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Summary 

The 28 amino acid hormone, ghrelin, has been found to have various effects on 

metabolism. This thesis focuses on the pathways integrated into ghrelin’s effect 

within adipocytes and adipose tissue depots of those with and without Type 2 

diabetes. To determine whether acyl-ghrelin plays a role in mediating the metabolic 

state in an in vitro and ex vivo setting this thesis investigates cellular mechanisms 

via the analysis of: lipid staining, lipid retention gene expression pathway, 

inflammatory marker levels and determination of oxidative burden. This project 

confirms and translates previous murine model findings that establishes a 

mediatory role for acyl-ghrelin within lipid retention.  Furthermore, this mechanism 

is influenced and magnified within the presence of hyperglycaemia, indicating that 

the impact of glucose metabolism on acyl-ghrelin and lipid homeostasis may result 

in the deterioration of dyslipidaemia. In addition to novel findings relating to lipid 

retention, results indicate that acyl-ghrelin also impacts the inflammatory state. 

Acyl-ghrelin exposure resulted in a marked decrease in pro-inflammatory marker IL-

6, and ghrelin mRNA expression was associated with an increase in IL-10 and total 

antioxidant status. The promotion of the inflammatory state in the presence of 

acyl-ghrelin may yield novel therapeutic avenues for acyl-ghrelin combination 

treatment in the amelioration of the low-grade inflammation present within Type 2 

diabetes. 
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Chapter 1 

General Introduction 

 

  



2 
 

1.1 Diabetes Mellitus  

Diabetes Mellitus (DM) is a multifactorial complex carbohydrate metabolic disorder. 

Individuals that have DM normally exhibit abnormal blood glucose levels due to 

insufficient insulin levels or activity. DM is separated into four main groups: 

1) Type 1 diabetes mellitus (T1D) - accounts for 5-10% of all diabetes diagnosis 

(American Diabetes Association, 2016) and is due to cellular mediated auto-

immune destruction of the pancreatic β-cells. 

2) Type 2 diabetes mellitus (T2D) - accounts for 90-95% of all diabetes and this 

form encompasses individuals with insulin resistance and relative insulin 

deficiency.  

3) Gestational diabetes - diabetes diagnosed within the second or third 

trimester of pregnancy and is not clearly overt diabetes. 

4) Other specific types of diabetes - condition caused by other factors i.e. 

monogenic factors, such as neonatal diabetes and maturity onset diabetes 

of the young (MODY) (American Diabetes Association, 2016). 

 

1.1.1 Glucose and insulin homeostasis 

Serum glucose levels, in a healthy state, remain relatively steady throughout the 

course of the day. To allow for this plateau, glucoregulatory factors, derived from 

many tissues, are responsible for glucose homeostasis (Plum et al., 2006). The 

circulation of glucose is dependent upon the rate in which it enters the circulation 

and the balance of its removal. Circulating glucose is derived from various processes 
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i.e. intestinal absorption and hepatic processes involving glycogen breakdown 

(glycogenolysis) and glucose formation (gluconeogenesis) (Aronoff et al., 2004, 

Plum et al., 2006). The pancreas plays a fundamental role in glucose homeostasis. In 

a fasting state, pancreatic α-cells secrete glucagon at an increased rate, whilst β-

cells secrete insulin in the presence of elevated glucose levels. This allows for a 

decrease in glucose levels by promoting glucose uptake within peripheral tissues 

(predominantly adipose, skeletal muscle and liver), promoting liver glycogenesis 

and inhibiting glucagon secretion from α-cells. In addition to glucose, insulin 

stimulus can be in the form of increased plasma concentrations of certain incretins 

i.e. amino acids (arginine) and gut hormones (gastric inhibitory polypeptide (GIP) 

and glucagon-like protein (GLP)-1) (Aronoff et al., 2004).  However in DM, this 

highly regulated balance of circulating glucose is hindered due to an insulin 

response deficiency (Aronoff et al., 2004).  

 

1.2 Type 2 diabetes 

Research has shown that patients with T2D are highly likely to be overweight or 

obese. The LEADER 5 study demonstrated within nearly 10,000 individuals with T2D 

there was a high prevalence of overweight (29%) and obesity (62%) (Masmiquel et 

al., 2016). An excess of abdominal fat is thought to result in the release of pro-

inflammatory cytokines leading to insulin resistance. Obesity is a global epidemic 

which will result in an increase in the number of people with T2D rising from 415 

million in 2015 to 642 million in 2040 globally (International Diabetes Federation, 

2016).  T2D is a progressive condition linked to both environmental and genetic 
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factors that prevent the maintenance of normal glucose homeostasis due to insulin 

resistance and β-cell dysfunction (Popa and Mota, 2013). T2D is the combination of 

three main aetiologies: insulin resistance, β-cell dysfunction and β-cell destruction. 

 

1.2.1 Insulin resistance 

Insulin producing β-cells are situated in the Islet of Langherans in the pancreas, and 

predominantly respond to blood glucose levels by the synthesis and secretion of 

insulin. Insulin is initially synthesised as a single chain precursor, preproinsulin. A 

signal peptide is removed when it enters the endoplasmic reticulum generating 

proinsulin; and finally the C-peptide molecule is excised to produce the mature 

form of insulin. Secreted along with insulin is a neuroendocrine hormone, amylin, 

complementing insulin’s action. Obese individuals classically display the onset of 

insulin resistance which is counteracted by increased insulin secretion and β-cell 

mass, avoiding the onset of T2D (Popa and Mota, 2013). Insulin resistance develops 

due to the body’s inability to utilise insulin efficiency. Individuals at risk of T2D 

display an initial state of insulin resistance that is often counteracted by pancreatic 

β-cell overproduction of insulin. The early stages of insulin resistance can occur up 

to 15 years before T2D onset. Ultimately an increase in hepatic glucose production 

becomes too great for insulin reserves to cope with, resulting in an increased need 

of insulin secretion. The combination of insufficient insulin levels and insulin 

resistance leads to the development of hyperglycaemia. The molecular 

mechanism(s) that underpin insulin resistance have not been clearly defined. 
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However, it is associated with body mass and inversely correlated with physical 

activity (Tangvarasittichai, 2015).  

 

1.2.2 β-cell dysfunction and destruction  

In genetically predisposed individuals, β-cells can develop a change in insulin 

secretion threshold, with a reduction in insulin gene expression and a decrease in β-

cell mass.  It is a combination of insulin resistance and genetic predisposition that 

results in an increase in glucose and free fatty acid levels. Chronic exposure of β-

cells to high glucose levels can result in apoptosis via the increase of pro-apoptotic 

gene expression (Popa and Mota, 2013), as well as glucolipotoxicity causing β-cell 

dysfunction and destruction via the production of islet amyloid polypeptides (Kahn 

et al., 1999). In a high glucose environment, there is an increase of toxic amyloid 

fibrils, resulting in amyloid fibril accumulations and ultimately β-cell dysfunction 

and destruction (Popa and Mota, 2013, Kahn et al., 1999). 

 

1.2.3 Related complications 

T2D is a heterogeneous disorder that results in a vast array of related 

complications. T2D can result in insulin resistance, inflammation and dyslipidaemia, 

which when combined add to the risk of further related complications. 

Complications can be grouped as either; macrovascular (e.g. cardiovascular disease 

(CVD)); or microvascular (e.g. diabetic nephropathy, retinopathy and neuropathy). 
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The level of glucose that can result in endothelial dysfunction is relatively low, 

therefore, patients that are yet to be diagnosed with T2D are still at an increased 

risk of developing macrovascular and microvascular complications (American 

Diabetes Association, 2016).   

Previous findings report a linear correlation between exposure to high 

glucose levels and the risks of vascular complications and mortality (Zoungas et al., 

2012). The association results in approximately 80% of individuals with T2D being at 

risk of death from associated cardiovascular complications (Martín-Timón et al., 

2014). CVD encompasses coronary heart disease (CHD), stroke and peripheral 

vascular disease (PVD), all of which are the result of atherosclerosis and 

inflammation within arteries. This increased risk results from hyperglycaemia 

triggering dyslipidaemia and increasing oxidative stress (Stephens et al., 2009), 

activating numerous biochemical pathways linked with diabetes-associated vascular 

disease (Johansen et al., 2005). 

Microvascular complications develop as a result of increased glucose levels 

having a detrimental effect on small blood vessels within the eye (retinopathy), 

kidney (nephropathy) and nerves (neuropathy). Diabetic retinopathy is one of the 

leading causes of visual impairment in the Western world (Marques‐Neves, 2015). 

The hyperglycaemic environment associated with T2D results in changes in retina 

cell metabolism and alterations in biochemical balance that lead to retinal cell 

death (Madsen-Bouterse and Kowluru, 2008). Diabetic nephropathy effects 

approximately 20-40% of people with T2D (Gross et al., 2005), with vascular 

damage to capillaries within the glomeruli, altering the efficacy of waste filtration, 
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resulting in mircroaluminuria and eventually proteinuria. Diabetic neuropathy arises 

as a result of peripheral nerve dysfunction caused by an increase in reactive oxygen 

species and the production of advanced glycation end products (AGEs) (Fowler, 

2008). The disease can affect approximately up to 32% of people with T1D and T2D 

and it results in numbness, tingling or pain and isolated or multiple nerve palsies 

(Stratton et al., 2000, Fedele et al., 1997).  

As with all microvascular and macrovascular complications, the risk of 

developing the disease is increased with prolonged exposure to hyperglycaemia, 

with this also influencing severity. Furthermore, as well as the length of 

hyperglycaemic exposure, some individuals may hold a genetic predisposition to 

develop the disorder.  

 

1.3  Obesity 

Obesity is often defined as an excess of body fat that adversely affects health. As a 

multifactorial disease, it has many causes but predominantly a chronic excess in 

energy intake compared to energy expenditure. Obesity is often classified by body 

mass index (BMI) (Table 1.1, Figure 1.1). BMI is the same for both genders and 

adults of all ages, however it does not take into consideration an individual’s 

configuration, therefore leading to a rise in the use of alternatives such as body fat 

percentage indicators.  

 The prevalence of obesity has more than doubled since 1980; with 

predictions over the next 20 years for numbers to increase by 73% to approximately 
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26 million people (World Health Organization, 2016). This increase in the 

prevalence of obesity is seen in both developed and developing countries; with the 

rate of childhood obesity reported to result in a global increase to 70 million 

overweight or obese children by 2025 (World Health Organization, 2016). 

BMI (kg/m2) WHO class 

<18.5 Underweight 

18.5-24.9 Healthy 

25-29.9 Overweight (Pre-obese) 

30-34.9 Obese class I 

35-39.9 Obese class II  

>40 Obese class III (severely obese) 

Table 1.1 BMI classifications, as given in (Wass and Owen, 2014). 

 

 

 

 

 

 

 

Figure 1.1 BMI Graph. http://www.nhs.uk/Livewell/healthy-living/PublishingImages/weight-chart-

377.jpg, accessed 30/08/2016. 
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1.3.1 Environmental and genetic causes of obesity 

Obesity is a multifactorial disease that encompasses both environmental and 

genetic factors. Environmental factors are often highlighted within developed 

countries, where a higher caloric diet including refined sugars and a high fat 

content, alongside a sedentary lifestyle have become common place.  

Obesity can be inherited with strong association of genetic factors, both 

monogenic and polygenic factors, for example, resulting in leptin deficiency or 

ghrelin abnormalities. Prader- Willi syndrome (PWS) is a key example of genetic 

obesity and results from a loss of paternal genes in the q11-13 region of 

chromosome 15. Patients with PWS experience excessive appetite (hyperphagia) 

which is linked to hyperghrelinaemia (DelParigi et al., 2002).  

 

1.3.2 Comorbidities linked to obesity  

The hypercaloric state associated with obese individuals has a detrimental effect on 

the individual’s health and predisposes them to many diseases, including an 

increase risk in CVD, hyperlipidemia and T2D (Scerif et al., 2011). These 

comorbidities present a great challenge to the National Health Service (NHS) and 

healthcare providers, and has resulted in the practice of various bariatric surgeries 

to allow a reduction in adipose mass. Abdominal obesity causes a chronic low grade 

inflammatory state, activating the immune system and playing a vital role in 

obesity-related insulin resistance and T2D (Cooke et al., 2016). In an obese state, 

the make-up of adipose tissue changes, resulting in the infiltration of macrophages 
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and the enlargement of adipocytes. Macrophages are responsible for the release of 

free fatty acids (FFA) and the subsequent release of tumour necrosis factor α 

(TNFα) (Bastard et al., 2006). FFA activate nuclear factor kappa B (NFκB) by binding 

to toll like receptor-4 on macrophages.  Macrophage-derived TNFα activates 

adipocytes, inducing the expression of various genes and the release of adipokines 

(i.e. interleukin-6). The overproduction of adipokines produced by the infiltration of 

macrophages in the obese state is involved in the pathophysiology of insulin 

resistance (Bastard et al., 2006). 

 

1.4 Oxidative Stress 

Oxidative stress is the result of free radical mediated damage that often has severe 

pathological consequences. Free radicals are atoms or molecules which have one or 

more free electrons within the outer shell of the atomic structure, causing it to 

become unstable and reactive. The most common form of free radical mediated 

damage results from reactive oxygen species (ROS) (Stephens et al., 2009). 

Oxidative stress is often underpinned by a disturbance in the balance of pro- and 

anti-oxidants, resulting in a shift towards a pro-oxidant state. For instance, ROS are 

produced naturally in the body, but when over production occurs, together with 

insufficient anti-oxidant defences, it can be associated with pathological disorders 

i.e. diabetes and cancer (Stephens et al., 2009). 

 The development of ROS can result from the electron transport chain 

‘leaking’ electrons, that combine with oxygen causing the formation of superoxide 
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molecules (Evans et al., 1997, Cooke et al., 2003). As well as electron leaking, ROS 

formation can result from ionisation, ultraviolet radiation and certain exogenous 

chemicals. Due to the unstable nature of ROS they can potentially target all 

molecules in the body, especially DNA, attacking the double bonds present 

between bases, resulting in a direct effect on replication and transcription (Cooke 

et al., 2003).    

 

1.4.1  Lipid peroxidation 

Lipid peroxidation is the degradation of lipids within an environment of high 

oxidative burden. It is the main molecular mechanism that is involved in oxidative 

damage of cell structure resulting in the destruction of membrane lipids. Oxidative 

damage results from a free radical chain reaction composed of three stages; 

initiation, propagation and termination (Ayala et al., 2014). Initiation involves the 

formation of lipid radicals via the hydrogen abstraction or addition of an oxygen 

radical. Polyunsaturated fatty acids undergo peroxidation forming a conjugated 

diene which binds an oxygen molecule to produce a peroxyl radical. Thus, allowing 

for the propagation of the free radical chain reaction; peroxyl radicals producing 

hydroperoxides, capable of hydrogen abstraction of another polyunsaturated fatty 

acid. The free radical chain reaction is terminated when two free radicals conjugate 

or in the presence of a chain breaking anti-oxidant (Repetto et al., 2012, Ayala et 

al., 2014).  
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 The anti-oxidant effect can either be enzymatic or non-enzymatic. Enzymatic 

routes are often underpinned by anti-oxidant systems like superoxide dismutase 

(SOD), catalase or glutathione peroxidase (Valko et al., 2007). Non-enzymatic anti-

oxidants consist of vitamin C, vitamin E and glutathione (GSH) (Valko et al., 2007). 

All anti-oxidant systems demonstrate a potent role in either the prevention, repair 

and/or termination and neutralization of ROS through reduction (Valko et al., 

2007).  Furthermore, increased lipid peroxidation within inflammatory diseases is a 

result of the promotion of ROS production (Repetto et al., 2012). 

 

1.4.2  Inflammation and ROS production 

Inflammation is the body’s immune reaction in response to a pathogen, allowing it 

to eradicate the imposing threat. The process of inflammation is regulated by a 

variety of factors and is characterised by the production of pro-inflammatory 

cytokines and inflammatory cell activation. The activation of inflammatory cells 

results in an increase in superoxide and other ROS production, via the pro-oxidant 

action of the phagocytic isoform of nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase (Valko et al., 2007). Increased level of ROS can result in the 

alteration of inflammatory cell signalling pathways; activating c-Jun N-terminal 

kinase (JNK), mitogen-activated protein kinase (MAPK), extracellular signal-

regulated kinase (ERK) and NFκB signalling pathways. The production of hydrogen 

peroxide acts as a secondary messenger that activates NFκB via TNFα and 

interleukin 1 (IL-1) (Valko et al., 2007). The generation of ROS within the immune 

system acts as a defence mechanism, however, as previously mentioned, if the rate 



13 
 

of ROS production overwhelms the anti-oxidant system then there will be an 

increase in oxidative stress and lipid peroxidation.    

 

1.4.3  Oxidative stress in T2D  

Oxidative stress is implicated in the pathophysiology of comorbidities linked to T2D, 

due to increases in ROS and decreases in free radical quenching enzymes 

(Tangvarasittichai, 2015, Martín-Gallán et al., 2003). Hyperglycaemia activates 

detrimental pathways including the hexosamine pathway and AGE pathway, both of 

which cause an increase in oxidative stress (Figure 1.2).  As previously mentioned, 

pancreatic β-cell function plays a vital role in the development of T2D. Chronic 

hyperglycaemia is reported to be a causative factor in β-cell apoptosis via oxidative 

stress, with a resultant decrease in β-cell mass (Valko et al., 2007). Anti-oxidant 

treatment is beneficial in the treatment of diabetes, resulting in the suppression of 

β-cell apoptosis and theorised protection against the loss of insulin mRNA and 

insulin concentration (Valko et al., 2007).  
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Figure 1.2. Overview of oxidative stress within Type 2 diabetes. Type 2 diabetes encompasses a raise 

in circulating blood glucose and free fatty acids. Both of which result in an increase of oxidative 

stress i.e. activation of auto oxidation, polyol and advanced glycation end product pathway in 

hyperglycaemia. An increase in oxidative stress can result in increased inflammation and insulin 

resistance triggering β-cell dysfunction.  
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1.5 Adipose tissue 

Adipose tissue is a highly complex and metabolically active organ. This endocrine 

organ has demonstrated a role in central nervous system (CNS) communication, 

fasting FFA source and regulation of nutrient homeostatic mechanisms (Trayhurn 

and Wood, 2004). Traditionally grouped into two simple classifications; white 

adipose tissue (WAT) and brown adipose tissue (BAT), a third classification has 

recently been discovered, ‘beige’ or ‘brite’ (Rosen and Spiegelman, 2014). All three 

classifications store energy in the form of lipid droplets, yet are distinct and contain 

differing gene expression patterns, allowing for specific differences in their 

functions and depots. WAT, beige adipose tissue and BAT all require peroxisome 

proliferator-activated receptor γ (PPARγ) for development and functionality (Rosen 

and Spiegelman, 2014, Harms and Seale, 2013). However, they differ in cell lineage 

(Figure 1.3) with embryonic stem cells that express key developmental and 

transcriptional factors Myf5 and Pax7 being the precursor for BAT and two distinct 

lineages Pax7 and Myf5 negative as the precursors for WAT and beige adipose 

tissue (Wu et al., 2013, Rosen and Spiegelman, 2014).   
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Figure 1.3. Different cell lineages that produce brown, beige and white adipocytes. Taken from 

Rosen and Spiegelman (2014) 

 

1.5.1 Brown adipose tissue  

BAT is a group of highly specialised cells that has vast vascularisation and 

cytochromes, with a main function of thermoregulation. BAT has the ability to 

transform stored energy into heat through the action of uncoupling protein 1 

(UCP1). Located in the mitochondrial membrane, UCP1 catalyses a proton leak 

across the inner mitochondrial membrane, uncoupling fuel oxidation for ATP 

synthesis (Rosen and Spiegelman, 2014).  BAT develops during gestation in humans, 

allowing for protection against cold present at birth and atmospheric life. 

Significant BAT depots present in gestation are depleted in adult humans, who 

instead are dependent upon shivering thermogenesis to maintain 
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thermoregulation. Acute cold exposure results in sympathetic nervous system 

release of noradrenaline and the induction of BAT thermogenesis via the 

stimulation of intracellular lipolysis  (Cypess et al., 2015). 

 As well as thermoregulation, chronic BAT stimulation has been highlighted 

to play a beneficial role in the regulation of metabolism (Harms and Seale, 2013). 

The activation of BAT is negatively associated with obesity and insulin resistance, 

hence a negative association with T2D (Orava et al., 2011). High levels of the 

glucose transporter 4 (GLUT4) are present within BAT, resulting in an increase in 

insulin sensitivity and glucose uptake (Cypess et al., 2015, Stanford et al., 2013, 

Orava et al., 2011) 

 

1.5.2 White adipose tissue  

WAT is an abundant reservoir of triglycerides which accounts for 85% of tissue 

mass. Spanning the human body, this heterogenous tissue is composed of mature 

adipocytes, fibroblasts, macrophages, endothelial cells and pre-adipocytes. The 

classical functions of WAT are lipid synthesis (lipogenesis), lipid storage and 

triglyceride breakdown. WAT also allows for the subsequent release of fatty acids 

under certain metabolic stressors i.e. exercise or caloric restriction.  

WAT is linked to primary roles within the endocrine system, namely the 

secretion of adipokines. Adipokines are a group of diverse protein signals and 

factors that allow WAT to communicate throughout the body, having an effect on 

endocrine, paracrine and autocrine systems (Figure 1.4). This ability for adipokines 
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to act either locally or distally allows for WAT to play an intrinsic role in the 

regulation of whole body energy homeostasis. However, not all regions of WAT 

produce the same amounts of adipokines resulting in various functions for 

anatomical fat depots. 

 

 

Figure 1.4. An example of adipokines secreted by white adipose tissue. Monocyte chemotactic 

protein (MCP), tumour necrosis factor (TNF), interleukin (IL), insulin-like growth factor (IGF), vascular 

endothelial cell growth factor (VEGF) and transforming growth factor (TGF). 

 

1.5.3 Beige adipose tissue  

Originally, WAT and BAT were thought to be located in anatomically separate 

regions, however over 30 years ago UCP1 positive cells were located in WAT depots 

(Cousin et al., 1992, Young et al., 1984). Beige adipose tissue originates from a 
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different source to BAT and is the product of WAT differentiation, which can occur 

due to cold exposure or in the presence of key peptides e.g. neuropeptide Y. Often 

termed ‘inducible BAT’, beige adipose tissue and BAT share functionality and 

cellular morphology, however they exhibit differing gene expression. Basal UCP1 

levels in beige adipose tissue is low and comparable to WAT, however cyclic 

adenosine monophosphate (cAMP) stimulation in vivo results in a rise of UCP1 

expression equivalent to that of interscapular BAT (Wu et al., 2013). This indicates 

beige adipose tissue is unique in functionality, allowing energy to be stored as lipid 

droplets, as well as responding to cAMP, resulting in heat production and energy 

dissipation (Rosen and Spiegelman, 2014). Beige adipose tissue is inversely 

associated with age and obesity, and is increased after weight loss from bariatric 

surgery (Wu et al., 2013). 

 

1.5.4 Adipose depots 

Commonly, the location of WAT spans the inguinal, retroperitoneal and gonadal 

regions of the body whilst BAT is located in the interscapular, perirenal, axillary and 

paravertebral regions. Interscapular BAT has been identified in human adults using 

[18F]-2-fluoro-D-2-deoxy-D-glucose (FDG) and positron emission tomography (PET); 

further analysis of a biopsy section confirmed the tissue to have BAT morphology 

and characteristics, including UCP1 positivity (Rosen and Spiegelman, 2014, Cypess 

et al., 2009, van Marken Lichtenbelt et al., 2009, Virtanen et al., 2009). 
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A large accumulation of WAT has been observed in two depots; 

subcutaneous located under the skin and visceral, largely in the omentum. The 

storage of adipose tissue in these depots plays a vital role in metabolic disease, an 

increase of visceral fat in obesity is associated with related diseases including T2D, 

however subcutaneous fat does not share this association.  

 

1.5.5 Adipogenesis 

Pre-adipocytes have the ability to proliferate and undergo differentiation into 

mature adipocytes, a process intensely regulated by specific transcription factors 

and cell cycle proteins. During adipogenesis, pre-adipocytes undergo a 

morphological change, resulting in a change from a fibroblastic to a spherical shape.  

As a result of the morphological changes, cellular make up is also altered, including 

quantitative changes in extracellular matrix and cytoskeletal components (Moreno-

Navarrete and Fernández-Real, 2012). Due to a key part of adipose tissues ability to 

have homeostatic system control, adipose differentiation and understanding of the 

transcriptional basis of adipogenesis has gained great importance.       

PPARγ and sterol-regulatory element binding protein-1 (SREBP-1) are key 

transcriptional factor in adipognesis. PPARγ is a subfamily of nuclear hormone 

receptors and exists in two protein isoforms; PPARγ1 and PPARγ2, which are 

produced via alternative promoter usage and alternative splicing at the 5′ end of 

the gene (Wu et al., 1995). Present in high levels in pre-adipocytes, PPARγ has a role 

as the master regulator of adipogenesis, inducing fat cell differentiation. PPARγ 
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adipogenic effect is reliant upon its transcriptional activity, where it is shown to 

increase transcription via the DNA recognition site DR-1 (Spiegelman and Flier, 

1996).   

SREBP-1 is encoded by the SREBF1 gene which is transcribed into two splice 

variants, SREBP-1a and SREBP-1c (Knebel et al., 2012). The sterol response binding 

protein exhibits two main functions in adipocytes characteristics.  Firstly, it is shown 

to control de novo lipogenesis via the induction of key genes of fatty acid 

metabolism; whilst on the other hand, under conditions favouring adipogenesis 

SREBP-1 has shown to promote and increase the overall percentage of pre-

adipocytes that undergo differentiation (Kim and Spiegelman, 1996, Knebel et al., 

2012).  

 

1.5.6 Lipogenesis 

De novo lipogenesis (DNL) is the enzymatic process by which lipid synthesis occurs 

from acetyl CoA, predominantly within the liver but also within adipose tissue 

(Knebel et al., 2012, Kersten, 2001). The rate at which DNL occurs is diet 

dependent, with an increase in dietary carbohydrates resulting in increased 

lipogenesis and a subsequent rise in plasma triglycerides. Alternatively, fasting can 

cause a decrease in DNL within WAT; which when combined with an increase in 

lipolysis results in a loss of triglycerides. The radicalised triglycerides from WAT are 

transported to the liver where triglyceride synthesis is increased to overcome the 

influx, resulting in hepatosteatosis (fatty liver) (Kersten, 2001).  
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 DNL is a highly regulated process, induced from a variety of mechanisms 

including the increase in lipogenic enzymes and several transcription factors 

(Knebel et al., 2012). As previously mentioned, SREBP-1c is a key inducer of DNL 

due to its regulatory role in the expression of genes that encode vital lipogenic 

enzymes. Two central enzymes for DNL are acetyl CoA carboxylase and fatty acid 

synthase, and are responsible for the generation of fatty acids from the products of 

glycolysis (Figure 1.5). Insulin stimulates SREBP-1c levels in the liver, therefore in a 

high insulin environment i.e. obesity and T2D, there will be an increase in DNL that 

may result in dyslipidaemia. Liver X receptor (LXR) response elements within the 

SREBP-1c promoter are identified as mediators of insulin induced SREBP-1c 

transcription (Howell et al., 2009). As well as DNL, SREBP-1c and LXR have 

demonstrated a role within other lipid-mediated pathways i.e. cholesterol 

metabolism (Wagner et al., 2003, Vaughan and Oram, 2005).  
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Figure 1.5. Pathway of fatty acid production. Glycolysis (GREEN), TCA cycle (BLUE) and de no 

lipogenesis (PINK) with key lipogenic enzymes in bold. 

 

1.5.7 Reverse cholesterol transport 

The reverse cholesterol transport pathway (Figure 1.6), the removal of excess 

cholesterol from peripheral tissues back to the liver for excretion and catabolism, is 

critical in the defence against atherosclerosis (Kennedy et al., 2005, Fielding and 
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Fielding, 2001, Vaughan and Oram, 2005). Cholesterol efflux is dependent upon ATP 

binding cassette (ABC)A1 and ABCG1 (Kennedy et al., 2005, Ma et al., 2014). ABCA1 

and ABCG1 are members of a superfamily of transporters that function to mediate 

the transfer of cellular cholesterol to the cell surface for removal by high density 

lipoproteins (HDL) (Kennedy et al., 2005, Vaughan and Oram, 2005). PPARγ induces 

the expression of ABCA1/G1 via nuclear cholesterol sensors, LXRα and LXRβ 

(Vaughan and Oram, 2005). LXR acts as a transcription regulator for the genes 

associated with cholesterol efflux, which is activated when total cellular cholesterol 

levels are high (Wagner et al., 2003). However, when total cellular cholesterol levels 

are low, SREBP induces cholesterol biosynthesis (Wagner et al., 2003).   

 

 

Figure 1.6. Reverse cholesterol transport within humans. Diagram illustrates key steps within the 

reverse cholesterol transport system in human macrophages. PPAR-LXR-ABC pathway exports 

intracellular cholesterol to the cellular membrane, mature HDL then transport free cholesterol to 

the liver where is undergoes cholesterol secretion or bile acid production.  
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1.6 Ghrelin 

1.6.1 Discovery and structure 

In 1997, Kojima attempted to identify the unknown endogenous ligand responsible 

for growth hormone secretion via the stimulation of the growth hormone secreting 

receptor (GHS-R). However, initial studies proved unsuccessful despite the 

development of several hundred assays (Kojima et al., 1999). It was not until 1998, 

when Kojima and Hiroshi combined their findings with the recently described 

orphan G protein-coupled receptor GPR38  that progress was made (Kojima and 

Kangawa, 2008, Kojima, 2008). Through the use of a stable cell line, which 

expressed GHS-R, Kojima and co-workers were able to establish a calcium 

increasing activity (Kojima et al., 1999). The monitored activity was focused to a  

stomach extract, showing a ligand with a molecular weight ranging between 3-4 

kDa (Kojima and Kangawa, 2008, Kojima, 2008). Final characterization of a 3 kDa 

endogenous ligand was deemed to be ghrelin (Peino et al., 2000). 

Ghrelin was finally isolated from the gut of humans and rats via cloning 

(Shiiya et al., 2002, Peino et al., 2000). The research produced a novel 28 residue 

peptide hormone that was an endogenous ligand of GHS-R (Kojima et al., 1999). An 

anomaly was identified in the peptide structure and explained by the presence of a 

hydroxyl group in the serine 3 molecule undergoing acetylation (Tokunaga et al., 

2005). Kojima originally proposed this hypothesis of hydroxylation, through the use 

of high performance liquid chromatography (HPLC) experimental data. He 

discovered that natural ghrelin was eluted 10 minutes after the synthetic desacyl-

ghrelin, concluding the modification occurred via a hydrophobic moiety. Electron 
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ionization mass spectroscopy (EI-MS) analysis concluded the moiety mass was 

C7H15CO (Kojima et al., 1999) (Figure 1.7). 

 

Figure 1.7 Amino acid sequence of ghrelin and the acetylation of the serine 3 residue. 

The unique characteristics of ghrelin occur from the post translational state, 

where the peptide is originally synthesised as a pre-pro-hormone and 

proteolytically processed into the 28 amino acid sequence (Meier and Gressner, 

2004). Pre-pro-ghrelin contains 117 amino acids. In addition to ghrelin, this gene 

encodes for a small signal peptide and obestatin. The cleavage of the pre-pro 

ghrelin gene produces a 23 amino acid signal and pro-ghrelin. Further proteolytic 

processing results in the cleaving of the 28 amino acid peptide by prohormone 

convertase 1/3 (PC1/3) (Yang et al., 2008). As well as ghrelin, the presence of a 

second endogenous ligand has been reported in rat stomachs. This ligand is termed 

des-GLN 14-ghrelin and is a 27 residue peptide that is not processed from the 

ghrelin gene but a product of alternative splicing of the ghrelin gene mRNA, 

resulting in the loss of the 14th glutamine (GLN) residue (Figure 1.8) (Wang et al., 

2002). The second endogenous ligand for GHS-R exists in the stomachs of all rats 

observed to date, suggesting that the endogenous ligands for GHS-R are two 

homologous peptides, des-GLN 14-ghrelin and ghrelin (Hosoda et al., 2000).  
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Figure 1.8. Ghrelin structure with a cross indicating the loss of an amino acid residue to produce des-

GLN 14-ghrelin via mRNA splicing.  

Ghrelin is the first natural peptide to be reported containing the elusive 

post-translational modification of N-octanoylation (Kojima et al., 1999, Wang et al., 

2002). In 2008, it was shown that a membrane bound O-acyltransferase 4 

(mBOAT4) was vital in the activation of ghrelin (Kirchner et al., 2012). The human 

gene mBOAT4 is located on chromosome 8 (8p12), containing 6 exons. It was later 

termed ghrelin O-acyltransferase (GOAT) due to it being the only enzyme that 

acylates ghrelin (Figure 1.9) (Kirchner et al., 2012). This acyl modification occurs at 

the pro-ghrelin maturation stage of ghrelin.  
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Figure 1.9. Ghrelin synthesis and maturation within a stomach cell. Amino acid (AA) length and 

name for each peptide given in bold and process undergoing or enzyme in italics. Medium chain 

fatty acids and acetly coA (MCFA + CoA) are the substrates used in the octanoylation of ghrelin by 

GOAT.  Ghrelin also circulates in des acyl forms but only the acyl form is secreted to bind to GHS-R. 

 

 

 

 



29 
 

1.6.2 Function 

The peptide was named ghrelin, from the Latin word ‘Ghre’ which means ‘grow’ 

due to its role as a growth hormone releasing peptide (Meier and Gressner, 2004, 

Kojima and Kangawa, 2005). The novel peptide was isolated from the gut of both 

human and rat as the endogenous ligand of GHS-R (Kojima et al., 1999). GHS-R is 

transcribed in humans from the growth hormone receptor 1 (GHR1) gene, which 

encodes the full length functional receptor (GHS-R1α) and a splice variant truncated 

non-functional isoform (GHS-R1β) (Gnanapavan et al., 2002, Müller et al., 2015). 

GHS-R1α mRNA is expressed at low levels over a wide tissue distribution but is 

predominantly expressed in the anterior pituitary gland (Gnanapavan et al., 2002). 

The highest levels of ghrelin are secreted from the X/A-like cells of the oxyntic 

glands located in the gastric fundus, with lower levels widely distributed throughout 

the body (Garin et al., 2013, Dixit et al., 2004). Ghrelin is secreted directly into the local 

gastric circulation and transported to the brain directly, requiring it to either cross 

the blood-brain barrier via a saturated transport system or via the blood stream to 

enter areas of the brain that are not protected by the blood brain barrier (Angelidis 

et al., 2010).  

Ghrelin also reaches its main active site, the hypothalamic arcuate nucleus 

(ARC), in an indirect manner, activating the vagus nerve and brain stem nuclei 

(Angelidis et al., 2010, Date et al., 2002). Ghrelin circulates in two major forms; 

acylated (approximately 5% of total ghrelin) and desacyl (95% of total ghrelin) 

(Rodriguez et al., 2009). GOAT is vital in the activation of ghrelin (Yang et al., 2008). 

Both forms of ghrelin are observed to cross the barrier in a blood to brain direction, 
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however desacyl-ghrelin lacks the ability to cross the barrier in a brain to blood 

direction (Banks et al., 2002). Ghrelin’s ability to cross the blood brain barrier is the 

result of non-saturable, saturable blood-brain transport and saturable brain-blood 

transport that is highly dependent on the unique post-translational acylation and 

primary structure (Serby et al., 2006, Banks et al., 2002, Banks et al., 2008). Ghrelin 

has a homeostatic role that encompasses multiple areas of the body, with actions 

that include; down regulation of BAT thermogenesis (Tsubone et al., 2005, Yasuda 

et al., 2003), modulation of non-hypothalamic brain regions producing an increased 

taste sensation (Cai et al., 2013) and stimulation of gastric emptying and motility 

(Masuda et al., 2000, Asakawa et al., 2003). In the last 16 years the peptide has 

generated considerable attention due to its role within these various peripheral 

effects (Müller et al., 2015)(Figure 1.10).  
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Figure 1.10 Cognitive and peripheral effect of ghrelin- taken from (Müller et al., 2015). Schematic 

indicates the effact of ghrelin administration on key areas of the body, importantly the effect on key 

tissues involveld in glucose homeostasis. Ghrelin is shown to alter glucose metabolism, increase 

insulin sensitivity and decrease insulin secretion in the pancreas, increase insulin-like growth factor 1 

(IGF1) levels in the liver, decrease inflammation and increase lipogenesis in adipose tissue.   
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1.6.3 Acylation of ghrelin 

1.6.3.1 GOAT acylation 

GOAT is responsible for the post-translational modification of ghrelin; the fatty acid 

modification of the amino acid structure in the peptide chain which is vital to 

determining functionality. As previously mentioned, ghrelin undergoes the 

attachment of an acyl moiety, octanoic acid, within the endoplasmic recticulum at 

the third serine residue following pre-pro-ghrelin cleavage into pro-ghrelin. GOAT is 

part of a 16 member family of membrane bound acyltransferases. This family, 

mBOATs, results in the transfer of long fatty acids to membrane-associated 

hydroxyl acceptors, however only one is responsible for ghrelin octanoylation, 

GOAT. GOAT expression is found widespread in human tissues, corresponding with 

that of ghrelin secreting tissues, thus GOAT expression levels are high in the 

stomach, gut and pituitary (Lim et al., 2011). The origin of the octanoyl (eight 

carbon) fatty acid, alternatively named medium chain fatty acid (MCFA), used in 

ghrelin activation is associated to orally ingested MCFAs. The location of the vast 

majority of ghrelin secreting cells are in the stomach lumen, allowing direct access 

to dietary MCFAs or medium chain triglycerols (Sato et al., 2012). Evidence shows 

the utilization of dietary MCFAs as a substrate, establishing GOAT as a dietary lipid 

sensor, however little is known about the comparison of de novo synthesised fatty 

acids used (Müller et al., 2015).  
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1.6.3.2 APT1 des-acylation 

In 2010, it was reported that acyl-ghrelin levels can be affected by acyl-protein 

thioesterase 1 (APT1). APT1 is encoded by the LYPLA1 gene, comprising of a 230 

amino acid sequence homodimer. Originally APT1 was purified as a cytosolic 

lysophospholipid hydrolysing enzyme, the recombinant APT1 exhibits both 

deacylation and lysophospholipase activity (Satou et al., 2010). In contrast to GOAT, 

APT1 has been demonstrated to act as a ghrelin des-acylation enzyme (Shanado et 

al., 2004), thus suggesting that the levels of acyl-ghrelin present are dependent on 

the bioavailability of APT1 and GOAT (Satou et al., 2010).   

 

1.6.4 Ghrelin and adipogenesis  

Ghrelin is involved in the regulation of metabolic hormones with GHS-Rs present 

within adipose tissue (Korbonits et al., 2004, Kojima et al., 1999).  In addition to 

stimulating GH secretion, ghrelin has been shown to play a role in adiposity. Upon 

the addition of acyl-ghrelin and desacyl-ghrelin, PPARγ and SREBF1 mRNA 

expression levels increase in human visceral adipocytes during differentiation 

(Rodriguez et al., 2009). Therefore, in the presence of ghrelin, in vitro and in vivo 

studies have demonstrated that the mRNA levels of PPARγ expression are 

increased, resulting in the differentiation of pre-adipocytes (Rodriguez et al., 2009). 

PPARγ activity can be influenced by key components that play a role in the 

mammalian insulin pathway, such as mammalian target of rapamycin complex 1 

(mTORC1) and Akt/protein kinase B (Akt/PKB) (Chabot et al., 2014). In the presence 
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of ghrelin, mTORC1 and Akt/PKB can enhance PPARγ activation promoting 

adipogenesis; demonstrating that ghrelin exhibits inter-relationships between 

adipogenesis and the insulin pathway (Chabot et al., 2014). The elevation of SREBF1 

gene expression was accompanied by a significant increase in lipid accumulation  in 

visceral adipocytes (Rodriguez et al., 2009). This administration of ghrelin directly 

stimulated the intra-cytoplasmic lipid accumulation via the increased production of 

various fat storage promoting enzymes including carboxylase, acetyl CoA, fatty acid 

synthase and lipoprotein lipase (Rodriguez et al., 2009). 

 

1.6.5 Ghrelin and lipogenesis  

Centrally acting ghrelin following chronic intra-cerebrovascular infusion, has also 

been shown to increase mRNA expression of genes which promote the retention of 

cholesterol (Davies et al., 2009). So in the presence of ghrelin, SREBP1-c expression 

is increased, with ABCG1 and LXRβ expression decreased (Davies et al., 2009). Even 

though these results indicate that ghrelin has a role in increasing lipid retention 

within adipocyte cells, the relationship between cholesterol efflux, biosynthesis 

genes and ghrelin is disputed among studies. Sirtuin 1 and SIRT1 and tumour 

suppressor gene p53 activates AMP-activated protein kinase (AMPK) via 

phosphorylation, however in the presence of ghrelin there is the deacyetylation of 

p53 via SIRT1 impinging on AMPK activation (Velásquez et al., 2011, Kola et al., 

2005). Phosphorylated AMPK inactivates fatty acid biosynthesis and activates fatty 

acid oxidation (Winder and Hardie, 1999).  In vivo, the administration of ghrelin 

within p53 null mice demonstrates a decrease in lipid metabolism modulating gene 
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expression, indicating that p53 is essential for the action of ghrelin on adipose 

tissue (Porteiro et al., 2013).  Ghrelin administration has also been reported to 

activate the PPARγ-LXR-ABC pathway in a dose-dependent manner, resulting in an 

increase in LXR and ABC expression in human THP-1 macrophages (Demers et al., 

2009). An increase within cellular fat mass could result in an increase in lipogenesis 

and substrate uptake, and a decrease in lipolysis and cellular export (Mishra et al., 

2016). These processes could alter the intrinsic regulation of FFA and cholesterol 

biosynthesis pathways that could lead to hypertriglyceridemia and other 

complications (Schultz et al., 2000). Due to the diversity of published data and 

various doses of acyl-ghrelin administered, further research into ghrelin-mediated 

lipid retention especially within humans is needed. 

 

1.6.6 Ghrelin and Type 2 diabetes 

An important contributor to the pathophysiology of T2D is the failure of glucose 

uptake into peripheral tissues such as adipose, skeletal muscle and liver. Decreased 

total ghrelin levels in patients with T2D are associated with an increase in 

abdominal adiposity and insulin resistance (Katsuki et al., 2004). As previously 

mentioned, ghrelin has a demonstrated role in fat metabolism and glucose 

homeostasis; and cross-talk between lipid and glucose metabolism may result in a 

physiological role of ghrelin in insulin resistance. Cellular lipid accumulation that is 

observed upon ghrelin administration can have a knock on effect on glucose 

homeostasis. There are two hypotheses relating to lipid-mediated insulin 

resistance. The first is that an excess of visceral adiposity triggers release of FFA into 
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the circulation. An increase in hepatic FFA oxidation triggers insulin resistance and 

an increase in glucose output from the liver (Lam et al., 2003, Boden, 1999). Acyl-

ghrelin infusion in humans has been associated with a rise in circulating FFA levels 

(Huda et al., 2009), and a subsequent decrease in insulin sensitivity (Boden, 1999). 

These findings demonstrate possible causation of insulin resistance that can occur 

in healthy volunteers when given an acyl-ghrelin infusion (Vestergaard et al., 2010, 

Vestergaard et al., 2007). The second hypothesis is that enlarged lipid-containing 

adipocytes are associated with the release of FFA, physical stress and ROS 

production (Maumus et al., 2008, Gustafson, 2010). Prolonged elevation of ghrelin 

increases visceral adiposity in mice and attenuates the transcription of LXRβ and 

ABCG1 which increases adipocyte volume due to a reduction in lipid export (Davies 

et al., 2009). This could alter immune function, as a result of increased ROS 

production and the release of damaging inflammatory agents such as TNFα. This 

indirect immuno-modulatory response may lead to insulin resistance and T2D due 

to TNFα’s ability to induce the inhibitory phosphorylation of insulin receptor 

substrate (IRS)-1, leading to systemic insulin resistance (Gustafson, 2010) . The 

association between obesity and T2D is well documented, allowing ghrelin to play a 

potential pharmacological role in its prevention and/or treatment. 

1.7 Aims 

I hypothesise that acyl-ghrelin will be shown to mediate lipid retention within 

human adipocytes, thus causing an increase in inflammation and oxidative stress. 

Upon translation from a single cell type to a depot, I propose that acyl-ghrelin 

would still be deemed detrimental to lipid homeostasis and thus would highlight 
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key associations of acyl-ghrelin and inflammatory markers within the circulation of 

those with and without T2D. This thesis proposes to explore this hypothesis via the 

following aims: 

1. Investigate the effect of acyl-ghrelin exposure on the lipid retention 

pathway and consequent inflammatory response, in an established human 

adipocyte cell line  

2. Translate cell specific findings into a depot specific effect via analysis of the 

lipid retention pathway in human visceral adipose tissue biopsies 

3. Explore acyl-ghrelin within circulating plasma of individuals with and 

without T2D to establish any associations with indicators of the metabolic 

state 
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This chapter is split into three arms to allow for fluidity throughout the 

methodology, the sections are based on result chapter’s sample source and are as 

follows; (i) in vitro samples- cell lines, (ii) ex vivo samples- human visceral adipose 

tissue and (iii) cross over protocols, including data analysis. 

 

2.1 In vitro samples 

2.1.1 Human pre-adipocyte cell line 

Alternative methodologies including primary human adipocytes and the excising of 

adipocytes from adipose tissue biopsies were also considered for the in vitro aspect 

of this project. Upon investigation of these techniques, the use of an established 

cell line was considered to be of greatest benefit for the experimental design of this 

project, allowing for experimental repeats and minimal risk of addition cell type 

carry over. However, cell lines can undergo alterations during high passage culture, 

therefore to reduce the risk of phenotypical changes within cells undergoing 

experiment the sub-culturing protocol restricted cell passages to a maximum of 10.  

A human pre-adipocyte cell line was derived from a stromal vascular fraction from 

infants with Simpson Golabi Behmel syndrome (SGBS) (Fischer-Posovszky et al., 

2008). SGBS (MIM312870) is a rare X-linked congenital overgrowth syndrome to 

which the cause is not fully elucidative (Wabitsch et al., 2001). It has a clear genetic 

link with the glypican 3 gene, a gene involved in organ growth control, where often 

in cases of SGBS there is either a point mutation or deletion within the Glypican 3 

gene (DeBaun et al., 2001).  
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 The human pre-adipocyte cell line is well established as a unique tool for 

studying adipocyte biology, exhibiting a high capacity for adipose differentiation 

that results in mature adipocytes. In 2001, the SGBS cell line was induced achieving 

adipogenic differentiation at a rate of over 90% for up to 50 generations (Wabitsch 

et al., 2001). The cell line exhibits specific metabolic functions; insulin-stimulated 

glucose uptake, insulin-stimulated de novo lipogenesis, β-adrenergic-stimulated 

lipolysis and adipokine secretion (Wabitsch et al., 2001, Fischer-Posovszky et al., 

2008).  

 

2.1.2 Cell culture 

2.1.2.1 Revival 

Upon arrival, a cryovial containing 1 million cells per mL was placed in a water bath 

at 37°C for rapid defrosting and placed in a falcon tube containing 20 mL of media A 

(Table 2.1) and 10% foetal calf serum (FCS) (Invitrogen™) to dilute freezing medium. 

The falcon tube was then centrifuged for 4 minutes at 1500 rotations per minute 

(rpm)(200 x g), supernatant decanted off and cell pellet resuspended in media A 

plus 10% FCS and seeded into a T75 flask with 20 mL media A plus 10% FCS. Cells 

were incubated at 37°C in 5% CO2. After 24 hours, media was decanted and 

refreshed and cells were incubated at 37°C in 5% CO2. 
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Reagent Quantity Supplier 

DMEM F12 
 

500 mL Invitrogen™ 

Panthotenate 
 

1.7 mM Sigma-Aldrich™ 

Biotin 
 

3.3 mM Sigma-Aldrich™ 

Penicillin (10,000 U/mL)/ 
Streptomycin (10,000 µg/mL) 

solution 
 

5 mL Invitrogen™ 

Table 2.1. Media A components 

 

2.1.2.2 Subculturing 

Cells were grown in T75 flasks until 80% confluent, old media was removed and 

cells washed three times with 4mL phosphate buffered saline (PBS) (Corning™). 

Adhered cells were trypsinised using 2 mL of 0.05% Trypsin-EDTA (Gibco®, Life 

Technologies™) and incubated for 5 minutes at 37°C. Detached cells were 

suspended in 5 mL media and centrifuged for 10 minutes at 1500 rpm (200 x g) and 

the supernatant discarded. Cells were resuspended in 1 mL of media A and counted 

using a Scepter™ 2.0, an automated handheld cell counter (EMD Millipore) and split 

into four T75 flasks at approximately 2,000,000 cells in 20 mL media A containing 

10% FCS. The flasks were incubated at 37°C and 5% CO2 with a cell doubling time of 

38.4 ± 1 hour; cells were split every 4-5 days at 80% confluency. 
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2.1.3 Cell seeding  

SGBS cells at passage 5 were seeded into 6-well plates for differentiation and 

treatments. Confluent T75 flasks were washed and trypsinised as detailed in section 

2.1.2, 10 mL of media A was added to the T75 flask, transferred to a 50 mL falcon 

tube and centrifuged for 10 minutes at 1500 rpm (200 x g). Cells were counted and 

placed into 6 well plates at a seeding density of 0.2 x 106 with 1.5 mL media A 

containing 10% FCS. Cells were placed in a CO2 incubator at 37°C and 5% CO2 until 

90% confluent. 

 

2.1.4 Cell differentiation  

Media A was decanted from the 6 well plates and adhered cells were washed three 

times with PBS as described in section 2.1.2. Differentiation is induced under 

serum-free culture condition that contain a specific adipogenic cocktail made up of 

various components to aid in the differentiation of preadipocytes. Frequently found 

within adipogenic cocktails are insulin, dexamethasone and 3-isobutyl-1-

methylxanthine (IBMX) (Scott et al., 2011). Insulin acts to induce proliferation and 

differentiation of preadipocytes, as in high concentrations it is known to mimic 

insulin-like growth factor-1, activating mitogen-activated protein kinase pathways 

and in turn activating PPARγ and thus adipogenic gene expression (Ailhaud, 1982, 

Qiu et al., 2001, Kim et al., 2010). Dexamethasone is an anti-inflammatory steroid 

molecule and IBMX is a competitive non-selective phosphodiesterase inhibitor, 

both of which regulate PPARγ-promoting adipogenesis and induce transcription 
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factors for growth and differentiation (Salasznyk et al., 2005, Gurriarán‐Rodríguez 

et al., 2011). In addition, the adipogenic cocktail also contained rosiglitazone, a 

PPARγ agonist that aids in sensitizing adipocytes to insulin action, increasing the 

rate and degree of differentiation (Ninomiya et al., 2010, Scott et al., 2011); thyroid 

hormone (T3), which stimulates basal metabolic rate, transferrin to act as an iron 

source for adipogenesis and cortisol to promote adipogenesis (differentiation 

media B). 

Differentiation media B (2 mL)(Table 2.2) was introduced to each well for 

four days of incubation. On day 4, differentiation media B was removed via 

decanting and 2 mL of differentiation media C added (Table 2.3) for a further 10 day 

incubation. Fresh media was supplied every 4 days as previously published 

(Wabitsch et al., 2001) (Figure 2.1). 

Reagents 
 

Quantity 
 

Concentration 
 

Supplier 
 

Media A 
 

10 mL  See Table 2.1. 

Transferrin 
 

100 µL 0.01 mg/mL Sigma-Aldrich™ 

Insulin 
 

2 µL 20 nM Sigma-Aldrich™ 

Cortisol 
 

10 µL 100 nM Sigma-Aldrich™ 

Triiodothyronine 
(T3) 

 

10 µL 0.2 nM Sigma-Aldrich™ 

Dexamethasone 
 

10 µL 25 nM Sigma-Aldrich™ 

IBMX 
 

10 µL 250 µM Sigma-Aldrich™ 

Rosiglitazone 
 

2 µL 2 µM Cayman™ 

 Table 2.2. Differentiation media B components 
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Reagents 
 

Quantity 
 

Concentration 
 

Supplier 
 

Media A 
 

10 mL  See Table 2.2 

Transferrin 
 

100 µL 0.01 mg/mL Sigma-Aldrich™ 

Insulin 
 

2 µL 20 nM Sigma-Aldrich™ 

Cortisol 
 

10 µL 100 nM Sigma-Aldrich™ 

Triiodothyronine 
(T3) 

 
10 µL 0.2 nM Sigma-Aldrich™ 

Table 2.3. Differentiation media C components 

 

 

Figure 2.1. Media components for 14 day differentiation period 

 

2.1.5 Cell treatment 

Mature human adipocytes were exposed to various treatments as specified within 

each chapter. In Chapter 3, mature adipocytes were exposed to either an acute 

normo- or hyperglycaemic environment at day 12 of differentiation. The ranges of 

glucose added to the media were based on the physiological ranges present within 
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individuals with Type 2 diabetes (T2D) and healthy individuals, respectively. To 

exhibit a normoglycaemic and hyperglycaemic environment, media A was spiked 

with D-glucose (Sigma™) and set at glucose concentrations of 5.5mM and 25mM, 

respectively. On day 14, mature adipocytes were exposed to either acyl-ghrelin 

(100 nM), lipopolysaccharide (LPS) (1 µg/mL) or LPS and acyl-ghrelin (1 µg/mL, 100 

nM respectively), dependent on allocated well in plate layout (Figure 2.2). The 

collection of RNA and cell supernatant occurred at 17 and 34 hours post 

treatments.  

Within Chapter 5, mature adipocytes were also exposed to a hyperglycaemic 

(25mM glucose) environment at day 12. The cells were then dosed with metformin 

(SigmaAldrich™) on day 14. The cell dosage of metformin was determined by 

previously published literature (Section 5.3.1).  Vehicle of PBS was used as a control 

within both Chapter 3 and Chapter 5. Cell dosage concentrations were indicative of 

previous published work within similar cell types, as discussed in relevant chapter, 

to establish the effect of treatment and not representative of physiological level.   
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Figure 2.2 Plate layouts for cell treatments, replicated for high and low glucose  concentrations. 

Plate one represents the wells treated with 100 nM ghrelin (G) or 1 µg/mL LPS (L) or PBS (V). Plate 2 

is combined treatment with ghrelin (100 nM) and LPS (1 µg/mL) (GL) or PBS (V). Wells will be treated 

for the time indicated in hours for each well; 17 or 34 hours.  

 

2.1.6 Oil red O staining  

At the required time points (17 and 34 hours) mature adipocytes underwent oil red 

O staining to allow for the quantification of accumulated lipid area (Figure 2.3). All 
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reagents were purchased from Sigma Aldrich™ and staining undertaken as 

described by the manufacturer’s protocol and published by Kishore and colleagues 

(Kishore et al., 2012).   

Fixing adipogenic cultures 

Treatment media was aspirated from the wells and adhered cells washed with PBS 

and fixed by the addition of 2 mL 10% formalin. After one hour of incubation at 

room temperature, the 10% formalin was removed, cells washed with deionised 

water and placed in 2 mL 60% isopropanol for 4 minutes then aspirated off. 

Preparation of Oil red O stain  

Stock solution was prepared by adding 300 mg of Oil red O stain powder to 100 mL 

of 99% isopropanol, this stock solution was then diluted 3 parts solution in 2 parts 

deionised water and left to stand at room temperature for 10 minutes. The solution 

was then passed through a filter to remove any residual debris. Prepared oil red O 

solution is only stable for 2 hours so a fresh working concentration was required 

every use. 

Staining adipogenic cultures 

Prepared Oil Red O solution (500 µL) was added to each well whilst the plate was in 

oscillation, incubated at room temperature for 5 minutes and then washed with 

deionised water. Cells were then counterstained; 1 mL of Hematoxylin solution 

(Sigma™) was added to the cells, left for 1 minute, then rinsed with warm deionised 

water.  
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Figure 2.3. Mature SGBS cells imaged at magnification x50 before and after Oil red O staining and 

haematoxylin counterstain. N = nucleus, L = lipid droplet.  

 

2.1.7 Cell supernatant collection 

Cell supernatant was aspirated off all treatment wells and collected in 2 mL 

centrifuge tubes, the supernatant then centrifuged at 4000 rpm (500 x g) for 10 min 

at 4°C. To ensure all cell debris was removed, the supernatant was placed in a fresh 

2 mL centrifuge tube which was labelled with cell treatment, replicate identifier and 

time point for storage at -20°C until needed.   

 

2.1.8 RNA extraction  

At collection time points, RNA was collected from the mature adipocytes using the 

RNAeasy mini kit (Qiagen™). To the allocated well, 350 µL of buffer RLT was added 

and the cells dislodged using a cell scraper. Cell lysate was collected using a 1 mL 

pipette and placed into a 2 mL centrifuge tube. The sample was homogenised by 
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passing through a 20G needle, 7 times. One volume of 70% ethanol was added to 

the homogenised sample and mixed well via pipetting. The next stage of the 

extraction used an RNAeasy mini kit (Qiagen™) which contains all components and 

buffers. The lysate was transferred to an RNAeasy mini column with a 2 mL 

collection tube and centrifuged at 13,000 rpm (10,400 x g) for 15 seconds and the 

flow through discarded. The collection tube was replaced with a clean 2mL 

collection tube, 700 µL of buffer RW1 added and centrifuged for 15 seconds at 

13,000 rpm (10,400 x g). The collection tube was discarded with flow through and 

replaced with a fresh 2 mL tube, 500 µL of buffer RPE added and centrifuged for 15 

seconds at 13,000 rpm (10,400 x g). This step was repeated a further time. RNA was 

eluted by placing the spin column into a clean 1.5 mL collection tube and 40 µL of 

RNase-free water added and centrifuged for 1 minute at 13,000 rpm (10,400 x g). 

This step was repeated with a further 40 µL of RNase-free water and incubated for 

5 minutes to ensure all RNA was eluted. The column was centrifuged again for the 

final time for 1 minute at 13,000 rpm (10,400 x g).  

2.1.8.1 DNA free treatment  

In order to remove any genomic DNA contamination from the RNA, a DNA-Free Kit 

(Ambion™) was used according to manufacturers’ guidelines. DNase I buffer  (10X) 

of 0.1 volume and 1 µL DNase I was added to eluted RNA, vortexed and incubated 

at 37°C for 30 minutes. Then 0.1 volume of re-suspended DNase inactivation 

reagent was added to the mixture, vortexed and left to stand for 2 minutes’ whilst 

mixing occasionally. Samples were centrifuged at 13,000 rpm for 1 minute and 30 

seconds, when they were aliquotted into 20 µL for storage at -80°C until needed.  
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2.1.8.2 RNA quantification 

Extracted RNA was quantified using a NanoDrop spectrophotometer at 260 nm 

wavelength. The nanodrop allowed for the measurement of up to eight 1 µL 

samples to be measured simultaneously. When the sample is placed on the 

pedestal, the arm is closed which forms a sample column and is held into place by 

surface tension during measurement. Before each measurement, the NanoDrop 

was blanked using DNA and RNA free water, 1 µL sample was measured and RNA 

concentrations were recorded as ng/µL. As a measure of purity the RNA absorbance 

ratio at 260/280 nm was also recorded, a ratio of around 2.0 is generally accepted 

as ‘pure’ for RNA (Desjardins and Conklin, 2010). 

 

2.2 Ex vivo samples 

2.2.1 Sample collection 

The East of Scotland Research Ethics Committee granted ethical approval for the 

project proposal (14/ES/1073)(Appendix 1). Sampling criteria required 10 

participants as deduced from power calculation to achieve 80% power based on 

previous hVAT sample analysis with inflammatory marker IL-6 as a primary output, 

for each three groups: 

I. Non-obese (BMI <30 Kg/m2) 

II. Obese (BMI >30 Kg/m2) 

III. Obese with Type 2 diabetes (BMI >30 Kg/m2 & T2D)  
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The sample collections were carried out by myself at Morriston and Singleton 

Hospitals, Swansea. Eligibility inclusion criteria included between age 18-65 years, 

undergoing elective abdominal surgery and generally well at time of surgery, and 

exclusion criteria included unable to give informed consent and any participant 

undergoing surgery for an underlying malignancy. Informed consent was taken by 

myself after eligibility was checked by surgeon. Informed consent was given to 

collect human visceral adipose tissue (hVAT), two EDTA blood samples and 

additional clinical information. The participants’ demographic measures (weight, 

height, birth date, blood pressure, medications and previous medical history) were 

documented from the medical records. Participants with systolic blood pressure 

≥140 mmHg and/or diastolic blood pressure ≥90 mmHg or on antihypertensive 

medications were deemed hypertensive.  

  All participants information was anonymised with an unique study 

identification number. A GP letter was sent out and noted within the medical 

records that the participant had taken part within the ‘Ghrelin’ study. No further 

contact was required with the participant. 

 

2.2.2 Blood collection 

During the surgical procedure, two 4mL Vacutainer™ EDTA-plasma tubes of whole 

blood were collected. 350 µL of blood was transferred to cold sterile centrifuge 

tubes containing 4-(2-Aminoethyl)-benzenesulfonyl fluoreide (AEBSF) at a final 

concentration of 2mg/mL and gently mixed to inhibit the activity of proteinases 
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within 30 minutes of the blood being drawn. The blood containing AESBF was 

centrifuged at 6,000 rpm (2,000 x g) for 15 minutes at 4°C and the supernatant 

decanted into separate sterile tubes (50 µL aliquots) and stored at -80°C until 

needed. The remainder of the EDTA tube of whole blood was aliquoted into 1 mL 

centrifuge tubes and stored at -20°C. The second EDTA tube was centrifuged at 

6,000 rpm (2,000 x g) for 5 minutes at 4°C and the plasma aliquoted and stored at -

80°C for later use. 

 

2.2.3  Tissue collection 

Samples were collected from routine abdominal surgery. A 3 x 3 cm biopsy of hVAT 

was removed from the greater omentum via laproscopic scissors. No extra incision 

was required for the biopsy. Once removed, the tissue was sectioned into smaller 

pieces using a sterile blade and place into a 2 mL centrifuge tube containing 1.5 mL 

RNALater® (Ambion Inc) to preserve tissue stability. Samples were transported to 

the Institute of Life Science 1 in Swansea University for storage at 4°C overnight 

before storage at -20°C until required. 

 

2.2.4 RNA extraction 

RNA was extracted from hVAT samples. Samples were cut into pieces of ≤100 mg 

and placed in a 2 mL homogeniser tube (Lysing Matrix D, MP Biomedicals). At room 

temperature, 1 mL of QIAzol lysis buffer was added, centrifuged at 4 meters per 

second for 20 seconds and then placed immediately on ice, this was repeated until 
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the sample was completely homogenised. The lysate was transferred to a clean 1.5 

mL tube and left for 5 minutes at room temperature. Chloroform (200 µL) was 

added, shaken for 15 seconds and spun at 15,000 rpm (12,000 x g) for 15 minutes at 

4°C. This stage allows separation of the mixture into a lower red phenol/chloroform 

phase, a white interphase and a colourless upper aqueous phase which contains 

RNA. The upper aqueous layer was transferred into a clean 1.5 mL tube where 1 

volume of 70% ethanol was added and immediately vortexed to mix. The next stage 

of the extraction used an RNAeasy mini kit (Qiagen™) which contains all 

components and buffers, and is described in detail in section 2.1.8. 

 

2.2.4.1 DNA free treatment  

DNA free treatment was conducted as described in section 2.1.8.1.  

2.2.4.2 RNA quantification 

Extracted RNA was quantified as described in section 2.1.8.2. 

 

2.2.5 Analytical chemistries 

2.2.5.1 Randox Daytona Plus 

The Randox Daytona Plus is a system for immunoturbidimetry and clinical chemistry 

analysis, providing rapid measurement of glucose, cholesterol, high density 

lipoprotein (HDL), albumin, creatinine and triglycerides in serum and plasma. 

Samples were run alongside quality control samples (Multisera Levels 2 and 3) and 
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calibrated using saline and Calibration Serum Level 3 (Randox). The instrument uses 

direct photometry to measure a coloured endpoint to determine glucose 

concentration (mmol/L), total cholesterol (mmol/L), HDL cholesterol (mmol/L), 

triglycerides (mmol/L), creatinine (µmol/L) and albumin (g/L). Finally, LDL 

concentration (mmol/L) was calculated using values produced by the Randox 

Daytona Plus and utilizing the Friedewald equation, all concentrations are mmol/L: 

 

 

2.2.5.2 HbA1c analysis 

In humans, glucose binds to haemoglobin in the bloodstream which has a viability 

of 8-12 weeks. Therefore, measuring the glucose bound to haemoglobin gives an 

average blood glucose level for the past three months. Determination of the 

relative percentage of glycosylated haemoglobin in whole blood (HbA1c) was 

undertaken using the BioRad D-10 haemoglobin analyser, via high performance 

liquid chromatography (HPLC). Samples were pre-diluted (5 µL in 1500 µL buffer) 

aspirated and introduced into the analytical flow path. The sample probe was 

rinsed between samples to reduce the risk of carryover. A programmed buffer 

gradient of increasing ionic strength delivered the sample to the analytical 

cartridge, where the haemoglobins are separated based upon their ionic 

interactions with the cartridge material. The separated haemoglobins were then 

passed through the filter photometer flow cell, where changes in the absorbance 

𝐿𝐷𝐿 =   𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙 − 𝐻𝐷𝐿 − (
𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒𝑠

2.2
) 
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were measured at 415nm. HbA1c levels were recorded in both mmol/mol and % 

units.   

 

2.2.6 Acyl-ghrelin mesurement 

2.2.6.1 ELISAs 

Enzyme linked immunosorbent assay (ELISA) is a quantitative analytical method 

that shows antigen-antibody reactions through a colour change. This colour change 

is achieved via an enzyme-linked conjugate and substrate that when compared to a 

known concentration, i.e. a standard curve, can determine the concentration of 

specific molecules. There are two types of ELISAs; homogeneous and 

heterogeneous (Aydin, 2015). Homogeneous methods requires the enzyme to 

become inactivated upon antibody binding resulting in continuous antigen binding 

to the medium causing low sensitivity, however it is often used to quantify 

therapeutic substances in small quantities (O'Kennedy et al., 1990). The ELISAs used 

within the project are heterogeneous and require a wash stage to separate the 

bound antigen from the free antigen after antigen-antibody interaction. 

Heterogeneous ELISAs are based on 4 distinct methods; direct, indirect, sandwich 

and competitive (Aydin, 2015). Within this project all ELISAs were based on a 

sandwich method (Figure 2.4). 
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Figure 2.4. Key steps involved in a sandwich ELISA. (AB)-Antibody, (HRP)-Horseradish Peroxidase, 

(TMB)-3, 3’, 5, 5’-tetramethylbenzidine. 

 

2.2.6.2 Acyl-ghrelin assay 

An acyl-ghrelin ELISA kit (Merck Millipore™) was used to determine fasting plasma 

acyl-ghrelin levels, the assay was completed as per manufacturer protocol using the 

reagents supplied within the kit. Assay is characterized with 100% specificity for 

human acyl-ghrelin and 0% desacyl-ghrelin specificity. The protocol required the 

addition of 20 µL of matrix solution to the blank, standards and quality control 

wells. Then, 30 µL of assay buffer was added to the blank and sample wells, with 

the addition of only 10 µL of assay buffer to the standards and quality control wells. 

In duplicate, 20 µL of standards were dispensed in ascending concentration order, 
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followed by both quality controls and the unknown samples (AESBF treated 

plasma). Antibody solution mixture (50 µL) of human active ghrelin detection and 

capture antibody was added to each well, and the plate incubated at room 

temperature, oscillating on a plate rocker for 2 hours. The plate was then washed 3 

times, aspirated and 100 µL of enzyme solution added per well for a further 30 

minutes incubation oscillating at room temperature. The plate was then washed 6 

times. 

The colorimetric reaction was initiated with the addition of 100 µL of substrate 

solution and the plate incubated for 5-20 minutes dependent on the rate of colour 

change. A blue colouration is formed in the wells of the standards, with intensity 

proportional to increasing concentrations of acyl-ghrelin. Stop solution (100 μL) was 

added causing the blue colouration to turn yellow. Absorbance was read at 450 nm 

and corrected at 590 nm in a plate reader within 5 minutes of addition of stop 

solution. Acyl-ghrelin concentration was determined via comparison of the 

absorbance of unknown samples against the standard curve.  

 

2.2.7  Oxidative stress measurement 

Plasma total antioxidant status (TAOS) is based on the method previously described 

by Sampson et al, 2002 and Stephens et al, 2009. Laights photometric microassay 

allows the determination of TAOS values via its capability to inhibit the peroxidase-

mediated formation of the 2,2-azino-bis-3-ethylbensthiazoline-6-sulfonic acid 

(ABTS+) radical.  Due to it being inversely related to oxidative stress, the inhibition 
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of ABTS+ formation is proportional to the samples antioxidant capacity and 

therefore a low level of oxidative stress will result in a high TAOS value. Hydrogen 

peroxide acts as a free radical donor that causes the formation of ABTS+ radicals, 

thus producing a colorimetric change. Phosphate buffer saline (PBS) is used as a 

control as it contains no antioxidant molecules allowing the reaction to proceed to 

completion. Upon the addition of a plasma sample, the reaction is retarded from 

going to completion and the degree of inhibition is dependent upon the level of 

antioxidants within the sample. The percentage inhibition of the reaction is 

represented by the difference in absorbance divided by the control absorbance: 

 

The protocol required the addition of 2.5 µL of plasma or PBS (control) to a clear 

96-well ELISA plate in triplicate. Then 20 µL ABTS (20 mmol/L), 20 µL HRP (30 

mU/mL) and 40 µL PBS was added to each well, the reaction was initiated by the 

addition of 20 µL hydrogen peroxide (0.1 mmol/L). The plate was incubated at 37°C 

for 12 minutes and read at 405 nm on a Crocodile ELISA miniWorkstation (Titertek-

Berthold™).  

 

  2.3 PCR 

Polymerase chain reaction (PCR) is a technique that is based on DNA polymerase’s 

ability to synthesise new DNA strands, thus allowing for the amplification of a 

specific region of template sequence. The most commonly used DNA polymerase 

𝑇𝐴𝑂𝑆 % =
(𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑏𝑠)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑎𝑏𝑠
 𝑥 100 
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and one used in this methodology is Taq polymerase (from Thermus aquaticus). 

Standard PCR works on the principle of three main stages where double stranded 

DNA is heat denatured, specific primers align to the single DNA strands and DNA 

polymerase extends the primers resulting in two copies of the original DNA. This 

amplification cycle consisting of denaturation, annealing and elongation occurs at 

specific temperatures for multiple repeats (20-40 cycles) (Figure 2.5) which are 

optimised for the primer set to ensure a maximum product yield.  

 

Figure 2.5. Polymerase Chain Reaction (PCR), three main stages and description. 
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2.3.1 Reverse transcription 

As previously mentioned, PCR utilises Taq polymerase which is unable to use RNA 

as a starting material, therefore the initial step of RT-PCR is to convert mRNA into a 

complementary strand of DNA (cDNA) using the enzyme reverse transcriptase. 

Reverse transcriptase is an RNA-dependent DNA polymerase that generates cDNA 

via the use of mRNA as a template in the presence of either oligo-dT or random 

decamer primers. Oligo-dT primers work by annealing to mRNA poly A tails, thus 

allowing for a reduction in background due to specific reverse transcription of 

mRNA. Contrary to this are random decamers, which consist of a pool of 6-10 

nucleotides with all base combinations present, this method enables the reverse 

transcription of mRNA molecules too large for oligo dTs, however, this can increase 

background due to nonspecific annealing of RNA. The genes of interest within this 

study contained a final intron-exon boundary at various Kb distance upstream from 

the polyA tail. Therefore to ensure efficient reverse transcription of mRNA each 

specific primer required the use of either oligo dTs, random decamers or a 

combination of the two (see Table 2.4).  
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Primer Set RT Primers 

β-actin 50:50 mix 

PPARγ 50:50 mix 

ABCG1 Oligo dTs 

LXRβ Oligo dTs 

Ghrelin Oligo dTs 

LYPLA1 Random Decamers 

mBOAT4 Oligo dTs 

SREBF1 Oligo dTs 

GHSR-1α Oligos dTs 

Table 2.4. Reverse transcription primers used for cDNA synthesis for each specific primer set. 

 

2.3.1.2 cDNA synthesis  

The mRNA within total RNA extracted from tissue and cells underwent reverse 

transcription using an Ambion™ RETROscript kit following the manufacturer’s 

protocol. A master mix for the desired amount of reaction was prepared containing 

the following components, ensuring each reaction compiled of the exact same 

quantities:  
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2 µL random decamers [50 µM] OR 2 µL oligo-dTs [50 µM] OR 

1 µL random decamers & 1 µL oligo-dTs 

2 µL 10 x RT Buffer 

4 µL dNTP mix [2.5 mM each dNTP] 

1 µL MMLV reverse transcriptase [100 U/µL] 

The master mix was vortexted and centrifuged and 9 µL placed into a 0.2 mL 

centrifuge tube. 1 µg of total RNA was then added and brought to a final volume of 

20 µL using RNase free water. The final reaction was mixed, briefly spun and 

incubated at 44°C for 1 hour then at 92°C for a further 20 minutes to inactivate the 

reverse transcriptase, and stored at -20 °C for future use.  

 

2.3.2 End point RT-PCR 

End point RT-PCR utilises the basic principle of standard PCR to confirm the 

expression of key genes related to this project. Standard PCR undergoes 3 phases. 

Initially the reaction has an exponential phase where the exact doubling of product 

is accumulating at every cycle. This leads into a linear phase, which is due to the 

reaction slowing and components being consumed. Finally, the PCR enters a 

plateau phase, where the reaction stops and no more PCR product is generated. At 

this point the PCR product can be visualised on a gel, known as end point detection. 

Visualising the PCR product at this point does not allow for the quantitation of 

mRNA expression levels, however it does allow for a rapid and cost-effective 

method for the confirmation of the presence or absence of key genes within sample 

types.  
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2.3.2.1 Reaction 

All reagents were sourced from Promega™, the following was used for each end 

point PCR sample and all reactions were prepared within a bench top PCR hood 

cleaned with 70% ethanol and UV irradiation for 15 minutes prior to use. The 

cycling conditions were performed within a BioRad CFX Connect and specific cyclic 

conditions for each primer set are described in Appendix 2. 

10 µL 5X Colourless Go®Taq Flexi Buffer 

3 µL MgCl2 [25 mM] 

1 µL dNTP mix [40 mM] 

0.5 µL Go®Taq G2 Flexi DNA Polymerase [5 U/µL] 

1 µL Forward Primer [15 pmol] 

1 µL Reverse Primer [15 pmol] 

30.5 µL Deionised, sterile H2O 

3 µL Sample cDNA or negative control (H2O) 

 

2.3.2.2 Gel electrophoresis  

PCR products were visualised on a 12% polyacrylamide gel using the following 

reagents: 

Acrylamide:Bisacrylamide (37.5:1) stock solution, containing 30% w/v 

acrylamide (Severn Biotech Ltd) 

10x Tris/Borate/EDTA Buffer (Invitrogen) 

TEMED (N1N1 N1 N1-tetramethylethylene diamine) (Sigma-Aldrich) 
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10% Ammonium persulphate (Sigma-Aldrich) 

12% polyacrylamide gels were made by diluting 16 mL Acrylamide:Bisacrylamide 

solution and 4.5 mL 10X TBE buffer in 24 mL distilled water. Polymerisation of the 

acrylamide was initiated by the addition of 220 µL of 10% APS and 45 µL of TEMED. 

The solution was then placed into four BioRad caskets and a 15-tooth comb 

inserted. The gels were set at room temperature for approximately 30 minutes then 

wrapped and stored at 4°C for future use.  

Gels were placed into vertical gel cases and filled with 1x TBE buffer. 5 µL 

PCR product was mixed with 2 µL gel loading buffer (50% v/v glycerol, 10% v/v 0.1M 

EDTA, 1% v/v bromophenol blue, 1% SDS) (Sigma-Aldrich), with 5 µL of mixture  

pipetted into the loading well. Each gel also contained a reference 100 base pair 

(bp) ladder, 5 µL of a premixed ladder was loaded into the first well of every gel. 

The premixed ladder contained; 1 µL 100 bp ladder (Promega), 2 µL gel loading 

buffer and 5 µL distilled water.  

Gels were visualised using silver staining, which required the gel being 

placed in silver nitrate solution (1g AgNO3 (Sigma-Aldrich) in 1 L H2O) under gentle 

agitation for 10 minutes. Silver nitrate solution was decanted off and residual 

solution washed off with distilled water. The gel was then placed in sodium 

hydroxide solution (13.5g NaOH (Sigma-Aldrich) in 900 mL H2O and 3.6 mL 

formaldehyde (Sigma-Aldrich)) for a further 10 minutes under gentle agitation. Gels 

were imaged using a white tray on a BioRad EZ Imager and analysed using BioRad 

Image Tool software. 
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2.3.3 Quantitative Real time PCR  

Gene expression profiling analysis via quantitative real time PCR (qReal Time PCR) 

allows for the reliable detection and quantification of nucleic acids during the 

exponential phase of a PCR. qReal Time PCR works on the same amplification 

principle of PCR, however the experimental design is based on the detection and 

quantification of fluorescence emitted by a reporter molecule in real time. RNA 

transcripts are reverse transcribed into cDNA first then used in the qReal Time PCR. 

The accumulation of PCR product generated with each cycle emits an increased 

fluorescence that once it has passes a certain threshold, the cycle in which this 

occurs can be quantified (Ct value). The Ct value is directly correlated to the initial 

amount of target template, allowing for the quantification of gene expression. 

Reporter molecules that are most commonly used are DNA binding agents 

(SYBRgreen dye) and hydrolysis probes (Taqman).  

 

2.3.3.1 SYBRgreen 1 

Throughout the analysis, SYBRgreen I (BioRad™) was utilised as a reporter 

molecule. SYBRgreen I is an intercalating dye that binds to the double stranded 

DNA, emitting fluorescence that correlates with DNA amplification. The advantage 

of using SYBRgreen I over complex probes is that it is an intercalating dye which 

offers a simple and cost-effective approach. However, due to its ability to bind to 

any double stranded DNA it is susceptible to error. Primer optimisation is key to 

decreasing the risk of non-specific primer dimer formation.  
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2.3.3.2 Real time PCR primer design 

Real Time PCR primers were designed using the NCBI tool Primer BLAST. All primers 

were designed using the RNA gene sequence to be approximately 20 nucleotides in 

length, with an annealing temperature of approximately 60°C. The tool returned 

several primer pairs for comparison and the primer pair selected was based on a GC 

content of around 50-60% to ensure product stability and avoiding self- 

compatibility, reducing the possibility of primer dimer. The primer sequences were 

then located within the gene sequence to ensure they crossed an exon-exon 

boundary. The primers were designed to produce an amplicon of 150-250 bp in size 

from GHRL, PPARγ, ABCG1, LXRβ and LYPLA1 as target genes, and β-actin as a 

housekeeper gene. 

 Oligonucleotides were synthesised by Eurofins MWG Operons (Germany) 

and shipped desalted and dehydrated. Upon arrival, they were re-hydrated with the 

stated volume of filter sterilised water to produce a concentration of 100 pmol/µL, 

then diluted to 15 pmol/µL, aliquoted and stored at -20°C. 

Due to the quantity of time required to design and optimise, additional 

primers for SREBF1 and mBOAT4 that proved difficult to optimise in-house, were 

designed and validated by Primerdesign™. The company was supplied with the 

target genes of interest and returned the designed and optimised primer sets. The 

product came with a guaranteed priming specificity and efficiency of >90%. The 

lyophilised primer mix was resuspended in 660 µL filter sterilised water to achieve a 

300 nM working concentration, aliquoted and stored at -20°C. All primer sequences 

are listed in Appendix 2. 
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2.3.3.3 Real Time PCR reaction 

All reactions were prepared within a bench top PCR hood that was cleaned with 

70% ethanol and UV irradiated for 15 minutes prior to use. The cycling conditions 

were performed within a BioRad CFX Connect and each primer set required a 

distinct and optimised cycling condition (Appendix 2). However, each Real Time PCR 

reaction conducted was uniform, consisting of the following reagents: 

12.5 µL SYBRgreen I 

1 µL Forward Primer [15 pmol] 

1 µL Reverse Primer [15 pmol] 

5 µL cDNA 

5.5 µL Deionised, sterile H2O 

 

2.3.3.4 Analysis of Real Time PCR data; 2-ΔΔCT Method 

Relative quantitation was used to determine differences in expression levels of the 

specific target genes between different samples. This generates a fold change 

output that represents the change in expression of a particular gene either over 

time or in varying treatments. In order to obtain accurate relative quantitation of 

an mRNA target, the expression level of an endogenous control (housekeeper) β-

actin were also measured (Livak and Schmittgen, 2001). 

To ensure that the comparative Ct method or 2-ΔΔCT method could be used 

for data analysis a validation experiment was conducted. In order to determine a 
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fold change value, the raw Ct values were analysed using a 3 step process. Firstly, it 

was required make the target Ct value relative to an endogenous housekeeper: 

 

Then, determine the magnitude of the fold change in respect to a calibrator group 

i.e. treated versus an untreated sample: 

 

Finally, the ΔΔCt must be log transformed: 

 

A positive ΔΔCt will produce a fold change of <1. In order to establish the 

magnitude of fold change the value is expressed as either a fraction or 1 over. For 

example, 2-ΔΔCt = 2-(2.0) = 0.25, fold change can either be expressed as ¼ or as 1/0.25 

to produce a 4-fold down regulation. 

 

2.3.4 PCR controls and validations 

2.3.4.1 PCR controls 

The controls within PCR consisted of a no-template control (NTC) and no-reverse 

transcription control (NRTC). NTC contains all the Real Time PCR reagents without 

the cDNA template, allowing the detection of any contamination within the 

ΔCt = Ct(target) - Ct(housekeeper) 

ΔΔCt = ΔCt(test sample) - ΔCt(calibrator sample) 

2-ΔΔCt 
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mastermix. NRTC allows for the detection of any contamination within the reverse 

transcription step since it contains all reagents other than template RNA.   

 

2.3.4.2 Primer validation 

To ensure a comparative method could be used within data analysis, all primers had 

to have the same standard efficiency. If the primer efficiencies were approximately 

equal then there would be limited variation in the ΔCT value within the template 

dilution (Schmittgen and Livak, 2008). To ensure this was correct for all primers, 

cDNA was generated from 3 separate RNA samples of hVAT (Section 2.2.5) and a 

template dilution series over 3 points produced. Real Time PCR was performed for 

each sample using all generated primers and ΔCT values established. Data was 

plotted to produce a semi-regression plot, where primers were accepted on the 

basis of slope value of <0.1. Validation plots for each primer set can be found in 

Appendix 3.  

 

2.3.3.3 Real Time PCR Validation  

In order to determine the assay’s reproducibility, both inter- and intra-assay 

variation for Real Time PCR data generated were assessed from each primer set 

used. Intra-assay variation was determined by performing 5 assays (each in 

triplicate) for each primer set, on 3 different RNA samples (from hVAT) on a single 

plate within the same Real Time PCR run. Inter-assay variation examined the 

variation produced within a sample for each primer set on different Real Time PCR 
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runs. Therefore, 3 samples sourced from hVAT were run in triplicate for each 

primer set on 5 different assays over the course of 10 days. Intra- and inter-assay 

coefficient of variances are given in Table 2.5 (raw data found in Appendix 4). 

 

Primer Set Intra-variation (CV%) Inter-variation (CV%) 

β-actin 0.66 - 0.84 1.06 - 1.47 

PPARγ 1.10 - 1.85 1.60 - 2.02 

ABCG1 0.74 - 1.10 1.05 - 1.24 

LXRβ 0.83 - 1.38 1.76 - 2.34 

GHRL 0.88 - 1.39 1.22 - 1.63 

LYPLA1 0.42 - 0.84 0.74 - 1.01 

mBOAT4 0.93 - 1.10 1.34 - 2.01 

SREBF1 1.02 - 1.26 0.83 - 1.42 

Table 2.5. Intra- and inter-variations for Real Time PCR for all primer sets. 
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2.4 Adipokine ELISAs 

Tumor necrosis factor alpha (TNFα), interlukin-6 and interleukin-10 (IL-6 and IL-10) 

were measured using sandwich ELISA assays purchased from R&D systems™, as 

described in Section 2.2.7.1. The ELISA for each adipokine used reagents within the 

kit and in accordance with the manufacturer’s guidance. Within this project, both 

SGBS cell culture supernatants and human plasma collected at time of procedure 

were needed. Each kit was brought to room temperature before use and standards 

made from a supplied lyophilised stock. All samples were thawed and centrifuged 

at 4000 rpm (1,431 x g) for 5 minutes before assaying and plated onto a standard 

plate layout (Figure 2.6).  

 

Figure 2.6. Plate layout for adipokine ELISAs. The 8 standards in duplicate were placed in ascending 

concentration (1-8, blue gradient). Standard curve is followed by unknown samples in duplicate (1 & 

2, purple and orange). 
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2.4.1 TNFα 

The protocol required the addition of 50 µL of assay diluent to each well, followed 

by 200 µL of known standards, quality controls and unknown samples in duplicate. 

After a 2 hour incubation at room temperature, the plate was washed and 

aspirated. Subsequently 200 µL of TNFα conjugate was added and incubated at 

room temperature for either 1 hour for cell culture supernatant or 2 hours for 

human plasma samples. The plates underwent a final wash cycle before the 

initiation of the colourimetric reaction as described in Section 2.4.4.  

 

2.4.2 IL-6 

The IL-6 assay protocol required the addition of 100 µL assay diluent, then 100 µL of 

standards and unknown samples to each well in accordance with standard plate 

layout (Figure 2.6). After a 2 hour incubation at room temperature, the plate was 

washed and aspirated and 200 µL of human IL-6 conjugate added to each well for a 

further 2 hour room temperature incubation. The microplate then underwent a 

final wash cycle before initiating the colourimetric reaction as described in Section 

2.4.4. 

 

2.4.3 IL-10 

The IL-10 procedure required a 10-fold dilution of cell supernatant samples in 

specific calibrator diluent before running, however plasma samples were run neat. 
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For plasma samples the microplate required the addition of 50 µL of assay diluent 

before loading 200 µL of standards or samples per well, whilst 200 µL diluted cell 

supernatant samples were added directly to the plate. Both sample types required 

a 2 hour room temperature incubation. The plate was then washed and aspirated 

and 200 µL of human IL-10 conjugate added. Sample types required different 

incubation times at room temperature, with cell supernatants requiring a 1 hour 

incubation and plasma samples requiring a 2 hour incubation. The plate underwent 

a final wash cycle before initiating the colourimetric reaction as described in Section 

2.4.4. 

 

2.4.4 Colourimetric reaction 

All assays underwent the same protocol to produce a colourimetric reaction. The 

colourimetric reaction was initiated with the addition of 200 µL of substrate 

solution and incubated for 20 minutes dependent on the rate of colour change. 50 

μL of stop solution was added causing the blue colouration to turn yellow after 

acidification. Absorbance was read at 450 nm and corrected at 590 nm in a plate 

reader within 5 minutes of addition of stop solution. Adipokine concentration was 

determined via comparison of the absorbance of unknown samples against the 

known concentration of the standards.   
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2.5 Statistical analysis  

All statistical analysis of raw data was conducted using SPSS version 22 and figures 

were constructed using Microsoft Excel. A p-value of <0.05 was deemed statistically 

significant for all tests.  

 

2.5.1 Categorical data 

Categorical data that was represented by numbers (n) and percentage (%) were 

analysed using pearson chi squared test.  

 

2.5.2 Continuous data 

The continuous data throughout this thesis is summarized by mean (±standard 

deviation (SD)), when the data were normally distributed and by median and 

interquartile range (IQR) if not normally distributed. Normality was checked using 

Kolmogorov-Smirnov test and visualised on q-q plots. The student t-test was used 

to compare the mean of two groups and analysis of variance (ANOVA) to compare 

the mean of more than two groups for normally distributed data. Alternatively, 

non-normally distributed data was analysed using Whitney U and Kruskal Wallis 

tests. For the analysis of association between two continuous variables within 

normally distributed data, a Pearson correlation coefficient test was conducted, 

where a positive or negative correlation spanned from -1 to 1, with 0 indicating no 

correlation. Within non-normally distributed data, a Spearman's Rho test was 

conducted. 
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3.1 Introduction  

Adipose tissue provides a vast store of energy which contributes to whole body 

homeostasis. In mammals, long term energy is stored within the lipid droplets of 

adipocytes, with over 90% stored in the form of triglycerides (Shen et al., 2003). 

Obesity results in the enlargement of adipose tissue to store the excess energy 

intake. The way in which adipose tissue facilitates this enlargement is dependent 

upon both diet and genetics; and their interaction together (Jo et al., 2009).  

 

3.1.1 Lipid droplet storage in mature adipocytes 

Mature adipocytes contain multiple lipid droplets, ranging between 25 and 150 μm 

in diameter. In a fed state, the human body will store excess energy via active 

insulin-dependent GLUT4, allowing for the uptake of glucose from the bloodstream 

into adipocytes. Intracellular adipocyte esterification of FFA (lipogenesis) occurs 

when the chylomicrons from the intestine esterify glycerol-3-phosphate, the 

product of glycolysis, to form lipid droplets of triglycerides. Adipocyte hydrolysis of 

triglycerides (lipolysis) produces adipose tissue’s major secretory product, FFA 

(Wood and Trayhurn, 2006). If the rate of lipogenesis exceeds that of lipolysis then 

adipocyte cells either adapt via expansion in lipid droplet size or cellular lipid area 

(hypertrophy), or recruit an increased number of adipocytes (hyperplasia). 

Hypertrophy occurs prior to hyperplasia and this is the initial cellular response to 

allow for storage of additional triglycerides in the progression of obesity.   
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3.1.2  Hypertrophy-induced inflammation and Type 2 diabetes 

An increase in adipocyte size due to an inability to proliferate is deemed to have 

pathological consequences for both metabolic and immune functions (Bays et al., 

2008). Human studies indicate that in individuals with obesity and T2D there is a 

decline in the expression of adipogenic genes, resulting in the storage of energy 

predominantly through lipogenesis and adipocyte hypertrophy, rather than the 

promotion of hyperplasia (Bays et al., 2008, Dubois et al., 1979, Dubois et al., 2006). 

Adipose tissue that contains hypertrophic adipocytes secrete pro-inflammatory 

proteins that result in low-grade inflammation and insulin resistance in obese 

individuals, which are implicated in the onset of T2D (Figure 3.1) (Kennedy et al., 

2009).  

Pro-inflammatory adipokines promote insulin resistance via the suppression 

of insulin signalling and alterations in glucose homeostasis. Saturated FFA, gut-

derived bacteria, LPS and pro-inflammatory adipokines have been shown to 

activate key inhibitory molecules within insulin signalling such as NFΚB, suppressor 

of cytokine signalling (SOCS) and JNK (Shi et al., 2006, Ghoshal et al., 2009, Kwon 

and Pessin, 2013).  
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Figure 3.1. Overview of the downstream effects of hypertrophic adipocytes in obesity. The Red outer 

circles within adipocytes indicate hypertrophic stress, purple segments represents the nucleus and 

triglycerides are indicated by TG. Dysregulated adipokine release produces systemic inflammation 

and alters lipid and glucose metabolism in the liver and skeletal muscle. 
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3.1.3 Markers of inflammation 

Controversy exists as to which are the most appropriate adipokines to measure in 

relation to adipose tissue and its relationship to the metabolic state. Most notably 

described in association with the metabolic state and adipocyte size are the pro-

inflammatory factors TNFα and IL-6 (Ronti et al., 2006), and the anti-inflammatory 

factor IL-10 (Esposito et al., 2003). 

3.1.3.1 TNFa 

TNFα was the first recorded adipokine to demonstrated an association between 

obesity, inflammation and T2D. This finding was underpinned by studies 

demonstrating that TNFα is highly expressed in obesity and is implicated in the 

pathogenesis of insulin resistance in adipose tissue (Stanley et al., 2011, 

Hotamisligil et al., 1995, Hotamisligil et al., 1993). TNFα impairs insulin action 

through inhibition of IRS signalling via the activation of serine kinases (Kwon and 

Pessin, 2013). Furthermore, TNFα promotes the expression of inflammatory 

cytokines and chemokines within adipocytes (Rotter et al., 2003). 

3.1.3.2 IL-6 

IL-6 is a pro-inflammatory adipokine that is involved in obesity-related insulin 

resistance (Ouchi et al., 2011). IL-6 is secreted from WAT, with approximately equal 

gene expression produced by adipocytes and infiltrated macrophages (Wisse, 

2004). IL-6 function in insulin resistance and glucose homeostasis is influenced by 

tissue type and metabolic state. Systemic increase in IL-6 is has a detrimental effect 

by increasing insulin resistance (Makki et al., 2013). Within adipose tissue and the 
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liver, IL-6 results in increased insulin resistance through impairing insulin-induced 

insulin receptor and IRS action via the up regulation of SOCS3 (Rotter et al., 2003, 

Senn et al., 2003)  

3.1.3.3 IL-10 

The anti-inflammatory adipokine IL-10 has a role in the attenuation of the immune 

response triggered by the action of pro-inflammatory markers such as IL-6 and 

TNFα (Stenvinkel et al., 2005). IL-10 secretion has been described from both non-

adipocyte and adipocytes fractions, with adipocyte size being negatively associated 

with IL-10 release (Skurk et al., 2007). Clinical studies have shown an association 

between reduced levels of IL-10 in obesity and the metabolic syndrome (Esposito et 

al., 2003, Skurk et al., 2007).  
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3.2 Aims 

Within this chapter I predict that findings will provide evidence for a detrimental 

role for acyl-ghrelin in the regulation of key genes within the lipid retention 

pathway, resulting in an increase in lipid retention area and in turn the promotion 

of inflammatory marker levels. To provide insight into my hypothesis, this chapter 

aimed to:- 

1. Determine the effect of acyl-ghrelin exposure on human mature 

adipocytes in different glycaemic environments 

2. Establish the effect of chronic hyperglycaemia and acyl-ghrelin exposure 

on lipid retention 

3. Establish the effect of chronic hyperglycaemia and acyl-ghrelin exposure 

on inflammation  
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3.3 Methods 

3.3.1 SGBS cell treatment 

SGBS cells were cultured and differentiated as described in Sections 2.1.1 to 2.1.4. 

Cell dosage concentrations with acyl-ghrelin were based on previous published 

literature. Due to the novel aspect of the experiment, whereby acyl-ghrelin 

treatment of human mature adipocytes has not been previously recorded, 

therefore, dosage was based on acyl-ghrelin treated human macrophage and 

endothelial cell lines (Asakawa et al., 2003, Zhu et al., 2014). Chronic 

hyperglycaemic environments were introduced 48 hours prior to cell dosage with 

acyl-ghrelin or PBS vehicle. As previously mentioned in Section 2.1.5, glucose levels 

were determined by the physiological ranges present within individuals with T2D 

(25 mM) and healthy controls (5.5 mM). To examine acyl-ghrelin mediated effects 

on the inflammatory state, cells underwent an immune challenge with the 

administration of 1 µg/mL LPS, with dosage determined via previously published 

data within similar experiments (Beynon et al., 2013, Waseem et al., 2008). LPS is 

an integral component of the outer membrane of gram negative bacteria that 

stimulates innate immunity, and is a potent tool in the examination and evaluation 

of anti-inflammatory agents. Cell supernatant measure of key inflammatory 

markers (TNFα, IL-6 and IL-10) post exposure to LPS, acyl-ghrelin or a combination 

of LPS and acyl-ghrelin allows for the exploration of acyl-ghrelin as an inflammatory 

mediator. Oil red O staining and RNA extraction occurred at two time points; 17 and 

34 hours. The time points depict a point of collection before a half and a full cell 
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cycle respectively, which would normally consist of 38 hours. Treatment wells were 

run in duplicate on each 6-well plate, and each plate was run in triplicate.   

 

3.3.2 Validation of GHS-R1α 

To validate whether acyl-ghrelin presence could alter adipocyte function via the 

GHS-R1α, end point PCR was used to determine the presence of the acyl-ghrelin 

receptor (Section 2.3.2). All samples provided a positive result for the presence of 

GHSR-1α, with a product band at 118 bp, as shown below (Figure 3.2). 

 

Figure 3.2. 12% polyacrylamide gel showing PCR products for GHSR1α (118 bp) for RNA extracted at 

17 hours from cells grown in a high glucose environment with acyl-ghrelin (G) or vehicle/PBS (V). 

 

3.3.3 Lipid accumulation measurements  

Lipid area was determined using Oil red O staining as described in Section 2.1.6. 

Image analyses were conducted using ImageJ software (Version 2) and a published 

protocol for the quantification of lipid area (Mehlem et al., 2013). Each 

experimental well produced 3 magnifications of images in 5 fields, each field was 

predefined and set prior to cell seeding to remove experimental bias, with 20 cells 

at x50 magnification analysed to determine cell diameter and intracellular lipid 

V -ve G 
100bp 

200bp 
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area. This equates to 100 cells analysed per treatment, in duplicate. Cellular size 

measurements were recorded as followed; 

 Cellular diameter- the average span of the cell across its longitudinal axis 

(µm) within a treatment well 

 Cellular area- the average intracellular lipid area for cells (µm2) within a 

treatment well  

 Global cellular diameter- the average span of the cell across its longitudinal 

axis (µm) across all experiment wells 

 Global cellular area- the average intracellular lipid area for cells (µm2) across 

all experiment wells 

 

3.3.4 Gene expression measurements 

Gene expression levels were determined using Real Time PCR (Section 2.3) from 

RNA extracted from cells (Section 2.1.8). Each gene had a specific primer set and 

was subject to an optimised Real Time PCR cycling condition (Appendix 2). Results 

were analysed using the 2-ΔΔCT method as previously described (Section 2.3.4), thus 

allowing for the calculation of gene expression in a relative manner. The mean Ct 

for each gene within the treatment well was normalised against the threshold cycle 

data of the housekeeping gene (β-actin). The normalised ΔCt data was used in 

further analysis to measure gene expression fold change across the treatment sets 

for each gene of interest. Fold change differences less than 0.5 were classified as 

down regulation of gene expression and 1/x representing a true fold change. A fold 
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change difference of greater than 1.5 illustrated an up-regulation in gene 

expression (raw data shown in appendix 5).  

 

3.3.5  Inflammatory marker measurements 

 

Inflammatory markers (TNFα, IL-6 and IL-10) were measured in LPS and acyl-ghrelin, 

separately and combined, treated cells, in both normo- and hyperglycaemic 

environments using specific ELISAs (Quantikine®, R&D systems), as principal 

discussed in Section 2.4. Two aliquots of 1 mL cell supernatant were collected at 

each time point for each treatment duplicate and stored at -80°C until analysed. 

Each ELISA consisted of an 8-point standard curve from which protein 

concentration was determined via sample absorbance plotting and a positive 

quality control sample (see plate layout (Figure 3.3)). Sample values with a 

coefficient of variance of less than 15% between duplicates were accepted.  

 

3.3.6  Data analysis 

Raw data retrieved from this chapter was treated as described in Section 2.5 using 

SPSS™ Version 22. Only continuous data was analysed within this chapter which 

was tested in accordance to normality (Section 2.5.2). 
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Figure 3.3. Plate layout for adipokine ELISA for each experimental repeat.  

STD= standard, QC= quality control, green boxes indicate hyperglycaemic environment, blue boxes 

indicate normoglycaemic environment and treatments are denoted by G= acyl- ghrelin, V=vehicle, 

L=LPS and LG=acyl-ghrelin and LPS. 17 and 34 indicate the relevant time point samples where 

extracted i.e. 17 hours and 34 hours post treatment.  
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3.4 Results 

3.4.1 Acyl-ghrelin treated human mature adipocytes in a normoglycaemic 

environment 

Lipid area 

There was a significant increase in lipid area (µm2) in acyl-ghrelin treated cells when 

compared to vehicle at both time points (Table 3.1 & Figure 3.4). Between 17 and 

34 hours, acyl-ghrelin mediated lipid retention increased cell lipid area significantly 

from 4348.0 µm2 to 5595.6 µm2 respectively (p<0.01) (Figure 3.4A & 3.4C). 

However, over the time course, the lipid area of the vehicle treated cells remained 

unchanged with an area of 3461.4 µm2 at 17 hours and 3516.5 µm2 at 34 hours (p= 

0.98) (Figure 3.4B).  

Cell diameter (µm) and lipid area (µm2) were compared during data analysis 

to ensure an increase in lipid area was not due to an increase in cellular size. Results 

confirm no significant correlation between global cell diameter and global lipid area 

within the normoglycaemic environment of both acyl-ghrelin and vehicle treated 

cells (r=-0.003, p= 0.95) (Table 3.1, Figure 3.5). 
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  Lipid area (µm
2
)  Cell diameter (µm)   

Time 

point 

Vehicle 

treated  

(n=600) 

Acyl-ghrelin 

treated 

(n=600)  

P-value Vehicle 

treated  

(n=600) 

Acyl-ghrelin 

treated 

(n=600)  

P-value 

17 

hours 

3461.4 

[3335 – 3914] 

4348.0 

[4371 – 4896] 
<0.001 

176.7 

[152 – 203] 

171.1 

[150 – 194] 
0.44 

34 

hours 

3516.5 

[3457 – 3734] 

5595.6 

[5254 – 5742] 
<0.001 

164.2 

[147 – 188] 

167.3 

[152 – 194] 
0.64 

P-value 0.98 <0.01  0.10 0.38  

Table 3.1. Lipid area and cell diameter for acyl-ghrelin treated cells in normoglycaemic environment. 

Median and IQR shown as not normally distributed and Kruskal-Wallis used for data analysis. P-

values <0.05 are statistically significant and in bold. 

 

Figure 3.4.A-D. Representative Oil red O imaging of mature SGBS cells in 5.5 mM (normoglycaemia) 

glucose at x50 magnification. Red stain- lipid droplets; purple stain- nuclei. (A)- Cells grown in 

presence of acyl-ghrelin for 17 hours. (B)-Cells grown in presence of PBS vehicle for 17 hours. (C)- 

Cells grown in presence of acyl-ghrelin for 34 hours. (D)-Cells grown in presence of PBS vehicle for 34 

hours.  
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Figure 3.5. Scatter graph between cell diameter (µm) and lipid area (µm
2
) of all cell treatments in 

normoglycaemic environment. Pearson’s correlation, r=-0.003, p=0.95. y=-0.0003x + 166.55. 

R²=0.0002 

Gene expression  

ABCG1 

Gene expression data indicated a significant 8.1 (±2.1)-fold down-regulation of 

ABCG1 in acyl-ghrelin treated cells after 17 hours exposure in comparison to vehicle 

treated cells (p<0.001). However, at 34 hours, this down-regulation had curtailed, 

exhibiting no overall change in ABCG1 expression between acyl-ghrelin treated cells 

and vehicle control (0.9 ±0.4-fold change; p=0.15) (Figure 3.6A).  

LXRβ 

LXRβ expression showed no significant change in gene expression at 17 hours in 

cells exposed to acyl-ghrelin compared to those of vehicle treatment (0.9 ±0.3-fold 
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change; p=0.45). However, at 34 hours post acyl-ghrelin exposure, it exhibited a 

significant 3.6 ±0.3-fold up regulation (p<0.001) (Figure 3.6B). 

SREBF1 

SREBF1 expression in acyl-ghrelin treated cells had a non-significant up-regulation 

at 17 hours of 1.8 ±0.2-fold change (p=0.06) compared to vehicle treated cells. This 

increased over the course of the experiment, producing a significant up-regulation 

in the presence of acyl-ghrelin at 34 hours (5.9 ±1.8-fold, p<0.001) (Figure 3.6C). 

 

Figure 3.6A-C. Relative fold change values for gene expression data in acyl-ghrelin treated cells in 

normoglycaemic environment in comparison to vehicle at both time points (17 and 34 hours). Fold 

change between -1.5 and 1.5 is classed as no relative gene expression change (grey region). (A)- 

ABCG1-fold change, (B)- LXRβ-fold change and (C)- SREBF1-fold change. Error bars indicate standard 

deviation between ΔΔCt of experimental repeats (n=6). * indicates a significant (p<0.05) difference 

of ΔCt in acyl-ghrelin treated cells versus vehicle treated cells, determined using an independent t-

test.  
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Inflammatory markers 

IL-6 

IL-6 release was measured in cell supernatants after exposure to acyl-ghrelin, LPS or 

a combination of the two (acyl-ghrelin and LPS) (Table 3.2). Exposure to acyl-ghrelin 

showed no significant change in IL-6 release in comparison to vehicle treated cell 

supernatant at 17 hours (46.9 v 53.0 pg/mL; p= 0.149), however at 34 hours there 

was a significant decline in IL-6 levels in comparison to vehicle treated cell 

supernatant (74.8 v 94.1 pg/mL; p<0.05). Immune challenging vehicle cells with LPS 

resulted in a significant increase in IL-6 at both 17 and 34 hours (425.1 pg/mL and 

480.3 pg/mL; both p<0.05, respectively). There was no change in IL-6 levels when 

acyl-ghrelin and LPS exposure was compared to LPS only treatments at both 17 and 

34 hours (412.8 v 425.1 pg/ml; p=0.248 and 451.6 v 480.3 pg/mL; p=0.08; 

respectively).  

 IL-6 [pg/mL] 

Treatment 17 hours 

(n=6) 

34 hours 

(n=6) 

Vehicle 53.0 [43.7-54.8] 94.1 [89.9-99.7] 

Acyl-ghrelin 46.9 [32.4-48.5] 74.8 [67.9-84.3] 

LPS 425.1 [391.2-450.8] 480.3 [462.5-519.4] 

LPS & Acyl-ghrelin 412.8 [401.1-417.2] 451.6 [444.1-464.5] 

Table 3.2. IL-6 levels for acyl-ghrelin and vehicle treated cells in normoglycaemic environments. 

Median and IQR shown as not normally distributed. 
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TNFα  

TNFα release were measured in cell supernatants after exposure to acyl-ghrelin, LPS 

or a combination of the two (acyl-ghrelin and LPS) (Table 3.3). Acyl-ghrelin 

treatment showed no significant alterations of TNFα levels in cell supernatants at 

both 17 and 34 hour (7.3 pg/mL and 6.2 pg/mL: p=0.245 and p=0.08, respectively). 

LPS exposure caused a significant increase in TNFα levels at both 17 and 34 hours 

(79.0 pg/mL and 78.0 pg/mL: both p<0.05, respectively). This increase was also 

present in cell supernatant of cells pre-treated with acyl-ghrelin prior to LPS 

exposure (72.3 pg/mL and 76.2 pg/mL: both p<0.05, respectively). However, there 

was no significant change when comparing LPS and combined LPS and acyl-ghrelin 

treatment on TNFα levels at 17 and 34 hours (LPS v LPS& acyl-ghrelin: 79.0 pg/mL v 

72.3 pg/mL and 78.0 pg/mL v 76.2 pg/mL: p=0.08 and p=0.248, respectively).  

 

 TNFα [pg/mL] 

Treatment 17 hours 

(n=6) 

34 hours 

(n=6) 

Vehicle 4.0 [2.2-7.3] 1.5 [1.4-3.1] 

Acyl-ghrelin 7.3 [6.1-7.7] 6.2 [4.6-6.3] 

LPS 79.0 [74.6-84.7] 78.0 [77.7-79.1] 

LPS & Acyl-ghrelin 72.3 [67.0-77.2] 76.2 [70.5-82.2] 

Table 3.3. TNFα levels for acyl-ghrelin and vehicle treated cells in normoglycaemic environments. 

Median and IQR shown as not normally distributed.  
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IL-10 

IL-10 levels was measured after exposure to acyl-ghrelin, LPS or a combination of 

the two (acyl-ghrelin and LPS) (Table 3.4). Mature adipocytes treated with acyl-

ghrelin showed a significant increase in the level of IL-10 present in cell 

supernatants in comparison to the vehicle control at 17 and 34 hours (314.1 pg/mL 

and 341.0 pg/mL: both p<0.001, respectively). Immune challenged cells 

demonstrated no overall change in IL-10 levels at both 17 and 34-hour time points 

(264.3 pg/mL and 196.4 pg/mL: p=0.137 and p=0.934, respectively). Pre-treatment 

of cells with acyl-ghrelin before LPS exposure resulted in no change in IL-10 levels 

compared to cell supernatant of LPS only exposure at 17 hours (292.3 pg/mL v 

264.4 pg/mL; p=0.30, respectively), and a significant increase at 34 hours (303.9 

pg/mL v 196.4 pg/mL; p<0.001, respectively). 

  

 IL-10 [pg/mL] 

Treatment 17 hours 

(n=6) 

34 hours 

(n=6) 

Vehicle 226.8 (13.7) 188.2 (20.8) 

Acyl-ghrelin 314.1 (27.3) 341.0 (14.0) 

LPS 264.3 (26.6) 196.4 (17.5) 

LPS & Acyl-ghrelin 292.3 (19.5) 303.9 (25.2) 

Table 3.4. IL-10 levels for acyl-ghrelin and vehicle treated cells in normoglycaemic environments.  
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3.4.2 Acyl-ghrelin treated human mature adipocytes in a hyperglycaemic 

environment 

Lipid area 

Within a hyperglycaemic environment, cells treated with acyl-ghrelin exhibited a 

significant increase in lipid area (µm2) when compared to vehicle substitute (Figure 

3.7A-D). This marked increase in lipid area was present at both 17 hour (4788.7 µm2 

v 3592.5 µm2; p<0.001) and 34 hour time points (4435.8 µm2 v 3484.0 µm2; 

p<0.001) (Table 3.5). Over the time course, there was no significant increase in 

cellular lipid area within cells treated with acyl-ghrelin (4788.7 µm2 v 4435.8 µm2, 

p=0.086). Furthermore, cells exposed to the vehicle substitute also showed no 

significant intracellular lipid area change, (17 hour v 34 hour; 3592.5 µm2 v 3484.0 

µm2; p=0.174) (Table 3.5).  

When global cell diameter and lipid area were analysed within a hyperglycaemic 

environment there was no significant correlation between the two, indicating that 

lipid area was independent of cellular diameter (r=-0.065, p= 0.13) (Table 1, Figure 

3.8). 
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  Lipid area (µm
2
)  Cell diameter (µm)   

Time 

point 

Vehicle 

treated  

(n=600) 

Acyl-ghrelin 

treated 

(n=600)  

P-value Vehicle 

treated  

(n=600) 

Acyl-ghrelin 

treated 

(n=600)  

P-value 

17 

hours  

3592.5 

[2491 – 4696] 

4788.7 

[4040 – 5976] 
<0.001 

175.9 

[154 – 204] 

170.0  

[131 – 210] 
0.28 

34 

hours 

3484.0 

[2892 - 4005] 

4435.8 

[3828 – 5416] 
<0.001 

178.9 

[156 – 208] 

166.4 

[138 – 191] 
0.10 

P-value 0.17 0.09  0.54 0.55  

Table 3.5. Lipid area and cell diameter for acyl-ghrelin and vehicle treated cells in hyperglycaemic 

environment. Median and IQR shown as not normally distributed and Kruskal-Wallis used for data 

analysis. P-values <0.05 are statistically significant are in bold. 

 

Figure 3.7 A-D. Representative Oil red O imaging of mature SGBS cells in 25 mM (hyperglycaemia) 

glucose at x50 magnification. Red stain- lipid droplets; purple stain- nuclei. (A)- Cells grown in 

presence of acyl-ghrelin for 17 hours. (B)- Cells grown in presence of PBS vehicle for 17 hours. (C)- 

Cells grown in presence of acyl-ghrelin for 34 hours. (D)- Cells grown in presence of PBS vehicle for 

34 hours.  



96 
 

 

Figure 3.8. Scatter graph between cell diameter (µm) and lipid area (µm
2
) of all cell treatments in a 

hyperglycaemic environment. Pearson’s correlation, r=-0.065, p= 0.13. y = -0.0021x + 175.83. R
2
= 

0.0043.  

 

Gene expression 

ABCG1 

ABCG1 showed an initial non-significant down regulation of 3.0 (±1.3)-fold change 

at 17 hour (p=0.05), however acyl-ghrelin exposure over time produced a significant 

down regulatory effect on ABCG1 producing a 6.2 (±2.2)-fold change at 34 hours 

(p<0.05) (Figure 3.9A).  

LXRβ 

LXRβ showed a significant initial down regulation of 2.9 (±0.7)-fold change (p<0.01) 

at 17 hours within cells exposed to acyl-ghrelin, this effect was enhanced over the 

time course of the experiment, demonstrating acyl-ghrelin exposure for 34 hours 

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000 12000 14000

C
el

lu
la

r 
d

ia
m

et
er

 (
µ

m
) 

Cellular lipid area (µm2) 



97 
 

caused a further decrease in the down regulation of LXRβ (10.8 (±3.4)-fold change; 

p<0.001) (Figure 3.9B).  

SREBF1 

SREBF1 expression was not significantly altered within cells treated with acyl-

ghrelin in comparison to those treated with a vehicle exhibiting a fold change of 1.4 

(±0.1) at 17 hours (p=0.24) and 1.2 (±0.1) at 34 hours (p=0.43) (Figure 3.9C).   

 

Figure 3.9.A-C. Relative fold change values for gene expression data in acyl-ghrelin treated cells in 

hyperglycaemic environment in comparison to vehicle at both time points (17 and 34 hours). Fold 

change between -1.5 and 1.5 is classed as no relative gene expression change (grey region). (A)- 

ABCG1-fold change, (B)- LXRβ-fold change and (C)- SREBF1-fold change. Error bars indicate standard 

deviation between ΔΔCt of experimental repeats (n=6). * indicates a significant (p<0.05) difference 

of ΔCt in acyl-ghrelin treated cells versus vehicle treated cells, determined using an independent t-

test.  
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Inflammatory markers 

IL-6 

IL-6 levels within a hyperglycaemic environment were compared across all 

treatments (Table 3.6). Cells treated with acyl-ghrelin only showed no significant 

change in IL-6 levels at 17 hours (75.5 v 89.5 pg/mL; p= 0.149), however at 34 hours 

there was a significant decline in IL-6 levels in comparison to vehicle treated cell 

supernatant (107.2 v 147.0 pg/mL; p<0.05). LPS exposure resulted in a significant 

increase in IL-6 at both 17 and 34 hours (561.5 pg/mL and 650.0 pg/mL; both 

p<0.05, respectively). Pre-treatment of the cells to acyl-ghrelin before 

administering LPS also indicated a significant increase in IL-6 at both 17 and 34 

hours (528.0 pg/mL and 521.4 pg/mL; both p<0.05). Cells treated with acyl-ghrelin 

prior to LPS exposure showed a significant decline in IL-6 levels in comparison to 

cell supernatant of LPS only treated cells across both timepoints (17 hour: 528.0 

pg/mL v 561.5 pg/mL and 34 hours: 521.4 pg/mL v 650.0 pg/mL; both p<0.05; 

respectively).  

 IL-6 [pg/mL] 

Treatment 17 hours 

(n=6) 

34 hours 

(n=6) 

Vehicle 89.5 [87.7-95.5] 147.0 [138.7-151.7] 

Acyl-ghrelin 75.5 [69.0-89.5] 107.2 [94.0-121.4] 

LPS 561.5 [547.4-574.1] 650.0 [638.3-653.9] 

LPS & Acyl-ghrelin 528.0 [515.8-540.3] 521.4 [511.1-533.8] 

Table 3.6. IL-6 levels for acyl-ghrelin and vehicle treated cells in hyperglycaemic environment. 

Median and IQR shown as not normally distributed.  
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TNFα 

TNFα levels within cell supernatants was measured after exposure to acyl-ghrelin, 

LPS or both LPS and acyl-ghrelin (Table 3.7). Exposure to acyl-ghrelin deemed no 

significant alterations in TNFα levels at both time points (17 hours: 9.5 pg/mL and 

34 hours: 8.9 pg/mL: p=0.248 and p=0.245, respectively). Cell exposure to LPS 

produced a significant increase in cell supernatant TNFα levels at 17 and 34 hours 

(80.7 pg/mL and 78.9, respectively: both p<0.05,). Furthermore, in comparison to 

vehicle treated cells, a significant increase was present when cells were pre-treated 

with acyl-ghrelin before LPS exposure (17 hours: 77.0 pg/mL and 34 hours: 75.3 

pg/mL: both p<0.05, respectively). Pre-treatment with acyl-ghrelin within LPS 

exposure did not alter the cellular release of TNFα across 17 and 34-hour time 

points (LPS v LPS&Ghrelin: 77.0 pg/mL v 80.7 pg/mL and 78.9 pg/mL v 75.3 pg/mL: 

p=0.343 and p=0.248, respectively). The data indicate that acyl-ghrelin had no 

significant effect on TNFα levels within cell supernatants across either time point 

within a hyperglycaemic environment, with or without immune challenge. 

 TNFα [pg/mL] 

Treatment 
17 hours 

(n=6) 

34 hours 

(n=6) 

Vehicle 5.7 [1.8-9.3] 6.4 [5.3-7.0] 

Acyl-ghrelin 9.5 [8.4-10.8] 8.9 [6.4-10.8] 

LPS 80.7 [79.5-83.4] 78.9 [72.7-86.2] 

LPS & Acyl-ghrelin 77.0 [72.5-81.4] 75.3 [74.2-76.8] 

Table 3.7. TNFα levels for acyl-ghrelin and vehicle treated cells in hyperglycaemic environment. 

Median and IQR shown as not normally distributed.  
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IL-10 

Data for IL-10 levels were analysed post acyl-ghrelin, LPS or both LPS and acyl-

ghrelin exposure (Table 3.8).  Cells exposed to acyl-ghrelin demonstrated no change 

in cell supernatant IL-10 levels at both 17 hours (275.2 pg/mL; p=0.946) and 34 

hours (378.2 pg/mL; p=0.560). At 17 hours, immune challenge with LPS exposure 

demonstrated no overall change in IL-10 levels within cell supernatants (234.6 

pg/mL; p=0.682), however at 34 hours there was a marked decrease in IL-10 levels 

in comparison to vehicle treated cells (178.4 pg/mL; p<0.001). Mature adipocytes 

pre-treated with acyl-ghrelin prior to immune challenge resulted in a significant 

decline in IL-10 levels at 17 hours in comparison to LPS only, and no significant 

difference at 34 hours (140.0 ± 23.4 pg/mL v 234.6 ±34.3 pg/mL and 173.1 ± 14.9 

pg/mL v 178.4 ±17.5 pg/mL; p<0.05 and p=0.91, respectively). 

 IL-10 [pg/mL] 

Treatment 17 Hours 

(n=6) 

34 Hours 

(n=6) 

Vehicle 261.9 (20.3) 361.6 (14.9) 

Acyl-ghrelin 275.2 (50.9) 378.2 (22.1) 

LPS 234.6 (34.3) 178.4 (17.5) 

LPS & Acyl-ghrelin 140.0 (23.4) 173.1 (14.9) 

Table 3.8. IL-10 levels for acyl-ghrelin and vehicle treated cells in hyperglycaemic environment. 
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3.4.3 Comparison of glycaemic environment on acyl-ghrelin treated human 

mature adipocytes  

This section compares lipid retention and inflammatory markers present within 

cells grown in either a high glucose [25mM] or normal glucose [5.5mM] 

environments to mimic that of circulating blood glucose levels within a hyper- and  

normoglycaemic state, respectively.  

Lipid area 

Data analysis for determining the effect of differences relating to glycaemic 

environment on cellular lipid area were undertaken. At 17 hours, within the vehicle 

treated mature adipocytes, the cellular lipid area was independent of glycaemic 

environment, showing no significant change between hyper- and normoglycaemic 

treatments (3592.5 [2491 - 4696]. vs. 3461.4 [2502 - 4511], respectively; p=0.62). 

However, acyl-ghrelin treated cells within hyperglycaemic condition showed a 

significantly increased lipid area when compared to those grown in a 

normoglycaemic condition (4788.7 [4040 - 5975]. vs. 4348.0 [3693 - 5727], 

respectively; p<0.05) (Figure 3.10). 

At 34 hours, vehicle treated cells demonstrated a no change in lipid area in 

the hyperglycaemic environment compared to normoglycaemia (3483.9 [2892 - 

4005]. vs. 3516.5 [3156 - 4114], respectively; p=0.28). In acyl-ghrelin treated 

mature adipocytes, there was a significant decrease in the accumulated lipid area in 

the hyperglycaemic environment in comparison to the normoglycaemic 

environment (4435.8 [3828 - 5416]. vs. 5595.6 [5254 - 5742], respectively; p<0.001) 

(Figure 3.11).  
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Figure 3.10. Cellular lipid area for acyl-ghrelin and vehicle treated cells within both 5.5 mM 

(normoglycaemia) and 25 mM (hyperglycaemia) glucose for 17 hours. * indicate statistical 

significance (p<0.05) determined via Kruskal-Wallis. . n=600 per variable. AG- acyl-ghrelin. 

                

Figure 3.11. Cellular lipid area for acyl-ghrelin and vehicle treated cells within both 5.5 mM 

(normoglycaemia) and 25 mM (hyperglycaemia) glucose for 34 hours. * indicate statistical 

significance (p<0.05) determined via Kruskal-Wallis. n=600 per variable. AG- acyl-ghrelin. 
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Gene expression 

Gene expression analysis used the 2-ΔΔCt method, where normalised Ct values from 

each treatment (acyl-ghrelin or vehicle exposure) group were individually 

compared, in relation to normoglyceamic against hyperglycaemic environments. 

 

 

 

ABCG1 

Comparison of the hyperglycaemic to normoglycaemic environment in vehicle 

treated cells, indicates an initial significant down regulation of ABCG1 after 17 

hours (14.0 (±0.3)-fold; p<0.001). At 34 hours, vehicle treated cells demonstrated a 

significant down regulation of 5.6 (±0.9)-fold change (p<0.01) however, it is clear to 

see a curtailment in the magnitude of the effect of a hyperglycaemic environment 

on ABCG1 expression over time (Figure 3.12A). Exposure to acyl-ghrelin showed a 

converse effect of hyperglycaemic environment on lipid retention genes to that 

seen within a vehicle control. ABCG1 expression exhibits a significant down 

regulation of 4.3 (±0.2)-fold change (p<0.001) at 17 hours and a significant 29.3-fold 

change (±0.8) (p<0.001) down regulation at 34 hours’ post acyl-ghrelin 

administration in a hyperglycaemic environment in comparison to a 

normoglycaemic environment (Figure 3.13A).  

 

 

ΔCt= Treatment Raw Ct – Housekeeping Raw Ct 

Fold Change = 2-(hyperglycaemic ΔCt – normoglycaemic ΔCt) 
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LXRβ 

LXRβ expression mirrored the gene expression pattern exhibited by ABCG1 when 

the effect of a hyperglycaemic environment was compared to normoglycaemia. 

Vehicle treated cells showed a marked decrease in the expression of LXRβ at both 

17 and 34 hours (14.6 (±0.4) & 8.3 (±1.0)-fold change; p<0.001 and p<0.001, 

respectively) (Figure 3.12B). However, within cells exposed to acyl-ghrelin in a 

hyperglycaemic environment there was a significant down regulation of LXRβ in 

comparison to those exposed to acyl-ghrelin within a normoglycaemic environment 

across both time points, with the magnitude of the effect increasing over time (17 

hours & 34 hours; 4.8 (±0.6) & 34.9 (±0.7)-fold change, respectively; both (p<0.001)) 

(Figure 3.13B). 

 

SREBF1 

Vehicle treated cells demonstrated that a hyperglycaemic environment was 

producing a significant reduction in SREBF1 expression at 17 hours (13.3 (±0.7)-fold 

change; p<0.001). Furthermore, this reduction in expression was also present at a 

diminished but significant level at 34 hours (4.2 (±0.3)-fold change; p<0.001) (Figure 

3.12C). SREBF1 also showed a further down regulation from 17 hours to 34 hours’ 

post treatment when acyl-ghrelin exposure was combined with a hyperglycaemic 

environment (17 hours & 34 hours; 5.2 (±0.7) & 30.1 (±0.7)-fold change, 

respectively; both p<0.001) (Figure 3.13C). 
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Figure 3.12A-C. Relative fold change values for gene expression data in vehicle treated cells in 

hyperglycaemic environment in comparison to normoglycaemic environment at both time points (17 

and 34 hours). Fold change between -1.5 and 1.5 is classed as no relative gene expression change 

(grey region). (A)- ABCG1-fold change, (B)- LXRβ-fold change and (C)- SREBF1-fold change. Error bars 

indicate standard deviation between ΔΔCt of experimental repeats (n=6). * indicates a significant 

(p<0.05) difference of ΔCt in acyl-ghrelin treated cells versus vehicle treated cells, determined using 

an independent t-test. 
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Figure 3.13A-C Relative fold change values for gene expression data in acyl-ghrelin treated in chronic 

hyperglycaemic environment in comparison to normoglycaemic environment at both time points (17 

and 34 hours). Fold change between -1.5 and 1.5 is classed as no relative gene expression change 

(grey region). (A)- ABCG1-fold change, (B)- LXRβ-fold change and (C)- SREBF1-fold change. Error bars 

indicate standard deviation between ΔΔCt of experimental repeats (n=6). * indicates a significant 

(p<0.05) difference of ΔCt in acyl-ghrelin treated cells versus vehicle treated cells, determined using 

an independent t-test. 
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Inflammatory markers 

IL-6 

IL-6 levels for each treatment at both time points was analysed in comparison to 

glycaemic environment to establish whether there was a glycaemic effect. A 

hyperglycaemic environment produced a significant increase in the cell supernatant 

level of IL-6 across all treatments at 17 hours (Table 3.9) and 34 hours (Table 3.10). 

 IL-6 [pg/mL]  

Treatment 
Normoglycaemic 

(n=6) 

Hyperglycaemic 

(n=6) 
P-Value 

Vehicle 52.9 [43.7-54.8] 89.5 [87.7-95.5] 0.02 

Acyl-ghrelin 46.9 [32.4-48.5] 75.5 [69.0-89.5] 0.02 

LPS 427.1 [391.2-450.8] 561.5 [547.4-574.1] 0.02 

LPS & acyl-ghrelin 412.8 [401.1-417.2] 528.0 [515.8-540.4] 0.02 

Table 3.9. Comparison of IL-6 levels in different environments at 17 hours. Statistical analysis 

conducted using Kruskal-Wallis test. P-value less than 0.05 deemed significant and are in bold. 

 IL-6 [pg/mL]  

Treatment 
Normoglycaemic 

(n=6) 

Hyperglycaemic 

(n=6) 
P-Value 

Vehicle 94.1 [89.9-99.7] 147.0 [138.7-151.7] 0.02 

Acyl-ghrelin 74.8 [68.0-84.3] 107.2 [94.0-121.4] 0.02 

LPS 480.3 [462.5-519.4] 650.0 [638.3-653.9] 0.02 

LPS & acyl-ghrelin 451.6 [444.1-464.5] 521.4 [511.1-533.8] 0.02 

Table 3.10. Comparison of IL-6 levels in different environments at 34 hours. Statistical analysis 

conducted using Kruskal-Wallis test. P-value less than 0.05 deemed significant and are in bold. 
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TNFα  

TNFα levels were analysed in comparison of glycaemic environments across all 

treatments and time points. Mostly, TNFα levels were not significantly altered 

within cell supernatants for treatments when comparing hyper- to normoglycaemic 

environment at 17 hours (Table 3.11) or 34 hours (Table 3.12). However, within 

acyl-ghrelin treated mature adipocytes there was a significant increase in TNFα 

levels at 17 hours when grown in a hyperglycaemic environment (p<0.05). 

 

 TNFα [pg/mL]  

Treatment 
Normoglycaemic 

(n=6) 

Hyperglycaemic 

(n=6) 
P-Value 

Vehicle 4.0 [2.2-7.3] 2.0 [1.8-2.7] 0.25 

Acyl-ghrelin 7.3 [6.1-7.7] 9.5 [8.4-10.8] 0.02 

LPS 78.9 [74.6-84.7] 80.7 [79.5-83.4] 0.77 

LPS & acyl-ghrelin 72.3 [67.0-77.2] 77.0 [72.5-81.4] 0.25 

Table 3.11. Comparison of TNFα levels in different environments at 17 hours. Statistical analysis 

conducted using Kruskal-Wallis test. P-value less than 0.05 deemed significant and are in bold. 
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 TNFα [pg/mL]  

Treatment Normoglycaemic 

(n=6) 

Hyperglycaemic 

(n=6) 

P-Value 

Vehicle 1.5 [1.5-2.1] 2.4 [2.3-3.0] 0.08 

Acyl-ghrelin 6.2 [4.6-6.3] 8.9 [6.4-10.8] 0.15 

LPS 78.0 [77.7-79.1] 78.9 [72.7-86.5] 1.00 

LPS & acyl-ghrelin 76.2 [70.5-82.2] 75.3 [74.2-76.8] 0.77 

Table 3.12. Comparison of TNFα levels in different environments at 34 hours. Statistical analysis 

conducted using Kruskal-Wallis test. P-value less than 0.05 deemed significant and are in bold. 

 

IL-10 

A hyperglycaemic environment was associated with a significant increase in IL-10 

levels at both 17 and 34 hours within cell supernatants of vehicle treated mature 

adipocytes (Table 3.13) and only for acyl-ghrelin treated cells at 34 hours (Table 

3.14). A hyperglycaemic environment demonstrated no significant effect on IL-10 

levels at either time point when mature adipocytes were immuno-challenged with 

LPS. However, when LPS treatment was combined with acyl-ghrelin exposure there 

was a significant decline in IL-10 in a hyperglycaemic state at both 17 and 34 hours. 
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 IL-10 [pg/mL]  

Treatment Normoglycaemic 

(n=6) 

Hyperglycaemic 

(n=6) 

P-Value 

Vehicle 226.8 (±13.7) 261.9 (±20.3) 0.03 

Acyl-ghrelin 314.1 (±27.3) 275.2 (±50.9) 0.23 

LPS 264.3 (±26.6) 234.6 (±34.3) 0.22 

LPS & acyl-ghrelin 292.3 (±19.5) 140.0 (±23.4) <0.001 

Table 3.13. Comparison of IL-10 levels in different environments at 17 hours. Statistical analysis 

conducted using an independent t-test. P value less than 0.05 deemed significant and are in bold. 

 

 

 IL-10 [pg/mL]  

Treatment Normoglycaemic 

(n=6) 

Hyperglycaemic 

(n=6) 

P-Value 

Vehicle 188.2 (±20.8) 361.6 (±14.9) <0.001 

Acyl-ghrelin 341.0 (±14.0) 378.2 (±22.1) 0.03 

LPS 196.4 (±17.5) 178.4 (±17.5) 0.19 

LPS & acyl-ghrelin 303.9 (±25.2) 173.1 (±14.9) <0.001 

Table 3.14. Comparison of IL-10 levels in different environments at 34 hours. Statistical analysis 

conducted using an independent t-test. P-value less than 0.05 deemed significant and are in bold. 
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3.5       Discussion 

As this chapter focuses on the effect of acyl-ghrelin on lipid retention and 

inflammatory response, this discussion will be split into two sections; (i) acyl-ghrelin 

mediated lipid retention and (ii) acyl-ghrelin mediated inflammatory response.  

 

3.5.1 Acyl-ghrelin mediated lipid retention 

Exposure to acyl-ghrelin showed an increase in lipid retention within human mature 

adipocytes, this was seen in both a normo- and hyperglycaemic environment. These 

data correspond with previously published literature that has demonstrated acyl-

ghrelin promotes lipid accumulation in stromovascular fraction cells from omental 

tissue of obese normoglycaemic subjects (Rodriguez et al., 2009), murine mature 

adipocytes (3T3-L1) (Miegueu et al., 2011), male rat adipocytes (Muccioli et al., 

2004) and in rat depot specific abdominal WAT (Davies et al., 2009). However, 

published data thus far only encompass a normoglycaemic environment, allowing 

this study to provide novel findings into the effect of acyl-ghrelin in hyperglycaemia 

on hypertrophy. When comparing glycaemic environments, it is evident that in 

normoglycaemia there is a gradual increase in lipid area upon exposure to acyl-

ghrelin, however in a hyperglycaemic environment there is a significant rise in lipid 

area as an immediate response to acyl-ghrelin treatment that remains unaltered 

over time. Thus, indicating that a hyperglycaemic environment is associated with a 

rapid acyl-ghrelin mediated response of lipid accumulation.  
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In addition to an increased lipid area, acyl-ghrelin treatment demonstrated a 

role in the dysregulation of key lipid retention genes. Normoglycaemia showed an 

initial decrease in ABCG1 expression, which was previously highlighted by Davies 

and colleagues, in rat abdominal WAT (Davies et al., 2009). This may be due to a 

delayed increase in LXRβ expression that has been shown to induce the expression 

of ABCG1, counteracting acyl-ghrelin’s effect (Maqdasy et al., 2016). However, 

these data do not correspond with previously published work that indicates both 

ABCG1 and LXRβ expression are decreased in the presence of acyl-ghrelin (Davies et 

al., 2009). In contrast, a hyperglycaemic environment agreed with published 

literature indicating a marked decrease in ABCG1 and LXRβ expression. This could 

account for the immediate increase in cell lipid mass due to a resultant deficiency in 

the cellular export system. During both normoglycaemic and hyperglycaemic states, 

LXRβ and ABCG1 were dysregulated in the presence of acyl-ghrelin, which could 

impede the removal of cellular lipids. ABCG1 knockout mice have previously 

demonstrated the accumulation of cholesterol and phospholipids in macrophages 

(Kennedy et al., 2005). Evidence reported within this chapter demonstrates that 

acyl-ghrelin not only affects infiltrated macrophages in WAT but mature adipocytes 

themselves. 

In agreement with other human mature adipocyte data (Rodriguez et al., 

2009), SREBF1 expression was increased in the presence of acyl-ghrelin within a 

normoglycaemic state and continued to increase over time. This could either 

indicate the de novo synthesis of lipid droplets, or it suggests that SREBF1 is 

involved in regulating genes involved in cholesterol metabolism and counteracting 

acyl-ghrelin mediated lipid retention (Kersten, 2001, Wells, 2009). Further evidence 
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regarding SREBF1 action shows that within a hyperglycaemic environment, 

expression remained unaltered in the presence of acyl-ghrelin, supporting data that 

show that a hyperglycaemic environment has diminished SREBF1 regulatory 

function allowing for a larger lipid area accumulation (Kersten, 2001, Wells, 2009). 

When investigating the effect of the glycaemic environment, it was evident 

that hyperglycaemia caused a down regulation of lipid retention genes in both 

vehicle and acyl-ghrelin treatments. In humans, a study of lipid retention genes 

within obesity and patients with gestational diabetes showed a down regulation in 

LXR and SREBF1 expression, thus demonstrating that transcriptional levels of the 

LXR-ABC pathway are dysregulated in the presence of hyperglycaemia (Lappas, 

2014). Secondary to a hyperglycaemic effect on lipid genes, the LXR pathway may 

play a role in the progression of T2D via an effect on regulation of glucose 

homeostasis and insulin secretion (Maqdasy et al., 2016). GLUT4 is a key mediator 

in insulin induced glucose uptake (Tozzo et al., 1997) and is targeted by LXR, also its 

expression can be correlated with ABCG1 expression in cultured human adipocytes 

(Dalen et al., 2003, Le Lay et al., 2001). 

 

3.5.2 Acyl-ghrelin mediated inflammatory response 

Pro-inflammatory response 

Within normo- and hyperglycaemia environments, treatment with acyl-ghrelin on 

mature adipocytes exhibited a significant decline in IL-6 levels over time. Previous 

studies have confirmed a role for acyl-ghrelin in the attenuation of IL-6 release but 
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only in the mucosa of colitic mice (Baatar et al., 2011), rat peritoneal macrophages 

(Chorny et al., 2008) and in plasma in acyl-ghrelin treated rats (Wu et al., 2008). 

LPS-stimulated release of IL-6 was not inhibited by acyl-ghrelin in normoglycaemia, 

however in a hyperglycaemic environment there was acyl-ghrelin-related inhibition 

of IL-6 levels. Wu and colleagues, reported similar findings within normoglycaemic 

male rats, where acyl-ghrelin did not directly inhibit cytokine release, such as IL-6, 

from LPS-stimulated cells (Wu et al., 2007). In contrast, within a normoglycaemic 

environment, LPS-treated human monocytes (Dixit et al., 2004) and mouse 

dopaminergic neurones (Beynon et al., 2013) were shown to exhibit an acyl-ghrelin 

inhibition of an LPS-induced increase of IL-6 levels, as only seen within human 

mature adipocytes in a hyperglycaemic state within this investigation.  

TNFα data revealed no significant findings throughout this chapter, however 

further analysis of results indicate that all values were located at the lower end of 

the standard curve and obtained greater standard deviations to other experimental 

measures, therefore any statistical significance within this group would have been 

hard to elucidate. Previous studies have also reported that acyl-ghrelin effects on 

TNFα levels were not identified due to a lack of detection (Beynon et al., 2013). 

However, alternative sample sources have indicated that acyl-ghrelin does in fact 

supress TNFα levels with or without LPS induction (Baatar et al., 2011, Wu et al., 

2007, Wu et al., 2008, Chorny et al., 2008, Dixit et al., 2004). 

These findings highlight the relevant importance to the site-specific role 

acyl-ghrelin may play within an immune-compromised state in a pro-inflammatory 

response. Furthermore, the results enhance published evidence that acyl-ghrelin 
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administration is shown to mediate protective effects in an LPS-mediated 

inflammatory state, especially in the presence of hyperglycaemia.  

 

Anti-inflammatory response 

The effects of acyl-ghrelin on IL-10 are contradictory. Acyl-ghrelin is predominantly 

reported to supress the response of IL-10 in T lymphocytes in mice (Xia et al., 2004, 

Hattori, 2009), however acyl-ghrelin has also been reported to increase IL-10 levels 

in mouse models (Gonzalez–Rey et al., 2006). Data presented in this chapter are 

also contradictory, finding that acyl-ghrelin significantly increased the level of IL-10 

in a normoglycaemic environment, but exhibited no effect on IL-10 levels in a 

hyperglycaemic environment when compared to a vehicle. This could indicate that 

IL-10 levels within normoglycaemia are due to acyl-ghrelin promoting an anti-

inflammatory response in parallel to diminishing a pro-inflammatory response. 

Furthermore, I conclude that exposure to hyperglycaemia inhibits acyl-ghrelin’s 

promotion of an anti-inflammatory response.  

 

3.6       Conclusion 

 This chapter has presented relevant data to establish a role for acyl-ghrelin in the 

promotion of hypertrophy accompanied by the dysregulation of key lipid retention 

genes; ABCG1, LXRβ and SREBF1. Furthermore, acyl-ghrelin has demonstrated a 

role in altering the immune response within human mature adipocytes in both 

normo- and hyperglycaemic environments. The prolonged effect of lipid export 
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dysregulation is unknown and further in vivo work into acyl-ghrelin’s effect in 

humans is required to establish whether an acyl-ghrelin mediated effect could have 

a downstream effect within T2D.  

 

3.7       Limitations 

Findings presented within this chapter were based on the culture of a human 

adipocyte cell line. As previously mentioned in section 2.1.1, primary adipocytes 

could also be utilized. The use of primary cells could have produced a more 

biologically relevant sample source, due to them being isolated directly from 

human tissue using either an enzymatic or mechanical method, however are 

notoriously difficult to culture and prone to contamination. Experimental design 

was developed to limit the phenotypical or morphological changes that can present 

within an infinite cell line and the protocol was successful in achieving this, however 

when comparing in vitro to ex vivo analysis this must be taken into consideration.   
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Chapter 4 

Exploration of acyl-ghrelin associated lipid 

retention within ex vivo human visceral 

adipose tissue  
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4.1 Introduction 

Visceral adipose tissue (VAT) is a blanket term used for adipose tissue 

located within the peritoneal cavity. In comparison to subcutaneous adipose tissue, 

VAT is often investigated in relation to metabolic disease due to visceral adipocytes 

having higher basal lipolysis, leaving it vulnerable to insulin resistance (Mårin et al., 

1992). VAT is often split into five distinct types dependent upon the depot’s 

anatomical location (Figure 4.1) (Mårin et al., 1992). Perirenal, gonadal (or 

surrounding the ovaries in females), pericardial, mesenteric and omental fat are all 

classed as visceral fat but they differ in metabolic function due to varying 

environmental stimuli in the distinct location in which they are found. Omental fat 

extends from the lower region of the stomach and encapsulates the abdomen (Lam 

et al., 2011). The accumulation of omental fat is associated with detrimental effects 

on an individual’s health, thus, making it the primary source of visceral fat utilised 

for the study of obesity and related comorbidities (Lam et al., 2011, Matsuzawa, 

2006, Maury et al., 2007). In vitro research on mature human adipocytes allows 

insight into adipose tissue function, however it does not consider that adipose 

tissue as an organ is comprised of a spectrum of cell types. Previous work involving 

ghrelin mediated lipid retention has predominantly focused on rodent epididymal 

fat (Davies et al., 2009). Findings indicated a relevant role for acyl-ghrelin and the 

model allowed for the ease of experimental design, however, it is likely to be 

limited in the translation to human pathophysiology due to the ever-evolving 

functionality of species-specific fat depots. 
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Figure 4.1. Visceral fat depots in the human body. Red colour indicates increased risk factor in 

metabolic disease. Orange colour indicates a lower risk level and red indicates higher risk associated 

with metabolic disease.  
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4.1.1 Adipose tissue, inflammation and oxidative stress 

The vast proportion of human adipose tissue is comprised of mature adipocytes, 

however it also contains pre-adipocytes (undifferentiated adipocytes), 

macrophages, monocytes, fibroblasts and a rich supply of blood vessels (Trujillo and 

Scherer, 2006). Adipose tissue within obesity results in a state of low grade 

inflammation, which is mediated and activated due to the infiltration of both pro- 

and anti-inflammatory macrophages (M1 and M2) (Shoelson et al., 2007). With 

obesity, adipose tissue macrophages (ATM) equate to 50% of all adipose tissue 

cells, in contrast to only 5% within lean individuals (Trujillo and Scherer, 2006). As 

previously discussed in Chapter 3, acyl-ghrelin can be associated with an increase of 

cellular lipid retention and altered immune response. Emerging evidence has linked 

the presence of GHSR-1 to M1 and M2 macrophages, which could alter adipose 

tissues inflammation via macrophage polarization (Lin et al., 2016). Adipose tissue 

contains numerous other immune cell types that can contribute towards 

inflammation and insulin resistance, for instance; dendritic cells, neutrophils, B cells 

and T cells.  

Adipose tissue in obesity often has a dysregulated secretion of adipokines 

which has demonstrated a role in the pathogenesis of obesity-associated diseases 

such as T2D (Matsuzawa et al., 1999, Matsuda and Shimomura, 2013, Spiegelman 

and Flier, 2001). Obesity is also associated with increased formation of ROS (Fujita 

et al., 2006, Furukawa et al., 2017) and its subsequent harmful effects in promoting 

vascular (Stephens et al., 2009) and β-cell (Evans et al., 2003, Tiedge et al., 1997, 

Robertson et al., 2003) dysfunction, and ultimately diabetes (Stocker et al., 2007, 

Grattagliano et al., 2008). In vitro studies suggest that ROS generation is selectively 
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increased in the fat tissues of obese mice which may facilitate insulin resistance and 

alter adipokine gene expression (Furukawa et al., 2017). A relationship for acyl-

ghrelin within the inflammatory state may be elucidated from the exploration of 

the effect of acyl-ghrelin on oxidative stress. Current literature demonstrated that 

increased plasma levels of acyl-ghrelin can be associated with a decrease in 

oxidative burden within obese subjects (Suematsu et al., 2005). Furthermore, 

evidence linking acyl-ghrelin to an increased adipose tissue mass may indicate a 

plausible role for acyl-ghrelin interaction within systemic oxidative stress, due to 

biomarkers of oxidative stress being correlated with fat accumulation (Matsuda and 

Shimomura, 2013, Keaney et al., 2003). 

 

4.1.2 Genes of interest  

Key lipid retention genes have been mentioned in detail (see Chapter 3) in relation 

to lipid profile; LXRβ, ABCG1 and SREBF1. Furthermore, within this chapter ghrelin 

axis gene expression will be examined to elucidate whether expression levels are 

altered as a result of transcriptional or translational effects of a hyperglycaemic 

environment. Desacyl-ghrelin is expressed in a prepro-ghrelin molecule and 

requires post translational octanoylation to produce the acyl-ghrelin complex. 

Investigation into transcriptional and translational causative agents are key for a 

further understanding of acyl-ghrelin effect, as to whether the variation in plasma 

levels of acyl-ghrelin is due to changes in ghrelin (GHRL) gene expression or the 

presence of key octanoylation genes i.e. LYPLA1 and mBOAT4 (Satou et al., 2010, 

Kirchner et al., 2012).  
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4.2 Aim 

To expand on the outcomes gained in Chapter 3, the goal was to translate the in 

vitro results into an ex vivo system, allowing for the comparison of a local versus 

global effect. I hypothesis this would result in evidence providing an association 

between circulatory acyl-ghrelin levels with lipid retention gene and circulatory lipid 

profiles. Furthermore, in line with Chaper 3 I envisaged that acyl-ghrelin levels 

would demonstrate a positive association with anti-inflammatory markers and a 

negative association with pro-inflammatory markers. Therefore, this chapter aims 

to:- 

1. Evaluate plasma acyl-ghrelin levels in relation to the ghrelin gene axis within 

hVAT 

2. Investigate the expression levels of lipid retention genes within hVAT 

3. Investigate levels of circulating inflammatory marker within cohorts 

4. Explore the association of lipid retention genes and inflammatory markers 

with acyl-ghrelin levels 
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4.3 Methods 

4.3.1  Sample collection 

Human visceral adipose tissue biopsies, were collected as described in detail in 

Section 2.2.1. Briefly, 30 participants, 10 per group for non-obese (NO), obese (O) 

and obese with T2D (OT2D). 

 

4.3.2 Baseline characteristics 

To establish participant’s metabolic state, key analytical chemistry including lipid 

and glucose profiles, were analysed from fasted plasma samples from each 

participant. Analysis of glucose, cholesterol, HDL, albumin, creatinine and 

triglycerides was undertaken using a Randox Daytona plus, with LDL concentration 

calculated using the Friedewald equation as discussed in Section 2.2.6.1. 

Determination of HbA1c was done using the BioRad D-10 haemoglobin analyser, as 

discussed in Section 2.2.6.1. All other data was acquired from patient hospital notes 

and was correct at the time of operation.  

 

4.3.3  Quantitative Real Time PCR 

Real Time-PCR was performed on 30 hVAT, which included samples from 

participants classed as non-obese (NO, n=10), obese (O, n=10) and obese with T2D 

(OT2D, n=10). RNA was extracted from the hVAT as previously described (Section 

2.2.5) and reverse transcribed to cDNA (Section 2.3.1.2). Specific primers were 

designed and synthesised either by Eurofins MWG Operon or were purchased from 

PrimerDesign as previously mentioned (Section 2.3.3.2). The primer sequences 

were run on a primer specific amplification programme dependent upon annealing 
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temperatures (Appendix 2). Optimum primer conditions required a primer 

efficiency of 90-110% and a standard curve R2 value greater than 0.99, primer 

validation confirmed for all primer sets (Appendix 3). 

 

4.3.4 Gene expression analysis 

Threshold cycles (Ct) were accepted under the following criteria; single melt peak, 

triplicates within 1 Ct of each other and valid control values. The average Ct was 

taken per sample and normalised against the amplification of β-actin. Gene 

expression data are presented as fold change and deduced using the 2-ΔΔCt method 

as discussed in Section 2.3.3.4, raw data are available in Appendix 6.  

 

4.3.5 ELISA  

A human ghrelin (active) ELISA (Merck Millipore™) was used to specifically 

determine fasting plasma acyl-ghrelin levels in plasma samples collected at the time 

of surgery and treated the with protease inhibitor AESBF (2mg/mL). Plasma 

cytokine levels were determined using ELISA for IL-6, IL-10 and TNFα. All reagents 

were included in the ELISA kits and the protocols run following the manufacturers 

guidelines as described in Section 2.4.  

 

4.3.6  Oxidative stress measurement 

Oxidative stress was measured via the analysis of patient’s fasting plasma using 

total antioxidant status (TAOS) assay as previously described in detail in Section 

2.2.8. 
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4.3.7 Data analysis 

Statistical analysis was conducted on raw data using SPSS version 22 and test 

procedures were dependent on normality testing, as described in Section 2.5. 

Continuous variables included all variables except for medication which was treated 

as a categorical variable and treated as described in Section 2.5.1. 

 

4.4  Results 

Samples were split into three distinct arms for data analysis to enable the 

investigation of several factors: 

(i) Total sample cohort (NO v O v OT2D) 

(ii) Diabetes effect (NO+O) v OT2D) 

(iii) Obesity effect (O+OT2D) v NO) 

 

4.4.1 Total sample cohort 

4.4.1.1 Baseline characteristics 

The baseline characteristics of the total sample cohort were well matched in terms 

of age. However, as expected, there were significant differences between 

measurements for weight, BMI, glucose and HbA1c (Table 4.1).  
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Non Obese   

(NO) 

(n=10) 

Obese                  
(O) 

(n=10) 

Obese Type 2 
(OT2D) 

(n=10) 

P-value 

Age (Years) 51.8 (15.5) 51.1 (12.0) 45.5 (6.8) 0.44 

Weight (Kg)* 72.2 [64-81] 90.7 [86-122] 131.4 [114-152] <0.001 

BMI (Kg/m2)* 26.2 [24-28] 34.9 [32-42] 47.3 [42-51] <0.001 

Glucose 

(mmol/L)* 
4.8 [4.5-6.5] 5.4 [4.9-6.5] 6.7 [6.0-12.6] <0.01 

HbA1c 

(mmol/mol)* 

30.6 [26.3-

39.1] 

36.1 [30.3-

36.9] 
52.5 [35.8-68.1] <0.05 

HbA1c (%)* 5.1 [4.6-5.7] 5.2 [4.9-5.5] 7.0 [5.4-8.4] <0.05 

Statin 
prescription# 

(%) 

20 (2) 10 (1) 50 (5) 0.11 

 

Table 4.1 Baseline characteristics for total cohort. Mean and standard deviation shown for normally 

distributed data & p-value determined using one way ANOVA. * Median and interquartile range 

shown for data that is not normally distributed and Kruskal Wallis used for p val determination. 

#
Categorical data tested using Pearson Chi-square analysis, % shown with n in brackets. Significant p-

value are shown in bold.  

 

4.4.1.2 Plasma levels of acyl-ghrelin 

Acyl-ghrelin levels were measured in fasting plasma samples of all 30 participants. 

Analysis indicates a significantly decreased circulating level of acyl-ghrelin present 

within obese individuals with T2D in comparison to both obese (OT2D v O; 228.5 

[98.4-439.4] v 515.5 [308.7-701.2] pg/mL; p<0.05) and non-obese individuals (OT2D 
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v NO; 228.5 [98.4-439.4] v 467.2 [325.7-508.3] pg/mL; p<0.05). However, no 

significant difference was seen when the non-obese and obese cohorts were 

compared (p=0.71) (Figure 4.2). Fasting acyl-ghrelin was negatively correlated with 

fasting plasma glucose levels (rs=-0.37, p<0.05) and body weight (rs=-0.42, p<0.05), 

respectively across the total sample cohort (Figure 4.3A-B). 

 

Figure 4.2. Box plot of fasting acyl-ghrelin levels within the three cohorts. Median acyl-ghrelin levels 

shown for non-obese (NO), obese (O) and obese type 2 (OT2D)(n=10 per cohort). Statistical analysis 

was conducted using non-parametric measures, Kruskal Wallis determined statistical significance 

(p<0.05) between groups which are indicated by *. 

 

 

Figure 4.3A-B. Scatter graphs between acyl-ghrelin and glucose and acyl-ghrelin and body weight. A- 

Plasma glucose (rs = -0.414; p<0.05), y=-0.002x + 6.6695, R²=0.1129 (n=30). B- Body weight (rs=-

0.421; p<0.05), y=-0.059x + 128.15, R² = 0.2007 (n=30). 
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Ghrelin gene axis expression across cohorts 

Gene expression fold change data produced from the total sample cohort indicates 

that across groups there was no significant change in gene expression for mBOAT4 

or LYPLA1. Ghrelin gene expression was significantly down regulated, with a 2.6-

fold change within the OT2D group compared to the O group. However, fold change 

data signified no alteration between OT2D when compared to NO, despite a 

significant increase in GHRL ΔCt values (Table 4.2).  

 

Plasma acyl-ghrelin levels in relation to ghrelin gene axis 

Plasma acyl-ghrelin levels were analysed with respect to its relationship with key 

octanoylation genes (Table 4.3). The data indicates that within the total sample 

cohort circulating acyl-ghrelin levels were associated with the ΔCt values of GHRL 

expression (p<0.05), however there was no associations between circulating acyl-

ghrelin levels and LYPLA1 (p=0.620) or mBOAT4 (p=0.587). 
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Group Gene of interest Fold Change Direction P-value 

NO v O 

GHRL 1.50  0.19 

mBOAT4 0.88  0.42 

LYPLA1 1.45  0.17 

NO v OT2D 

GHRL 0.58  <0.05 

mBOAT4 0.66  0.22 

LYPLA1 1.13  0.42 

O v OT2D 

GHRL 2.60  <0.05 

mBOAT4 0.75  0.41 

LYPLA1 0.78  0.28 

Table 4.2. Relative fold change values for ghrelin axis gene expression data for total cohort. P-value 

deduced from ΔCt T-Test. Significant values shown in bold. N=10 per cohort. 

         = down regulation             = no overall change 

 

 
Plasma 
acyl-ghrelin 

GHRL 
Spearman’s Correlation 
P-value 

-0.408 
0.031* 

LYPLA1 
Spearman’s Correlation 
P-value 

-0.098 
0.620 

MBOAT4 
Spearman’s Correlation 
P-value 

0.107 
0.587 

 

Table 4.3 Correlation data for gene expression and plasma acyl-ghrelin for total cohort. Data analysis 

of relative ΔCt value and raw plasma marker levels (n=30). ΔCt values are inverse on gene transcript 

level. Non-parametric data analysis via Spearman’s rho correlation used to determine correlation 

between parameters. Significant values shown in bold. 
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4.4.1.3 Lipid profiles 

Lipid profiles were analysed across the total sample cohort, showing significant 

differences in total cholesterol (p<0.05), HDL (p<0.05) and LDL (p<0.01) levels. 

However, triglyceride concentrations did not differ between groups (p=0.19) (Table 

4.4). Further analysis showed that there were no significant differences within lipid 

marker levels between NO and O. Upon separate comparison of both the NO and O 

groups to the OT2D group, there was a significant decline in total cholesterol 

(p<0.05), HDL (p<0.01) and LDL (p<0.01) levels, with a significant increase in TGs 

within OT2D compared to NO (p<0.05). Lipid profiles were analysed to assess any 

associations between circulating acyl-ghrelin and lipid markers, which indicated 

positive correlations for total cholesterol (rs = 0.39, p<0.05) and LDL (rs = 0.39, 

p<0.05), respectively (Figure 4.4A-B). 

 

 
Non-Obese 

(NO) 

(n=10) 

Obese           
(O) 

(n=10) 

Obese Type 2 
(OT2D) 

(n=10) 

P-value 

Cholesterol (mmol/L) 4.4 (1.2) 4.8 (1.7) 3.1 (0.7) <0.05 

HDL (mmol/L) 1.1 (0.4) 1.3 (0.8) 0.7 (0.2) <0.05 

LDL (mmol/L) 2.7 (0.9) 2.8 (1.1) 1.5 (0.5) <0.01 

Triglycerides 

(mmol/L) 
1.2 (1.0) 1.5 (0.6) 1.9 (0.8) 0.19 

Table 4.4. Lipid profiles for total cohort. Mean and standard deviation shown for normally 

distributed data & p-value determined using one way ANOVA. Significant values are shown in bold. 
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Figure 4.4A-B. Scatter graphs between acyl-ghrelin and cholesterol and acyl-ghrelin and LDL. A- 

Plasma total cholesterol (rs = 0.380; p<0.05). y = 0.0025x + 3.0373, R² = 0.2301 (n=30). B- Plasma low 

density lipoprotein (LDL) (rs = 0.393; p<0.05) y = 0.0019x + 1.5463, R² = 0.2437 (n=30).  

 

Lipid retention gene expression across cohorts 

The total sample cohort indicated there was no significant change in the overall 

gene expression of lipid retention genes when the O group was compared to the 

NO group. However, when the OT2D group was compared to both the O and NO 

groups, there was a marked decrease in LXRβ, ABCG1 and SREBF1 (Table 4.5).  

 

Plasma acyl-ghrelin levels in relation to lipid retention genes 

When lipid retention gene expression was analysed against plasma acyl-ghrelin 

levels, there was a significant negative correlation between acyl-ghrelin and ABCG1 

ΔCt, with high acyl-ghrelin correlating to an increase in ABCG1 expression (rs=-0.39, 

p<0.05). LXRβ was shown to have a similar relationship with acyl-ghrelin levels as 

ABCG1, however this was non-significant (rs=-0.36, p=0.06). In addition to plasma 

acyl-ghrelin, GHRL expression also produced a significant association with plasma 

lipid levels which indicated a negative correlation between ghrelin gene ΔCt values 

versus total cholesterol (rs = -0.54, p<0.01) and LDL (rs = -0.49, p<0.01), respectively. 
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Group Gene of interest Fold Change Direction P-value 

NO v O 

LXRβ 0.73  0.16 

ABCG1 0.84  0.24 

SREBF1 1.12  0.39 

PPARγ 0.73  0.22 

NO v OT2D 

LXRβ 2.78  0.02 

ABCG1 2.44  <0.001 

SREBF1 2.70  <0.05 

PPARγ 0.66  0.27 

O v OT2D 

LXRβ 2.04  <0.05 

ABCG1 2.04  <0.05 

SREBF1 3.03  <0.001 

PPARγ 0.91  0.32 

Table 4.5. Relative fold change values for lipid retention gene expression data for total cohort. P-

value deduced from ΔCt T-Test. Significant values are shown bold. N=10 per cohort.      

         = down regulation             = no overall change 

 

4.4.1.4 Inflammation markers 

Plasma cytokine levels 

Inflammatory cytokines were analysed across the total sample cohort (NO, O and 

OT2D) using non-parametric parameters. The results indicated a non- significant 

alteration in levels of IL-6 and TNFα between the three groups, however there was 

a significant difference in IL-10 levels (Table 4.6). Analysis demonstrated that NO v 

O produced no difference in IL-6 and TNFα (IL-6; 12.9 v 11.0 pg/mL; p=0.71. TNFα; 
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11.4 v 36.0 pg/mL; p=0.26, respectively), however, IL-10 levels were significantly 

reduced within the O group when compared to NO (88.6 v 53.5 pg/mL, p<0.05). 

Results were mirrored when comparing NO v OT2D groups, which indicated a 

marked decrease in IL-10 (88.6 v 39.6 pg/mL, p<0.05) and unaltered levels of IL-6 

(12.9 v 7.9, p=0.60) and TNFα (11.4 v 20.1 pg/mL, p=0.47). However, results 

between O v OT2D indicated that IL-6 (p=0.31), TNFα (p=0.37) and IL-10 (p=0.14) 

levels were all similar between the groups.  

 

Cytokine  
[pg/mL] 

Non-Obese 
(NO) 
(n=10 

Obese 
(O) 

(n=10) 

Obese Type 2 
(OT2D) 
(n=10) 

P-value 

IL-6 12.9 

[7.0 – 20.4] 

11.0 

[8.7 – 27.2] 

7.9 

[7.1 – 15.1] 

0.61 

TNFα 11.4 

[5.1 – 43.4] 

36.0 

[17.7 – 54.0] 

20.1 

[14.0 – 32.6] 

0.42 

IL-10 88.6 

[66.3 – 129.5] 

53.5 

[27.5 – 67.0] 

39.6 

[44.2 – 15.1] 

<0.05 

Table 4.6. Cytokine levels for total cohort. Median and interquartile range for cytokine levels for 

each cohort. P-value determined via Kruskal-Wallis across global data. Significant values shown in 

bold. 

 

Total Antioxidant Status 

Data analysis of the total sample cohort showed a significant difference in overall 

TAOS (%) between groups (NO v O v OT2D; 53.5% v 44.2% v 31.1%; p<0.05, 

respectively). Post hoc analysis of data demonstrated that TAOS levels present in 
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the OT2D cohort were significantly lower than both the O and NO groups (p<0.01, 

p<0.001, respectively) (Figure 4.5).  

 

Figure 4.5. Bar graph of mean TAOS (%) within the three cohorts. Statistical analysis was conducted 

using a one-way ANOVA and post hoc Tukey. Statistical significance between groups are indicated by 

asterisks (* p<0.01 & ** p<0.001)(n=10 per cohort). 

 

Inflammation vs acyl-ghrelin  

Total sample cohort cytokine data did not show a significant association between 

any inflammatory markers and plasma acyl-ghrelin (IL-6, p=0.163; TNFα, p=0.957; 

IL-10, p=0.633; TAOS, p=0.190). However, when inflammatory markers were 

analysed against GHRL expression it showed that an increase in GHRL expression 

was associated with an increase in plasma IL-10 (GHRL ΔCt vs IL10; p<0.05) and 

TAOS % (GHRL ΔCt vs TAOS %; p<0.05) (Table 4.7). 
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 Plasma  

acyl-ghrelin 

GHRL 

ΔCt 

IL-6 Spearman’s Correlation 

P value 

-0.276 

0.163 

0.054 

0.785 

TNFα Spearman’s Correlation 

P value 

0.015 

0.957 

0.440 

0.060 

IL-10 Spearman’s Correlation  

P value 

0.129 

0.633 

-0.476 

0.044* 

TAOS % Spearman’s Correlation 

P value 

0.255 

0.190 

-0.396 

0.030* 

 

Table 4.7 Correlation data for gene expression, plasma acyl-ghrelin and inflammatory markers for 

total cohort. Data analysis of relative ΔCt value and raw plasma marker levels (n=30). ΔCt values are 

inverse on gene transcript level. Non-parametric data analysis via Spearman’s rho correlation used 

to determine correlation between parameters. Significant values were shown in bold. 

 

4.4.2 Diabetes effect 

The second arm of data analysis, aimed to investigate the effect of diabetes (No 

Diabetes (NO + O)) v Diabetes (OT2D)). To establish the effect of diabetes on the 

association of key variables, correlation analysis was conducted for samples in the 

OT2D group only.  

 

4.4.2.1 Baseline characteristics 

Comparison of baseline characteristics demonstrated no significant differences in 

participant’s ages. However, as expected, there was a significant increase in weight, 

BMI, fasting blood glucose and HbA1c in those with diabetes (Table 4.8). 
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 No Diabetes 

(NO + O) 

(n=20) 

Diabetes 

(OT2D) 

(n=10) 

P-value 

Age (Years) 51.5 (13.5) 45.4 (6.8) 0.20 

Weight (Kg)* 82.0 [72-10] 131.4 [116-148] <0.01 

BMI (Kg/m2)* 29.9 [26-35] 47.3 [43-50] <0.001 

Glucose (mmol/L)* 5.3 [4.6-5.9] 6.7 [6.0-11.1] <0.01 

HbA1c (%)* 5.2 [4.6-5.6] 7.0 [5.5-7.6] <0.01 

HbA1c (mmol/mol)* 33.3 [26.8-37.4] 52.5 [35.8-68.1] <0.01 

Statin prescription# 

(%) 
15 (3) 50 (5) <0.05 

 

Table 4.8. Baseline characteristics of the ‘No diabetes’, and ‘Diabetes’ cohorts. Mean and standard 

deviation shown for normally distributed data & p-value determined using independent t-test.  

* Median and interquartile ranges shown for not normally distributed data and Kruskal Wallis used 

for p value determination. 
#
Categorical data tested using Pearson Chi-square analysis, % shown with 

n in brackets.  Significant values shown in bold.  

 

4.4.2.2 Plasma levels of acyl-ghrelin 

Fasting plasma acyl-ghrelin levels were significantly lower within those with T2D 

(OT2D) when compared to those without T2D (NO + O) (228.5 [98.4 – 439.4] v 464.8 

[314.0 – 528.7] pg/mL; p<0.05) (Figure 4.6).  
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Ghrelin gene axis expression across cohorts 

Gene expression analysis for the ghrelin gene axis indicates that within the diabetes 

group (OT2D) there was no significant difference in gene expression for mBOAT4 or 

LYPLA1. However, GHRL expression itself was significantly down regulated at a 2.1- 

fold change within the OT2D group in comparison to the no diabetes group (p<0.05) 

(Table 4.9).  

 

Plasma acyl-ghrelin levels in relation to ghrelin gene axis 

Plasma acyl-ghrelin levels within the diabetes group were not significantly 

associated with the key octanoylation genes LYPLA1 (p=0.150) or mBOAT4 

(p=0.144) (Table 4.10). Data indicated that within the diabetes group circulating 

acyl-ghrelin levels were negatively associated with the ΔCt values of GHRL 

expression (p<0.05). 

 

Figure 4.6. Box plot of fasting acyl-ghrelin levels for ‘No diabetes’ and ‘Diabetes’ cohorts. Median 

acyl-ghrelin levels shown for no diabetes (NO + O)(n=20) and those with Type 2 diabetes 

(OT2D)(n=10). Statistical analysis was conducted using non-parametric measures, independent 

sample t-test determined statistical significance (p<0.05) between groups which are indicated by *. 
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Group  Gene of interest Fold Change Direction P-value 

(NO + O) v 

OT2D 

GHRL 2.10  <0.05 

mBOAT4 0.71  0.26 

LYPLA1 0.94  0.28 

Table 4.9. Relative fold change values for ghrelin axis gene expression data for diabetes effect 

cohort. P-value deduced from ΔCt T-Test. Significant values shown in bold.               

              = down regulation                 = no overall change 

 

 Plasma  
acyl-ghrelin 

GHRL Spearman’s Correlation  
P-value 

-0.791 
0.010* 

LYPLA1 Spearman’s Correlation 
P-value 

0.150 
0.680 

mBOAT4 Spearman’s Correlation 
P-value 

0.144 
0.691 

 

Table 4.10 Correlation data for gene expression and plasma acyl-ghrelin for diabetes effect cohort. 

Data analysis of relative ΔCt value and raw plasma marker levels (n=10). ΔCt values are inverse on 

gene transcript level. Non-parametric data analysis via Spearman’s rho correlation used to 

determine correlation between parameters. Significant values shown in bold. 

 

4.4.2.3 Lipid profiles 

Lipid profiles were analysed across the two groups, showing a significant difference 

in plasma lipid markers. Significant differences were demonstrated in total 

cholesterol (p<0.01), HDL (p<0.05) and LDL (<0.01) levels, however triglyceride 

profiles remained unaltered across the groups (p=0.10) (Table 4.11). Due to these 

data being opposed to the normal distribution of data expected to be seen within 

this group of individuals, lipid profiles were further assessed in relation to lipid 
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management drugs. However, this analysis deduced there was no significant 

variation within the groups lipid profiles between those prescribed statins (n=5) and 

those who were not (n=5) (cholesterol; p=0.202, HDL; p= 0.141, LDL; p=0.246 and 

triglycerides; p=0.794).  

 

 No Diabetes 

(NO + O) 

(n=20) 

Diabetes 

(OT2D) 

(n=10) 

P-value 

Cholesterol (mmol/L) 4.6 (1.4) 3.1 (0.7) <0.01 

HDL (mmol/L) 1.2 (0.6) 0.7 (0.2) <0.05 

LDL (mmol/L) 2.7 (1.0) 1.5 (0.5) <0.01 

Triglycerides (mmol/L) 1.4 (0.8) 1.9 (0.8) 0.10 

Table 4.11. Lipid profiles for diabetes effect cohort. Mean and standard deviation shown for 

normally distributed data & p-value determined using an independent T-Test. Significant values 

shown in bold.  

 

Lipid retention gene expression across cohorts 

Gene expression data for genes involved in lipid retention were analysed to 

produce fold change with respect to a diabetes effect ((O+NO) v OT2D). No diabetes 

compared to diabetes expression patterns mirrored that of the total sample cohort, 

showing a significant down regulation of key genes involved in lipid retention, LXRβ 

(p<0.05) and ABCG1 (p=0.01). Furthermore, within the diabetes effect cohort there 

was a significant down regulation in the lipid biosynthesis gene SREBF1 (p<0.001), 

however PPARγ produced no change in gene expression when analysed with 

respect to diabetes effect (p=0.26) (Table 4.12).  
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Plasma acyl-ghrelin levels in relation to lipid retention genes 

In contrast to the total sample cohort, plasma acyl-ghrelin levels and GHRL 

expression showed no association with plasma lipids within the diabetes effect 

cohort. Furthermore, neither demonstrated an association with key lipid retention 

genes (ABCG1; rs=-0.107, P=0.770, LXRβ; rs= -0.150, P=0.679). Finally, lipid 

biosynthesis gene, SREBF1 expression presented a significant association with GHRL 

expression (rs=0.803, p<0.01), this association was not seen with SREBF1 and 

plasma acyl-ghrelin levels (rs=0.011, p=0.977). 

 

Group Gene of interest Fold Change Direction P-value 

(NO + O) v 

OT2D 

 

LXRβ 2.22  <0.05 

ABCG1 2.22  0.01 

SREBF1 2.86  <0.001 

PPARγ 0.77  0.26 

Table 4.12. Relative fold change values for lipid retention gene expression data for diabetes effect 

cohort. P value deduced from ΔCt T-Test. Significant values shown in bold          

          = down regulation              = no overall change 

 

4.4.2.3 Inflammation markers 

Plasma cytokine levels 

Analysis of cytokine data with respect to diabetes effect yielded no significant 

differences in pro-inflammatory markers IL-6 (p=0.35) and TNFα (p=0.56). However, 

the anti-inflammatory marker IL-10 was significantly reduced within those with 

Type 2 diabetes in comparison with those without (p<0.01) (Table 4.13).  
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Cytokine  
[pg/mL] 

No Diabetes 
(NO + O) 
(n=20) 

Obese Type 2 
(OT2D) 
(n=10) 

P-value 

IL-6 11.4  

[7.9 – 24.7] 

7.9  

[7.1 – 15.1] 

0.35 

TNFα 26.8 

[10.9 – 42.0] 

20.1  

[14.0 – 32.6] 

0.56 

IL-10 68.6  

[41.8 – 92.7] 

39.6  

[15.1 – 44.2] 

<0.01 

Table 4.13. Cytokine levels for diabetes effect cohort. Median and interquartile range for cytokine 

levels for each group. P-value determined via independent T-Test comparing Diabetes (OT2D) vs No 

Diabetes (ND) cohorts. Significant values are shown in bold.  

 

Total Antioxidant Status 

Analysis indicates a significant differences of average TAOS (%) when the diabetes 

group  was compared those with the no diabetes group ((NO + O) v OT2D; 48.8 v 

31.1 %; p<0.001) (Figure 4.7), showing decreased levels of antioxidant indicative of 

an increased levels of oxidative stress in the diabetes group.  

 

Figure 4.7. Bar graph of mean TAOS (%) levels for diabetes effect. No diabetes (ND(NO+O))(n=20) 

and diabetes (OT2D)(n=10). Statistical analysis was conducted using an independent T-Test. 

Statistical significance between groups are indicated by asterisks (*p<0.001). 
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Inflammation vs acyl-ghrelin  

During the assessment of inflammatory markers association with acyl-ghrelin and 

GHRL gene expression, it was evident that within the diabetes cohort all 

associations were diminished. Acyl-ghrelin showed no significant association with 

inflammatory cytokines (IL-6; p=0.92, TNFα; p=0.29 and IL10; p=0.19), nor with 

oxidative stress marker (TAOS%; p=0.23). In addition, GHRL expression had no 

associations with inflammatory or oxidative stress markers (IL-6 (p=0.42), TNFα 

(p=0.22), IL-10 (p=0.09) or TAOS % (p=0.65)) (Table 4.14). 

 

 

Table 4.14 Correlation data for gene expression, plasma acyl-ghrelin levels and inflammatory 

markers for diabetes effect cohort. Data analysis of relative ΔCt value and raw plasma marker levels 

(n=10). ΔCt values are inverse on gene transcript level. Non-parametric data analysis via Spearman’s 

rho correlation used to determine correlation between parameters. 

  

 Plasma  

acyl-ghrelin 

GHRL 

ΔCt 

IL-6 Spearman’s Correlation 

P-value 

-0.042 
0.299 

-0.311 

0.415 

TNFα Spearman’s Correlation 

P-value 

-0.600 

0.285 

0.667 

0.219 

IL-10 Spearman’s Correlation  

P-value 

-0.700 

0.188 

0.821 

0.089 

TAOS % Spearman’s Correlation 

P-value 

-0.418 

0.229 

-0.165 

0.649 
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4.4.3 Obesity effect 

The third arm of data analysis aimed to investigate the obesity effect (Non-Obese 

(NO) v Obesity (O+OT2D)). In order to determine whether obesity was causing an 

effect on associations between variables, analysis of correlations was conducted 

within samples in the obesity (O+OT2D) cohort only.  

 

4.4.3.1 Baseline characteristics 

The baseline characteristics within the obesity group (O + OT2D) and the non-obese 

group (NO) demonstrated no significant difference within age (p=0.45) or HbA1c 

(p=0.74). However, as expected, there was a significant difference within the obese 

group for weight (p<0.01), BMI (p<0.001) and fasting glucose levels (p<0.05) (Table 

4.15). 
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Obesity 

(O+OT2D) 

(n=20) 

Non-Obese 

(NO) 

(n=10) 

P-value 

Age (Years) 48.3 (9.9) 51.8 (15.5) 0.45 

Weight (Kg)* 112.5 [89-148] 72.2 [64-81] <0.01 

BMI (Kg/m2)* 41.8 [34-48] 26.2 [24-28] <0.001 

Glucose (mmol/L)* 6.1 [5.4-7.5] 4.8 [4.5-5.7] <0.05 

HbA1c (%)* 5.5 [5.3-7.0] 5.0 [4.6-5.7] 0.74 

HbA1c (mmol/mol)* 36.6 [33.6-52.7] 30.6 [26.3-39.1] 0.07 

Statin prescription# 

(%) 
30 (6) 20 (2) 0.56 

Table 4.15. Baseline data for obesity effect cohort. Mean and standard deviation shown for normally 

distributed data & p val determined using one way ANOVA  

* Median and interquartile ranges shown for data that is not normally distributed data and Kruskal 

Wallis used for p-value determination. 
#
Categorical data tested using Pearson Chi-square analysis, % 

shown with n in brackets. Significant values are shown in bold. 

 

4.4.3.2 Plasma levels of acyl-ghrelin 

Comparison of obesity and non-obese groups revealed no significant differences in 

circulating acyl-ghrelin levels (323.3 [101 – 480] v 466.0 [312 – 490] pg/mL; p=0.48). 

Within the obesity group, fasting acyl-ghrelin was negatively correlated with BMI 

(rs= -0.58, p<0.01) and weight (rs= -0.55, p<0.05), respectively (Figure 4.8A-B).   



145 
 

 

Figure 4.8A-B. Scatter graphs between acyl-ghrelin and BMI and acyl-ghrelin and body weight. A- 

BMI (rs= -0.58, p<0.01), y=-0.0205x + 49.52, R
2
 = 0.332 (n=20). B- Body weight (rs= -0.55, p<0.05), y=-

0.0841x + 150.58, R
2
 = 0.3044 (n=20). 

 

Ghrelin gene axis expression across cohorts 

Gene expression data was analysed to signify whether obesity was influencing the 

expression of key ghrelin axis genes. Results confirm there was no significant 

differences in mBOAT4 (p=0.31) or LYPLA1 (p=0.44) expression between the two 

groups. Furthermore, in contrast to previous sections GHRL expression showed no 

fold change difference within the obese group versus the non-obese group (p=0.47) 

(Table 4.16).  

 

Group  Gene of interest Fold Change Direction P-Value 

NO v 

(O+OT2D) 

GHRL 0.97  0.47 

mBOAT4 0.76  0.31 

LYPLA1 1.28  0.44 

Table 4.16. Relative fold change values for ghrelin axis gene expression data for obesity effect 

cohort. P value deduced from ΔCt T-Test. 

           = down regulation                 = no overall change                                                    
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Plasma acyl-ghrelin levels in relation to ghrelin gene axis 

Association of ghrelin axis gene expression and plasma acyl-ghrelin levels within the 

obese group indicated no significant correlation with either LYPLA1 (p=0.571) or 

mBOAT4 (p=0.511), as with previous arms of the study. However, circulating acyl-

ghrelin levels were significantly association with GHRL (p<0.05) (Table 4.17).  

 

 Plasma  
acyl-
ghrelin 

GHRL Spearman’s Correlation  
P-value 

-0.493 
0.032* 

LYPLA1 Spearman’s Correlation 
P-value 

-0.139 
0.571 

mBOAT4 Spearman’s Correlation 
P-value 

0.161 
0.511 

Table 4.17 Correlation data for gene expression and plasma acyl-ghrelin for obesity effect cohort. 

Data analysis of relative ΔCt value and raw plasma marker levels (n=20). ΔCt values are inverse on 

gene transcript level. Non-parametric data analysis via Spearman’s rho correlation used to 

determine correlation between parameters. Significant values shown in bold. 

 

4.4.3.3 Lipid profiles 

Circulating lipid profiles in respect to the obese state, indicated no significant 

change across the two groups (cholesterol; p=0.45, HDL; p=0.43, LDL; p=0.25 and 

triglycerides; p=0.14) (Table 4.18). Upon analysis of acyl-ghrelin association with 

lipid profile markers, there was no significant association was present within the 

obese group (cholesterol; rs = 0.291, p=0.23, HDL; rs = 0.245, p=0.31, LDL; rs = 0.281, 

p=0.24 and triglycerides; rs = -0.462, p=0.14). Due to GHRL expression 

corresponding with acyl-ghrelin levels, it was also analysed with respect to lipid 

profile associations, which indicated a significant correlation between increased 
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GHRL expression with increased plasma cholesterol and LDL levels (rs = -0.462, 

p<0.05, rs = -0.448, p<0.05, respectively) (Figure 4.9A-B).  

 

Lipid retention gene expression across cohorts 

Contrary to other arms within this study, the obesity effect demonstrated no fold 

change alterations between key lipid retention genes when compared to the non-

obese cohort (NO V (O + OT2D); LXRβ p=0.10, ABCG1=0.06, SREBF1 p=0.14 and 

PPARγ p=0.18) (Table 4.19).  

 

Plasma acyl-ghrelin levels in relation to lipid retention genes  

Furthermore, no association was demonstrated between circulating acyl-ghrelin 

and key lipid retention genes (ABCG1 and LXRβ), nor lipid biosynthesis genes 

(SREBF1). In addition, GHRL expression also deemed no significant relation with 

lipid retention genes (ABCG1 and LXRβ), however had a significant positive 

correlation with the lipid biosynthesis gene SREBF1 (rs=0.624, p<0.01). 

 

Obesity 

(O + OT2D) 

(n=20) 

Non-Obese 

(NO) 

(n=10) 

P-value 

Cholesterol (mmol/L) 3.9 (1.5) 4.4 (1.2) 0.45 

HDL (mmol/L) 1.0 (0.6) 1.1 (0.4) 0.43 

LDL (mmol/L) 2.2 (1.1) 2.7 (0.9) 0.25 

Triglycerides (mmol/L) 1.7 (0.7) 1.2 (1.0) 0.14 

Table 4.18. Lipid profiles for obesity effect cohort. Mean and standard deviation shown for normally 

distributed data & p-value determined using one way ANOVA. 
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Figure 4.9A-B. Scatter graphs between GHRL expression and cholesterol, and GHRL expression and 

LDL. A- Plasma total cholesterol (rs = -0.462, p<0.05)(n=20). y = -0.591x + 10.688, R² = 0.3589. B- 

Plasma low density lipoprotein (LDL) (rs = -0.448, p<0.05) y = -0.4337x + 7.1351, R² = 0.3863 (n=20).  

 

 

Group  Gene of interest Fold Change Direction P-value 

NO v 

(O+OT2D) 

 

LXRβ 0.50  0.10 

ABCG1 0.63  0.06 

SREBF1 0.64  0.14 

PPARγ 0.69  0.18 

Table 4.19. Relative fold change values for lipid retention gene expression data for obesity effect 

cohort. P-value deduced from ΔCt T-Test. 

       = down regulation             = no overall change 
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4.4.3.3 Inflammation Markers 

Plasma cytokine levels 

The obesity effect showed no significant differences in the level of pro-

inflammatory markers IL-6 or TNFα, however the anti-inflammatory marker IL-10 

was significantly reduced within the obese group (NO v (O + OT2D); 55.6 v 40.8, 

p<0.01) (Table 4.20). 

 

Total Antioxidant Status 

Data analysis for obesity effect showed a significant difference in overall TAOS (%) 

(NO v (O + OT2D); 53.5% v 37.6%; p<0.001) (Figure 4.10). 

 

Cytokine  
[pg/mL] 

Obesity 

(O + OT2D) 

(n=20) 

Non-obese 

(NO) 

(n=10) 

P-value 

IL-6  10.7 

[7.7 – 18.6] 

12.6 

[7.0 – 20.4] 

0.73 

TNFα 22.8 

[16.0 – 39.5] 

11.4 

 [5.1 – 43.4]  

0.31 

IL-10 40.8 

[26.9 – 59.6] 

55.6 

[66.3 – 129.5] 

<0.01 

Table 4.20. Cytokine levels for obesity effect cohort. Median and interquartile range for cytokine 

levels for each group. P-value determined via independent T-Test comparing obesity effect. 

Significant values shown in bold. 
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Figure 4.10. Bar graph of mean TAOS (%) shown for obesity effect. Non-obese (NO)(n=10) and 

obesity effect (Ob (O + OT2D))(n=20). Statistical analysis was conducted using an independent T-

Test. Statistical significance between groups are indicated by asterisk (*p<0.001). 

 

 

Inflammation vs acyl-ghrelin  

Plasma acyl-ghrelin showed no significant association with inflammatory cytokines 

within the obese group (IL-6, p=0.59; TNFα, p=0.47; IL-10, p=0.63). Inflammatory 

cytokines also indicated no association with GHRL expression with respect to IL-6 

and TNFα. However, pro-inflammatory marker IL-10 demonstrated a significant 

association with ΔCt values of GHRL expression. TAOS (%) indicated oxidative stress 

was also independent of plasma acyl-ghrelin levels (p=0.32), however when TAOS 

(%) is analysed versus ghrelin gene expression it was indicative that an increase in 

GHRL expression was associated with an increase in TAOS (%) (GHRL ΔCt vs TAOS %; 

p<0.05) (Table 4.21). 
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Table 4.21 Correlation data for gene expression, plasma acyl-ghrelin and inflammatory markers for 

obesity effect cohort. Data analysis of relative ΔCt value and raw plasma marker levels (n=20). ΔCt 

values are inverse on gene transcript level. Non-parametric data analysis via Spearman’s rho 

correlation used to determine correlation between parameters. Significant values shown in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Plasma  

acyl-ghrelin 

GHRL 

ΔCt 

IL-6 Spearman’s Correlation 

P-value 

-0.136 

0.590 

-0.025 

0.918 

TNFα Spearman’s Correlation 

P-value 

-0.261 

0.467 

0.419 

0.199 

IL-10 Spearman’s Correlation  

P-value 

0.176 

0.627 

-0.573 

0.046* 

TAOS % Spearman’s Correlation 

P-value 

0.242 

0.318 

-0.536 

0.015* 
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4.5  Discussion 

4.5.1 Circulating acyl-ghrelin levels  

Gene expression data of the ghrelin axis provided an insight into the regulation of 

circulating ghrelin within obese individuals with and without T2D. Data suggested 

that a down regulation of GHRL was present within individuals with T2D, however 

this effect was not mirrored in obese individuals. Previously published literature 

confirms this study’s findings by indicating that low total ghrelin levels are 

significantly associated with insulin resistance (Pöykkö et al., 2003, Shiiya et al., 

2002). However, this was initially deemed to be due do a decline in desacyl-ghrelin, 

with acyl-ghrelin being increased within obese individuals with T2D (Rodríguez et 

al., 2012). However, it is evident across the literature that acyl-ghrelin levels are 

disputed, with other reports indicating a significant decline in acyl-ghrelin levels 

within obese individuals with T2D (Dardzińska et al., 2014) and those with 

gestational diabetes (Supák et al., 2016). Within this study, there is also paradoxical 

evidence with data suggesting no change in acyl-ghrelin concentrations in an obese 

state when compared to non-obese, yet a marked decline in acyl-ghrelin levels 

within obese individuals with T2D. Investigation of the ghrelin axis through gene 

expression has indicated that the expression of key regulatory enzymes in pre-pro-

ghrelin modification are unaltered throughout the total and disease effect cohorts, 

suggesting that acyl-ghrelin plasma concentrations may be correlated specifically 

with GHRL expression. Acyl-ghrelin levels within T2D are therefore hypothesised to 

be under the regulation of GHRL transcription itself, rather than an alteration in the 

mechanism involved in regulation of the octanoylation of ghrelin. Furthermore, this 

corresponds with a decline in GHRL expression, producing a lower plasma desacyl-
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ghrelin level as often reported within the metabolic state (Rodríguez et al., 2012). 

Analysis of desacyl-ghrelin within participants would also have been advantageous 

within the sample cohorts to establish whether acyl-ghrelin and desacyl-ghrelin 

share a similar or opposing relationship within the study, however due to timing 

constraints this was not possible.   

 A decline in acyl-ghrelin levels and GHRL gene expression were associated 

with a rise in fasting plasma glucose levels across the total sample cohort indicating 

that the down regulation of ghrelin could be dependent on glucose homeostasis. 

This corresponds with previously published data, which suggests an inverse 

correlation with acyl-ghrelin levels and homeostatic model assessment of insulin 

resistance (HOMA-IR) (Qarni et al., 2017). Therefore, a reduction of acyl-ghrelin 

levels in long term hyperglycaemia may not be due to post-translational 

modifications, but rather a disruption in the transcription of the GHRL gene itself. 

These findings correlate with a study undertaken in human individuals with T1D, 

T2D and normoglycaemia which indicated ghrelin secretion was suppressed by long 

term poor glycaemic control (Hiroaki et al., 2007). However, acyl-ghrelin’s 

association with plasma glucose was lost when data were analysed with respect to 

diseases effect cohorts. This could be due to data within the disease effect cohorts 

consisting of half the participants, which resulted in a loss in statistical power and 

an increase in variation (Browner et al., 2007). Additional exploratory analysis into 

disease state does however allow for the development of associations within the 

data that could be further explored in additional studies to provide greater 

statistical power and to eradicate type 1 statistical errors.     
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4.5.2 Acyl-ghrelin mediated lipid retention 

Within this chapter, the relationship of acyl-ghrelin and lipid retention was further 

examined in relation to adipose tissue as a complex source of various tissue types, 

rather than acyl-ghrelin’s effect directly on mature adipocytes as discussed in 

Chapter 3. Analysis of the findings indicate contrasting data that shows that within 

non-obese individuals, higher levels of circulating acyl-ghrelin coincides with an 

increase in key lipid transport gene expression.  This could be due to acyl-ghrelin’s 

effect on adipose tissue as a whole, including macrophages, which have shown to 

induce an increase in lipid retention gene mRNA levels in the presence of acyl-

ghrelin treatments (Demers et al., 2009). Even though acyl-ghrelin may be involved 

in mediating lipid retention, this effect however is diminished on a global scale and 

is only apparent within a local system. Previously published work demonstrates that 

within mice, the effect of acyl-ghrelin is the same, both locally in adipocytes (3T3-

L1) (Miegueu et al., 2011) and globally (WAT depot) (Churm et al., 2017, Porteiro et 

al., 2013)(Table 4.22).  

In addition to a local versus global effect of acyl-ghrelin, a further 

explanation that may account for the difference is the degree and duration of a 

hyperglycaemic state. Previously reported evidence shows that hyperglycaemia has 

demonstrated a regulatory role in the expression of key lipid retention genes 

including ABCG1 (Mauerer et al., 2009) and LXR (Mitro et al., 2007).  
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Model 

 

Dose Treatment Effect Reference 

3T3-L1 

(Murine 

adipocytes) 

Acyl-ghrelin 

1-100 pmol, 

Desacyl-

ghrelin 1–

100 pmol 

Preadipocytes 

incubated with 

desacyl-ghrelin and 

acyl-ghrelin for 

24 hours 

Desacyl and acyl-

ghrelin-

stimulated 

adipogenesis, 

fatty acid uptake 

and inhibited 

lipolysis 

(Miegueu 

et al., 

2011) 

Perigonadal 

adipose tissue 

(Murine) 

Acyl-ghrelin 

30 μg day 
Daily ip injection 

mRNA levels of 

several 

adipogenic and 

fat-storage-

promoting 

enzymes were 

up-regulated 

(Porteiro 

et al., 

2013) 

THP-1 

(Human 

macrophages) 

1, 10 & 100 

nM Acyl-

ghrelin 

Treated PMA-

differentiated THP-

1 macrophages 

with increasing 

doses of ghrelin 

Increases in 

mRNA levels of 

LXR and ABC 

isoforms 

(Demers 

et al., 

2009) 

Table 4.22. Effects of acyl-ghrelin treatment on adipogenesis in both local and global adipose 

regions, table taken in part from (Churm et al., 2017).  
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4.5.3 Acyl-ghrelin and the inflammatory state 

Relevant findings within this chapter indicate no overall change in plasma levels of 

pro-inflammatory markers across groups, indicating no correlation to acyl-ghrelin 

levels or GHRL expression. This is counter to the published IL-6 literature which 

indicates that the enhancement of the metabolic state causes an increase in pro-

inflammatory markers such as IL-6 (Maachi et al., 2004, Bastard et al., 2006, Bastard 

et al., 2002, Makki et al., 2013). In addition, TNFα was initially reported 20 years 

ago to be increased within obesity and T2D (Saghizadeh et al., 1996, Löfgren et al., 

2000, Bastard et al., 2006, McLaughlin et al., 2017), however findings differ 

amongst publications with studies often reporting no significant alterations in TNFα 

levels between both disease states and a control cohort (Frittitta et al., 1997, 

Koistinen et al., 2000, Borst, 2004). A lack of association seen within the pro-

inflammatory marker levels during the progression of the metabolic state may not 

be apparent due to variation within samples and the relatively small sample size 

assessed here. Another plausible explanation is the role of prescribed medication 

within the sample cohorts. For instance, meta-analysis data suggests a role for 

metformin in the amelioration of chronic inflammation via a reduction of key 

inflammatory markers such as C-reactive protein, IL-6 and TNFα in vivo in humans 

(Wang et al., 2017) and in vitro in rodents (Jing et al., 2017). 

 Upon exploration of disease effect, it is apparent that both obesity and Type 

2 diabetes caused a marked decline in anti-inflammatory and an increase in 

oxidative stress i.e. plasma IL-10 (van Exel et al., 2002, Esposito et al., 2003) and 

TAOS levels (Fenkci et al., 2003, Prior et al., 2017). Furthermore, within the total 

sample cohort and those within the obese effect cohort, there was a significant 
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association between GHRL expression and IL-10.  However, this association was 

diminished within the diabetes effect cohort. An improvement in IL-10 and TAOS 

(%) data are both associated with the up regulation of GHRL expression, 

corresponding with published studies that indicate a promotion of inflammatory 

health in the presence of ghrelin (Suematsu et al., 2005, Harvey et al., 2017). Even 

though GHRL expression is significantly linked to acyl-ghrelin circulation, whether 

this inflammatory protection is due to an increase in total ghrelin, desacyl-ghrelin or 

acyl-ghrelin is not determined. Acyl-ghrelin has been linked to a plausible role in 

protecting human lens epithelial cells (Bai et al., 2017) and osteoblastic cells (Dieci 

et al., 2014) against ROS accumulation. Furthermore, as discussed in Chapter 3, 

upon acyl-ghrelin dosage of human mature adipocytes there is a promotion in a 

protective inflammatory response and an increase in anti-inflammatory markers. In 

addition to acyl-ghrelin, desacyl-ghrelin treatment has also established a protective 

role from oxidative stress in microvascular endothelial cells via regulation of SIRT1 

catalytic activity (Shimada et al., 2014) and within osteoblastic cells independent of 

GHSR1α (Dieci et al., 2014).  

 

4.6 Conclusion 

Within the data sets, it is evident that acyl-ghrelin associations are only present 

within the total sample cohort, indicating values within the diseased state are too 

extreme or sample size to small too assess and reveal any relationships. mRNA 

levels of GHRL are indicative of a positive association with an increase in plasma 

lipid markers across all study arms. Within both a diabetes and obesity effects there 

is an association of SREBF1 mRNA levels, suggesting the transcription of GHRL gene 
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is associated with an increase in lipid biosynthesis and in turn an increase in 

circulating lipid profiles.  Previous literature and results from this chapter conclude 

that total ghrelin; a combination of both acyl- and desacyl-ghrelin, is associated 

with a protective response to oxidative burden.  

 

4.7 Limitations 

Within this section, TAOS was measured as a marker of antioxidant status. 

However, in addition to this surrogate marker, it would have been beneficial to 

encompass additional analysis including thiobarbituric acid reactive substances 

(TBARS) assay (a measure of lipid peroxidation) and telomere length (a measure of 

DNA damage due to cellular oxidative burden). 

The main limitation within this chapter is the analysis of sub-section data. The use 

of ex vivo samples allowed for the exploration of acyl-ghrelin mediated response, 

however, the analysis of association must be taken with caution. Due to the 

statistical approach used to elucidate disease effect, large amounts of comparisons 

and association analyses within the sub-sections were conducted, therefore there is 

a potential of Type 1 errors and the analysis of a smaller sample number. Increasing 

sample size would allow for the representation of this statistical analysis with 

greater power, however, time restraints did not allow for this to occur. In addition 

to this, upon analysis it is apparent that within the O and OT2D groups, there was a 

significant difference in weight and BMI. Upon further consideration, analysis could 

have benefited from a stricter inclusion criteria specifying a range within weight 

and BMI to ensure continuity within the weight between the two groups.  
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Chapter 5 

The effect of combining metformin and acyl-

ghrelin exposure on lipid retention and 

inflammation 
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5.1 Introduction 

5.1.1 Type 2 diabetes medication 

Early stage T2D can often be managed through an improvement in diet and/or 

exercise. However, as the disease progresses, many individuals also require the use 

of hyperglycaemia medication or insulin therapy. Evaluating pharmacological 

agents as treatment for individuals who have T2D and are obese or overweight 

(OT2D), requires considerations due to the effects that some hyperglycaemic 

agents may have on weight management. Hyperglycaemic therapy can be split into 

three distinct pharmaceutical groupings:- (i) treatments associated with weight 

gain- insulin secretagogues, thiazolidinediones and insulin, (ii) treatments that are 

weight neutral- metformin and dipeptidyl peptidase 4 (DPP-4) inhibitors, (iii) 

treatments linked to weight loss including- amylin mimetics and GLP-1 agonists and 

Sodium-glucose co-transporter-2 inhibitors (SGLT2i) (American Diabetes 

Association, 2017). Most pharmaceutical agents work in a manner to either 

promote insulin secretion or increase insulin sensitivity.  

 

5.1.2 Treatment guidelines 

The National Institute for Health and Care Excellence (NICE) guidelines for the 

management of T2D in adults directs the recommended treatment course based on 

up to date evidence and key developments. The algorithm for blood glucose 

lowering therapy in adults with T2D states initial drug therapy is dependent on 

HbA1c rise when following lifestyle intervention, with the introduction of 

metformin as a first line therapy (National Institute Health and Care Excellence, 

2015). Metformin treatment can either be as monotherapy or in addition to other 
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oral medications as dual or triple therapy (National Institute Health and Care 

Excellence, 2015). Alternatively, insulin therapy is recommended if (i) an individual 

is symptomatically hyperglycaemic, (ii) the dual or triple therapy is ineffective, or 

(iii) contraindications are present to metformin treatment and HbA1c raises above 

58 mmol/mol (7.5%) (National Institute Health and Care Excellence, 2015).    

 

5.1.3 Metformin 

Metformin (1,1-dimethylbiguanide hydrochloride) is the most commonly prescribed 

oral medication worldwide that acts to lower blood glucose (Bailey, 2017, Griffin et 

al., 2017). The therapy is often used as a foundation therapy for individuals with 

newly diagnosed T2D due to a reputation of effective glucose lowering abilities, low 

cost, and good safety profile (Sanchez-Rangel and Inzucchi, 2017, Inzucchi et al., 

2015). 

Reflective of metformin being a first line diabetes therapy that is weight 

neutral, data analysis of individuals recruited within Chapter 4 showed 90% (n=9) of 

the OT2D group were receiving routine metformin treatment with the additional 

10% (n=1) being undisclosed. 

First noted for its lipid lowering abilities post-extraction from the plant 

Galega officinalis or French lilac in the 1920s, it was not until the 1950s that 

metformin was introduced as a treatment of adult onset diabetes in the USA, after 

studies by Jean Sterne in 1957 (Sterne, 1957), then in the UK and other European 

countries in 1958 (Bailey, 2017). Despite metformin’s popularity as a first-line 

therapy, there is still debate as to the exact mechanism of action. Evidence suggests 

a reduction in hepatic glucose production being predominant, but there is 



162 
 

fundamental evidence that metformin is also involved in the regulation of incretin 

hormones and can lower insulin resistance (Sanchez-Rangel and Inzucchi, 2017, 

Rena et al., 2017).  

 

5.1.4 Proposed mechanism of metformin action  

Metformin primarily acts to inhibit hepatic gluconeogenesis and increase insulin 

action (or sensitivity) in other organs i.e. fat (Moreno-Navarrete et al., 2011). 

Metformin is known to have a regulatory effect on key lipid metabolic pathways. 

For example metformin administration in rodent cells and in vivo results in the 

activation of AMPK, which supresses the expression of the LXR ligands and SREBF-1 

(Yang et al., 2009, Yap et al., 2011, Hayashi et al., 2014). In addition to regulating 

key lipogenic genes, metformin also demonstrates a relationship with the ghrelin 

axis via AMPK. Gagnon and colleagues reported that administration of metformin in 

rats was associated with lower circulating levels of acyl-ghrelin via diminished 

protein secretion and reduced mRNA transcription (Gagnon et al., 2013). 

Furthermore, both effects were blocked when treated with an AMPK inhibitor 

compound (Gagnon et al., 2013). Independent studies report the intrinsic effect of 

metformin treatment on acyl-ghrelin or lipogenic factors, however further 

exploration is required to understand whether acyl-ghrelin could alter metformin’s 

action, or vice versa, on lipid metabolism and resultant inflammation within 

humans. In addition to the molecular mechanism of metformin, there is also a 

notably defined physiological route. Physiologically it is evident that metformin acts 

both directly and indirectly on the gut to increase glucose utilisation, increase GLP-1 

levels and alter gut microbiome (Rena et al., 2017, McCreight et al., 2016) all of 
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which highlight the vast network of pathways in which metformin plays a key role. 

Furthermore, there are variations in independent studies as the effect is altered 

dependent on cell or tissue type, dosage application and animal model used (Rena 

et al., 2017). Review of published data allows for a summary of the role of 

metformin on various site specific action, however very little published data 

indicates an effect of metformin on adipose tissue within humans (Bailey, 2017, 

Griffin et al., 2017, Rena et al., 2017, McCreight et al., 2016).  

Due to metformin having a pre-defined intrinsic effect on the lipogenesis 

pathway, the interaction between hyperglycaemia, metformin exposure and acyl-

ghrelin needs elucidation within human mature adipocytes. 
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5.2 Aim 

As metformin is the first line treatment and most commonly prescribed treatment 

of T2D, it is vital to understand its interaction with acyl-ghrelin and the resulting 

effect on lipid retention and inflammation. I predict that the evaluation of 

metformin role would elucidate a common pathway between itself and acyl-

ghrelin’s action. Thus ameliorating acyl-ghrelin’s effect on lipid retention genes and 

further promoting inflammatory health. This chapter aimed to:- 

1. Explore the effect of metformin on lipid retention genes in mature 

adipocytes in a hyperglycaemic environment 

2. Explore the effect of metformin on inflammatory markers IL-6 and IL-10, in 

mature adipocytes in a hyperglycaemic environment 

3. Investigate the combined effect of acyl-ghrelin and metformin on lipid 

retention and inflammation  
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5.3 Methods 

5.3.1 SGBS cell treatment 

Human pre-adipocytes (SGBS cells) were revived, cultured, seeded into six well 

plates and differentiated as previously described in Section 2.1.2. Mature 

adipocytes were pre-exposed to a hyperglycaemic environment [25 mM glucose] at 

day 12. The cells were then dosed with metformin [5nM] and/or acyl-ghrelin [100 

nM] or PBS vehicle to act as a control for all treatments on day 14. For dual 

exposure, cells were pre-exposed to acyl-ghrelin, 30 minutes prior to the addition 

of metformin. Due to the novelty of this work, cell treatment dose and timings were 

based on alternative human cell lines or primary adipocyte cultures,  as previously 

described in 3T3-L1 (Barbato et al., 2013) and Poietics™ human visceral adipocytes 

(Fujita et al., 2016). Metformin (Sigma-Aldrich) was dissolved in PBS and added in 

serum-free culture medium at a final concentration of 5 nM. Cell experiments were 

conducted over 17 hours following the addition of metformin, as previous work 

(Chapter 3) indicated this was a sufficient incubation period to report cellular 

changes resulting from the addition of acyl-ghrelin. 

 

5.3.2 Oil Red O staining 

After 17 hours of exposure to metformin, and/or acyl-ghrelin or a PBS vehicle, cells 

underwent Oil red O analysis as described in Section 2.1.6, based on Mehlem and 

colleagues published protocol (Mehlem et al., 2013). All images were analysed 

using ImageJ software (Version 2) using the same procedure as discussed in Section 

3.2.3. 
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5.3.3 Gene expression analysis 

To explore whether metformin altered acyl-ghrelin mediated lipid retention, cell 

treatments underwent relative gene expression analysis. Gene expression data was 

analysed within those treated with metformin and/or acyl-ghrelin or vehicle. 

Analysis was conducted on key lipid retention genes; LXRβ, ABCG1 and SREBF1. RNA 

was extracted from cells (Section 2.1.8) 17 hours post-exposure, then underwent 

Real Time PCR (Section 2.3), and raw Ct values analysed using the 2-ΔΔCT method 

(Section 2.3.4) (Appendix 7).  

 

5.3.4 Adipokine analysis 

As demonstrated in earlier chapters, acyl-ghrelin has a pronounced effect on IL-6 

and IL-10. These were analysed within cell supernatant extracted 17 hours post-

treatment exposure via commercially available ELISA (Quantikine®, R&D systems) as 

described within the manufacturers’ guidelines and Section 2.4.  
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5.4 Results 

5.4.1 Effect of metformin on human mature adipocytes 

5.4.1.1 Lipid area  

Intracellular lipid area was recorded and analysed to elucidate metformin’s effect 

on mature adipocytes in terms of lipid area versus a control. Overall lipid area was 

unaltered with metformin treatment compared to control (Met v Veh; 3870.3 [3177 

– 4463] µm2 v 3592.5 [2491 – 4696] µm2; p=0.35) (Figure 5.1). 

 

 

Figure 5.1. Oil red O imaging of mature SGBS cells in 25 mM (hyperglycaemia) glucose and 

metformin treatment at x50 magnification. Red stain- lipid droplets; purple stain- nuclei. (A) Cells 

grown in presence of metformin for 17 hours. (B) Cells grown in presence of PBS control for 17 

hours.  

 

5.4.1.2 Real Time gene expression  

Analysis of lipid retention genes showed that after 17 hours of metformin exposure, 

mature adipocytes, compared to control, had a significant up regulation of LXRβ, 

ABCG1 and SREBF1. In order of fold change magnitude, results showed an up 
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regulation of; 3.5 (±0.1) fold change for LXRβ (p<0.001), 33.1 (±1.9) fold change for 

ABCG1 (p<0.001) and 3.4 (±0.8) fold change for SREBF1 (p<0.001) (Figure 5.2). 

 

Figure 5.2. Relative fold change values for gene expression data in metformin treated cells in a 

hyperglycaemic environment [25 mM] in comparison to control at 17 hours. Fold change between -

1.5 and 1.5 is classed as no relative gene expression change (grey region). Error bars indicate 

standard deviation between ΔΔCt of experimental repeats (n=6). * indicates a significant (p<0.001) 

difference of ΔCt in metformin treated cells versus control treated cells, determined using an 

independent t-test. 

 

5.4.1.3 Adipokine levels 

Metformin exposure resulted in no significant alteration in IL-10 levels compared to 

a control (Met v Veh; 282.5 [252.0 – 299.5] pg/mL v 258.2 [244.6 – 282.9] pg/mL; 

p=0.44) (Figure 5.3A). However, the amount of IL-6 present was significantly lower 

following metformin exposure (Met v Veh; 23.2 [19.3 – 25.6] pg/mL v 89.5 [87.7 – 

95.5] pg/mL; p<0.01) (Figure 5.3B). 
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Figure 5.3. Box plot of IL-10 and IL-6 levels within metformin and control cells in a hyperglycaemic 

environment. (A) IL-10 [pg/mL]. (B) IL-6 [pg/mL]. Statistical analysis was conducted using non 

parametric measures (n=6 per treatment). The Kruskal Wallis test determined statistical significance 

(p<0.01) between groups which are indicated by *. 

 

5.4.2 Effect of metformin in combination with acyl-ghrelin exposure on human 

mature adipocytes 

Within this results section, acyl-ghrelin only treatment data has been utilised from 

Chapter 3 to allow for the comparison of the effect of metformin in combination or 

as a monotherapy on SGBS cells in relation to acyl-ghrelin mediated lipid retention.  

 

5.4.2.1 Lipid area  

Comparison to vehicle 

The combination of acyl-ghrelin with metformin significantly increased intracellular 

lipid area when compared to a vehicle control (Figure 5.4) (Veh v Met + AG; 3592.5 

[2491 – 4696] µm2 v 4539.5 [3773 - 5501] µm2; p<0.001).  



170 
 

Comparison to metformin 

The presence of acyl-ghrelin in combination with metformin caused significant 

increase in cellular lipid area when compared to metformin-only treated cells 

(Figure 5.4) (Met + AG v Met; 4539.5 [3773 - 5501] µm2 v 3870.3 [3177 – 4463] µm2; 

p<0.001). 

Comparison to acyl-ghrelin  

There was a significant decrease in the cellular lipid area of those cells exposed to 

both metformin and acyl-ghrelin in comparison to those treated with only acyl-

ghrelin (Met + AG v AG; 4539.5 [3773 - 5501] µm2 v 4788.7 [4040 – 5976] µm2; 

p<0.05) (Figure 5.4). 

   

  

Figure 5.4. Box plot of interquartile range and median intracellular lipid area within vehicle, acyl-

ghrelin, metformin and metformin plus acyl-ghrelin treated cells in a hyperglycaemic environment. 

Statistical analysis was conducted using non-parametric measures (n=600 per treatment). The 

Kruskal Wallis test determined statistical significance between groups which are indicated by * for 

p<0.001 and ** for p<0.05. Metformin (Met), acyl-ghrelin (AG) and metformin/acyl-ghrelin (Met + 

AG).  
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5.4.2.2 Real Time gene expression  

Fold change relative to vehicle 

When gene expression data was analysed with respect to combined metformin and 

acyl-ghrelin exposure against a vehicle control there was a significant down 

regulation of LXRβ with a 2.9 (±0.7) fold change (p<0.01), a significant up regulation 

of SREBF1 with a 4.9 (±1.4) fold change (p<0.01) and a non-significant change in 

expression of ABCG1 of 1.1 (±0.02) fold change (p=0.36) (Table 5.1). 

 

Fold change relative to metformin 

Exposure to a combination of metformin and acyl-ghrelin caused a significant down 

regulation of two genes; ABCG1 with 34.2 (±4.0) fold change and LXRβ with 35.1 

(±0.9) fold change, both p<0.01. However, there was no fold change difference for 

SREBF1 between the treatment two treatment groups (p=0.08) (Table 5.1).  

 

Fold change relative to acyl-ghrelin 

Furthermore, when combined metformin and acyl-ghrelin exposure was compared 

to acyl-ghrelin only exposure, data indicated that there was a significant effect of 

metformin with down regulation of 3.5 (±0.4) fold change for LXRβ, a significant up 

regulation of 2.5 (0.2) fold change for ABCG1, and a significant up regulation of 3.5 

(±0.5) fold change for SREBF1 (Table 5.1). 
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Group Gene of interest Fold Change Direction P-value 

V vs 

Met+AG 

LXRβ 10.1 (1.2)  <0.01 

ABCG1 1.1 (0.02)  0.36 

SREBF1 4.9 (1.4)  <0.01 

Met vs 

Met+AG 

LXRβ 34.2 (4.0)  <0.01 

ABCG1 35.1 (0.9)  <0.01 

SREBF1 0.7 (0.2)  0.08 

AG vs 

Met+AG 

LXRβ 3.5 (0.4)  <0.01 

ABCG1 2.5 (0.2)  <0.01 

SREBF1 3.5 (0.5)  <0.01 

Table 5.1. Relative fold change values for gene expression data in vehicle, acyl-ghrelin and dual 

metformin/acyl-ghrelin treated cells in hyperglycaemic environment at 17 hours. Fold change 

between -1.5 and 1.5 is classed as no relative gene expression change. Standard deviation between 

ΔΔCt of experimental repeats are shown in brackets (n=6). Statistical difference of ΔCt in comparison 

group were determined using an independent t-test, statistically significant values shown in bold.  

Vehicle (V), Acyl-ghrelin (AG), Metformin (Met) and Metformin/Acyl-ghrelin (Met + AG). 

        – up regulation.             – down regulation.                      – no fold change, 
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5.4.2.3 Adipokine levels 

The quantity of IL-10 present within the cellular supernatant did not significantly 

change across all four treatment groups (p=0.70) (Table 5.2).  

 IL-10 [pg/mL] 

Treatment No acyl-ghrelin 

(n=6)  

Acyl-ghrelin  

(n=6) 

P-Value 

Vehicle 

(n=6) 

258.2  

[245 – 283] 

282.8 

[224 – 319] 

0.39 

Metformin 

(n=6) 

282.5  

[252 – 300] 

257.4  

[172 – 316] 

1.00 

P-Value 0.44 0.90  

Table 5.2. IL-10 levels for all treated cells in hyperglycaemic environment. Statistical analysis 

conducted using non-parametric parameters using a Kruskal Wallis test.  

 

Compared to vehicle- IL-6 

When combined metformin and acyl-ghrelin treatment was compared to a PBS 

vehicle control there was a significant decline in IL-6 levels (Met+AG v Veh; 12.6 

[9.0 – 16.6] pg/mL v 89.5 [87.7 – 95.5] pg/mL; p<0.05) (Figure 5.5). 

 

Compared to metformin- IL-6 

When compared to only metformin treated cells combined metformin and acyl-

ghrelin treatment caused a significant decline in IL-6 levels. (Met + AG v Met; 12.6 

[9.0 – 16.6] pg/mL v 23.2 [19.3 – 25.6] pg/mL; p<0.05) (Figure 5.5). 
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Compared to acyl-ghrelin- IL-6 

Dual treatment also caused a significant decline in the level of IL-6 within the cell 

supernatants in comparison to acyl-ghrelin only treatment (Met + AG v AG; 12.6 

[9.0 – 16.6] pg/mL v 75.5 [68.9 – 89.5] pg/mL; p<0.05) (Figure 5.5).  

 

 

Figure 5.5. Box plot of IL-6 levels within vehicle, acyl-ghrelin, metformin and metformin/acyl-ghrelin 

treated cells in hyperglycaemic environment. Statistical analysis was conducted using non 

parametric measures (n=6). The Kruskal Wallis test determined statistical significance (p<0.05) 

between groups which are indicated by *. 

Acyl-ghrelin (AG), Metformin (Met) and Metformin/Acyl-ghrelin (Met + AG) 
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5.5 Discussion 

5.5.1 Metformin and lipid retention 

Metformin mono therapy exhibited minimal effect on mature adipocyte 

intracellular lipid area, however there was an increase in the expression of the key 

lipid retention genes ABCG1, LXRβ and SREBF1. This data suggests that metformin 

can act to alleviate lipid retention within cells through promotion of cellular lipid 

export. However 17 hours may not be a long enough duration to exhibit this effect 

on a cell morphological level. In addition to this, metformin is shown to have an 

effect on acyl-ghrelin mediated lipid retention, resulting in the curtailment in acyl-

ghrelin’s promotion of lipid storage within mature adipocytes.  

Previous literature supports this hypothesis, demonstrating that metformin 

treatment of THP-1 macrophages results in the promotion of cholesterol efflux and 

expression of both ABCA1 and ABCG1, this promotion however was deemed to be 

independent of LXR expression (Luo et al., 2017). Metformin stimulation of ABCG1 

is thought to be the result of an increase in the expression of fibroblast growth 

factor (FGF) 21 within adipose tissue and the liver (Luo et al., 2016). Furthermore, 

my data indicate that the action of metformin on ABCG1 is present within cells pre-

treated with acyl-ghrelin or with a vehicle control, indicating that metformin is 

counteracting acyl-ghrelin’s down regulation of ABCG1, resulting in no overall 

change in expression upon dual treatment. In addition to these findings, I 

determined that the effect on ABCG1 expression is independent of LXRβ within 

metformin treated human adipocytes, which is in line with published data that 

indicates that activation of AMPK within mouse macrophages stabilizes the mRNA 

expression of ABCG1 in a LXR-independent manner (Li et al., 2010a).  
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Metformin administration is shown to decrease hepatic lipogenesis via its 

partial mitochondrial uncoupling effect, which activates AMPK and inhibits SREBP-

1c transcriptional activities  (Ferre and Foufelle, 2007, Zhou et al., 2001). However, 

in my data, metformin exposure caused an increase in SREBF1 expression. This 

increase in SREBF1 expression was seen in experimental conditions, whether cells 

were pre-exposed or not to acyl-ghrelin. I hypothesise this paradoxical result is due 

to a depot specific action of SREBF1 within adipocytes, resulting in AMPK regulatory 

action also being depot specific and not true of a hyperglycaemic adipocyte cell 

depot.    

The action of AMPK, described above, on SREBP-1c is due to AMPK directly 

inhibiting ligand-induced LXR activity in addition to blocking the production of 

endogenous LXR ligands within hepatic loci (Yap et al., 2011). This chapter indicates 

a marked increase in LXRβ and SREBF1 expression within an adipose depot, 

signifying alternative actions dependant on experimental depot. However, previous 

studies have shown that metformin administration coincides with an increase in 

GLUT4 expression within human skeletal muscle cells (Al-Khalili et al., 2005), and 

within subcutaneous adipose tissue of women with polycystic ovary syndrome 

(Jensterle et al., 2008). GLUT4 and LXR share an intrinsic pathway with GLUT4 being 

up regulated by LXR agonists (Calkin and Tontonoz, 2012). One possible explanation 

may be that within a hyperglycaemic state, metformin action on mature adipocytes 

increases GLUT4 expression via LXR up regulation.   
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5.5.2 Metformin and inflammation 

Metformin exposure had no effect on the anti-inflammatory marker IL-10, alone or 

in combination with acyl-ghrelin. Previously published data in murine macrophages 

reports that metformin induces an anti-inflammatory response under LPS immune-

challenge (Hyun et al., 2013, Kelly et al., 2015, Zhou et al., 2016). However, previous 

work was conducted within murine models and could account for variation in 

findings that may be the result of a species-specific effect.  

In contrast to IL-10, our IL-6 data are supported by previously published 

work showing that metformin supresses the expression and release of IL-6 (Zhou et 

al., 2016, Kelly et al., 2015). This protective effect in the inflammatory state, via a 

decline in IL-6, is also present when mature human adipocytes are pre-exposed to 

acyl-ghrelin, indicating metformin further enhances the suppression of pro-

inflammatory cytokines that are present following exposure to acyl-ghrelin.   

Metformin exposure was shown to supress the expression of pro-

inflammatory cytokines through cellular regulation via AMPK signalling in rodents, 

resulting in induced NFκB inhibition and enhanced expression of anti-inflammatory 

cytokines via AMPK activation. This response was shown to also occur in the 

presence of AGEs, indicating metformin also inhibits AGE-induced inflammatory 

response (Zhou et al., 2016). In addition to cellular mechanisms, circulatory markers 

of inflammation are also shown to be reduced when humans are treated with 

metformin, including the suppression of neutrophil to lymphocyte ratio (Cameron 

et al., 2016), indicating that metformin acts to reduce the inflammatory state in 

those with or without T2D, an action that is accentuated in the presence of acyl–

ghrelin.  
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5.6 Conclusion 

Published studies show an increased level of acyl-ghrelin present within obesity and 

T2D which may have a detrimental effect on cellular lipid retention, this effect 

could be diminished via metformin administration. With respects to an 

inflammatory response, it is clear that co-administration of metformin and acyl-

ghrelin could have therapeutic advantages in reducing the presence of pro-

inflammatory adipokine levels in hyperglycaemia. Expansion and investigation into 

this interlinked modulation of the inflammatory state could reveal key therapeutic 

pathways.  

 

5.7 Limitations 

The experimental design within this chapter was based on that of previous chapter 

findings, however, it was limited to only one time point at 17 hours. Within future 

work, an expansion on this chapter could include the analysis of treatment 

exposure at a greater frequency i.e. baseline to 17 hours with hour intervals to 

establish a response curve over time. In addition to this, dosage concentrations 

were based on previous literature rather than the physiological range present 

within circulation, therefore, a dose response curve would also have been 

beneficial. However, due to time constraints this was not conducted within this 

chapter, as the aim was to establish whether cell dosage could contribute to a 

change and if this change could be sufficient to allow for further exploration. 

 

 



179 
 

 

 

 

 

 

Chapter 6  

General Discussion 
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The aim of this project was to translate previous findings present within murine 

models for an intrinsic role played by acyl-ghrelin on lipid retention within adipose 

tissue, and whether this acyl-ghrelin associated lipid retention could alter the 

inflammatory state within those that are obese and/or have T2D (Davies et al., 

2009, Miegueu et al., 2011). This thesis on the based analysis of expression levels of 

specific lipid retention genes and inflammatory markers within an adipocyte cell 

line and ex vivo hVAT samples from individuals that are obese and/or have T2D, to 

identify whether acyl-ghrelin has a mediatory role that can be explored as a 

possible therapeutic target for T2D and related comorbidities. Furthermore, to 

expand on in vitro and ex vivo data collected in Chapter 3 and 4, application of acyl-

ghrelin in response to the first line drug therapy of T2D, metformin was also 

investigated.  

 Within Chapter 3, exposure to acyl-ghrelin in a normoglycaemic state 

resulted in an increase in lipid retention via the initial down regulation of ABCG1. 

Over time, this effect was eliminated via a compensatory increase in LXRβ 

expression, leading to an up regulation of ABCG1, returning it to a level seen within 

vehicle treated cells (Figure 6.1). In Chapter 4, circulating acyl-ghrelin 

concentrations were at their highest in non-obese individuals, however acyl-ghrelin 

mediated lipid retention shown in vitro was not mirrored in lipid retention markers 

of the ex vivo samples. This may indicate that lipid retention within visceral adipose 

tissue of non-obese individuals is independent of circulatory acyl-ghrelin levels. In 

vitro experiments required the exposure of mature adipocytes directly to acyl-

ghrelin, whereas circulatory levels present within individuals may not be 

representative of the physiological level of acyl-ghrelin present within adipose 
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tissue. Thus a comparison between the two must be under taken with caution as 

acyl-ghrelin’s action may be depot/cell specific (Miegueu et al., 2011, Porteiro et al., 

2013, Churm et al., 2017, Demers et al., 2009).  

 Over the time span of the initial experiments SREBF1 also showed an 

increase in expression levels within acyl-ghrelin treated mature adipocytes in a 

normoglycaemic state. This is in line with previous literature that shows SREBF1 is a 

target for LXRα/β ligands (Repa et al., 2000). Therefore, these data suggest that 

SREBF1 regulation is dependent on LXR up regulation rather than a direct effect of 

acyl-ghrelin. My results suggest that the intracellular lipid area increase was due to 

the depot specific action of acyl-ghrelin on the down regulated ABCG1 expression, 

and that over time, within a normoglycaemic state the cell aims to counteract this 

effect via up regulation of LXR and the resultant up regulation of ABCG1. However, 

this counteraction also results in the up regulation of SREBF1 independent of acyl-

ghrelin exposure. This hypothesis corresponds with results from the ex vivo 

samples, which showed no association within the total sample cohort between 

LXRβ or SREBF1 expression and GHRL expression or circulating acyl-ghrelin levels.  

 

 

Figure 6.1. Gene expression profile over time (17 and 34 hours) of SGBS cells within normoglycaemic 

environment treated with either acyl-ghrelin (effect shown in red) or vehicle (effect shown in blue).  
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Upon evaluation of acyl-ghrelin mediation of the lipid retention pathway 

within mature adipocytes in a hyperglycaemic environment there was deviation in 

the established pathway compared to that shown for normoglycaemia (Figure 6.2). 

Within human adipocytes an immediate effect was evident when exposed to acyl-

ghrelin, producing a significant increase in lipid area, via the down regulation of 

both LXRβ and ABCG1. Therefore, one hypothesis is that in addition to acyl-ghrelin’s 

effect on the down regulation of ABCG1,  the cumulative effect of a hyperglycaemic 

environment resulted in the further down regulation of ABCG1 and an impingement 

of the cells counter measure via LXRβ by causing its down regulation instead (Xue et 

al., 2009), producing a dual mediation of lipid retention via an inhibition of the 

cholesterol export mechanism.  

 

 

Figure 6.2. Gene expression profile over time (17 and 34 hours) of SGBS cells within hyperglycaemic 

environment treated with either acyl-ghrelin (effect shown in red) or vehicle (effect shown in blue).  

 

Furthermore, ex vivo experiments in Chapter 4 also demonstrated an 

association with hyperglycaemic environment with LXRβ within the hVAT of those 

with T2D. Due to circulating acyl-ghrelin levels being significantly reduced in 

individuals with T2D, I hypothesise that acyl-ghrelin action on T2D adipose tissue is 
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minimal, suggesting that the down regulation of ABCG1 and SREBF1 in the OT2D 

group was the result of diminished LXR promotion via the presence of an elevated 

blood glucose rather than acyl-ghrelin itself (Mitro et al., 2007, Mauerer et al., 

2009). Further evidence of acyl-ghrelins’ diminished action within T2D is the 

negative correlation between plasma fasting glucose, GHRL mRNA expression and 

acyl-ghrelin levels, indicating that ghrelin levels within T2D are under glucose 

regulation. As previously discussed in Chapter 4, the ratio of acyl-ghrelin, total 

ghrelin and desacyl-ghrelin within the metabolic state is controversial across 

published study cohorts (Rodríguez et al., 2012, Dardzińska et al., 2014, Supák et al., 

2016). This ex vivo investigation of the ghrelin axis suggest that acyl-ghrelin 

concentrations may be dependent on GHRL expression only, and not its post-

translational modification, accounting for a lower plasma acyl-ghrelin level seen in 

this cohort, and reduced desacyl-ghrelin level often reported within the metabolic 

state (Rodríguez et al., 2012).  

 VAT samples from OT2D group showed an alternative relationship between 

hyperglycaemia and lipid biosynthesis gene expression. SREBF1 was down regulated 

in ex vivo samples, but had no fold change in mature adipocytes. This could be due 

to two hypothesies: (i) depot-specific action and/or (ii) interaction with anti-

diabetic therapeutic agents. A depot-specific effect would allow for variability to 

stem from the vast cellular make up of adipose tissue in contrast to the pure 

mature adipocytes culture. Adipose tissue has been reported to be affected by the 

presence of a hyperglycaemic environment and acyl-ghrelin by impacting 

macrophages (Liu et al., 2012), monocytes (Dixit et al., 2004) and T cells (Dixit et al., 

2004). As these cell types were not investigated in co-culture with adipocytes we 
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are unable to determine whether there is an alternative effect occurring within ex 

vivo samples resulting in a variation in data. The second theory has been discussed 

in detail within Chapter 5, where metformin was prescribed and taken by 90% of 

the individuals recruited for this study with T2D, therefore impact on adipocyte lipid 

retention was examined. In contrary to published data within murine models (Zhou 

et al., 2001, Lin et al., 2000), metformin caused an increase in SREBF1 transcription 

within mature adipocytes, therefore this variation within a hyperglycaemic state 

could be due to the use of a homogeneous cell source (mature adipocytes) rather 

than a heterogeneous animal model. 

 Furthermore, combined treatment with both acyl-ghrelin and metformin 

suggested that metformin altered the expression of both LXRβ and SREBF1; 

increasing expression of SREBF1, whilst down regulating LXRβ. This demonstrates 

that metformin’s action is independent of LXR stimulation, diminishing its action on 

LXR expression in the presence of both hyperglycaemia and high acyl-ghrelin. 

Additionally, metformin treatment produced a significant up regulation of ABCG1, 

however upon administration of combined acyl-ghrelin and metformin there was 

no change in ABCG1 expression compared to vehicle treated cells, indicating that 

metformin up regulation of ABCG1 counteracts the effects of acyl-ghrelin exposure. 

 Obesity is often characterised by an increase in the prevalence of 

dyslipidaemia, with the main factor often being uncontrolled fatty acid lipolysis 

from VAT, which is dependent upon adipocyte size and number of ATM (Gutierrez 

et al., 2009). This study demonstrates an association between acyl-ghrelin with 

both lipid retention genes and plasma lipid markers, indicating that acyl-ghrelin 

levels are a risk factor associated with dyslipidaemia.    
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 Acyl-ghrelin’s ability to mediate lipid retention led to the hypothesis that it 

would also result in the promotion of a pro-inflammatory state. Acyl-ghrelin 

exposure in vitro caused a significant decline in IL-6 in both normo- and 

hyperglycaemic environments, which coincides with findings in murine models 

(Baatar et al., 2011, Chorny et al., 2008, Wu et al., 2008) and an increase in the anti-

inflammatory marker IL-10 in a normoglycaemic environment. However, within a 

hyperglycaemic environment this anti-inflammatory IL-10 promotion via acyl-

ghrelin was diminished. Complementary to in vitro work, analysis of ex vivo samples 

showed that mRNA levels of GHRL were significantly positively associated with IL-10 

within the total sample cohort and TAOS (%) within an obese cohort. This 

association was lost within the T2D cohort indicating that, as the in vitro arm of the 

experiments, glucose may be diminishing acyl-ghrelin’s effect on oxidative burden 

and anti-inflammatory state. IL-10 levels across the chapters provided contradictory 

findings with respect to ghrelin association, however it is important to note that an 

association of GHRL expression within ex vivo sample may indicate two alternative 

theories. Firstly, acyl-ghrelin does promote anti-inflammatory state markers 

(Waseem et al., 2008), however this effect does not take place within adipocytes, 

instead being from an alternative cell source. Within the immune system, acyl-

ghrelin has been shown to induce an anti-inflammatory state through M2 

macrophage polarization and inhibiting Th1 cells and increasing the polarization of 

both Th2 and T cells (Pereira et al., 2017). Secondly, as previously discussed, 

increases in GHRL mRNA levels could indicate an increase in either or both acyl-and 

desacyl-ghrelin.  Desacyl-ghrelin, which was once considered biologically inactive, is 
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now known to play a role in various metabolic pathways, including that of 

macrophage polarization (Pereira et al., 2017, Au et al., 2017)  

Obesity and T2D are associated with an increase in IL-6 as well as a decline 

in both plasma IL-10 (van Exel et al., 2002, Esposito et al., 2003) and TAOS levels 

(Fenkci et al., 2003, Prior et al., 2017). The combination of both in vitro and ex vivo 

data presented within the previous chapters indicate that acyl-ghrelin may play a 

beneficial role abrogating inflammation, and that exploration of this novel pathway 

within human adipocytes could elucidate key therapeutic targets for the 

management of low-grade inflammation.  

When metformin treatment was analysed in Chapter 5, it was shown to 

have no effect on the pro-inflammatory marker IL-10, nor when used in 

combination with acyl-ghrelin. However, the combination of the two did cause a 

significant decrease in IL-6 compared to either treatment alone. In addition to this, 

combination of metformin and acyl-ghrelin alleviated the detrimental effect of acyl-

ghrelin on lipid retention. Therefore, co-administration within adipocytes resulted 

in the promotion of inflammatory health, but with no effect on cellular lipid 

retention.   

 I hypothesise that the mode in which acyl-ghrelin acts on both lipid 

retention and inflammatory response is similar to that of metformin, acting via 

AMPK. Acyl-ghrelin has been shown to directly activate neuropeptide Y (NPY) 

neurons in the ARC via an increase in AMPK-mediated signalling (Kohno et al., 2008, 

Kang et al., 2015), with AMPK induction inhibiting the release of IL-6 and other pro-

inflammatory cytokines via the attenuation of NFκB (Lihn et al., 2008). 

Furthermore, due to metformin’s well described action on AMPK (Phoenix et al., 
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2009), combination treatment may exhibit a dual activation of AMPK activity which 

would amplify this effect.  

However, contradictory to this theory is acyl-ghrelin’s action on lipid 

retention. In contrast to the AMPK-inflammation relationship, this does not fit the 

project’s findings, as AMPK activation results in the alleviation of lipid retention and 

promotion of cholesterol efflux due to the up regulation of ABCG1 (Li et al., 2010b) 

and the inhibition of SREBF1 (Pedram et al., 2013). Therefore, further work is 

required to elucidate the cellular mechanisms in which acyl-ghrelin acts to mediate 

lipid retention within adipocytes.  

This work translated previous murine findings that acyl-ghrelin and 

glycaemic levels are detrimental to lipid retention causing an increase in 

intracellular lipid area via alterations within the LXR-ABC pathway and the 

independent action acyl-ghrelin has on the inflammatory state. However, acyl-

ghrelin was also shown to be beneficial to inflammatory health via a reduction in 

pro-inflammatory marker IL-6. Therefore, the combination of acyl-ghrelin and 

metformin treatment could allow for a reduction in low-grade inflammation 

present within the adipocytes of individuals with T2D, thus ameliorating insulin 

resistance and improving insulin sensitivity. 
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Limitations & future work 

The main methodological limitations are set out and discussed in each chapter 

(sections 3.7, 4.7 and 5.7). However, in expansion to these the project design as a 

whole was also restricted by general methodology limitations that could have 

enhanced analysis. For example, relative mRNA changes provided crucial 

understanding of acyl-ghrelin’s effect at a gene level, deducing significant fold 

changes present when comparing groups or treatments. However, this does not 

allow for the quantification of mRNA transcript, nor whether this is translated at a 

protein level. Further analysis via Western blot could allow for greater insight into 

cellular changes and the degree in which acyl-ghrelin exhibits a mediatory role.  

 As noted within Chapter 4, exploratory analysis associated the expression of 

GHRL with key inflammatory markers, yet this encompasses acyl-ghrelin in addition 

to desacyl-ghrelin. This project would have benefitted if time allowed, for the 

further analysis of desacyl-ghrelin dosing within in vitro experiments to act as a 

comparator to the cellular responses to acyl-ghrelin.  

Within the project proposal, an adequate power calculation deemed that 30 

ex vivo samples would suffice to elucidate any statistical significance within the 

data.  However, in reality the analysis of small numbers of samples proved difficult, 

especially to elucidate significance within the study data. Due to sample collections 

being from routine non-emergency abdominal surgeries, often the collection of 

samples would be delayed due to surgery cancellations. Another minor limitation 

within this study was the ability to only look at the interaction of acyl-ghrelin with 

one type of T2D therapy. Further information on acyl-ghrelin’s potential to 
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ameliorate the inflammatory response may have been yielded from exposure to 

further combinations, such as insulin analogues or GLP-1 agonist therapies. 

 Despite the limitation of sample size, the data provide a novel insight into an 

area of expertise that still has several knowledge gaps. Even though this thesis 

pinpoints specific pathways in which acyl-ghrelin interacts with cellular energy 

balance, an expansion should aim to yield the exact pathway in which acyl-ghrelin 

results in alterations in lipid retention and inflammation. This project demonstrates 

that under the correct circumstances acyl-ghrelin can be used as a therapeutic 

target for T2D, however the way this is optimised for maximum impact and 

minimum consequence requires investigating.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Appendix 1 

Ethical approval  

& patient information sheet 

 



EoSRES 

 
 

 Research Ethics Service 

 
East of Scotland Research Ethics Service (EoSRES) REC 1 

Tayside Medical Sciences Centre (TASC) 
Residency Block C, Level 3 

Ninewells Hospital & Medical School 
George Pirie Way 
Dundee  DD1 9SY 

 
 

 
 

 
  

 
 

 
 

  
  

  
  

  
  

  

Dear   
 
Study title: Ghrelin mediated lipid retention and insulin resistance in 

human visceral adipose tissue 
REC reference: 14/ES/1073 
IRAS project ID: 163151 
 
Thank you for your letter of 16th September 2014, responding to the Proportionate Review  
Sub-Committee’s request for changes to the documentation for the above study. 
 
The revised documentation has been reviewed and approved by the sub-committee. 
 
We plan to publish your research summary wording for the above study on the NRES website, 
together with your contact details, unless you expressly withhold permission to do so.  
Publication will be no earlier than three months from the date of this favourable opinion letter.  
Should you wish to provide a substitute contact point, require further information, or wish to 
withhold permission to publish, please contact the REC Manager , 
eosres.tayside@nhs.net. 
 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above 
research on the basis described in the application form, protocol and supporting documentation 
as revised. 
 

 The Committee asked the researcher to consider putting in a substantial amendment if 
they would like to consider retaining blood & tissue samples for future research.  

 

Conditions of the favourable opinion 
 
The favourable opinion is subject to the following conditions being met prior to the start of the 
study. 
 
Management permission or approval must be obtained from each host organisation prior to the 
start of the study at the site concerned. 
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Management permission (“R&D approval”) should be sought from all NHS organisations 
involved in the study in accordance with NHS research governance arrangements. 
 
Guidance on applying for NHS permission for research is available in the Integrated Research 
Application System or at http://www.rdforum.nhs.uk.  
 
Where a NHS organisation’s role in the study is limited to identifying and referring potential 
participants to research sites (“participant identification centre”), guidance should be sought 
from the R&D office on the information it requires to give permission for this activity. 
 
For non-NHS sites, site management permission should be obtained in accordance with the 
procedures of the relevant host organisation. 
 
Sponsors are not required to notify the Committee of approvals from host organisations.  
 
Registration of Clinical Trials 
 
All clinical trials (defined as the first four categories on the IRAS filter page) must be registered 
on a publically accessible database within 6 weeks of recruitment of the first participant (for 
medical device studies, within the timeline determined by the current registration and publication 
trees).   
 
There is no requirement to separately notify the REC but you should do so at the earliest 
opportunity e.g. when submitting an amendment.  We will audit the registration details as part of 
the annual progress reporting process. 
 
To ensure transparency in research, we strongly recommend that all research is registered but 
for non-clinical trials this is not currently mandatory. 
 
If a sponsor wishes to contest the need for registration they should contact  

, the HRA does not, however, expect exceptions to be made. 
Guidance on where to register is provided within IRAS. 
 
It is the responsibility of the sponsor to ensure that all the conditions are complied with 
before the start of the study or its initiation at a particular site (as applicable). 
 
Ethical review of research sites 
 
The favourable opinion applies to all NHS sites taking part in the study, subject to management 
permission being obtained from the NHS/HSC R&D office prior to the start of the study (see 
“Conditions of the favourable opinion” above). 
 
Approved documents 
 
The documents reviewed and approved by the Committee are: 
 

Document   Version   Date   

GP/consultant information sheets or letters [GP letter, V1, 
20th Aug 2014 (if needed)]  

Version 1  20 August 2014  

IRAS Checklist XML [Checklist_17092014]    17 September 2014  

Other [Email with contact number ]    04 September 2014  

Other [Reply to panel comments]  Version 1  16 September 2014  

Participant consent form [Consent form, V2, 16th Sept 2014 
highlighted]  

Version 2  16 September 2014  
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Participant consent form [Consent form, V2, 16th Sept 2014]  Version 2  16 September 2014  

Participant information sheet (PIS) [PIS, V2, 16th Sept 2014]  Version 2  16 September 2014  

Participant information sheet (PIS) [PIS, V2, 16th Sept 2014 
highlighted]  

Version 2  16 September 2014  

REC Application Form    01 September 2014  

Research protocol or project proposal [NISCHR Successful 
application including proposal]  

Version 1  20 August 2014  

Summary CV for Chief Investigator (CI) [CV Jeffrey Stephens, 
August 2014]  

Version 1  20 August 2014  

Summary CV for student [CV Rachel Churm, PhD Student]  Version 1  20 August 2014  

Summary CV for supervisor (student research) [CV Sarah 
Prior, Academic supervisor]  

Version 1  20 August 2014  

 
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for Research 
Ethics Committees and complies fully with the Standard Operating Procedures for Research 
Ethics Committees in the UK. 
 
After ethical review 
 
Reporting requirements 
 
The attached document “After ethical review – guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including: 
 

 Notifying substantial amendments 
 Adding new sites and investigators 
 Notification of serious breaches of the protocol 
 Progress and safety reports 
 Notifying the end of the study 

 
The HRA website also provides guidance on these topics, which is updated in the light of 
changes in reporting requirements or procedures. 
 
Feedback 
 
You are invited to give your view of the service that you have received from the National 
Research Ethics Service and the application procedure.  If you wish to make your views known 
please use the feedback form available on the HRA website: http://www.hra.nhs.uk/about-the-
hra/governance/quality-assurance  
 
We are pleased to welcome researchers and R & D staff at our NRES committee members’ 
training days – see details at http://www.hra.nhs.uk/hra-training/  
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14/ES/1073   Please quote this number on all correspondence 

 
 

 

 
 

 
 

 
 

 
Enclosures: “After ethical review – guidance for researchers” 
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Department of Diabetes and Endocrinology 
Morriston Hospital, Morriston, Swansea, SA6 6NL 
 
 

 
Tel: 01792 704078 
 

Fat and its role in obesity and diabetes 
Patient Information Sheet 

 
 
You are being invited to take part in a research study that is being undertaken as part of an 
educational qualification, with the goal of improving our knowledge of why human fat is important in 
obesity and diabetes. The purpose is to improve our knowledge of hormones and chemicals made 
in the fat within the abdomen and how these might be important in ill-health related to diabetes. 
 
Before you decide, it is important to understand why the research is being done and what it will 
involve. Please take time to read the information carefully. Talk to others about the study if you wish. 
Ask us if there is anything that is not clear or if you would like to know more. Part 1 tells you the 
purpose of this study and what will happen to you if you take part. Part 2 gives you more information 
about the conduct of the study. Take time to decide whether or not you wish to take part. 
 
 

Part 1 
 
What is the purpose of this study? 
Obesity (carrying too much weight) and type 2 diabetes are major health concerns and contribute to 
heart disease and general ill health. Fat from inside the abdomen (visceral fat) appears to be 
important in causing these conditions. This research looks at the differences between abdominal fat 
from people who are lean, obese or have type 2 diabetes. We will look at differences in the size and 
development of fat cells and also on proteins and hormones that are produced by fat from people 
who are lean, obese or have type 2 diabetes. We will also examine how genes within fat might 
influence various chemicals produced in fat. The blood sample will be used to measure levels of 
molecules with the body that help reduce oxidative stress. Eventually the work may lead to a better 
understanding of why too much fat causes diabetes and heart disease. This might lead to newer 
treatments to prevent and treat these common conditions. 
 
Why have I been invited to take part? 
You have been asked to take part in this study because you are due to have an operation on your 
abdomen. As part of the operation the surgeon will routinely remove or move around abdominal fat. 
We are asking if you would be happy to donate a small piece of this fat, along with a blood sample, 
for the research study. We are asking patients who are lean, obese or have type 2 diabetes to be 
involved. 
 
Do I have to take part? 
Your participation in this study is entirely voluntary. It is up to you to decide whether or not to take 
part. We will describe the study and go through this information sheet which you will keep. We will 
then ask you to sign a consent form to show you have agreed to take part. The original signed and 
dated copy will remain at the hospital and you will be given a copy to take home. You are free to 
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stop the research at any time without giving a reason. A decision to withdraw at any time, or a 
decision not to take part, will not affect the standard of care you receive. 
 
What will happen to me if I take part? 
At the start, the study will be explained to you by the study doctor. The surgeon looking after your 
routine care may telephone or during clinic ask your permission to receive a telephone call from 
Professor Stephens or his team to provide more information on the research. If you agree to take 
part we ask that you sign the consent form. Any treatments which you usually take will not change. 
Before your scheduled operation we will collect a blood sample from you. During the scheduled 
operation, the surgeon will remove a small piece of fat from inside the abdomen (about the size of a 
sugar cube) and underneath the skin. This should not cause any problems and will not have an 
effect on the planned operation. After the scheduled operation there will be no need for any further 
samples or action.  
 
Expenses and payments? 
There are no payments for taking part in this study. 
 
What do I have to do? 
If you agree to take part you will then be asked to complete the consent form, give a blood sample 
and then the surgeon will remove the samples of fat during the operation. Before the operation you 
should just follow the routine advice given. There is nothing else you need to do. 
 
What are the benefits of taking part? 
There is no direct benefit to you of taking part in the research but the information we get from this 
study might help improve the treatment of people with obesity and diabetes.  
 
What are the risks of taking part? 
There are no extra risks in taking part in this study as your routine medical care is not changed. 
There will be risks related to the main operation which your doctor will discuss with you beforehand. 
For the research, taking the small piece of fat does not affect the procedure being performed. The 
fat biopsy might cause a small amount of bleeding but this can be stopped immediately and the risk 
of internal scarring if extremely minimal. 
 
What happens when the study stops? 
No further samples will be necessary. We will dispose of all samples (fat and blood) after the study 
has completed. 
 
What if there is a problem? 
Participating in the study should not put you at any increased risk of anything going wrong. Part 2 of 
this sheet provides information on how to deal with any problems which arise.  
 
Will my taking part be kept confidential? 
Yes. We will follow ethical and legal practice and all information about you will be handled in 
confidence. The details are included in Part 2. 
 
 

 
 
 
 
 

If the information in Part 1 has interested you and you are considering 
participation, please read the additional information in 

 Part 2 before making any decision. 
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Part 2 
 
What will happen if I don’t want to carry on with the study? 
Your participation in this study is completely voluntary and you may refuse to participate and are 
free to withdraw from the study at any time. Your decision to withdraw from the study will not affect 
the relationship between you and your study doctor, nor affect any future medical treatment 
provided for you. If you withdraw from the study, we will dispose of the samples and withdraw them 
from the research. 
 
What if there is a problem? 
Participating in the study should not put you at any increased risk of anything going wrong. If you 
have a concern about any aspect of this study, you should ask to speak to the researchers who will 
do their best to answer your questions (Telephone: 01792 704078). If you remain unhappy and wish 
to complain formally, you can do this through the ABMU Complaints Procedure (Website: 
http://www.wales.nhs.uk/sitesplus/863/page/39350; email: ABM.Complaints@wales.nhs.uk). If 
taking part in this research project harms you there are no special compensation arrangements. If 
you are harmed due to someone's negligence then you may have grounds for legal action but you 
may have to pay for it.  
 
Will my taking part in this study be kept confidential? 
Yes. Any information and samples which are collected during this research will be kept strictly 
confidential. You will be given a unique identifying number and any information about you which 
leaves the hospital will have your name and address removed so that you cannot be recognised. 
Some parts of your medical records and the data collected for the study may be looked at by 
authorised hospital staff to check that the study is being carried out correctly. All will have a duty of 
confidentiality to you as a research participant and we will do our best to meet this duty. 
  
Involvement of the General Practitioner/Family doctor (GP) 
If you agree to take part in this study, your study doctor will contact your GP to let him/her know if 
you so wish. You will be asked to consent for your GP to be informed of your participation on the 
consent form.  
 
What will happen to any samples I give and will genetic tests be done? 
We consider the fat sample you donate for the research to be a gift. This sample will be used to look 
how changes regulation within fat influences proteins and hormones. No genetic tests for disease 
risk will take place. Samples will be stored by the investigators in a locked freezer within a locked 
laboratory in Swansea University. The samples may be kept for the duration of the research. All 
samples will be anonymised. 
 
What will happen to the results of the research study? 
The results of the study may be published in a medical journal and might be presented to other 
doctors and scientists with an interest in diabetes. If reports or publications are generated from the 
study you will not be identified in these. The results will also be used to look at the possibility of a 
larger more focused study involving fat. 
 
Who is organising and funding the research? 
This work is being organised between Abertawe Bro Morgannwg University Health Board and 
Swansea University College of Medicine. The work is being supported by funds from the Welsh 
Government.  
 
Who has reviewed the study? 
The East of Scotland Research Ethics Committee REC 1 has examined the proposal and has raised 
no objections from the point of view of research ethics. It is a requirement that your records in this 
research, together with any relevant medical records, be made available for scrutiny by monitors 
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from the Abertawe Bro Morgannwg University Health Board, whose role is to check that research is 
properly conducted and the interests of those taking part are adequately protected. 
 
 
Who can I contact for further information? 
This Patient Information Sheet and the Informed Consent Form contain important facts which you 
should consider when deciding whether you are willing to take part in this study. If at any time you 
have any questions about the study, your rights as a research participant, a study related injury or 
side effects you should contact either of the two research doctors below or the Director of Research 
and Development within the local Health Board: 
 

  
     

  
 

  
   

  
 

  
  

  
     

 
 

  
 

  
  

  
 
 

Thank you for reading this information sheet. 
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Primer sequences & programmes 

 

 

 

 

 

 

 

 

 



Primer Sequences 

 

Primer Forward Primer Reverse Primer Source 

Β-actin 
GATGGCCACGGCTG

CTTC 

TGCCTCAGGGCAGC

GGAA 

Eurofins MWG 

operon 

GHRL 
TGAGCCCTGAACAC

CAGAGAG 

AAAGCCAGATGAG

CGCTTCTA 

Eurofins MWG 

operon 

PPARγ 
ACAGCGACTTGGCA

ATATTTATTG 

AGCTCCAGGGCTTG

TAGCA 

Eurofins MWG 

operon 

ABCG1 
TCCTATGTCAGGTA

TGGGTTCG 

GTCCAGGTACAGCT

TGGCAT 

Eurofins MWG 

operon 

LXRβ 
CCTGCAGGTGGAGT

TCATCA 

CAGCTGGTCCTGCG

GC 

Eurofins MWG 

operon 

LYPLA1 
GGTCCTATCGGTGG

TGCTAA 

ACATCCATCATTTCC

TGTTGACAC 

Eurofins MWG 

operon 

SREBF1 
CTTAGAGCGAGCAC

TGAACTG 

CCGAGGGCATCCGA

GAATT 
PrimerDesign 

mBOAT4 
TCTTTGTCTGAGCA

TGTGTGTAA 

AAGCACTGGACCCT

TGAACA 
PrimerDesign 

 

Table 1. Primer sequences generated through NCBI primer tools and PrimerDesign 

 

 

 

 



Primer Cycling Conditions 

Programme Primer Sets 

95⁰C for 3 min 

35 cycles of 

95⁰C for 30 sec 

60⁰C for 30 sec 

72⁰C for 30 sec 

Β-actin 

LYPLA1 

PPARγ 

95⁰C for 3 min 

35 cycles of 

95⁰C for 30 sec 

59.5⁰C for 30 sec 

72⁰C for 30 sec 

ABCG1 

LXRβ 

95⁰C for 3 min 

35 cycles of 

95⁰C for 30 sec 

58.5⁰C for 30 sec 

72⁰C for 30 sec 

GHRL 

95⁰C for 2 min 

40 cycles of 

95⁰C for 15 sec 

60⁰C for 60 sec 

SREBF1 

mBOAT4 

 

 

Table 2. Cycling conditions with optimal annealing temperature in bold for primer 

sequences.  



 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3 

Primer optimisation & validation 

 

 

 

 

 

 

 

 

 

 



Β-actin 

 

Figure 1. β actin standard curve 10-fold dilution over 4 points. Log starting quantity vs cycle 

threshold (Ct). y = -3.202x + 18.822, R² = 0.99. Efficiency= 105%. Error bars indicate standard 

deviation. 
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GHRL  

 

Figure 2. Ghrelin standard curve 10-fold dilution over 3 points. Log starting quantity vs cycle 

threshold (Ct). y = -3.1894x + 27.852, R² = 0.99. Efficiency= 106%. Error bars indicate standard 

deviation. 

 

 

Figure 3. Ghrelin primer set validation semi-regression plot over 3 points. Log starting quantity vs 

delta cycle threshold (Δ Ct). y = 0.011x + 9.186, R² = 0.0058. 
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 PPARγ 

 

Figure 4. PPARγ standard curve 10-fold dilution over 4 points. Log starting quantity vs cycle 

threshold (Ct). y = -3.1742x + 20.31, R² = 0.99. Efficiency= 107%. Error bars indicate standard 

deviation. 

 

Figure 5. PPARγ primer set validation semi-regression plot over 4 points. Log starting quantity vs 

delta cycle threshold (Δ Ct). y = 0.0808x + 1.5533, R² = 0.4929. 
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ABCG1 

 

Figure 6. ABCG1 standard curve 10-fold dilution over 3 points. Log starting quantity vs cycle 

threshold (Ct). y = -3.305x + 27.255, R² = 0.9926. Efficiency= 101%. Error bars indicate standard 

deviation. 

 

Figure 7. ABCG1 primer set validation semi-regression plot over 3 points. Log starting quantity vs 

delta cycle threshold (Δ Ct). y= -0.0933x + 8.6211, R² = 0.1445. 
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LXRβ 

 

Figure 8. LXRβ standard curve 10-fold dilution over 3 points. Log starting quantity vs cycle threshold 

(Ct). y = -3.28x + 25.843, R² = 0.994. Efficiency= 102%. Error bars indicate standard deviation. 

 

Figure 9. LXRβ primer set validation semi-regression plot over 3 points. Log starting quantity vs delta 

cycle threshold (Δ Ct). y = -0.0983x + 6.8272, R² = 0.2543. 
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LYPLA1 

  

Figure 10. LXRβ standard curve 10-fold dilution over 3 points. Log starting quantity vs cycle threshold 

(Ct). y = -3.2233x + 27.739, R² = 0.9928. Efficiency= 104%. Error bars indicate standard deviation 

 

Figure 11. LYPLA1 primer set validation semi-regression plot over 3 points. Log starting quantity vs 

delta cycle threshold (Δ Ct). y = -0.0783x + 8.2472, R² = 0.1195. 
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SREBF1 

 

Figure 12. SREBF1 standard curve 1 in 4 dilution series over 3 points. Log starting quantity vs cycle 

threshold (Ct). y = -3.3053x + 24.27, R² = 0.9963. Efficiency= 101%. Error bars indicate standard 

deviation. 

 

Figure 13. SREBF1 primer set validation semi-regression plot over 3 points. Log starting quantity vs 

delta cycle threshold (Δ Ct). y = -0.0396x + 5.8708, R² = 0.6805. 
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mBOAT4 

 

Figure 14. mBOAT4 standard curve 1 in 4 dilution series over 3 points. Log starting quantity vs cycle 

threshold (Ct). y = -3.4853x + 28.457, R² = 0.99. Efficiency= 94%. Error bars indicate standard 

deviation. 

 

Figure 15. mBOAT4 primer set validation semi-regression plot over 3 points. Log starting quantity vs 

delta cycle threshold (Δ Ct). y = 0.0489x + 10.102, R² = 0.1058. 

 

 

y = -3.4853x + 28.457
R² = 0.9909

25

26

27

28

29

30

31

32

33

34

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

C
t

Log Starting Quantity

y = 0.0489x + 10.102
R² = 0.1058

2

3

4

5

6

7

8

9

10

11

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

Δ
C

t

Log Starting Quantity



 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4  

Real Time PCR validation 

(Raw data) 

 

 

 

 

 

 

 

 



Primer Set Replicate Intra assay 
Variation 

Inter assay 
variation 

 
PPARγ 

1 22.0 25.5 19.2 22.0 25.5 19.2 

22.0 24.4 19.2 22.0 24.4 19.2 

22.2 24.8 19.1 22.2 24.8 19.1 

2 22.1 24.9 NA 23.0 24.0 18.9 

22.1 24.3 19.7 23.1 24.4 18.8 

22.0 24.3 19.9 22.9 24.2 18.9 

3 22.2 25.2 19.9 22.5 25.1 19.5 

22.2 25.2 19.9 22.7 25.4 19.7 

21.8 25.6 19.5 22.9 25.0 19.2 

4 21.8 24.9 20.1 23.1 24.8 19.6 

21.8 24.9 20.1 22.8 24.6 19.9 

21.6 24.3 19.8 22.4 24.6 20.2 

5 22.4 25.3 19.7 22.6 24.1 19.3 

22.2 25.3 19.7 22.6 24.2 19.3 

22.5 25.5 19.9 22.7 23.9 19.4 

 
GHRL 

1 27.6 29.8 31.5 27.6 29.8 31.5 

27.7 30.2 32.0 27.7 30.2 32.0 

27.6 30.4 32.0 27.6 30.4 32.0 

2 27.6 29.9 32.2 27.6 29.6 32.1 

27.6 30.0 32.4 28.0 30.1 32.9 

27.7 30.0 32.2 27.2 30.0 32.1 

3 28.0 29.7 31.8 27.7 29.7 31.4 

28.1 29.8 31.1 27.7 29.7 31.5 

27.2 29.8 30.9 28.1 30.1 31.3 

4 28.2 29.3 31.5 27.5 28.9 31.9 

28.5 29.9 32.0 27.3 29.3 32.3 

27.9 30.0 32.0 27.5 29.4 32.4 

5 27.2 30.3 32.4 28.1 29.9 32.9 

27.4 29.9 32.1 28.5 30.1 32.6 

27.6 29.8 32.0 27.9 30.2 32.6 

 
mBOAT4 

1 21.7 30.2 27.8 21.7 30.2 27.8 

22.0 29.8 27.5 22.0 29.8 27.5 

21.2 30.2 27.8 21.2 30.2 27.8 

2 21.6 29.6 27.5 22.1 30.5 27.8 

21.7 29.7 27.8 22.3 30.6 27.9 

21.4 29.4 27.8 22.3 30.5 28.0 

3 21.7 29.4 27.1 21.5 29.6 28.1 

21.7 29.5 27.0 21.5 29.9 27.9 

21.8 29.4 28.0 21.6 30.3 27.9 

4 21.7 30.0 27.4 22.4 30.9 27.1 

21.7 30.1 27.6 22.3 31.0 28.0 

22.0 29.8 27.8 22.6 31.3 27.4 

5 21.8 29.7 27.1 21.2 29.7 27.6 

21.8 29.7 27.7 21.8 29.8 28.6 

21.8 30.2 27.6 21.9 29.8 28.4 

 



Primer Set Replicate Intra assay 
Variation 

Inter assay 
variation 

 
ABCG1 

1 27.2 26.7 23.7 27.2 26.7 23.7 

27.3 26.7 23.7 27.3 26.7 23.7 

27.2 26.6 23.9 27.2 26.6 23.9 

2 27.2 26.3 23.9 27.7 26.1 24.1 

27.2 26.4 23.9 27.8 26.1 24.3 

27.7 26.8 23.8 27.7 26.2 24.4 

3 27.2 26.6 24.4 27.4 26.7 23.6 

27.5 26.7 23.7 27.5 26.7 24.5 

27.5 26.7 24.5 27.3 26.9 24.1 

4 27.8 26.4 23.9 26.9 26.2 23.8 

27.7 26.7 24 27 26.3 24.3 

27.4 26.3 23.7 26.9 26.6 24.2 

5 27.4 27.1 23.8 27 26.9 24.3 

27.3 26.8 23.6 27.2 26.9 24.4 

27.4 26.8 24.2 27.3 26.7 23.8 

 
LXRβ 

1 23.2 24.9 28.7 23.2 24.9 28.7 

23.2 24.6 29.1 23.2 24.6 29.1 

23 24.6 28.7 23 24.6 28.7 

2 23.3 24.6 28.9 23.8 25 29.7 

23.1 24.9 29.1 23.9 24.9 30.1 

22.9 25 28.8 23.9 24.6 29.5 

3 23.1 24.3 28.9 23.7 24.9 29.8 

23.3 25.1 28.9 23.4 24.6 29.5 

23.5 24.5 28.7 23.3 24.6 29.4 

4 23.7 25.1 28.5 23 23.2 28.7 

23.6 24.8 28.5 22.7 23.2 29.1 

23.9 24.6 29.1 22.4 23.9 29.2 

5 22.8 24.7 29 NA 24.3 30.4 

22.9 24.7 28.4 22.9 24.3 29.7 

23 24.5 28.5 22.9 24.9 29.9 

 
SREBF1 

1 23.6 21.3 23.5 23.6 21.3 23.5 

23.3 21.4 23.8 23.3 21.4 23.8 

23.2 21.3 23.6 23.2 21.3 23.6 

2 23.5 21.9 23.8 24.2 20.9 24.0 

23.4 21.2 23.8 24.1 20.9 24.0 

23.4 21.4 23.8 NA 21.0 23.9 

3 23.6 21.8 23.9 23.2 21.0 23.8 

24.0 20.8 23.7 23.4 21.2 23.8 

23.8 21.3 24.0 23.4 21.2 23.7 

4 23.5 21.5 23.1 23.8 21.6 23.9 
23.2 21.2 23.7 23.8 21.6 23.8 

23.7 21.3 23.7 23.9 21.4 23.9 

5 23.3 21.1 23.7 24.0 NA 23.7 

23.8 21.1 23.6 23.4 20.9 23.4 

23.3 21.3 24.2 23.5 20.9 23.4 

 



Primer Set Replicate Intra assay 
Variation 

Inter assay 
variation 

 
LYPLA1 

1 22.5 25.5 21.4 22.5 25.5 21.4 

22.5 25.4 21.2 22.5 25.4 21.2 

22.5 25.3 21.2 22.5 25.3 21.2 

2 22.6 25.3 21.1 22.1 24.9 21.0 

22.6 25.5 21.1 22.1 25.0 21.0 

22.5 24.9 21.2 22.2 25.0 21.1 
3 22.4 25.3 21.5 22.3 25.4 21.2 

22.5 25.6 21.4 22.3 25.4 21.2 

22.4 25.6 21.3 22.5 25.3 21.3 
4 22.7 25.3 21.4 21.9 25.6 21.5 

22.5 25.1 21.3 21.9 25.5 21.4 

22.7 25.1 21.2 22.0 25.5 21.4 

5 22.6 25.6 21.5 22.5 25.5 21.0 

22.5 25.4 21.4 22.4 25.4 21.2 

22.4 25.6 21.3 22.4 25.4 21.2 

 
Β-actin 

1 20.3 19.1 15.4 20.3 19.1 15.4 

20.2 18.7 15.5 20.2 18.7 15.5 

20.3 18.7 15.4 20.3 18.7 15.4 

2 20.4 18.9 15.5 20.0 19.0 15.1 

20.6 18.9 15.5 19.9 19.1 15.0 

20.6 19.2 15.4 20.0 19.0 14.9 

3 20.3 19.2 15.3 20.4 18.8 15.4 

20.3 19.2 15.4 20.3 18.6 15.6 
20.2 19.1 15.5 20.2 18.6 15.6 

4 20.2 18.9 15.2 20.5 18.2 15.4 

20.4 18.9 15.6 20.2 18.5 15.2 

20.4 19.0 15.5 20.0 18.7 15.6 

5 20.7 19.0 15.3 19.8 19.1 15.1 

20.5 18.9 15.4 19.8 19.1 15.5 

20.4 19.0 15.4 20.2 19.0 15.3 

 

Table to represent intra- and inter- variation of all primer sets as discussed in Chapter 2 

section 2.3.5. 



 

 

 

 

 

 

Appendix 5 

Raw ΔΔCT data for SGBS cells  

Data used in Chapter 3 

 

  



Β-actin referred to as Act throughout 

ΔΔCt Values for LXRβ 

Hyperglycaemic environment at 17 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 25.68 – 20.39 = 5.28                        ΔCt(AG)= 26.45 – 19.91 = 6.54   

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 1.26 

             X = 2-ΔΔCt 

             X = 0.41 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.39  

 

Round 2 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct   ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 26.79 – 21.16 = 5.63                          ΔCt(AG)= 29.43 – 22.03 = 7.40 

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 1.78 

             X = 2-ΔΔCt 

             X = 0.29 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -3.42  

Average Fold change and variation 

Fold Change = - 2.39 (±0.7) 

 

 



Hyperglycaemic environment at 34 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct   ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 25.49 – 19.72 = 5.76                          ΔCt(AG)= 27.39 – 17.90 = 9.49   

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 3.72 

             X = 2-ΔΔCt 

             X = 0.08 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -13.2  

 

Round 2 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 25.26 – 17.64 = 7.61                        ΔCt(AG)= 29.31– 18.61 = 10.70  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 3.09 

             X = 2-ΔΔCt 

             X = 0.29 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -8.5 

Average Fold change and variation 

Fold Change = - 10.84 (±3.4) 

 

 

 

 



Normoglycaemic environment at 17 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct  ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 25.70 – 24.50 = 1.20                         ΔCt(AG)= 22.41 – 21.08 = 1.33 

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -0.13 

             X = 2-ΔΔCt 

             X = 1.10 (No change) 

 

Round 2 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct  ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 22.82 – 20.86 = 1.96                         ΔCt(AG)= 23.93– 22.52 = 1.41  

             ΔΔCt= ΔCt (acylG) – ΔCt (vehicle) 

             ΔΔCt= 0.55 

             X = 2-ΔΔCt 

             X = 0.68 (No change) 

Average Fold change and variation 

Fold Change = 0.89 (±0.29) 

 

 

 

 

 

 

 

 



Normoglycaemic environment at 34 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 24.76 – 21.32 = 3.43                        ΔCt(AG)= 25.60 – 24.07 = 1.53 

             ΔΔCt= ΔCt (acylG) – ΔCt (vehicle) 

             ΔΔCt= -1.90 

             X = 2-ΔΔCt 

             X = 3.74 (Up regulation) 

 

Round 2 

ΔCt (Vehicle)= Average LXR Ct- Average Act Ct     ΔCt(AG)= Average LXR Ct- AverageActCt 

ΔCt (Vehicle)= 25.14 – 21.32 = 3.82                         ΔCt(AG)= 27.04 – 25.29 = 1.75  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -1.75 

             X = 2-ΔΔCt 

             X = 3.36 (Up regulation) 

Average Fold change and variation 

Fold Change = +3.55 (±0.27) 

 

 

 

 

 

 

 

 



ΔΔCt Values for ABCG1 

Hyperglycaemic environment at 17 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct  ΔCt(AG)= Average ABC Ct- AverageActCt 

ΔCt (Vehicle)= 27.63 – 20.39 = 7.24                         ΔCt(AG)= 28.23 – 19.91 = 8.32   

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 1.09 

             X = 2-ΔΔCt 

             X = 0.47 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.12 

 

Round 2 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct  ΔCt(AG)= Average ABC Ct- AverageActCt 

ΔCt (Vehicle)= 28.73 – 21.16 = 7.56                         ΔCt(AG)= 31.06 – 22.03 = 9.04 

             ΔΔCt= ΔCt (acylG) – ΔCt (vehicle) 

             ΔΔCt= 1.48 

             X = 2-ΔΔCt 

             X = 0.36 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.78  

Average Fold change and variation 

Fold Change = - 2.45 (±0.5) 

 

 

 



Hyperglycaemic environment at 34 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct     ΔCt(AG)= Average ABC Ct- AverageActCt 

ΔCt (Vehicle)= 28.84 – 19.72 = 9.12                         ΔCt(AG)= 29.98 – 17.90 = 12.08   

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 2.96 

             X = 2-ΔΔCt 

             X = 0.13 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 7.80 

 

Round 2 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct  ΔCt(AG)= Average ABC Ct- AverageActCt 

ΔCt (Vehicle)= 25.80 – 17.64 = 8.16                          ΔCt(AG)= 28.98 – 18.61 = 10.37  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 2.21 

             X = 2-ΔΔCt 

             X = 0.22 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 4.64 

Average Fold change and variation 

Fold Change = - 6.22 (±2.2) 

 

 

 

 



Normoglycaemic environment at 17 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct    ΔCt(AG)= Average ABC Ct- Average ActCt 

ΔCt (Vehicle)= 27.73 – 24.50 = 3.23                        ΔCt(AG)= 27.58 – 21.08 = 6.50 

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 3.27 

             X = 2-ΔΔCt 

             X = 0.10 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 9.64 

 

 

Round 2 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct ΔCt(AG)= Average ABC Ct- Average ActCt 

ΔCt (Vehicle)= 24.82 – 20.86 = 3.96                        ΔCt(AG)= 29.20– 22.52 = 6.68  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 2.72 

             X = 2-ΔΔCt 

             X = 0.15 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 6.60 

 

Average Fold change and variation 

Fold Change = -8.12 (±2.1) 

 

 



Normoglycaemic environment at 34 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct ΔCt(AG)= Average ABC Ct- Average ActCt 

ΔCt (Vehicle)= 27.31 – 21.32 = 5.99                        ΔCt(AG)= 29.49 – 24.07 = 5.42 

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 0.57 

             X = 2-ΔΔCt 

             X = 0.67 (No change) 

 

Round 2 

ΔCt (Vehicle)= Average ABC Ct- Average Act Ct ΔCt(AG)= Average ABC Ct- Average ActCt 

ΔCt (Vehicle)= 27.62 – 21.32 = 6.30                        ΔCt(AG)= 31.33 – 25.29 = 6.04  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -0.3 

             X = 2-ΔΔCt 

             X = 1.20 (No change) 

Average Fold change and variation 

Fold Change = 0.94 (±0.4) 

 

 

 

 

 

 

 

 



ΔΔCt Values for SREBF1 

Hyperglycaemic environment at 17 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 35.12 – 20.39 = 14.72                      ΔCt(AG)= 34.21 – 19.91 = 14.30  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -0.42 

             X = 2-ΔΔCt 

             X = 1.34 (No change) 

 

Round 2 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 35.09 – 21.16 = 13.92                      ΔCt(AG)= 35.35 – 22.03 = 13.33 

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -0.59 

             X = 2-ΔΔCt 

             X = 1.50 (No change) 

Average Fold change and variation 

Fold Change = 1.42 (±0.1) 

 

 

 

 

 

 

 



Hyperglycaemic environment at 34 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 33.93 – 19.72 = 14.20                      ΔCt(AG)= 32.47 – 17.90 = 14.57  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= 0.37 

             X = 2-ΔΔCt 

             X = 0.77 (No change) 

 

Round 2 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 32.38 – 17.64 = 14.74                      ΔCt(AG)= 33.62 – 18.61 = 15.01  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -0.27 

             X = 2-ΔΔCt 

             X = 1.20 (No change) 

 

Average Fold change and variation 

Fold Change = 1.0 (±0.3) 

 

 

 

 

 

 

 



Normoglycaemic environment at 17 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 34.99 – 24.50 = 10.49                      ΔCt(AG)= 32.51 – 21.08 = 11.44             

ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -0.95 

             X = 2-ΔΔCt 

             X = 1.93 (Up regulated) 

 

Round 2 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct     ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 31.55 – 20.86 = 10.69                       ΔCt(AG)= 33.98 – 22.52 = 11.46  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -0.77 

             X = 2-ΔΔCt 

             X = 1.71 (Up regulated) 

 

Average Fold change and variation 

Fold Change = +1.82 (±0.2) 

 

 

 

 

 

 

 

 



Normoglycaemic environment at 34 hours 

Vehicle v Acyl-ghrelin (AG) 

Round 1 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 33.68 – 21.32 = 12.35                      ΔCt(AG)= 32.51 – 24.07 = 11.44 

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -2.22 

             X = 2-ΔΔCt 

             X = 4.65 (Up regulated) 

 

Round 2 

ΔCt (Vehicle)= Average SRB Ct- Average Act Ct     ΔCt(AG)= Average SRB Ct- Average ActCt 

ΔCt (Vehicle)= 33.78 – 21.32 = 12.46                       ΔCt(AG)= 34.91 – 25.29 = 9.62  

             ΔΔCt= ΔCt (AG) – ΔCt (vehicle) 

             ΔΔCt= -2.84 

             X = 2-ΔΔCt 

             X = 7.14 (Up regulated) 

Average Fold change and variation 

Fold Change = +5.90 (±1.8) 

 

 



 

 

 

 

 

 

 

 

 

Appendix 6 

Raw ΔΔCT data for hVAT  

Data used in Chapter 4 

  



Β-actin referred to as Act throughout 

ABCG1 

Non-obese v Obese 

ΔCt (NO)= AverageABCG1Ct- AverageActCt   ΔCt(O)= AverageABCG1Ct- AverageActCt 

ΔCt (NO)= 26.49-18.79= 7.70                            ΔCt(O)= 26.70 – 19.04 =7.95 

            ΔΔCt= ΔCt (O) – ΔCt (NO) 

             ΔΔCt= 0.25 

             X = 2-ΔΔCt 

             X = 0.84 (no change) 

Non-obese v OT2D 

ΔCt (NO)= AverageABCG1Ct-AverageActCt  ΔCt(OT2D)= AverageABCG1Ct-AverageActCt 

ΔCt (NO)= 26.49-18.79= 7.70                           ΔCt(OT2D)= 27.80 -18.83 =8.97 

             ΔΔCt= ΔCt (OT2DM) – ΔCt (NO) 

             ΔΔCt= 1.27 

             X = 2-ΔΔCt 

             X = 0.41 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.44 

Obese (O) v OT2DM 

ΔCt (O)= AverageABCG1Ct-AverageActCt       ΔCt(OT2D)= AverageABCG1Ct- AverageActCt                                            

ΔCt(O)= 26.70 – 19.04 =7.95                             ΔCt(OT2D)= 27.80 -18.83 =8.97 

             ΔΔCt= ΔCt (OT2D) – ΔCt (O) 

             ΔΔCt= 1.02 

             X = 2-ΔΔCt 

             X = 0.49 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.04 



Obesity effect 

NO v Obese (O+OT2D) 

ΔCt (NO)= AverageABCG1Ct- AverageActCt    ΔCt(O+OT2D)= AverageABCG1Ct-AverageActCt 

ΔCt (NO)= 26.49-18.79= 7.70                              ΔCt= 8.36 

            ΔΔCt= ΔCt (O+OT2D) – ΔCt (NO) 

             ΔΔCt= 0.66 

             X = 2-ΔΔCt 

             X = 0.63 (no change) 

 

Diabetes effect 

No Diabetes (NO+O) v OT2D 

ΔCt (NO=O)= AverageABCG1Ct- AverageActCt    ΔCt(OT2D)= AverageABCG1Ct-AverageActCt 

Ct = 7.82                               ΔCt= 8.96 

            ΔΔCt= ΔCt (OT2D) – ΔCt (NO+O) 

             ΔΔCt= 1.14 

             X = 2-ΔΔCt 

             X = 0.45 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.22 

 

 

 

 

 

 

 

 



LXRβ 

Non-obese v Obese 

ΔCt (NO)= AverageLXRβCt- AverageActCt ΔCt(O)= AverageLXRβCt- AverageActCt 

ΔCt (NO)= 25.89 – 18.79 = 7.10                            ΔCt(O)= 26.59 -19.04 = 7.55   

             ΔΔCt= ΔCt (O) – ΔCt (NO) 

             ΔΔCt= 0.45 

             X = 2-ΔΔCt 

             X = 0.73 (no change) 

Non-obese v OT2D 

ΔCt (NO)= AverageLXRβCt- AverageActCt       ΔCt(OT2D)= AverageLXRβCt- AverageActCt 

ΔCt (NO)= 25.89 – 18.79 = 7.10                         ΔCt(OT2D)= 27.72-19.15 = 8.57 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO) 

             ΔΔCt= 1.47 

             X = 2-ΔΔCt 

             X = 0.36 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.78 

 

Obese v OT2D 

ΔCt (O)= AverageLXRβCt- AverageActCt      ΔCt(OT2D)= AverageLXRβCt- AverageActCt 

ΔCt(O)= 26.59 -19.04 = 7.55                           ΔCt(OT2D)= 27.72-19.15 = 8.57 

             ΔΔCt= ΔCt (OT2D) – ΔCt (O) 

             ΔΔCt= 1.02 

             X = 2-ΔΔCt 

             X = 0.49 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.04 



Obesity effect 

Non-obese v Obese (O+OT2D) 

ΔCt (NO)= AverageLXRβCt- AverageActCt       ΔCt(O+OT2D)= AverageLXRβCt- AverageActCt 

ΔCt (leans)= 7.14                                                   ΔCt(O+OT2D)= 26.59 -19.04 = 8.13 

             ΔΔCt= ΔCt (O+OT2D) – ΔCt (NO) 

             ΔΔCt= 0.99 

             X = 2-ΔΔCt 

             X = 0.50 (no change) 

 

Diabetes effect 

(NO+O) v OT2D 

ΔCt (NO+O)= AverageLXRβCt- AverageActCt        ΔCt(OT2D)= AverageLXRβCt- AverageActCt 

ΔCt(NO+O)= 7.42                                            ΔCt(OT2D)= 27.72-19.15 = 8.57 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO+O) 

             ΔΔCt= 1.15 

             X = 2-ΔΔCt 

             X = 0.45 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.22 

 

 

 

 

 

 

 

 



PPARγ 

Non-obese v Obese 

ΔCt (NO)= AveragePPARγCt-AverageActCt      ΔCt(O)= AveragePPARγCt- AverageActCt 

ΔCt (NO)= 2.84                                                     ΔCt(O)= 3.30 

             ΔΔCt ΔCt (O) – ΔCt (NO) 

             ΔΔCt= 0.46 

             X = 2-ΔΔCt 

             X = 0.73 (no change) 

Non-obese v OT2DM 

ΔCt (NO)= AveragePPARγCt-AverageActCt    ΔCt(OT2D)= AveragePPARγCt-AverageActCt 

ΔCt (NO)= 2.84                                       ΔCt(OT2D)= 3.44 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO) 

             ΔΔCt= 0.6 

             X = 2-ΔΔCt 

             X = 0.66 (no change) 

 

Obese v OT2D 

ΔCt (O)= AveragePPARγCt-AverageActCt   ΔCt(OT2D)= AveragePPARγCt-AverageActCt 

ΔCt (O)= 3.30                                                    ΔCt(OT2D)= 3.44 

             ΔΔCt= ΔCt (OT2DM) – ΔCt (obese) 

             ΔΔCt= 0.14 

             X = 2-ΔΔCt 

             X = 0.91 (no change) 

 

 

 

 



Obesity effect 

Non-obese v Obese (O+OT2D) 

ΔCt (NO)= AveragePPARγCt-AverageActCt     ΔCt(O+OT2D)= AveragePPARγCt- AverageActCt 

ΔCt (NO)= 2.84                                                 ΔCt(O+OT2D)= 3.37 

             ΔΔCt ΔCt (O+OT2D) – ΔCt (NO) 

             ΔΔCt= 0.53 

             X = 2-ΔΔCt 

             X = 0.69 (no change) 

 

 

Diabetes effect 

(NO+O) v OT2DM 

ΔCt (NO+O)= AveragePPARγCt- AverageActCt    ΔCt(OT2D)= AveragePPARγCt- AverageActCt 

ΔCt (NO+O)= 3.07                                                      ΔCt(OT2D)= 3.44 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO+O) 

             ΔΔCt= 0.37 

             X = 2-ΔΔCt 

             X = 0.77 (no change) 

 

 

 

 

 

 

 

 

 



SREBF1 

Non-obese v Obese 

ΔCt (NO)= AverageSREBF1Ct- AverageActCt     ΔCt(O)= AverageSREBF1Ct- AerageActCt 

ΔCt (NO)= 27.61 – 18.79 =  8.82                           ΔCt(O)= 27.70 – 19.04 = 8.66 

             ΔΔCt= ΔCt (O) – ΔCt (NO) 

             ΔΔCt= -0.16 

             X = 2-ΔΔCt 

             X = 1.12 (no change) 

Non-obese v OT2D 

ΔCt (NO)= AverageSREBF1Ct-AverageActCt    ΔCt(OT2D)= AverageSREBF1Ct-averageActCt 

ΔCt (lNO)= 27.61 – 18.79 =  8.82                       ΔCt(OT2D )= 29.40 – 19.15 = 10.25 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO) 

             ΔΔCt= 1.43 

             X = 2-ΔΔCt 

             X = 0.37 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.70  

 

Obese v OT2DM 

ΔCt(O)= AverageSREBF1Ct-AverageActCt    ΔCt(OT2D)= AverageSREBF1Ct- AverageActCt                                                                                            

ΔCt(O)= 27.70 – 19.04 = 8.66                    ΔCt(OT2D )= 29.40 – 19.15 = 10.25 

             ΔΔCt= ΔCt (OT2D) – ΔCt (O) 

             ΔΔCt= 1.59 

             X = 2-ΔΔCt 

X = 0.33 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -3.03  



Obesity effect 

Non-obese v Obese (O+OT2DM) 

ΔCt (leans)= AverageSREBF1Ct-AverageActCt   ΔCt(Obese)= AverageSREBF1Ct-AverageActCt 

ΔCt (leans)= 27.61 – 18.79 =  8.82                       ΔCt(Obese)= 27.70 – 19.04 = 9.46 

             ΔΔCt= ΔCt (Obese) – ΔCt (lean) 

             ΔΔCt= 0.64 

             X = 2-ΔΔCt 

             X = 0.64 (no change) 

 

 

(NO+O) v OT2DM 

ΔCt (NO+O)= AverageSREBF1Ct-AverageActCt   ΔCt(OT2D)= AverageSREBF1Ct-AverageActCt 

ΔCt(NO+O)=8.74                                                       ΔCt(OT2D)= 29.40 – 19.15 = 10.26 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO+O) 

             ΔΔCt= 1.52 

             X = 2-ΔΔCt 

X = 0.35 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = -2.86  

 

 

 

 

 

 

 

 



Ghrelin 

Non-obese v Obese 

ΔCt (NO)= Average Ghrel Ct- Average Act Ct     ΔCt(O)= AverageGhrelCt- AverageActCt 

ΔCt (NO)= 30.29 – 18.50 = 11.38                                 ΔCt(O)= 29.77 – 19.04= 10.72 

             ΔΔCt= ΔCt (O) – ΔCt (NO) 

             ΔΔCt= -0.66 

             X = 2-ΔΔCt          

             X = 1.58 (up regulation) 

             Fold change = 1.58 

 

Non-obese v OT2D 

ΔCt (NO)= AverageGhrelCt-AverageActCt      ΔCt(OT2D) = AverageGhrelCt-AverageActCt 

ΔCt (NO)= 30.29 – 18.50 = 11.38                      ΔCt(OT2D) = 31.14 – 19.10= 12.13 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO) 

             ΔΔCt= 0.78 

             X = 2-ΔΔCt 

             X = 0.58 (no change) 

 

Obese v OT2D 

ΔCt (O)= AverageGhrelCt-AverageActCt      ΔCt(OT2D)= AverageGhrelCt-AverageActCt 

ΔCt(O)= 29.77 – 19.04= 10.72                        ΔCt(OT2D)= 31.14 – 19.10= 12.13 

             ΔΔCt= ΔCt (OT2D) – ΔCt (O) 

             ΔΔCt= 1.41 

             X = 2-ΔΔCt 

             X = 0.38 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change= - 2.6  



Obesity effect 

Non-obese v Obese (O+OT2D) 

ΔCt (NO)= AverageGhrelCt- AverageActCt        ΔCt(O+OT2D)= AverageGhrelCt-AverageActCt 

ΔCt (NO)= 30.29 – 18.50 = 11.38                         ΔCt(O+OT2D)= 11.43 

             ΔΔCt= ΔCt (O) – ΔCt (lean) 

             ΔΔCt= 0.05 

             X = 2-ΔΔCt 

             X = 0.97 (no change) 

 

Diabetes effect 

(NO+O) v OT2D 

ΔCt(NO+O)= AverageGhrelCt-AverageActCt      ΔCt(OT2D) = AverageGhrelCt-AverageActCt 

ΔCt (NO+O)= 11.05                           ΔCt(OT2D) = 31.14 – 19.10= 12.13 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO+O) 

             ΔΔCt= 1.08 

             X = 2-ΔΔCt 

             X = 0.47 (down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change= -2.1  

 

 

 

 

 

 

 

 



mBOAT4 (GOAT) 

Non-obese v Obese 

ΔCt (NO)= AverageGOATCt-AverageActCt      ΔCt(O)=AverageGOATCt-AverageActCt 

ΔCt (NO)= 10.05                                                   ΔCt(O)= 10.23 

             ΔΔCt= ΔCt (O) – ΔCt (NO) 

             ΔΔCt= 0.18 

             X = 2-ΔΔCt 

             X = 0.88 (no change) 

 

Non-obese v OT2D 

ΔCt (NO)= AverageGOATCt-AverageActCt      ΔCt(OT2D)=AverageGOATCt-AverageActCt 

ΔCt (NO)= 10.05                        ΔCt(OT2D)= 10.64 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO) 

             ΔΔCt= 0.59 

             X = 2-ΔΔCt 

             X = 0.66 (no change) 

 

Obese v OT2D 

ΔCt (O)= AverageGOATCt-AverageActCt     ΔCt(OT2D)=AverageGOATCt-AverageActCt 

ΔCt (O)= 10.23                                                   ΔCt(OT2D)= 10.64 

             ΔΔCt= ΔCt (OT2D) – ΔCt (O) 

             ΔΔCt= 0.41 

             X = 2-ΔΔCt 

             X = 0.75 (no change) 

 

 

 



Obesity effect 

Non-obese v Obese (O+OT2D) 

ΔCt (NO)= AverageGOATCt-AverageActCt         ΔCt(O+OT2D)=AverageGOATCt-AverageActCt 

ΔCt (NO)= 10.05                                                      ΔCt(O+OT2D)= 10.44 

             ΔΔCt= ΔCt (O+OT2D) – ΔCt (NO) 

             ΔΔCt= 0.39 

             X = 2-ΔΔCt 

             X = 0.76 (no change) 

 

Diabetes effect 

(NO+O) v OT2D 

ΔCt (NO+O)= AverageGOATCt-AverageActCt        ΔCt(OT2D)= AverageGOATCt-AverageActCt 

ΔCt(NO+O)= 10.15                                                      ΔCt(OT2D)= 10.64 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO+O) 

             ΔΔCt= 0.49 

             X = 2-ΔΔCt 

             X = 0.71 (no change) 

 

 

 

 

 

 

 

 

 

 



Lypla 

Non-obese v Obese 

ΔCt (NO)= AverageLyplaCt - AverageActCt        ΔCt(O)= AverageLyplaCt- AverageActCt 

ΔCt (NO)= 24.40 – 18.79 = 5.61                           ΔCt(O)= 18.79 – 19.04 = 5.07 

             ΔΔCt= ΔCt (O) – ΔCt (NO) 

             ΔΔCt= -0.54 

             X = 2-ΔΔCt 

             X = 1.45 (no change) 

 

Non-obese v OT2D 

ΔCt (NO)= AverageLyplaCt- AverageActCt       ΔCt(OT2D) =AverageLyplaCt-AverageActCt 

ΔCt (NO)= 24.40 – 18.79 = 5.61                         ΔCt(OT2D)= 24.58 – 19.15 = 5.43 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO) 

             ΔΔCt= -0.18 

             X = 2-ΔΔCt 

             X = 1.13 (no change) 

 

Obese v OT2D 

ΔCt (O)= AverageLyplaCt-AverageActCt       ΔCt(OT2D)= AverageLyplaCt-AverageActCt 

ΔCt(O)= 18.79 – 19.04 = 5.07                         ΔCt(OT2D)= 24.58 – 19.15 = 5.43 

             ΔΔCt= ΔCt (OT2D) – ΔCt (O) 

             ΔΔCt= 0.36 

             X = 2-ΔΔCt 

             X = 0.78 (no change) 

 

 

 



Obesity effect 

Non-obese v Obese (O+OT2D) 

ΔCt (NO)= AverageLyplaCt- AverageActCt         ΔCt(O+OT2D)= AverageLyplaCt-AverageActCt 

ΔCt (NO)= 24.40 – 18.79 = 5.61                           ΔCt(O+OT2D)= 5.25 

             ΔΔCt= ΔCt (O+OT2D) – ΔCt (NO) 

             ΔΔCt= -0.36 

             X = 2-ΔΔCt 

             X = 1.28 (no change) 

 

Diabetes effect 

(NO+O) v OT2D 

ΔCt (NO+O)= AverageLyplaCt- AverageActCt      ΔCt(OT2D)= AverageLyplaCt- AverageActCt 

ΔCt (NO+O)= 5.34                                                     ΔCt(OT2D)= 24.58 – 19.15 = 5.43 

             ΔΔCt= ΔCt (OT2D) – ΔCt (NO+O) 

             ΔΔCt= 0.09 

             X = 2-ΔΔCt 

             X = 0.94 (no change) 

 

 



 

 

 

 

 

 

 

 

 

 

Appendix 7 

Raw ΔΔCT data for SGBS cells with 

metformin treatment 

Data used in Chapter 5 

 



ΔΔCt Values for Metformin 

Vehicle (V) V Metformin (Met) treatment 

ΔΔCt Values for LXRβ 

Round 1 

ΔCt (V) = Average LXR Ct- Average Act Ct   ΔCt(Met) = Average LXR Ct- AverageActCt 

ΔCt (V) = 25.68 – 20.39 = 5.28                                    ΔCt(Met) = 26.11 – 22.59 = 3.52 

             ΔΔCt = ΔCt (Met) – ΔCt (V) 

             ΔΔCt = -1.76 

             X = 2-ΔΔCt 

             X = 3.39 (Up regulated) 

 

Round 2 

ΔCt (V) = Average LXR Ct- Average Act Ct   ΔCt(Met) = Average LXR Ct- AverageActCt 

ΔCt (V) = 26.79 – 21.16 = 5.63                                    ΔCt(Met) =25.61 – 21.81 = 3.80 

             ΔΔCt = ΔCt (Met) – ΔCt (V) 

             ΔΔCt = -1.83 

             X = 2-ΔΔCt 

             X = 3.56 (Up regulated) 

 

Average Fold change and variation 

Fold Change = 3.47 (±0.1) 

 

 

 

 

 

 



ΔΔCt Values for ABCG1 

Round 1 

ΔCt (V) = Average ABC Ct- Average Act Ct   ΔCt(Met) = Average ABC Ct- AverageActCt 

ΔCt (V) = 27.63 – 20.39 = 7.24                                    ΔCt(Met) =24.53 – 22.59 = 1.94  

             ΔΔCt = ΔCt (Met) – ΔCt (V) 

             ΔΔCt = - 5.3 

             X = 2-ΔΔCt 

             X = 39.40 (Up regulated)  

 

Round 2 

ΔCt (V)= Average ABC Ct- Average Act Ct   ΔCt(Met)= Average ABC Ct- AverageActCt 

ΔCt (V)= 28.73 – 21.16 = 7.57                                     ΔCt(Met)= 24.18 – 21.81 = 2.37 

             ΔΔCt= ΔCt (Met) – ΔCt (V) 

             ΔΔCt= -5.2 

             X = 2-ΔΔCt  

             X = 36.76 (Up regulated) 

     

Average Fold change and variation 

Fold Change = 38.08 (±1.9) 

 

 

 

 

 

 

 

 



ΔΔCt Values for SREBF1 

Round 1 

ΔCt (V) = Average SRB Ct- Average Act Ct   ΔCt(Met) = Average SRB Ct- AverageActCt 

ΔCt (V) = 35.21 – 20.39 = 14.82                                  ΔCt(Met) = 35.45 – 22.59 = 12.86  

             ΔΔCt = ΔCt (Met) – ΔCt (V) 

             ΔΔCt = -1.96 

             X = 2-ΔΔCt 

             X = 3.89 (Up regulated) 

Round 2 

ΔCt (V)= Average SRB Ct- Average Act Ct                  ΔCt(Met)= Average SRB Ct- AverageActCt 

ΔCt (V)= 35.09 – 21.16 = 13.92                                   ΔCt(Met)= 34.24 – 21.82 = 12.43 

             ΔΔCt= ΔCt (Met) – ΔCt (V) 

             ΔΔCt= -1.49 

             X = 2-ΔΔCt 

             X = 2.81 (Up regulated) 

 

Average Fold change and variation 

Fold Change = 3.35 (±0.8) 

 

 

 

 

 

 

 

 

 



Metfromin (Met) V Met and AG treatment 

ΔΔCt Values for LXRβ 

Round 1 

ΔCt (Met) = Average LXR Ct- Average Act Ct     ΔCt(Met+AG) = Average LXR Ct- AverageActCt 

ΔCt (Met) = 26.11 – 22.59 = 3.52                           ΔCt(Met+AG) = 28.20 – 19.71 = 8.49  

             ΔΔCt = ΔCt (Met+&AG) – ΔCt (Met) 

             ΔΔCt = 4.97 

             X = 2-ΔΔCt 

             X = 0.03 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 31.3 

 

Round 2 

ΔCt (AG)= Average LXR Ct- Average Act C         ΔCt(Met+AG)= Average LXR Ct- AverageActCt 

ΔCt (AG)= 25.61 – 21.81 = 3.80                           ΔCt(Met+AG)= 32.95 – 23.88 = 9.07  

             ΔΔCt= ΔCt (Met+AG) – ΔCt (Met) 

             ΔΔCt= 5.27 

             X = 2-ΔΔCt 

             X = 0.03 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 38.6 

 

Average Fold change and variation 

Fold Change = - 34.2 (±4.0) 

 

 

 



ΔΔCt Values for ABCG1 

Round 1 

ΔCt (Met) = Average ABC Ct- Average Act Ct   ΔCt(Met+AG) = Average ABC Ct- AverageActCt 

ΔCt (Met) = 24.53 – 22.59 = 1.94                       ΔCt(Met+AG) = 26.82 – 19.71 = 7.11  

             ΔΔCt = ΔCt (Met+AG) – ΔCt (Met) 

             ΔΔCt = 5.17 

             X = 2-ΔΔCt 

             X = 0.03 (Downregulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 36.0 

 

Round 2 

ΔCt (Met)= Average ABC Ct- Average Act Ct    ΔCt(Met+AG)= Average ABC Ct- AverageActCt 

ΔCt (Met)= 24.18 – 21.81 = 2.37                         ΔCt(Met+AG)= 31.36 – 23.88 = 7.48  

             ΔΔCt= ΔCt (Met+AG) – ΔCt (Met) 

             ΔΔCt= 5.11 

             X = 2-ΔΔCt 

             X = 0.03 (Downregulated) 

As down regulated (x <0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 34.5 

 

Average Fold change and variation 

Fold Change = -35.1 (±0.9) 

 

 

 

 



ΔΔCt Values for SREBF1 

Round 1 

ΔCt (Met) = Average SRB Ct- Average Act C     ΔCt(Met+AG) = Average SRB Ct- AverageActCt 

ΔCt (Met) = 35.45 – 22.59 = 12.86                       ΔCt(Met+AG) = 32.10 – 19.71 = 12.39 

             ΔΔCt = ΔCt (Met+AG) – ΔCt (Met) 

             ΔΔCt = -0.47 

             X = 2-ΔΔCt 

             X = 0.72 (No change) 

Round 2 

ΔCt (Met)= Average SRB Ct- Average Act Ct      ΔCt(Met+AG)= Average SRB Ct- AverageActCt 

ΔCt (Met)= 34.24 – 21.82 = 12.43                        ΔCt(Met+AG)= 35.54 – 23.88 = 11.66 

             ΔΔCt= ΔCt (Met+AG) – ΔCt (Met) 

             ΔΔCt= -0.77 

             X = 2-ΔΔCt 

             X = 0.59 (No change) 

 

Average Fold change and variation 

Fold Change = 0.65 (±0.2) 

 

 

 

 

 

 

 

 

 



Acyl Ghrelin (AG) V Met and AG treatment 

ΔΔCt Values for LXRβ 

Round 1 

ΔCt (AG) = Average LXR Ct- Average Act Ct       ΔCt(Met+AG) = Average LXR Ct- AverageActCt 

ΔCt (AG) = 26.45 – 19.91 = 6.54                           ΔCt(Met+AG) = 28.20 – 19.71 = 8.49  

             ΔΔCt = ΔCt (Met+&AG) – ΔCt (AG) 

             ΔΔCt = 1.95 

             X = 2-ΔΔCt 

             X = 0.26 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 3.85 

 

Round 2 

ΔCt (AG)= Average LXR Ct- Average Act C         ΔCt(Met+AG)= Average LXR Ct- AverageActCt 

ΔCt (AG)= 29.43 – 22.03 = 7.4                              ΔCt(Met+AG)= 32.95 – 23.88 = 9.07  

             ΔΔCt= ΔCt (Met+AG) – ΔCt (AG) 

             ΔΔCt= 1.67 

             X = 2-ΔΔCt 

             X = 0.31 (Down regulated) 

As down regulated (x < 0.5); 𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 =
1

𝑋
 

Fold change = - 3.23 

 

Average Fold change and variation 

Fold Change = - 3.54 (±0.4) 

 

 

 



ΔΔCt Values for ABCG1 

Round 1 

ΔCt (AG) = Average ABC Ct- Average Act Ct   ΔCt(Met+AG) = Average ABC Ct- AverageActCt 

ΔCt (AG) = 28.24 – 19.91 = 8.33                       ΔCt(Met+AG) = 26.82 – 19.71 = 7.11  

             ΔΔCt = ΔCt (Met+AG) – ΔCt (AG) 

             ΔΔCt = - 1.22 

             X = 2-ΔΔCt 

             X = 2.33 (Up regulated) 

 

Round 2 

ΔCt (AG)= Average ABC Ct- Average Act Ct       ΔCt(Met+AG)= Average ABC Ct- AverageActCt 

ΔCt (AG)= 30.89 – 22.03 = 8.86                           ΔCt(Met+AG)= 31.36 – 23.88 = 7.48  

             ΔΔCt= ΔCt (Met+AG) – ΔCt (AG) 

             ΔΔCt= -1.38 

             X = 2-ΔΔCt 

             X = 2.60 (Up regulated) 

 

Average Fold change and variation 

Fold Change = 2.47 (±0.2) 

 

 

 

 

 

 

 

 



ΔΔCt Values for SREBF1 

Round 1 

ΔCt (AG) = Average SRB Ct- Average Act C        ΔCt(Met+AG) = Average SRB Ct- AverageActCt 

ΔCt (AG) = 34.25 – 19.91 = 14.34                        ΔCt(Met+AG) = 32.10 – 19.71 = 12.39 

             ΔΔCt = ΔCt (Met+AG) – ΔCt (AG) 

             ΔΔCt = -1.95 

             X = 2-ΔΔCt 

             X = 3.86 (Up regulated) 

Round 2 

ΔCt (AG)= Average SRB Ct- Average Act Ct        ΔCt(Met+AG)= Average SRB Ct- AverageActCt 

ΔCt (AG)= 25.36 – 22.03 = 13.33                          ΔCt(Met+AG)= 35.54 – 23.88 = 11.66 

             ΔΔCt= ΔCt (Met+AG) – ΔCt (AG) 

             ΔΔCt= -1.67 

             X = 2-ΔΔCt 

             X = 3.18 (Up regulated) 

 

Average Fold change and variation 

Fold Change = 3.52 (±0.5) 

 

 

 

 

 

 

 

 

 



Appendix 8 

Publications 

Publication redacted due to copyright 
restrictions



 

 

 

 

 

 

 

 

 

 

 

Appendix 9 

Conference lists 

 

 

 

 

 

 

 

 

 

 



British Obesity & Metabolism Surgery Society January 2016- oral presentation  

Churm R, Barry JD, Caplin S, Eyre N, Davies JS, Stephens JW & Prior SL.  

Cholesterol efflux in obesity related type 2 diabetes: Effects of glucose and ghrelin. 

 

Diabetes UK March 2016- poster presentation 

Churm R, Barry JD, Davies JS, Stephens JW & Prior SL.  

The effect of glucose on cholesterol efflux in obesity related Type 2 diabetes. 

In Diabetic Medicine (Vol. 33, pp. 82-82)  

 

WEDS May 2016- poster presentation 

Churm R, Barry JD, Davies JS, Stephens JW & Prior SL.  

The effect of glucose on cholesterol efflux in obesity related Type 2 diabetes. 

 

Diabetes UK March 2017- poster presentation 

Churm R, Barry JD, Davies JS, Stephens JW & Prior SL.  

Effect of increased endogenous glucose levels within Type 2 diabetes on cellular 

lipid profiles 

In Endocrine Abstracts (2017) 48 P2. 

European Association of the Study of Diabetes (EASD) September 2017- poster 

presentation 

Churm R, Caplin S, Barry J, Davies JS, Stephens JW, Prior SL 

The role of acyl ghrelin in human visceral adipose tissue in relation to the LXR-ABC 

pathway and the metabolic state. 

In DIABETOLOGIA (Vol. 60, pp. S270-S271). 
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