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Abstract: A methodology describing Coulomb blockade in the Non-equilibrium Green Function 
formalism is presented. We carried out ballistic and dissipative simulations through a 1D 
quantum dot using an Einstein phonon model. Inelastic phonons with different energies have 
been considered. The methodology incorporates the short-range Coulomb interaction between 
two electrons through the use of a two-particle Green’s function. Unlike previous work, the 
quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and 
coupling constants of the dot. Our method intends to describe the effect of electron localization 
while maintaining an open boundary or extended wave function. The formalism conserves the 
current through the nanostructure. A simple 1D model is used to explain the increase of mobility 
in semi-crystalline polymers as a function of the electron concentration. The mechanism 
suggested is based on the lifting of energy levels into the transmission window as a result of the 
local electron-electron repulsion inside a crystalline domain. The results are aligned with recent 
experimental findings. Finally, as a proof of concept, we present a simulation of a low 
temperature resonant structure showing the stability diagram in the Coulomb blockade regime. 
 
. 
 
 
 
1. Introduction 
 
The Non Equilibrium Green Function formalism  (NEGF) [1] has been extensively used to 
describe electron transport through nanotransistors [2] and other quantum nanostructures [3]. 
Ballistic and dissipative calculations have been carried for V and III-V materials and various 
device structures [4].  Carrier transport through quantum dots has also been thoroughly 
investigated using the NEGF formalism. In general, transport equations and Poisson equation 
need to be solved in order to calculate the current through the transistor device. Usually, the 
electrostatic potential calculated from the Poisson equation is used as the potential energy of the 
electron and is entered into the Schrodinger equation to calculate the transmission or current. 
This so-called mean field approximation fails when few electrons are localized or pass through 
very small regions such as quantum dots of few nanometre across. Coulomb blockade  (CB) [5] 
and Kondo effect [6-7] are phenomena showing a breakdown of the mean field approximation. 
The role of local Coulomb interaction in narrow band gap materials was first studied by Hubbard 
[8]. He wrote a minimal Hamiltonian in order to treat the penalty paid by electrons when 
localized close to each other.  He proved that for certain cases this interaction energy decayed 
very quickly as the distance between electrons increases. This could be represented by a constant 
term when the electrons occupied the same atom or molecule and zero when the electron where 
in different atoms.  So this interaction energy will in general depend on the extra population of 
electrons in the atom or small nanostructure and the localization of the electron or overlap of the 
single electron wave functions [8]. Wingreen et al [9] studied the Coulomb blockade in an open 
nanostructure using a simplified Hubbard Hamiltonian: the Anderson model [10]. Their paper 



used the Schrödinger equation in concomitance with a kinetic equation for the distribution 
function i.e NEGF formalism. They were able to reproduce certain experimental features. Pals 
and MacKinnon [11] also carried out NEGF simulations for single and double quantum dots 
using the Anderson model; they demonstrated negative differential resistance using this model. 
Recently, Ryndyk and Cunniverti [12] used a more general kinetic equation to describe the 
Coulomb blockade in single and double quantum dots, however, their calculations did not 
consider the electron-phonon interaction. Song [13] extended this description to molecules but 
used the Wingreen model [9] and demonstrated that the modification in the kinetic equation can 
be neglected for certain cases. Another refinement of Wingreen’s model was used by 
Zimboskaya to study Quantum Dot (QD) populations, conductance [14] and thermovoltage [15]. 
However, all the afore-mentioned models assumed the QD to be featureless so it is described in 
the formalism by the energy levels only and the connection with the environment is given by 
coupling constants representing the transmission between the dot and the contacts. In the present 
work the dot is described in a spatial representation and has a spatial dimension and potential 
shape. In addition, the dot is described as a quasi-resonant structure, and energy levels are 
derived from the resonant structure. Electrons enter the dot through tunnelling barriers. Our 
formulation is more aligned with the usual spatial description of the NEGF device simulation of 
nanotransistors in which the shape of the nanostructure, the height and width of the contact 
barrier plays a crucial role. In addition, we included in our description the local Coulomb energy 
through a two-particle Green function (2pGF). The Coulomb energy can be calculated from the 
overlap of the single electron wavefunction as done by Hubbard [8]. We have calculated the 
current through a 1D resonant nanostructure. We compared the currents obtained by the 
inclusion and exclusion of the two particle Green function. We have also carried out dissipative 
simulations using a simplified Einstein phonon model. We have compared elastic and inelastic 
processes and also different strengths of interactions.  Our result seems to support the claim in 
[16] that the inter-electron Coulomb repulsion is responsible for the increases in mobility 
observed in semi-crystalline polymers. The nanostructure considered here has the same 
dimensions as one of the crystalline domains studied in [16] and our Coulomb energy is 
calculated using the polymer dielectric constant. Section 1 introduces the equations, models and 
the nanostructure. Section 2 presents and analyses the results. Finally, conclusions and future 
work are drawn in the last section. 
 
The formalism treats the electron transport quantum mechanically and the electron distribution 
function is assumed Fermi-Dirac in the contact or large reservoir at constant potential. Due to the 
non-equilibrium conditions (electric fields) the electron distribution function is calculated inside 
the device due to the balance between phonon and electron energy exchange.  
 
 
2. Methodology 
 
In this section, we present a method to include local Coulomb interaction in a spatially resolved 
NEGF formalism. Spatially resolved means that the equations involved need to be discretised in 
the simulation domain such as a device (or Quantum Dot) and its contact regions. In this work 
we used an effective mass Hamiltonian to describe the electrons in the material. We will not 
derive the equations here but refer the reader to the appropriate literature [7, 12 and 14]. 
However, we will briefly indicate the steps involved. We start with the second-quantised 
Hamiltonian including the electron-electron interaction and utilise the Heisenberg equations of 
motion. The latter are used to write an equation for the expectation values of product of creation 
and annihilation operators. This produces a linked infinite hierarchy of equations connecting the 
one particle Green function (GF) with the two particle GF, and with three particles GF and so 



on. At this point a truncation approximation must be made to reduce the infinite system to a 
finite system of equations. Usually, the equation for a single particle Green function contains a 
two-particle Green function. Approximating the two-particle Green function by a product of 
single particle Green functions allows the reduction of the whole system to just one equation. 
Alternatively, in the equation of the two-particle Green function, one may approximate the three 
particle Green function as a function of a two particle Green function and a one particle Green 
function. This will produce a coupled set of equations for the one and two-particle Green 
functions. The idea is that the inclusion of the local Coulomb interaction may be achieved by 
considering just the two-particle GF. The way to include the two particle Green function is not 
universal and depends on which phenomena are to be described. The equations used in the 
present work are sufficient to describe Coulomb blockade and the phenomena of current 
enhancement due to Coulomb repulsion observed in polymers but they are insufficient to 
describe the Kondo effect.  However, our simulations are mainly for room temperature with the 
exception of a simulation of a resonant structure at low temperature (15 K) to demonstrate 
Coulomb blockade.  
 
The Green Function Matrix (they are matrices in the spatial index but the indexes are not shown) 
equations considered are [9]: 
 
(E −H −Σσ

R )Gσ
R = I +UGσ

2                                                                                      (1) 
 
(E −H −Σσ

R −U)Gσ
2 = n−σ                                                                                        (2) 

 
 Gσ

< =Gσ
RΣσ

<Gσ
A                                                                                                         (3) 

 
 
The first equation represents the dynamics (it is similar to a Schrödinger equation) for the 
retarded Green function  GR

σ (the upper index R stand for retarded). The sub index σ, describes 
the two possible spin orientations (up, down) of an electron. Thus each orientation requires an 
equation of motion. The E, H and ΣR terms denote the energy, Hamiltonian (without the local 
Coulomb interaction but including the potential energy of the nanostructure) and retarded self-
energy respectively. An expression for the Hamiltonian with the local interaction included is 
described in Appendix A, equation (A1). The second term in the right hand side contains the 
effect of the local Coulomb repulsion through the Coulomb energy U and the two-particle Green 
function G2

σ. The second equation is an equation to calculate the two-particle Green function 
where the term n-σ represents the number of electrons in the dot with spin opposite to σ. Finally, 
the third equation is the kinetic equation to calculate the lesser Green function G<

σ; it contains 
the total lesser self-energy. The latter is proportional to the scattering rates and has two parts, one 
related to the contacts (assumed in equilibrium) and the other to the scattering mechanism inside 
the device (as phonon scattering). In this work, the Hamiltonian and the boundary condition are 
spin independent so n-σ = nσ  . 
 
Appendix A makes plausible the ideas behind the derivation of equations (1) and (2). The 
derivations are well documented in several textbooks [7, 17, 18]. Essentially, equations (1) and 
(2) are exact for an isolated dot i.e. if the self-energies of the contacts are removed from both 
equations. If we coupled the dot with the contacts, contact self-energies and other Green 
Functions will appears in equations (1) and (2). These self-energies, in principle, are dependent 
on U and are formed by the addition of many terms. If instead of these self-energies, we used 
only the self-energies that appear in the problem when U=0 (i.e. a non-interacting dot but 



coupled to the leads), we recover equations (1) and (2) used in the present paper and used by 
many other authors [5, 7, 17, 18, 19]. It could be said that they are the simplest approximation 
that produces Coulomb blockade within NEGF formalism. A simplified description of the 
derivation is found in [7].   
 
 
3. Results 
 
We have used the above methodology to calculate the current through a simple 1D 
nanostructure. The length of the resonant structure is about 7nm (estimated by the local density 
of states in the well), which is in agreement with some of the lengths of the crystalline islands 
in [16]. The magnitude of the source-channel barrier is approximately 100 meV similar to those 
assumed in [16]. In this work, the short-range Coulomb energy U [8] is assumed to be 100 meV 
for the case of two electrons occupying the nanostructure. This value may be estimated from 
the Coulomb integral [8] in the well for the two opposite spin electrons. A heuristic quantum 
mechanical calculation using the two-centre integrals [20] with a dielectric constant of 3 and 
using Gaussian functions produces a value U= 80 meV for a spherical cavity of approximate 7 
nm in diameter.  The electrostatic Coulomb interaction energy between two electrons at 7 nm 
apart is approximately U = 70 meV. The above values show an indication of the order of 
magnitude of this interaction.  
 
Our simulations illustrate that inclusion of the Coulomb interaction leads to a substantial 
enhancement in the current and that the increase is still there when scattering is considered. 
This makes plausible the arguments of paper [16] that the Coulomb interaction in the semi-
crystalline polymer enhances the charge transport. 
 
Equations (1-3) are solved self-consistently for a double barrier nanostructure mimicking one 
of the nanocrystallite of reference 16 . We used a spatial resolved mesh of 0.1 Angstroms and 
in an energy mesh of 0.1 meV.  Ballistic and dissipative (phonon scattering) current 
calculations have been carried out using a simple inelastic phonon scattering mechanism 
(Einstein model). The corresponding self-energies [7, 17, 21,22,23,24] are calculated using the 
self-consistent Born approximation [17, 21 (Appendix), 25, 26] and the explicit expressions 
are given in Appendix A2. 
 
 
The inelastic phonon energies used in this work is 6 meV, 10 meV and 12 meV. Our main 
goals are: to compare the impact on the current from the local Coulomb repulsion; and also to 
study the effect of phonon scattering. In our simulations the difference between the two Fermi 
levels is kept constant but the Fermi levels are raised relative to the 1D structure. Our intention 
is to mimic an increase of electron population inside the nanostructure as in [16].  
 
Fig. 1 shows the local density of states (LDOS) with and without considering the 2pGF, when 
the total electron occupation in the well is 2 (1 for each spin direction). The white line 
represents the electrostatic potential energy seen by the electron and therefore outlines the 
resonant structure. The density of states is mainly localized in the nanostructure and in the 
contact but not inside the barriers; this indicates the quasi-localization of the electron inside the 
well. However, the second energy level of the well shows a large penetration into the barrier as 
seen in figure 1. This penetration also allows for a lowering in the energy level with respect to 
the isolated dot, an effect that cannot be considered if a spatial description of the dot is 
missing.   



 
When the 2pGF is neglected, the ground state energy of the electron inside the cavity is lower 
than the source potential energy. In addition the next confined state energy is too high in energy 
to be occupied. This is because the occupation is decreased by a Boltzmann factor relative to 
the ground state energy.  In this case electron current through the nanostructure is expected to 
be small, as electrons have no quasi-resonant level to connect the right and left contact. 
However, the inclusion of the local electron-electron interaction through the 2pGF (upper panel 
of Fig. 2) causes the energy levels to shift upwards in the cavity allowing the ground state of 
the well to enter into the energy window connecting the two contacts and a quasi-resonant level 
is established. In this case, current can flow more easily and the current is enhanced 
substantially reaching a maximum of 200 % at 130mV but dropping to 100 % when the cavity 
is occupied. This is shown in Fig. 2, which depicts the current as a function of the bias for the 
cases when the 2pGF is considered or not. This figure also shows the effect of the scattering on 
the current. The scattering reduces the current by scattering the electrons backwards.  The 
current reduction is 35% when the 2pGF is considered and 5 % otherwise. The large impact of 
scattering when 2pGF is considered is due to the scattering of electrons to lower energy levels 
making the probability of transmission through the second barrier lower. This is observed in 
Fig. 3, which shows the current spectra along the structure when 2pGF is included. 
The figure also shows that the current spectrum is continuous through the nanostructure, the 
maximum deviation ΔI / Iav of the current along the nanostructure from the average current Iav 
is 0.01. Therefore, the current is conserved locally. In order to get a better error the number of 
Born iterations needs to be increased. In addition, it is important to note that the LDOS shows 
the two poles related to the 1 or 2 electron occupation, both poles are shown at an intermediate 
occupation number.  
In order to understand the role played by Coulomb repulsion in the transport of the electrons 
through the nanostructure, it is better to look at Fig 4, which shows the normalized spectrum of 
the current (the current per unit energy and divided by the total current) at different bias or 
different occupation of the well. This figure shows how the current distributes in two peaks on 
the energy axis for each bias. The low energy peak corresponds to the energy shift induced by 
the Coulomb repulsion and the higher is the second energy level of the well.  At very low 
voltages the electron occupation in the well is low and the second peak controls the transport. 
This can be seen in Fig. 5, which shows the electron occupation in the well as a function of the 
bias.  As the occupation of the well increases, the current start to be controlled by the Coulomb 
repulsion energy level. It should be noted that the importance of Coulomb repulsion appears 
very early due to the fact that the population of the electrons decay exponentially with 
increasing energy so only a few electrons in the source have access to the second level. 
However at very low occupations, the local DOS of the Coulomb level is very small and the 
second energy level of the well dominates.     
 
Fig 6 and 7 show the LDOS for 10-3 eV2 and 10-2 eV2 electron-phonon couplings. Note the 
increase in broadening as the coupling constant increases.  
 
We have also considered the impact on the current for different phonon energies. Fig. 8 depicts 
the current voltage characteristic for 6meV, 10meV and 12 meV phonon energies. For 
successively larger phonon energies the current increases as the density of the states is 
concentrate around the quasi-resonant state. An additional reason for the increasing of current 
with increasing phonon energy is the fact that as electrons are scatter down the well the 
probability to be reflected back to the source is reduced.  
 



Finally, to confirm that our formalism reproduces the Coulomb blockade, we have carried out 
calculations for low temperature: 15K. The nanostructure is similar to those which have been 
analysed early however with relatively thicker walls and a smaller width. Fig. 9 shows the 
nanostructure, the energy for one electron and for two-electron in the well (i.e. the U shifted 
ground state). The height of the barrier is 1eV. Fig. 10 shows part of the Coulomb blockade 
stability diagram i.e. the conductance plotted in the VG-VD diagram. Our results agree with 
those using a non-structured dot. Ref (12 and 13) Note that the distance between the two 
vertices in the horizontal is equal to the charging energy U as expected.  
 
 
4. Conclusions 
 
The present study demonstrates that many-electron effects similar to the Coulomb blockade can 
be integrated in a phenomenological way into the standard position-dependent NEGF 
formalism of quantum transport in nanostructures that until now has focussed on the single-
particle formalism. Our introduction of two-particle Green functions for describing electron-
electron coupling in a spatially resolved resonant structure is an important advance in quantum 
transport modelling for nanostructures.  Because of the spatial extension of the structure the 
potential inside the structure may vary spatially. In addition, the self-consistent position-
dependent potential may control the size and height of the barriers bounding the nanostructure. 
However, the issue of how to address the transition between localization and delocalization of 
electrons inside an open nanostructure remains unsolved, as is the self-consistent calculation of 
the local Coulomb interaction in an open nanostructure. It is noted that the extension to full 3D 
models leads to significant computational complexity. 
 
Our calculations, when applied to a particular 1D model nanostructure, demonstrated a current 
increase when the 2pGF was incorporated.  This is due to the shift and splitting of the energy 
levels caused by electron repulsion inside the structure. Applying this qualitative result to 
experimental observations on polycrystalline polymers suggests the increase in current will 
result in an increase of observed mobility and supports the hypothesis that electron-electron 
interaction could be responsible for the mobility increase in nano-crystallites [16]. In addition, 
the enhancement in current due to the 2pGF is smaller when phonon scattering is considered. 
However, the impact of scattering in the current voltage characteristic is diminished when the 
2pGF is considered.  
 
Finally, simulations of a double barrier at low temperature showed as a proof of concept that 
our formalism is able to produce the stability diagram (Coulomb diamond) under Coulomb 
blockade conditions. This fact confirms the possibility in the future to carry out quantum 
transport simulation of nano-devices beyond the orthodox theory using two-particle space-
dependent Green functions. Future work on modelling realistic nano-transistors will require the 
incorporation of self-consistent electrostatics. 
 
 
 
 
 
 
 

 
	



 
 
 

Appendix A 
 
The total Hamiltonian includes the effective mass Hamiltonian and the local Coulomb 
repulsion U interaction inside the dot (the i index runs through the dot and the contacts) 
 
𝐻! =

!ℏ!

!!∗△!!
(𝑎!!!,!! 𝑎!,! +!,! 𝑎!!!,!! 𝑎!,! − 2𝑎!,!! 𝑎!,!)+… 

 
+ 𝑈!"# 𝑖 𝑎!,!! 𝑎!,!!,! + 𝑈 𝑎!,↑

! 𝑎!,↑!∈!"# 𝑎!,↓
! 𝑎!,↓                                     A1 

 
The first term is the kinetic energy in the effective mass approximation (Δx being the 
discretisation mesh), the second is the potential due to the nanostructure and the third is the 
Hubbard Coulomb repulsion, i denotes the spatial discretisation index along the 1D 
nanostructure. U Dot (i) is the potential energy due to the nanostructure. The U interaction is 
considered only inside the dot.  
Einstein Phonons:  The phonon model used here is described in references [17, 21, 22, 23 and 
24] and it is assumed to be local, i.e. the derived self-energies are diagonal in the space index 
i.  The self-energies associated to electron phonon interaction are given by [17, 21 and 23]: 
 
Σ!! 𝑖, 𝑖, 𝜀 = 𝐷(𝑛!! + 1)𝐺!! 𝑖, 𝑖, 𝜀 + 𝜀!! + 𝐷𝑛!!𝐺!!(𝑖, 𝑖, 𝜀 − 𝜀!!)                 A2              
  
Σ!! 𝑖, 𝑖, 𝜀 = 𝐷(𝑛!! + 1)𝐺!! 𝑖, 𝑖, 𝜀 − 𝜀!! + 𝐷𝑛!!𝐺!!(𝑖, 𝑖, 𝜀 + 𝜀!!)                  A3 
 
Σ!! = i Imag (Σ!! − Σ!!)/2                                                                                  A4 
 
 
Where D , εph and nph is the electron phonon coupling, the phonon energy, and the Bose 
Einstein distribution function respectively.  D and εph are assumed constants Ref [23, 24]. G< 
and G> the lesser and greater green function respectively. 
 
 
Derivation of Eqs for GR and G2, references and books:  
 
In principle, Eq 1 and 2 are derived elsewhere; see the references mentioned below, which 
contain several textbooks.  We have dropped the spatial indexes here as the dot has only one 
site and because they do not play any role in the derivation. The definitions of the GR and G2 
are found elsewhere [17, 18, 19] and are given by: 
 
𝐺!! 𝑡, 𝑡′ = −𝑖𝜃(𝑡 − 𝑡!) {𝑎! 𝑡 ,𝑎!! 𝑡! }                                                                   A5 
 
𝐺!! 𝑡, 𝑡′ = −𝑖𝜃(𝑡 − 𝑡!) {𝑎! 𝑡 𝑎!!(𝑡)𝑎!(𝑡),𝑎!! 𝑡! }                                                 A6 
 
 
The < > is a trace for all the expectation values of the non-equilibrium states of the system 
and {,} is the anti-commutator for Fermions.  
 
 

	



The equations for GR and G2 for an isolated dot (i.e. with no contacts) in the Fourier space 
can be derived from the Heisenberg equation of motion  
 
𝑖𝑎! = 𝑎! ,𝐻            A8 
 
 
Where the dot indicates time derivative and the Hamiltonian for an interacting dot is given by: 
 
 
𝐻 = 𝜀!𝑎!!𝑎!! + 𝑈𝑎↑

!𝑎↑𝑎↓
!𝑎↓                                                  A9 

 
using equation A8 and the definitions A5 and A6; and  after a lengthy algebra of anti-
commutators the following equations for the green functions are obtained. 
 
𝜀 − 𝜀! 𝐺!! 𝜀 = 1+ 𝑈𝐺!!(𝜀)                                                    A10 

 
𝜀 − 𝜀! − 𝑈 𝐺!! 𝜀 = 𝑛!!                                                         A11 

 
These equations are similar to the equations in this paper with only the coupling with the 
contact missing. Therefore the approximations used in this paper and in references [ 17 , 18, 
and 19] introduce the contact self-energies obtained for the non-interacting system ( i.e. no 
Coulomb interaction). This approximation excludes the Kondo effect as has been pointed out 
in [7 , 17]. The above equations produce the εσ  and εσ +U poles in the local density of states 
as required for Coulomb blockade.    
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Fig.1	 Upper	 panel:	 The	 LDOS	 including	 2pGF.	 	 Lower	 panel:	 The	 LDOS	 without	
considering	the	2pGF,	when	the	electron	occupation	in	the	well	is	2.	
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Fig.2	 The	 current	 voltage	 characteristics	 for	 ballistic	 and	 scattering	 simulations.	 The	
simulations	shown	in	red	include	the	2pGF	and	the	blue	neglects	it.			
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Fig	3.	Current	spectra	through	the	nanostructure.	The	current	is	continuous	through	the	
structure	and	spread	towards	the	right	due	to	the	inelastic	scattering.	The	broadening	of	
the	distribution	on	the	drain	is	due	to	inelastic	phonon	scattering. 
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		Fig.	4.	The	normalized	current	spectrum	(when	2pGF	is	considered)	for	different	
voltages	and	considering	ballistic	transport.				
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Fig.	5.	Occupation	of	the	electron	with	spin	up	or	down	in	the	well	
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Fig.	6	LDOS	 for	 intermediate	well	occupation	(0<occupation<2).	For	an	electron	 interaction	
coupling	strength	of		0.001eV2.	The	two	poles	of	the	LDOS	are	shown	simultaneously	
	in	the	GR	function.	
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Fig.	7.		LDOS	for	intermediate	well	occupation	(0<occupation<2).	For	an	electron	
interaction	coupling	strength	of		0.01eV2..	The	large	broadening	of	the	energy	levels	are	a	
result	of	strong	electron-phonon	coupling 
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Fig.	8						The	current	voltage	characteristics	for	different	phonons	energies	including	
2pGF.	
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Fig.	9.	LDOS		showing	the	ground	state		for	one	and	two	electrons	inside	the	structure.	
The	nanostructure	potential	is	shown	in	white.	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
 
 
 
 
Fig.	10.	Conductance	as	a	function	of	gate	and	drain	bias.	Only	part	of	the	Coulomb	
Blockade	stability	diagram	is	shown.			
 
 
 
 
 
 


