trix itself serves as the Jacobian matrix, making the code highly efficient. Therefore,

/ '(* )  =  [j ] =

Oil &3 P

($1 82 J3 ^

m  r}2 773 0

K, X f l  V

(C.47)

It should be noted here, that the RHS in Eq. (C.42) is equivalent to the matrix 

vector product of the system matrix and the solution vector at a guess, had the 

system be formulated in terms of u instead of 5u.

C.6 Definitions

[NDi] =
d_

dxi (iV, N2 N3 JV4

dN±. d N 2 dN3 dm
dxi dxi dxi dxi

dNi d N 2 dN3 dm
dxi dxi dxi dxi

d Ni dNy. dm dm
dxi dxi dxi dxi

d Ni d N 2 dm dm
_  dxi dxi d xi dxi  .

(C.48)
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N\

N2

n 3

d N i d N i d N i d N i
dxi dxi dxi dxi

d N 2 d N 2 d N 2 d N 2
dxi dxi dxi dxi

dN* d N 3 dN* dN*
d%i dxi dxi dxi

d N 4 d N 4 d N 4 d N i
. dxi dx% dxi dxi

(C.49)
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A ppendix D

CSR m atrix and preallocation  

exam ple

In this appendix, a small pseudo sparse matrix system is considered. The CSR 

sparse matrix representation will be described, followed by an accurate preallo­

cation calculation. The following matrix system is considered in this appendix. 

Its rows are assumed to be contiguously partitioned across 3 processors.

Prod) 1 2 

0 3

0 0 

4 5

0

0 A B  \ C

P ro d 0 0 6 0 0 rs>/ D E  F

0 0 0 8 9 G B  \ I

Proc2 0 10 0 0 11

D .l  CSR representation

CSR is an acronym for the Compressed Sparse Row storage representation. It 

is almost identical to the yale format. W ithin the PETSc framework, the CSR 

representation is called the AIJ format. This format is used to efficiently store
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Chapter D. CSR matrix and preallocation example

matrices when the number of non zero entries (NNZ) are significantly smaller 

than the number of zero entries, i.e. when the matrix is sparse. Memory saving 

occurs by virtue of CSR storage, if,

„  m (n  — 1) — 1
N N Z  < — ------- ------

2

where m and n are the number of rows and columns, respectively.

The CSR format stores a sparse matrix as a collection three ID arrays - CSRval, 

CSRcol and CSRrow. The CSRval array stores all the non-zero entries, the 

CSRcol array stores the column index of the non-zero entries and the CSRrow 

array stores the indices at which every row starts. The CSRval array is simply 

written by making a list of all non-zero entries occurring in the matrix in a row 

wise manner from left to right. The number of entries in CSRval array is therefore 

equal to NNZ. As the CSRval array is being generated, a simultaneous record of 

the corresponding column indices generates the CSRcol array. Consequently, the 

length of CSRval array is also equal to NNZ. The CSRrow array is relatively 

complicated to construct. Depending on whether a 1 based or 0 based indexing 

is being used, the first entry of the CSRrow array will be 1 or 0, respectively. 

1 based indexing is used here. For the second entry, the number of non-zeros 

occurring in row 1 are counted and this number is incremented with the previous 

entry (i.e. 1), to get the second entry of the CSRrow array. The same procedure 

is repeated for the remaining rows. The number of entries in the CSRrow array 

is one more than the number of rows. The data contained in the last entry of 

the CSRrow array is one more than the total number of non-zeros in the original 

sparse matrix.

The CSR representation of the matrix appearing in Eq. D .l is,

CSRval =  s i  2 3 4 5 6 8 9  10 11
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Chapter D. CSR matrix and preallocation example

CSRcol =  | l  2 2 3 4 3 4 5 2  5 |

CSRrow =  | l  3 6 7 9 11

From the preallocation point of view, the CSRrow data may be used to calculate 

the exact number of non-zeros in every row of the sparse matrix. This can be 

simply done by taking the difference of consecutive entries. From the matrix 

partitioning information, this data can be made patch specific. As described in 

Section D.2, the NNZ data for diagonal and off-diagonal blocks may be generated 

by also taking into consideration the column numbers of the non-zero entries from 

the CSRcol array.

D.2 Preallocation

In Eq. D.l, the solid lines represent the matrix partitioning across the partic­

ipating processors and the dotted lines separate the diagonal (D) blocks from 

the off-diagonal (OD) ones. This distinction will usually be required to be made 

during the preallocation of memory for matrices in PETSc, as each processor 

stores the diagonal and off-diagonal blocks as separate serial matrices. The RHS 

of Eq. D.l, represents the block matrix form of the matrix on the LHS. The sub 

matrices [A], [B] and [C] are owned by ProcO (first processor), [D], [E] and [F] 

are owned by Procl (second processor) and [G], [H] and [I] are owned by Proc2 

(third processor). For ProcO, [A] is the diagonal block and [B] and [C] are the 

off-diagonal blocks. For Procl, [E] is the diagonal block and [D] and [F] are the 

off-diagonal blocks. Similarly, for Proc2, [I] is the diagonal block and [G] and

[H] are the off-diagonal blocks. By counting the number of non-zeros occurring 

in every row of both the diagonal and off-diagonal blocks of all processors, the 

required preallocation data is constructed.
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Chapter D. CSR matrix and preallocation example

Proc rank N N Z d N N Z od
P0 (2,1) (0,2)
PI (1,1) (0,1)
P2 (1) (1)

Table D.l: Matrix preallocation data

As an example, the second processor (Proc 1) is considered. Since just 1 entry 

occurs in the first (6) and second (8) row of sub matrix [E], N N Z p  = [1,1]. In 

sub matrices P ]  and [F], put together, no non-zero entries appear in the first 

row and just 1 entry (9) occurs in the second row, therefore, N N Z o d  — [0,1]- In 

summary, the complete preallocation data is presented in Table D.l.
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A ppendix E

Closed form expressions

In this appendix, the closed form expressions for the integral of shape functions

enclosed for the case of linear, 4 noded, tetrahedral elements, that were employed 

in construction of Finite element meshes used in this research.

E .l Integral of shape functions

The following closed form expression may be used for evaluating the typical inte­

grals. This prevents the need to perform numerical integration, thereby making 

the computations less expensive.

and the shape function derivatives with respect to all spatial dimensions will be

(E.1)
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E.2 Shape function derivatives

In cartesian coordinates, the shape functions for linear tetrahedral elements are 

given by,

N i =

No

N* =

where

RI =

1 xi yi zi
1 x 2 V2 z2

1 X3 2/3 Z3

1 x4 y 4 z4

X2 2/2 2 2 1  2/2 ^ 2 1 X 2 Z2 1  X 2 2/2
1 1 1 1

“ +R[ X 3 2/3 2 3
" R

1  2/3
X +  ] A i

1 X 3 Z3 y - Ri 1 x 3 2/3 2

x 4 2/4 z 4 1  2/4 Z4 1 x 4 Z4 1  x 4 2/4

Xi 2/1 Zl 1 2/1 Zl 1 Xl Zl 1 Xl 2/1
1 1 1 1

" "Ri X 3 2/3 Z3 + Rl 1 2/3 Z3 1 X 3 Z3 y + Ri 1 x 3 2/3 z

x 4 2/4 Z4 1 2 /4 Z4 1 x 4 Z4 1 x 4 2/4

Xi 2 /i Z1 1 2/1 Zl 1 X i Zl 1 Xl 2/1
1 1 1 1

X2 2/2 Z2 "Ri 1 2/2 Z2 1 X 2 z 2 y - Ri 1 X2 2/2 z

X4 2/4 Z4 1 2/4 Z4 1 x 4 Z4 1  x 4 2/4

X] 2/1 Z1 1 2/1 z 1 1 X l Zl 1 Xl 2/11 1 1 1
X 2 2/2 Z2 + R' 1 2/2 Z2 X"RJ 1 X 2 Z2 2/ + Ri 1 X2 2/2 z

X 3 2/3 Z3 1 2/3 Z3 1 X 3 Z3 1 x 3 2/3

(E.2)

(E.3)

Applying the following row operations, we can simplify the calculation,

R'i — R i  — R2 

R 2 =  R2 — R3
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Therefore,

Ro — R 3 — R 4

=  1

1 x 1 2/1 zi

1 x 2 2/2 z 2

1 x 3 y 3 z 3

1 x 4 y 4 £4

0 {xi -  x 2) (2/1 -  2/2) (zi  -  z 2) 

0 ( x 2 -  x 3) (2/2 -  2/3) (z2 -  z 3)

0 ( x 3 -  x 4) (2/3 -  2/4) (z3 -  z 4 )

1 x 4 2/4 z 4

(x i  -  x 2) (2/1 -  2/2) ( z i  -  z 2)

( x 2 -  x 3) (2/2 -  2/3) ( z 2 -  z 3 )

( x 3 -  x 4) (2/3 -  2/4) ( z3 -  Z4)

\A \=  (z4 -  z2)(x2y3 -  x3y2) +  {zx -  z3){x4y2 -  x 2y4) +  (zi -  z4)(x3y4 -  x 4y3)

+  (z3 -  z2)(x42/1 -  x Yy4) +  (z2 -  z4)(x3yi -  x 4y3) +  (z3 -  z4)(x iy2 -  x 22/i)

(E.4)

Next, the shape function derivatives are enclosed,

d N 1 1

Ri
1 2/2 ^2

1 2/3 2 3

1 2/4 24
14

(2/3̂ 4 -  2/4̂ 3) + (2/2̂ 4 -  2/4̂ 2) -  {y2z3 -  y3z2)\
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1 2/1 *1
d N 2 1

dx "  + R
1 2/3 *3 —

1 2/4 *4

1 2/1 *1

03 CO 1

dx "  ~ R
1 2/2 *2

1 2/4 *4

1 2/1 *1
dN± 1

dx "  + R
1 2/2 *2 —

1 2/3 *3

1 £2 *2
d N x 1

dy "  + R
1 £3 *3

1 £4 *4

1 £1 *1
dN 2 1

dy ”  ~ R
1 £3 *3

1 £4 *4

1 £1 *1
dN 3 1

dy ”  + R
1 £2 *2 ■—

1 £4 *4

1 £1 *1
dN A 1

dy ~  ~ R
1 £2 *2

1 £3 *3

1 £2 2/2
d N x 1
dz “  ~ R

1 £3 2/3

1 £4 2/4

1 £1 2/1
dN 2 1

dz _  + R
1 £3 2/3

1 £4 2/4

■ (2 /4* 1  “  2/ 1 * 4 )  +  ( 2/ 3 * 1  -  2/ 1 * 3 )  -  ( 2 / 3 * 4  -  2/ 4 * 3 ) ]

[ - ( 2/ 1 * 2  -  2/ 2 * 1 )  +  ( 2/ 4 * 2  -  2/ 2 * 4 )  -  ( 2/ 4 * 1  -  2/ 1 * 4 ) ]

[ ( 2/ 2 * 3  -  2/ 3 * 2 )  +  ( 2/ 1 * 3  -  2/ 3 * 1 )  -  ( 2/ 1 * 2  -  2/ 2 * 1 ) ]

R M * 3  “  * 4 )  +  ^ ( * 4  -  * 2 )  +  Z 4 ( * 2  -  * 3 ) ]

-  1 ^ 1  N ( * 4  -  * l )  +  3^ 4( * 1  -  * 3 )  +  X ! ( Z 3 ~  ZA)}

1
=  j ^ |  [Xa { Z i -  *2 ) +  X l  ( * 2  -  2 4 ) +  ^ 2 (2:4 -  -Zl)]

[£ i(z 2 -  *3 ) +  ^ ( * 3  -  * 1 ) +  Z 3 (* 1  -  *2 )]

=  “  2 /3 )  +  X 3 ( 2 /2  -  2 /4 )  +  £ 4 ( 2 / 3  -  2 /2 ) ]

—  M 2 / i  -  2 /4 )  +  £ 4 ( 2 / 3  -  2 / l )  +  Z l ( 2 / 4  -  2/ 3 ) ]
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dN 3 
dz

dN 4
dz

1
R i

=  +
RI

1 Xl y i

1 £2  2/2

1 x 4 2/4

1 x i  2/1

1 £2 2/2

1 £3 2/3

j ^ M 2/2 -  2/ i )  +  ^1(2/4 -  2/2) +  £2(2/1 -  2/4 )]

] - ^ [ £ 1 (2/3 -  2/2 ) +  £2(3/1 -  2/3 ) +  £ 3 (2/2 -  2/l)]
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