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ABSTRACT: Biodegradable, semipermeable nanoreactors that are
capable of undergoing cellular integration and, subsequently,
function as synthetic organelles represent an exciting therapeutic
technology. Polymersomal nanoreactors have been investigated as a
suitable candidate for the engineering of such a system, with the
chemical versatility and structural robustness required for such a
demanding application. Although steps have been taken to
demonstrate this capacity, there has yet to be a system presented
with biochemically robust data showing therapeutic efficacy in
primary human cells. The reason for this shortfall is the absence of
essential criteria of the polymersomes tested so far; biodegradability, intrinsic semipermeability, and a biomedically relevant
setting. Herein, we present enzyme-loaded, biodegradable poly(ethylene glycol)-block-poly(caprolactone-gradient-trimethylene
carbonate) (PEG−PCLgTMC) polymersomal nanoreactors, readily fabricated using the biocompatible direct hydration
methodology. Physical characterization of PEG−PCLgTMC polymersomes highlights their semipermeable membrane and
ability to shield enzymatic cargo. Surface modification with cell-penetrating peptides (CPPs) directs cellular integration of
enzyme-loaded PEG−PCLgTMC nanoreactors in a controlled fashion. Using HEK293T cells and human skin fibroblasts we
demonstrate that biocompatible catalase nanoreactors successfully perform as a synthetic organelle, imparting activity-
dependent antioxidant (reactive-oxygen-species-shielding, ROS-shielding) capacity to cells. Notably, for the first time, patient-
derived human-complex-I-deficient primary fibroblasts are effectively protected against the toxicity of exogenous H2O2 by the
action of internalized enzyme-loaded nanoreactors, showcasing this system in a therapeutically relevant context.

■ INTRODUCTION
Membrane-bound organelles (such as mitochondria, endo-
somes, or the nucleus) are compartmentalized microenviron-
ments where diverse enzymatic processes take place under
highly regulated conditions.1,2 A striking feature of such
subcellular compartments is that they permit selective
transmembrane molecular transport, a property vital for their
function. The physicochemical elegance of organelles has
inspired scientists to engineer synthetic counterparts, capable
of performing complex function within the cell.2−5 Indeed,
substantial progress has been made in this area through the
utilization of both micro- and nanocompartments.6,7 Notable
developments toward the in vitro application of microreactors
(based on polymer capsules or liposomes) have been
presented, with uptake into macrophages facilitated by

macropinocytosis or via a microinjection method for other
cell types.8−10 Although there are undoubtable advantages in
using larger, more structurally complex microreactors, their
large size makes them less versatile as compared to their
nanoscopic counterparts. In particular, copolymer vesicles
(polymersomes), synthetic replicas of liposomes, which are
capable of encapsulating and stabilizing sensitive internal cargo
(such as enzymes),7,11 have great potential for cellular
therapy.12,13 In particular, their utility as organelle-like
nanosystems, capable of endogenously affecting cellular
chemistry and performing tasks that would otherwise be
malfunctioning (or absent), is an exciting prospect. Nano-
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reactors, based on polymersomal (and polymer capsule)
technology, have been shown to undergo cellular integration,
and confined enzyme activity was demonstrated with a number
of cell lines in vitro.14−19 Moreover, pioneering studies using
nanoreactors in vivo have yielded interesting results, with
superoxide-dismutase-loaded polymersomes functioning as
antioxidants to reduce neuropathic pain (rat model) and β-
galactosidase-loaded polyion complex vesicles (PICsomes)
showing specific function within tumor tissue (mouse
model).20,21

Evaluation of recent studies highlights essential properties
that are of critical importance for the effective functioning of
synthetic organelles: semipermeability, biodegradability, and
biocompatibility. Regarding the former, progress has been
made with both membrane postmodification (channel
proteins, DNA pores, or chemically),22−31 and complex
morphological engineering,32,33 to generate functioning nano-
reactors. Engineering polymersomal nanoreactors with an
intrinsically semipermeable membrane remains a challenge,
however, with few examples that are sufficiently permeable to
facilitate native chemical processing of external substrates
utilizing compartmentalized enzyme(s).34−40 Even more
challenging is to realize such a system that is both
biodegradable and biocompatible, vital features of a synthetic
organelle to ensure cellular integration without toxic side
effects that would undermine biomedical application. To this
end, we have undertaken to engineer, via the remarkably facile
direct hydration approach, a biodegradable, semipermeable
polymersomal platform that can function as autonomous
nanoreactors through enzyme encapsulation. Recently, we
presented the direct hydration method for preparation of
poly(ethylene glycol)−poly(caprolactone) (PEG−PCL) poly-
mersomes, using oligo(ethylene glycol) (OEG) as a nontoxic
dispersant.41 This methodology can facilitate biomolecular
encapsulation;42 however, it has not yet been presented as a
route toward nanoreactor fabrication.
Although the design and fabrication of biodegradable

(autonomous) nanoreactors are already a substantial challenge,
it is important to apply them toward a quantitative biochemical
evaluation using an appropriate therapeutic target that will take
us beyond proof-of-principle. In this respect, the pathological
effect of hydrogen peroxide (H2O2) is a medically relevant
topic of investigation. H2O2 is highly diffusible and relatively
long-lived,43 serving as a key molecule in redox signaling,
control, and regulation.44 Mitochondria are an important
source of intracellular reactive oxygen species (ROS), resulting
from superoxide dismutation into H2O2 at complexes I (CI)
and III (CIII), which is subsequently oxidized (into water) by
cytosolic and mitochondrial peroxidases as well as peroxisomal
catalase. When the native antioxidant capacity is overwhelmed
by ROS,45 oxidative stress in cells occurs, which is implicated
in the pathogenesis of many disorders such as Alzheimer’s,
Parkinson’s, Huntington’s, and metabolic diseases alongside
aging and cancer, more generally.46−48 Therefore, the
generation of antioxidant nanoreactors (AONs), which can
be spontaneously integrated into cells that are experiencing
heightened-ROS levels, is a strategy that has great medical
potential. Indeed, acatalasemia, an autosomal recessive
condition that results in a >90% reduction in cellular catalase
activity, is an example where such a strategy could be highly
effective. Individuals with inherited catalase deficiency have a
high prevalence of diabetes mellitus (18.5%) and of diseases
related to oxidative stress (85%).49 In mice models, studies

show that catalase deficiency leads to ROS sensitivity,50

whereas catalase overexpression prolongs lifespan and
attenuation of age-related pathologies.51−53 Mitochondrial CI
deficiency is associated with neurodegeneration, and studies
using primary (patient-derived) skin fibroblasts indicate an
imbalance between the production and scavenging of ROS.54,55

Studies on mice with malfunctioning CI also indicated that
increases in neuronal ROS are an important part of the
neurodegeneration process.56 Therefore, with increased
attention being paid to the development of advanced
therapeutic technologies to tackle age- and cancer-related
diseases, attenuation of (cellular) ROS stress is an excellent
niche to focus on.
Herein, we present for the first time catalase-loaded,

semipermeable polymersomes (comprising biodegradable
copolymers) as antioxidant nanoreactors (AONs) in a
medically relevant application. We demonstrate (and quantify)
the capacity of AONs to function as synthetic organelles,
providing effective shielding of patient-derived primary cells
from ROS in vitro (Figure 1). Such unprecedented application

of this technology makes the important step from proof-of-
principle research to a biomedically relevant platform, which
reflects the robustness and versatility of this approach and will,
hopefully, inspire further development toward realization of
synthetic organelles in clinical studies.

■ RESULTS AND DISCUSSION
Engineering Biodegradable PEG−PCLgTMC Polymer-

somes via Direct Hydration. The essential requirements for
polymersomal nanoreactors to be successfully implemented as
synthetic organelles are biocompatibility and semipermeability.
To accomplish this goal we set out to develop biodegradable
block copolymers (BCPs) in order to generate self-assembled
nanostructures with the desired properties.57 BCPs comprising

Figure 1. Engineering a biodegradable synthetic organelle. (a)
Poly(ethylene glycol)-block-poly(caprolactone-gradient-trimethylene
carbonate) (PEG−PClgTMC) copolymers were synthesized and,
utilizing the direct hydration method, underwent controlled self-
assembly into polymersomes that could be loaded with enzymatic
cargo. (b) PEG−PClgTMC polymersomes that possess a semi-
permeable membrane facilitate transmembrane substrate diffusion for
compartmentalized enzymatic reactions (e.g., X = D-glucose and Y =
gluconolactone/H2O2), functioning as autonomous nanoreactors. (c)
Cellular integration is directed by attaching a cell-penetrating peptide
(CPP) to the polymersome surface. (d) Antioxidant polymersomes
(containing catalase) demonstrate ROS shielding in both HEK 293
and (primary) human fibroblasts.
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poly(ethylene glycol) (PEG) with various hydrophobic,
biodegradable polymers such as poly(caprolactone) (PCL),
poly(lactide) (PLA), or poly(trimethylene carbonate)
(PTMC) have been presented as biocompatible building
blocks for the preparation of polymersomes.58−65 Recently, we
reported the self-assembly of PEG−PCL via an unconventional
direct hydration process,42 replacing harmful solvents with
nontoxic low molecular weight oligo(ethylene glycol)
(OEG).41 Although PCL is a commonly used polyester in
biomedical research,66 its high Tc (ca. 55−60 °C) impedes
control over self-assembly and causes undesirable membrane
properties. Therefore, if we are to use BCPs related to PCL in
the self-assembly of polymersomal nanoreactors, crystallinity
should be reduced. To achieve this, it has been reported that
copolymerization of caprolactone with a distinct monomer
(capable of reducing overall crystallinity) imparts greater
control over self-assembly.60

Inspired by this work, we adopted a strategy for the
preparation of (noncrystalline) gradient copolymers compris-
ing PCL and poly(trimethylene carbonate) (PCLgTMC) via
organocatalyzed ring-opening polymerization.67,68 Using
monomethoxy-PEG polymers as macroinitiator, we produced
a series of well-defined block copolymers (Đ ≤ 1.1) of PEG−
PCLgTMC using methanesulfonic acid as a nontoxic catalyst
(Figure S1a and Table S1). As both chemical and physical
factors affect BCP self-assembly, optimization of both
copolymer composition and their direct hydration was
performed. For chemical optimization, PEG−PCLgTMC
BCPs with varying PEG length (X), TMC content in the
hydrophobic block (Y, wt %), and overall hydrophilic content
(Z, wt %) were prepared, designated mPEGX-Y/Z. It was
determined that a TMC content of at least 20 wt % was
sufficient to suppress PCL crystallinity (Figure S2). Cryo-TEM
screening indicated that the optimal composition for polymer-
some formation was close to mPEG12 or mPEG22-50/13 with
longer chains based on mPEG42 forming clustered spheroids
(Figure 2a and Figure S3a−c). Either increasing or decreasing
the TMC content led to coformation of spherical or wormlike

micelles, respectively, and increasing the overall hydrophilic
content led to poorly defined morphologies (Figure S3d−f).
Physical optimization of direct hydration involved maximizing
the [copolymer] in OEG (prior to hydration) and minimizing
the amount of buffer necessary to induce subsequent
polymersome formation, so as to make protein encapsulation
more favorable (process outlined in Figure S1). While
[copolymer] (in OEG) > 10 wt % resulted in visible
aggregation, formulation at 10 wt % resulted in uniform
polymersomes and was, therefore, chosen for further tests.
Using a combination of asymmetric flow field-flow fractiona-
tion (AF4) coupled with dynamic light scattering (AF4-DLS)
we confirmed that adding 80 μL of phosphate-buffered saline
(PBS) in the hydration of 20 μL of (stirred) OEG/copolymer
solution (mPEG22-50/13) was optimal to obtain polymer-
somes of ca. 100 nm in size (Figure S4). After stirring the
cloudy solution for 5 min, subsequent dilution with 400 μL of
PBS yielded a visually homogeneous polymersome suspension
with [copolymer] = 4 mg/mL.
Analysis of polymersomes comprising mPEG12/mPEG22-50/

13 (by AF4-DLS) yielded average sizes of 200 and 100 nm,
respectively (Figure S5a). Analysis of membrane thickness
from cryo-TEM images yielded values of around 7 and 14 nm,
respectively (Figure S5b). To confirm whether OEG is truly a
dispersant in the direct hydration process, or if it interacts to
some extent with the polymersomal membrane, nuclear
Overhauser spectroscopy (NOESY) was performed, to assess
the degree of spatial correlation between membrane protons
and those of OEG. It was observed that the sharp OEG peak at
3.75 ppm was distinct from the broad coronal PEG peak at
3.72 ppm (Figure S6). We were therefore confident that OEG
only functioned as a dispersant and had no structural role.

Semipermeability, Protein Encapsulation, and
Shielding Properties of Polymersomes. With a platform
for the facile preparation of well-defined, biodegradable
polymersomes, a calcein release assay was performed to
probe the permeability of the PCLgTMC membrane.
Monitoring calcein release by the dequenching of its

Figure 2. Characterization of semipermeable PEG−PCLgTMC polymersomes. (a) Cryo-TEM image of mPEG22-50/13 (50 wt % TMC in
hydrophobic block/13 wt % overall hydrophilic PEG content) polymersomes, fabricated by direct hydration from a 10 wt % OEG solution. (b)
Calcein release curves for mPEG22-50/13 (red) and mPEG12-50/13 (blue) polymersomes. (c) Characterization of eGFP-loaded polymersomes
using cryo-TEM (upper) and AF4-MALS/DLS (lower)molecular weight of copolymer (red) and eGFP (green) in polymersomes (total mass in
blue) was calculated from the corresponding dn/dc values and plotted against size (spheres) with the scattering fractogram inserted for reference
(gray). (d) Macromolecular shielding of encapsulated FITC−BSA substrate from proteinase K degradation (blue line) as compared to the free
substrate (red dashes). Polymersome disruption by surfactant addition (*) caused content leakage and rapid degradation of internal cargo. All scale
bars = 200 nm.
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fluorescence signal, it was evident that both mPEG12 and
mPEG22-50/13 polymersomes were semipermeable. mPEG12-
50/13 polymersomes showed a faster release profile with ca.
90% of encapsulated dye released after 30 h as compared to ca.
60% in the case of the thicker-walled, mPEG22-50/13
counterpart (Figure 2b). Degradation studies, where polymer-
somes were diluted into human serum, revealed a striking
difference between the stability of polymersomes comprising
mPEG12 and mPEG22 copolymers. Although both scattering
and DLS confirmed that mPEG22-50/13 polymersomes did
not show any degradation within 24 h, mPEG12-50/13
degraded rapidly within 3 h (Figure S7). This observed
behavior was attributed to the thinner membrane of mPEG12-
50/13 polymersomes and contributed to our decision to use
mPEG22-50/13 as the basis for our studies. The observed
semipermeability and biodegradability of soft PEG−
PCLgTMC polymersomes make them an exciting candidate
for development as autonomous (not requiring any additional
modification) nanoreactors.
To evaluate protein loading in this system we encapsulated

eGFP (5 mg/mL) and employed AF4 coupled with multiangle
light scattering (AF4-MALS) to quantitate loading and give an
indication of efficiency using this method (optimized for
polymersome stability). Size exclusion chromatograms in-
dicated, as expected, that a large population of unencapsulated
eGFP exists in solution, which could be recollected if desired
and reused in a scale-up process (Figure S8a). AF4 fractograms
of eGFP-loaded polymersomes demonstrated the capacity for
protein loading in this system, with a clear signal at 480 nm
and a substantial reduction in the radius of gyration of the
polymersomes, both indicative of cargo loading (Figure S8b,c).
Having measured the refractive index increment (dn/dc) of
PEG−PCLgTMC (0.078), the extinction coefficient of eGFP
(ε480 = 55 000 M−1 cm−1) was used to quantitate polymersome
loading. By mass, the eGFP content averaged around 5 wt %,
equivalent to approximately 200 proteins per polymersome
with an approximate [eGFP]internal in the region 20−60 mg/mL
(Figure 2c). A fundamental property of compartmentalized
systems is that they are capable of shielding sensitive cargo
from degradation. By encapsulating a self-quenching FITC−
BSA substrate we were able to demonstrate this property in the
PEG−PCLgTMC polymersomes. While the polymersome
remained intact, proteinase K was not able to permeate the
membrane, until concentrated surfactant was added into the

system that resulted in rupture and rapid degradation of the
sensitive cargo (Figure 2d).

Enzyme-Loaded Polymersomes Function as Autono-
mous Nanoreactors. Through encapsulation of functional
enzymatic cargo, such as glucose oxidase (GOx) and
horseradish peroxidase (HRP), we evaluated the performance
of PEG−PCLgTMC polymersomes as autonomous nano-
reactors. Inductively coupled plasma mass spectrometry
(ICPMS) was used to calculate the loading efficiencies of
ruthenium-labeled GOx and HRP, which were 4.2% (±0.2)
and 1.2% (±0.3), respectively. Although HRP was appreciably
lower than GOx this reflects known (but poorly understood)
variations in encapsulation efficiencies between different
enzymes.37,38 Encapsulation efficiency values vary to the
former value presented for eGFP due to the nature of the
measurement; i.e., the latter was a direct content measurement
in purified polymersomes. Subsequent assays were designed to
compare the kinetics of free and encapsulated enzymes.
Because exact [enzyme] encapsulated could not be determined
to the necessary degree of accuracy, only the Michaelis
constant (KM) was evaluated.
First, the kinetics of either HRP- or GOx-loaded nano-

reactors was evaluated using ABTS peroxidation as a
photometric readout (Figure 3a,b). Either H2O2 or D-glucose
were used as substrates for assays using HRP or GOx,
respectively, with HRP used in excess for the latter and ABTS
always used at a saturating concentration. Interestingly,
increases in the observed KM values (KM(obs)) were measured
for both encapsulated systems, with ca. 70% increase for HRP
and ca. 240% increase for GOx. Although Vmax values were
similar, the apparent increase in KM(obs) is striking and can be
best understood by the diffusive barrier experienced by
encapsulated enzyme arising from the semipermeable
(PCLgTMC) membrane. In the case of HRP this arises due
to the hampered diffusion of H2O2 into the nanoreactor
(reducing the actual [substrate] at the enzyme), and for GOx
this arises due to the hampered diffusion of glucose in and
H2O2 out of the compartment. It is therefore consistent that
KM(obs) values for GOx are almost 4-fold larger, as compared
to HRP. To demonstrate the positive benefits of compartmen-
talization, experiments were performed to compare the
consequences of coencapsulation on the performance of the
cascade reaction. In accordance with the previous data, a
kinetic improvement in the cascade was observed in the
coencapsulated system as compared to the mixture of

Figure 3. Nanoreactor characterization of enzyme-loaded polymersomes using Michaelis−Menten kinetic plots to compare free and encapsulated
(a) HRP and (b) GOx alongside (c) a mono- (red) and coencapsulated (blue) HRP/GOx cascade; the black curve shows the difference in rate
between the co- and monoencapsulated systems.
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monoencapsulated nanoreactors (Figure 3c). The observed
percentage increase in the rate of ABTS peroxidation between
mono- and coencapsulated nanoreactors decreased as
[glucose] increased (from 70% to 20%). This observation
was understood to arise from a more detrimental effect of
substrate diffusion at lower [glucose], diminishing as saturating
conditions are approached. Although our discussion has
focused upon KM and substrate diffusion, kinetic enhance-
ments that arise due to compartmentalization cannot be
discounted;69 however, a full examination of this is beyond the
scope of the present experimental work.
Cell Uptake of CPP-Functionalized Polymersomes. An

effective strategy for inducing the cell uptake of polymersomal

nanoreactors is through surface decoration with cell-penetrat-
ing peptides (CPPs).70,71 TAT, a CPP derived from human
immunodeficiency virus (HIV),72 is known to translocate the
cell plasma membrane,73 and direct endocytotic uptake of
colloidal or proteinaceous cargo.74 Having previously reported
the successful cellular integration of TAT-polymersomes,15 we
wanted to evaluate whether more advanced properties of CPPs
could be realized in this platform, such as endosomal escape.75

Recently, the cyclic variant of TAT (cTAT) was reported to
direct cytosolic delivery of proteins in HeLa cells, thereby
bypassing the endolysosomal system.76 Therefore, we decided
to compare the efficacy of the linear and cyclic TAT variants in
facilitating polymersomal uptake. Because the diverse morpho-

Figure 4. Cell uptake of cTAT polymersomes in HEK293T cells. (a) Uptake of NBD-labeled polymersomes after 24 h at different polymersome
concentrations (0.05−0.1 mg/mL) and with different percentages of CPP (0−5%), quantified by flow cytometry (mean fluorescence of live cells
presented ± SD, n = 3). Significant differences are indicated by **P < 0.01, ***P < 0.001, ****P < 0.0001. (b) Confocal microscopy images
(sequential excitation mode) depicting the subcellular distribution of 2.5% TAT-polymersomes encapsulating AF647BSA (red) after 24 h of
incubation at a concentration of 0.4 mg/mL (plasma membrane stained with CellMask green). (c) Confocal microscopy images (simultaneous
excitation mode) depicting the endolysosomal localization of 2.5% TAT-polymersomes encapsulating AF647BSA after a 1 h pulse with 0.4 mg/mL
polymersomes followed by a 24 h chase period in polymersome-free medium (acidic cellular compartments stained with LysoTracker green): (i)
LysoTracker green, (ii) LysoTracker green and free AF647BSA, (iii) LysoTracker green and 2.5% TAT-polymersomes encapsulating AF647BSA. For
visualization purposes, bright-field images were contrast-optimized using a linear contrast stretch (LCS) operation. Scale bars = 10 μm.
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logical features of nanoparticles (e.g., size, shape, stiffness, and
surface topology) can significantly impact cellular uptake it is
important to evaluate this key behavior in such a new
system.77,78 Cellular uptake and trafficking of polymersomes
were evaluated in HEK293T cells after covalently coupling
azido-TAT or azido-cTAT to fluorescent nitrobenzoxadiazole-
doped (NBD-doped) polymersomes comprising either a 2.5 or
5 wt % doping of dibenzocyclooctyl-modified (DBCO-
modified) PEG−PCLgTMC using biorthogonal click chem-
istry (Figure S9).
HEK293T cells were treated with polymersomes for 24 h

prior to analysis of cell uptake by flow cytometry and confocal
laser scanning microscopy (CLSM). Flow cytometry revealed
that cell uptake was virtually absent for unmodified polymer-
somes (0% CPP), whereas TAT- and cTAT-polymersomes
were readily taken up in a concentration-dependent manner
(Figure 4a). At both concentrations, the effect of TAT was
already maximal at 2.5% surface loading, whereas for cTAT a
further increase was observed at 5%, suggesting the possibility
of higher uptake with the latter TAT variant. In agreement
with the flow cytometry data, CLSM showed virtually no cell
uptake for unmodified polymersomes (Figure S10b). In sharp
contrast, cTAT-polymersomes were abundantly present both
at the cell membrane and within intracellular punctate
structures (Figure S10c−f). Calculation of the Pearson’s
colocalization coefficient (PCC), which provides an estimate
on the extent of overlap between green (polymersomes) and
red (plasma membrane) pixels, showed no difference between
TAT and cTAT for the two percentages tested (Figure S11).
Similarly, the PCC did not differ between 2.5% and 5% TAT,
whereas a significantly higher PCC value was observed at 5%
cTAT. Because the data obtained did not show any beneficial
effect of the cyclic variant, and due to its reduced tendency to
accumulate in the cell membrane, TAT was used at its optimal
concentration of 2.5% in further experiments. The ability of
2.5% TAT-polymersomes to deliver macromolecular cargo was
demonstrated using Alexa647-labeled bovine serum albumin
(AF647BSA). Orthogonal projections of HEK293T cells treated
with AF647BSA-loaded polymersomes for 24 h unequivocally
demonstrated the presence of cargo (red) in punctate

structures located within the cell (Figure 4b). Such structures
are indicative of endolysosomal uptake, which was confirmed
by pulse incubating cells with AF647BSA encapsulating 2.5%
TAT-polymersomes for 1 h followed by a chase incubation of
24 h and staining with LysoTracker green showing a strong
colocalization (PCC value of 0.6 ± 0.19; Figure S12). The
possibility of cross-talk was excluded (Figure S13). Visual
inspection of the Lyso Tracker green-positive structures
(Figure 4c, second vertical row) shows a marked enlargement
upon treatment with AF647BSA encapsulating 2.5% TAT-
polymersomes. The overlay shows that these structures are
AF647BSA-positive, indicating the lysosomal accumulation of
AF647BSA-polymersomes. Similarly enlarged Lyso Tracker
green-positive structures were observed upon treatment with
free AF647BSA (Figure 4c, second vertical row). Also in this
case these structures appeared, though extremely faintly,
AF647BSA-positive (Figure 4c, third vertical row). Because
equal amounts of AF647BSA were used, either free or
encapsulated, this result clearly demonstrates the strong
uptake-facilitating properties of TAT-polymersomes. The
2.5% TAT-polymersomes, loaded with catalase, were used to
add functionality to the cells in subsequent studies.

ROS Shielding by Catalase-Encapsulating TAT-poly-
mersomes in HEK293T Cells. Having optimized the
conditions for cellular uptake of TAT-functionalized polymer-
somes, the next step was to evaluate their function in vitro as a
kind of “synthetic organelle”. Through encapsulation of
catalase, which is an important enzyme in protecting cells
from oxidative damage, biological functionality was bestowed
upon the TAT-polymersomes, to generate an antioxidant
nanoreactor (AON). As CLSM clearly showed the predom-
inant presence of TAT-polymersomes within the endolysoso-
mal system, it is important to consider the function of such
AONs at pH values ranging down to ∼5. With this in mind, we
chose to compare two isoforms of catalase, from bovine
(CBOV) and bacterial (CBAC) sources, with the latter being
more stable at lower pH values. Functional comparison
between AONs, which had a catalase encapsulation efficiency
of 3.8% (±0.4), demonstrated that those fabricated with CBAC
were at least 8-fold more active than those encapsulating CBOV,

Figure 5. Functional analysis of antioxidant nanoreactors (AONs) in HEK293T cells. (a) Cytotoxicity of empty or CBOV- or CBAC-loaded AONs
(after 24 h of incubation at concentrations of 0−2.0 mg/mL) was assessed by crystal violet absorbance measurements (mean ± SD, n = 2). (b)
Dose-dependence protection of cells against H2O2-induced cell stress by AONs. Cells were pulse-treated with AONs for 1 h prior to a challenge
with or without 5 mM of exogenous H2O2 for 24 h. Data presented as ratio of crystal violet signal obtained with 5 mM H2O2 to that without
(where n ≥ 3, mean ± SD, otherwise just the mean value is presented). (c) Effect of unloaded and CBOV and CBAC AONs on intracellular ROS
assessed by CM-DCF fluorescence intensity measurements. Cells were treated with 0.4 mg/mL polymersomes for 24 h prior to loading with CM-
H2DCF and subsequent challenging with or without 0.5 mM of exogenous H2O2 for 5 min. Analysis was performed by flow cytometry with at least
10 000 cells per measurement. Data are presented as mean ± SD of 3 individual experiments after intraexperimental normalization to the sum of
the values obtained. In panel c, significance was assessed using one-way ANOVA, followed by Tukey’s multiple comparisons test. Significant
differences are indicated by *P < 0.05, **P < 0.01.
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at all pH values measured (Figure S14). This difference in
activity is most probably accounted for by a difference in
intrinsic activity per unit enzyme. In accordance with the
decreased sensitivity to pH, at pH 4.5 the CBAC polymersomes
were more active by a factor of 19-fold (Figure S14b). DLS
and cryo-TEM were used to confirm the stability of AONs
after catalase encapsulation, surface modification with 2.5%
TAT, and purification (Figure S15). It was also confirmed that
addition of H2O2 (5 mM) did not disrupt AON morphology as
no change in scattering behavior was observed (Figure S15b).
To address the functionality of the AONs as synthetic

organelles we assessed their capability to shield HEK293T cells
against the detrimental effects of exogenous H2O2. Cell
integrity analysis (using crystal violet) showed that empty
2.5% TAT-polymersomes were not cytotoxic when used for 24
h at a concentration up to 0.4 mg/mL (Figure 5a). However, a
reduction in cell integrity was observed at a concentration of 2
mg/mL. Strikingly, neither the CBOV- nor the CBAC-AONs
showed a cytotoxic effect at this higher concentration,
suggesting a role for catalase-sensitive ROS in the cytotoxic
effect of the 2.5% TAT-polymersomes. In order to examine
their ROS-shielding ability, cells were pulse-treated with the
indicated concentration of polymersomes for 1 h followed by
washing and a 24 h challenge with or without 5 mM exogenous
H2O2 (Figure 5b). Crystal violet analysis confirmed that under
these conditions both AONs can fully protect against H2O2
cytotoxicity with the CBAC-AONs being 10−15 times more
potent than CBOV-AONs (EC50 values of 10.6 (SD = 0.45)
and 166.6 (SD = 58.8) μg/mL, respectively). This difference in
dose-dependence mirrors is determined in vitro (Figure S14),
and demonstrates the robustness of this platform where
function in vitro is directly translated in cellulo. Next, we used
the chloromethyl (CM) variant of the ROS-reactive
fluorescent probe 2′,7′-dichlorodihydrofluorescein diacetate
(CM-H2DCFDA) to demonstrate the H2O2 detoxifying effect
of the AONs. CM-H2DCFDA is intracellularly trapped as
nonfluorescent covalently coupled CM-H2DCF, and exoge-
nous H2O2 induces its oxidation to fluorescent CM-DCF, a
measure of intracellular ROS.79 Cells treated with 0.4 mg/mL
AONs for 24 h, and subsequently loaded with CM-H2DCF,

were challenged for 5 min with 0.5 mM exogenous H2O2 and
subsequently analyzed by flow cytometry. The average
fluorescence intensity of at least 10 000 counted cells was
measured showing that exogenous H2O2 significantly increased
intracellular ROS in both nontreated cells and cells treated
with empty 2.5% TAT-polymersomes, an effect that was
completely reversed by the CBAC-AONs and partly by the
CBOV-AONs (Figure 5c). In accordance with the results of the
cytotoxicity study, 2.5% TAT-polymersomes alone did not
cause any increase in CM-H2DCF oxidation at the
concentration used.

ROS Shielding by AONs in Primary Skin Fibroblasts
from Patients with Isolated Mitochondrial Complex I
Deficiency. Primary skin fibroblasts from patients with
isolated mitochondrial complex I deficiency show an increased
oxidation of ROS probes, suggesting a misbalance between
ROS production and scavenging. Using primary skin
fibroblasts from a healthy individual (C5120) and a patient
with a mutation in the structural NDUFS7 subunit of CI (S7-
5175), we assessed the ability of the CBAC-AONs to protect
against H2O2 cytotoxicity. Evaluation of the CM-DCF signal
after 24 h of treatment with 0.4 mg/mL of AONs (followed by
a 5 min challenge with 0.5 mM exogenous H2O2) showed that
the H2O2-induced increase in fluorescence was virtually
completely blunted (Figure 6a). Both in nontreated cells and
in cells treated with empty 2.5% TAT-polymersomes the
H2O2-induced increase in CM-DCF fluorescence was signifi-
cantly higher in patient cells, suggesting a reduced capacity to
detoxify this ROS. Critically, this difference was no longer
observed following AON treatment, demonstrating a clear
improvement of the ROS detoxifying capability. To assess the
effect of AONs on H2O2 cytotoxicity, fibroblasts were pulse-
treated with polymersomes for 1 h followed by their removal
and a chase period of 4 h prior to a 24 h challenge with or
without 0.1 mM exogenous H2O2. Subsequent crystal violet
analysis demonstrated the dose-dependence of the effect of
CBAC-AONs in both healthy and patient fibroblasts (Figure
6b,c). In both cases complete prevention was obtained at an
AON concentration of 0.3 mg/mL. In comparison, free CBAC
at an equivalent concentration of 0.042 mg/mL had only a

Figure 6. Functional analysis of AONs using primary skin fibroblasts from a healthy individual (C5120) and a patient with isolated complex I
deficiency (S7-5175). (a) Intracellular ROS assessed by CM-DCF fluorescence intensity measurements after treatment with 0.4 mg/mL
polymersomes for 24 h prior to challenge with or without 0.5 mM H2O2 for 5 min. Data are presented as mean ± SD of 3 individual experiments
after intraexperimental normalization to the sum of the values obtained. Significance was assessed using two-way ANOVA, followed by Bonferroni’s
multiple comparisons test. Significant differences are indicated by **P < 0.01, ****P < 0.0001. (b, c) Effect of CBAC-AONs on cell integrity of (b)
C5120 and (c) S7-5175 cells after a 1 h pulse treatment with a range of AON concentrations, followed by a 4 h chase period and a subsequent 24 h
challenge with or without 0.1 mM H2O2. Data are presented as mean ± SD from 2 experiments performed in duplicate after intraexperimental
normalization to the sum of the values obtained.
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minor, if any, preventive effect in both control and patient cells
(Figure S16). These results are in agreement with the above
conclusion that 2.5% TAT-polymersomes possess strong
uptake-facilitating properties and, in addition, demonstrate
that the activity of encapsulated CBAC is preserved for at least
28 h in the endolysosomal system.

■ CONCLUSION

In summary, we have shown the engineering of a
biodegradable, intrinsically permeable nanoreactor, comprising
enzyme-loaded PEG−PCLgTMC polymersomes, which, for
the first time, demonstrate a therapeutic effect in primary
human cells. These autonomous nanoreactors, when modified
with cell-penetrating peptides, were capable of cellular
integration, delivering macromolecular cargo via the endoly-
sosomal system. To demonstrate functional engagement of
these synthetic organelles within the cell, catalase-loaded,
antioxidant nanoreactors (AONs) were employed to achieve
shielding from reactive oxygen species in both HEK293 cells
and primary human fibroblasts. In robust biochemical assays,
we demonstrated that AONs successfully protected the cells
from exogenous H2O2-induced cell death and further
demonstrated H2O2 detoxification using a fluorogenic ROS
probe. The protection of particularly sensitive human
fibroblasts puts the application of synthetic organelles in a
therapeutically relevant context using primary tissue, with
significant evidence of the function in vitro. This work,
therefore, constitutes the development of a realizable
therapeutic technology, facilitated by the synergy between
materials engineering and biochemical analysis.

■ METHODS AND MATERIALS

All chemicals and enzymes were used as received unless
otherwise stated. For the synthesis of the block copolymers,
monodisperse heterobifunctional (methoxy-hydroxyl and
methoxy-carboxyl) PEG macroinitiators were purchased from
Creative PEG Works. Trimethylene carbonate was purchased
from Acros Organics. Ultrapure Milli-Q water, obtained from a
Labconco Water Pro PS purification system (18.2 MΩ), was
used for the polymersome preparation. Dialysis membrane
from spectrum laboratories (1000 kDa MWCO) and Superose
6 (GE Healthcare) SEC column were used for purification. All
enzymes were supplied by Sigma-Aldrich: catalase from bovine
liver (E.C. 232-577-1, E3289), catalase from Corynebacterium
glutamicum (E.C. 1.11.1.6, 02071), glucose oxidase from
Aspergillus niger (E.C. 232-601-0, G7141), and horseradish
peroxidase (E.C. 232-668-6, P6782). All chemicals, unless
otherwise stated, were supplied by Sigma-Aldrich.
Synthesis of Poly(ethylene glycol)-block-Poly-

(caprolactone-gradient-trimethylene carbonate). This
polymer was synthesized using ring-opening polymerization
and MSA as a catalyst. The polymer chain length and the
dispersity were determined by 1H NMR and GPC. The
detailed synthetic procedure is described in the Supporting
Information.
General Procedure for Polymersome Formation and

Encapsulation of Enzymes. In a 5 mL vial, 20 μL of PEG−
PCLgTMC block copolymer (10% in PEG 350 w/w) was
added. A magnetic stirring bar was added, and a thin film of the
polymer solution was created by slow stirring. Subsequently,
80 μL of aqueous solution was directly added, followed by
continuous stirring for 5 min. Polymersomes were sub-

sequently diluted until the desired concentration was reached.
In order to encapsulate enzymes, polymersomes were prepared
by addition of 80 μL of aqueous solution containing the
desired concentration of enzyme(s) (typically 5−10 mg/mL)
for encapsulation.

Cell Culture. HEK293T cells were grown as a monolayer in
DMEM with GlutaMax, high glucose, and pyruvate (31966
GIBCO, Life Technologies Invitrogen, Breda, The Nether-
lands) supplemented with 10% (v/v) fetal calf serum (FCS)
(GIBCO, Life Technologies Invitrogen) and 100 IU/mL
penicillin/streptomycin (15140122 Life Technologies Invitro-
gen) in a humidified atmosphere of 95% air, 5% CO2 at 37 °C.
Assay medium for HEK293T cells was without glucose,
glutamine, phenol red, and sodium pyruvate (A14430-01,
GIBCO, Life Technologies), supplied with 10% FCS, 100 IU/
mL penicillin/streptomycin, 2 mM L-glutamine (25030-024,
Gibco, Life Technologies), 5 mM D-glucose (8769 GIBCO,
Life Technologies), and 10 mM HEPES (15630056, Gibco,
Life Technologies). Primary human skin fibroblasts were
obtained following informed parental consent and according to
the relevant Institutional Review Boards from skin biopsies of
one healthy subject (C5120) and one patient in whom an
isolated complex I deficiency was confirmed in both muscle
tissue and cultured fibroblasts (S7-5175). Fibroblasts were
grown in medium 199 (M-199) with Earle’s salts, L-glutamine,
25 mM HEPES, L-amino acids, and phenol red (12340030
GIBCO, Life Technologies Invitrogen) supplemented with
10% (v/v) FCS and 100 IU/mL penicillin/streptomycin. Assay
medium for fibroblasts contained no phenol red (11043-023,
GIBCO, Life Technologies Invitrogen).

Confocal Microscopy for Visualizing Uptake in a Cell
Monolayer. Two days prior to imaging, HEK293T cells were
seeded in complete medium at 40 000 cells/well on an 8-well
cover-glass slide (155411, Nunc Lab-Tek Chamber slide 1.0
Borosilicate cover-glass, Nunc, Wiesbaden, Germany). One
day before imaging, the medium was replaced by complete
medium containing the appropriate concentration of polymer-
somes. After incubation, the medium including polymersomes
was removed, and the cells were washed three times with PBS
and imaged in assay medium. Colocalization markers CellMask
green (C37608, Life Technologies Invitrogen) and CellMask
deep red (C10046, Life Technologies Invitrogen) were used to
stain the plasma membrane. Cells were incubated with the 1×
working solution (provided solution is 1000×) for 3 min,
washed three times with PBS, and imaged within 10 min in
assay medium.
Imaging was performed with a TCS SP5 confocal micro-

scope (Leica Microsystems, Mannheim, Germany) equipped
with an HCX PL APO 63× N.A. 1.2 water immersion
objective. Cells were maintained at 37 °C on a temperature-
controlled microscope stage. The polymersomes labeled with
NBDand CellMask green were excited by an argon laser at 488
nm, and emission was collected between 500 and 550 nm.
Polymersomes including BSA-Alexa647 and CellMask deep
red were excited with a 633 nm HeNe laser, and emission was
collected between 655 and 750 nm. Both green and red
fluorescent labels were excited sequentially. Images were
analyzed with Image Pro Plus 6.1 (Media Cybernetics,
Rockville, MD) and FIJI software (http://fiji.sc/).

Confocal Microscopy for Visualizing Cellular Traffick-
ing in a Cell Monolayer. Two days prior to imaging,
HEK293T cells were seeded in complete medium at 40 000
cells/well on an 8-well cover-glass slide (155411, Nunc Lab-
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Tek Chamber slide 1.0 Borosilicate cover-glass, Nunc,
Wiesbaden, Germany). One day before imaging, the medium
was replaced by complete medium containing the appropriate
concentration of polymersomes. After incubation of 1 h, the
medium including polymersomes was removed, and the cells
were washed two times with PBS and for 24 h incubated with
complete medium in a humidified atmosphere of 95% air, 5%
CO2 at 37 °C.
To stain the lysosomes, the cells were incubated with 75 nM

LysoTracker green DND-26 (Thermo Fisher Scientific) for 1 h
in a humidified atmosphere of 95% air, 5% CO2 at 37 °C. After
removal of staining, the cells were imaged in assay medium.
Imaging was performed with a TCS SP8 microscope (Leica
Microsystems, Mannheim, Germany) equipped with an HCX
PL APO 63× N.A. 1.2. water immersion objective. Cells were
maintained at 37 °C on a temperature-controlled microscope
stage. LysoTracker green was excited by an argon laser at 488
nm, and emission was collected between 500 and 550 nm.
Simultaneously, BSA-Alexa647 was excited with a white light
laser at 647 nm, and emission was collected between 655 and
750 nm. Both emission signals were simultaneously recorded
with avalanche photodiode/photomultiplier tubes hybrid
detectors (HyD, Leica).
Images were analyzed with Image Pro Plus 6.1 (Media

Cybernetics, Rockville, MD) and FIJI software (http://fiji.sc/
).
Flow Cytometry for Visualizing Uptake of Polymer-

somes in a Cell Monolayer. HEK293T cells were seeded in
24-well plates (Sarstedt, Numbrecht, Germany) at 80 000
cells/well 2 days prior to measurement. Cells were incubated
with the indicated concentration of polymersomes for 24 h.
After incubation, the cells were washed 3× with PBS and
detached by trypsinisation for 2−3 min, spun down, and
resuspended in assay medium. The fluorescent signal of the
polymersomes was measured using a FACSCalibur flow
cytometer (BD BioSciences, Erembodegem, Belgium), and
subsequently data were analyzed with FlowJo software. The
cells were gated on the live population by forward and side
scatter, and 10 000 cells were counted to determine cellular
uptake by measure of mean cellular fluorescence in the FL-I
channel.
Flow Cytometry for Measuring ROS Levels. HEK293T

cells were seeded in 24-well plates (Sarstedt, Numbrecht,
Germany) at 80 000 cells/well and fibroblasts 40 000 cells/
well, 2 days prior to measurement. Cells were incubated with
the indicated concentration of polymersomes for 24 h. After
incubation, the cells were washed 2× with PBS and stained
with 5 μM CM-H2DCFDA (C6827, Invitrogen) in assay
medium for 30 min in a humidified atmosphere of 95% air, 5%
CO2 at 37 °C. The staining was aspirated, and subsequently
500 μM H2O2 (Scharlau, 30% w/w) in assay medium was
added for 5 min in a humidified atmosphere of 95% air, 5%
CO2 at 37 °C. Next, cells were detached by trypsinisation for
2−3 min, spun down, and resuspended in 100 μL of assay
medium. The fluorescent signal of H2DCF was measured using
a FACSCalibur flow cytometer (BD BioSciences, Erembode-
gem, Belgium), and subsequently data were analyzed with
FlowJo software. The cells were gated on the live population
by forward and side scatter, and 10 000 cells were counted to
determine cellular uptake by measure of mean cellular
fluorescence in the FL-I channel.
Crystal Violet Assay. Cells were seeded in 24-well plates

and subjected to the various treatments (e.g., dose-dependency

polymersomes, H2O2). Next, the cells were washed with PBS
and incubated for 10 min at room temperature (RT) in a
staining solution consisting of 0.5% (w/v) crystal violet
solution, 30% (v/v) ethanol, and 3% (v/v) formaldehyde.
After staining, plates are rinsed with water followed by addition
of a 1% (w/v) SDS solution for 30 min on an orbital shaker.
The amount of resolubilized crystal violet can be used as a
readout of relative cell numbers by absorbance measurements
(550 nm) using a microplate spectrophotometer (Benchmark
Plus, Biorad, The Netherlands).80

Statistical Analysis. The number of independent experi-
ments is marked by n, each experiment performed in duplicate.
Average values are represented as mean ± SD. Values were
tested for significance using the two-way analysis of variance
(ANOVA) at 95% confidence level (p < 0.05), followed by
Tukey’s multiple comparisons test (Graph Pad Prism software,
version 6), unless stated otherwise. Significant differences are
indicated by *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001.
No unexpected or unusually high safety hazards were

encountered during this research.
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Lecommandoux, S. Biocompatible and biodegradable poly-
(trimethylene carbonate)-b-poly(L-glutamic acid) polymersomes:
size control and stability. Langmuir 2010, 26, 2751−60.
(63) Adams, D. J.; Kitchen, C.; Adams, S.; Furzeland, S.; Atkins, D.;
Schuetz, P.; Fernyhough, C. M.; Tzokova, N.; Ryan, A. J.; Butler, M.
F. On the mechanism of formation of vesicles from poly(ethylene
oxide)-block-poly(caprolactone) copolymers. Soft Matter 2009, 5,
3086−3096.
(64) Ahmed, F.; Discher, D. E. Self-porating polymersomes of PEG-
PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J.
Controlled Release 2004, 96, 37−53.
(65) Meng, F.; Hiemstra, C.; Engbers, G. H. M.; Feijen, J.
Biodegradable polymersomes. Macromolecules 2003, 36, 3004−3006.
(66) Sisson, A. L.; Ekinci, D.; Lendlein, A. The contemporary role
of??-caprolactone chemistry to create advanced polymer architectures.
Polymer 2013, 54, 4333−4350.
(67) Couffin, A.; Delcroix, D.; Martín-Vaca, B.; Bourissou, D.;
Navarro, C. Mild and efficient preparation of block and gradient
copolymers by methanesulfonic acid catalyzed ring-opening polymer-
ization of caprolactone and trimethylene carbonate. Macromolecules
2013, 46, 4354−4360.
(68) Delcroix, D.; Martín-Vaca, B.; Bourissou, D.; Navarro, C. Ring-
Opening Polymerization of Trimethylene Carbonate Catalyzed by
Methanesulfonic Acid: Activated Monomer versus Active Chain End
Mechanisms. Macromolecules 2010, 43, 8828−8835.
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