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Perovskite solar cells based on an all printable mesoporous stack, made of overlapping titania, 

zirconia and carbon layers, represent a promising device architecture for both simple, low cost 

manufacture and outstanding stability. Here a breakthrough in the upscaling of this 

technology is reported: screen printed modules on A4 sized FTO-glass substrates, delivering 

power conversion efficiency (PCE) ranging from 3 to 5% at 1 sun on an unprecedented 198 

cm2 active area. An increase in the PCE, due to higher VOC and fill factor, is demonstrated by 

patterning the TiO2 blocking layer. Furthermore, an unexpected increase of the performance is 

observed over time, while storing the modules in the dark, un-encapsulated, at ambient 

conditions (with humidity increasing from 30 and 70% RH), resulting in 6.6% PCE and 6.3% 

stabilised at Vmax measured after over 2 months since fabrication. Equally impressive is the 

low light performance with 11% and 18% PCE achieved respectively at 200 and 1000 lux 

under fluorescent lighting. It is hoped that this demonstration of good performance on large 

area can unlock the viability of perovskite solar cells manufactured on an industrial scale. 

 

1. Introduction 

Among the different cell architectures for perovskite solar cells (PSCs), carbon-based HTM-

free PSCs (C-PSCs) seem to be the most promising for addressing stability issues and tackling 
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the up-scaling challenges by combining ease of manufacture with low cost of materials.[1, 2, 3] 

Although lagging behind other PSC types in terms of record efficiency on lab scale cells 

(~17%[4] vs over 22% for a mesoporous TiO2/perovskite/PTAA/Au[5]), C-PSCs have 

demonstrated over 1000 hours stability under different conditions of illumination and external 

stresses, even un-encapsulated, when 5-ammonium valeric acid iodide (5-AVAI) is added to 

the perovskite solution.[6, 7, 8] Since the entire triple mesoporous stack – titania (m-TiO2), 

zirconia (ZrO2), carbon (C) - is printable, C-PSCs are ideal for large scale production and, 

interestingly, some features that prevent degradation, i.e. lack of metal cathode[9] and organic 

HTM[10], are also responsible for the simpler manufacturing process, paving the way for C-

PSCs to move quickly from the lab to the market. This module architecture not only uses low 

cost materials but can be produced by equipment that has a very low capital cost thus 

reducing the barrier to commercialisation of perovskite modules.  Constraining the grain 

growth of the perovskite completely within the three mesoporous structures enables 

crystallisation of the perovskite over large areas without the need for dynamic drying[11, 12] to 

mimic the spin coating process.[13]   

There have been some reports demonstrating that C-PSC modules can be produced by screen 

printing, via registration of the overlapping layers, and can deliver between 10 and 11% PCE 

on 10 x 10 cm2 substrates, with active areas ranging from 47.6 cm2 [7, 14]  to 70 cm2 [15], and, in 

particular, showing over 1 year stability under illumination, as reported by Grancini et al. [7] 

These results for C-PSC modules are even more remarkable, considering that modules with 

comparable active areas (>45 cm2) and different device architecture, yielded respectively 

12.6% PCE on 50.6 cm2 (FTO/c-TiO2/graphene+m-TiO2/GO-Li/perovskite/spiro-

OMeTAD/Au)[16], 8.7% PCE on 60 cm2 (ITO/PEDOT:PSS/MAPI/PCBM/Au)[17], and 4.3% 

PCE  on 100 cm2 (FTO/c-TiO2/m-TiO2/perovskite/spiro-O-MeTAD/Au)[11]; moreover, the 
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record for PSC modules overall is Microquanta’s 16% PCE[18, 19] on just 16.29 cm2 aperture 

area (active area + dead area for interconnections).  

Up-scaling C-PSC manufacture from 10 x 10 cm2 to larger substrate dimensions, e.g. A4 size 

as in our case, is far from trivial. Spraying the TiO2 blocking layer (BL) at temperatures as 

high as 300 °C causes the large substrates to crack in the worst case or to bend, compromising 

the thickness homogeneity over the substrate of the printed layers, mostly and more crucially 

for the thinnest of the three, the sub-micrometric m-TiO2. Any change in the layers’ thickness 

across the substrate can affect the performance of individual cells constituting the module and, 

in series connected modules, the worst cell will dictate the overall performance of the device. 

Thus, a lower processing temperature is needed for depositing the BL while ensuring it is still 

endowed with blocking properties and the conductive glass substrate is not deformed 

afterwards, affecting the printing process; also, an optimisation of the printing settings is 

crucial to ensure a consistent distribution of each layer’s thickness across the whole substrate. 

Herein we demonstrate that, with this optimisation, A4-size modules with an active area of 

198 cm2 can be manufactured by screen printing, via registration of the overlapping layers. 

We confirm the need for patterning of the TiO2 blocking layer to improve the interconnection 

between adjacent cells and thus module performance. We discuss the issues related to 

processing an A4-sized FTO glass substrate at high temperatures and how to obtain uniform 

printed layers on such large areas. We also report the unexpected performance improvement 

of un-encapsulated modules with storage time, likely related to humidity, leading to a 

remarkable 6.6% PCE (6.3% stabilised at Vmax) 2 months after fabrication. 

2. Results and discussion 

In this work, a conservative approach, based on the registration of the printed layers, was 

adopted to design the A4 size modules and achieve the series connection to adjacent cells. 

Though not effective in maximising the active area if compared to laser patterning[20] or 
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mechanical scribing[21], edge registration is a safe strategy to avoid short circuits and 

unintentional damage to underlayers. Each module consisted of 22 cells, 5 mm wide and 180 

mm long, placed 6 mm apart one from the other (as shown in Figure 1), to guarantee 1.5 mm-

wide ZrO2 overlapping the m-TiO2 on both sides and 3 mm-wide area for the series 

connection of the carbon top electrode to the adjacent cell’s photoanode, resulting in 198 cm2 

active area, 435.6 cm2 aperture area (active area + area for interconnections) and 45.5% 

geometrical fill factor (GFF, ratio between the active and the total area). Once the cell width 

and inter distance between cells were set at 5 and 3 mm respectively, cells’ length and number 

of cells were maximised, given the full printable area of the screen, i.e. 200 x 250 cm2. A cell 

width of 5 mm has been demonstrated to maximise the power output, based on the modelling 

and simulation of series connected PSC modules.[22] The 3 mm-wide area for interconnections 

was chosen to minimise resistive losses due to the carbon electrode and to ensure an area 

large enough for the connection in series between two adjacent cells, without losing too much 

geometrical fill factor. 

When working on large area substrates it is important to avoid unnecessary thermal stress 

which can cause distortion of the substrate making it difficult to get a homogeneous printing 

of the thin (i.e. 800 nm) m-TiO2 across the large area. For this reason, the spraying of the 

compact TiO2 blocking layer, both un-patterned and patterned, was carried out at 150 °C, 

rather than at 300 °C as per our standard fabrication method,[23, 24] before printing the 

mesoporous TiO2 and sintering both layers at 550 °C.  

To compare the different processing temperatures, we sprayed BL films on FTO glass at 150 

°C and 300 °C and characterised them, before and after sintering at 550 °C for 30 min. 

Morphological differences are appreciable in the SEM images in Figure 2: the BL sprayed at 

150 °C (Figure 2-a) appears rougher than the one at 300 °C (Figure 2-c) and visually porous, 

even after sintering at 550 °C for 30 min (Figure 2-b and Figure 2-d, respectively), raising 
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questions about the effectiveness of its blocking properties. Furthermore, the BL sprayed at 

300 °C after sintering at 550 °C did show the characteristic anatase peak in both Raman and 

XRD spectra (Figure 2-e and Figure 2-f), respectively at 145 cm-1 and at 25.3 degrees, while 

the same peak was not detected in the BL sprayed at 150 °C, even after the sintering process. 

It is likely that the porosity is due to the Ti-O matrix forming around some of the 

acetylacetonate ligands of the Ti precursor used, i.e. titanium di-isopropoxide 

bis(acetylacetonate) (TiAcAc). In the TiAcAc complex, acetylacetone is in its anionic form 

bonded to the Ti4+, thus TiAcAc boiling temperature is slightly higher than that of 

acetylacetone on its own (140 °C). When spraying on the substrate kept at 150 °C, some 

acetylacetonate ligands remain on the substrate for long enough to create the textured layer, 

shown in Figure 2, rather than the conformal compact layer obtained when the substrate is 

held at 300 °C. Such a TiO2 framework formed at 150 °C possibly requires more energy to 

crystallize than is delivered at 550 °C, hence the lack of the characteristic anatase peak in both 

Raman and XRD spectra, even after sintering. 

Despite the differences in TiO2 morphology, the PV performance did not differ significantly 

for small C-PSC cells (0.25 cm2 masked area) with BL sprayed at 150 °C or at 300 °C (Figure 

S1) and sintered afterwards at 550 °C so we inferred the method to be effective for large 

modules as well. 

It is well known and accepted that the presence of the BL at the integrated vertical series 

interconnections between adjacent cells in a module leads to dramatic PCE drop, mainly due 

to poor FF[25]; by patterning the BL, a direct contact between the bottom electrode (i.e. FTO) 

of each cell forming the module and the top electrode of the adjacent one (i.e. evaporated 

gold, or printed carbon in our case), is ensured, minimising the resistive losses, associated 

with the interconnections, and increasing the performance. The lift-off technique, successfully 

adopted by Matteocci et al. [25] for modules with 10 cm2 active area, consists of a sintering 



  

6 

 

step at 450 °C for the metallic mask printed on the substrate and a bath in aqueous HCl 

solution to lift off the mask, steps we decided not to add to our fabrication process. Therefore, 

for patterning the BL, the FTO substrates were covered completely with Kapton tape, which 

was then laser cut and removed selectively to create a mask, covering the areas destined to 

become the interconnections only. After spraying the TiAcAc solution at 150 °C and prior to 

the following steps described in the experimental section, the adhesive mask was removed.  

Beyond the blocking layer, the scale up to such a large size presented a challenge also during 

the printing stages, largely due to increased cohesive strength of the wet ink film with larger 

area coverage. Usually, when printing smaller areas that do not utilise the full printable area 

of the screen, the print speed and snap off (separation between screen and substrate, Figure 

S2) can be optimised at lower levels to ensure clean separation of the screen from the 

substrate following printing. In our case, the cohesive force, due to the large area of print 

coverage, manifested in slow separation of the screen from the substrate towards the end of 

the print stroke, resulting in a horseshoe shaped area of lower ink transfer (Figure S2), leading 

to inhomogeneous coverage. This was overcome through changing the settings relating to 

print speed and snap off: print speed was increased from 110 to 220 mm/s and snap off gap 

increased from 2.2 to 3.2 mm.  This increase in speed and angle of screen separation enabled 

defect free printing of the large area modules. 

Each layer’s thickness was reasonably close to the nominal values (Figure 1), i.e. 800 nm for 

m-TiO2, 1.2 m for ZrO2 and 10 m for carbon, across the printed area, as confirmed by 

profilometry measurements for titania and zirconia layers (Figure 3-a) and by white light 

interferometry for the carbon electrode (Figure 3-b). The thin and 5 mm-wide TiO2 layers 

presented a typical edge effect, common in printed thin films, which was measured as well 

and referred to as Ap to consider the different heights recorded at the edges and in the central 

part of the film. Thickness, average roughness and peak roughness for each layer were 
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measured in different zones of the A4 substrates (Table S1) to demonstrate the consistency 

across the whole printed area. Cross-section SEM/EDX images (Figure 4) also confirmed the 

layers’ thickness and the elemental mapping of lead and iodine revealed that the perovskite 

infiltration was uniform and complete throughout the layers, despite a stack thickness of over 

10 m. 

Modules with both un-patterned and patterned BLs were characterised under AM1.5 

illumination, after soldering wires to the silver painted busbars to provide more robust 

electrical contacts, and the average PV parameters are reported in Table 1. As expected, 

modules with patterned BL gave better performance: 3.2% PCE (reverse scan) compared to 

1.9% for the un-patterned BL, gaining about 20 mA of JSC (from 78 to 91 mA) and 2 V of 

VOC (from 16.3 to 18.2 V), as well as a 33% improvement in FF (from 29.2 to 38.9 %). To 

evaluate whether there is a margin for improvement, it is useful to compare these values 

measured for the modules to those of JSC (~20-23 mA/cm2) and VOC (~0.9-1 V) reported for 

best performing C-PSCs. A single strip in the module can be considered as an individual cell, 

whose VOC is given by the module’s VOC divided by the number of cells in the module and 

whose JSC is calculated as the module’s ISC divided by the active area of the single strip: in 

this way, un-patterned and patterned BL devices delivered poor JSC, 8.7 and 10.1 mA/cm2 

respectively, and acceptable VOC of 0.7 and 0.8 V, respectively.  

Surprisingly, the same modules, kept in the dark without any encapsulation for 144 hours at 

ambient conditions, i.e. room temperature and 55% RH, did not degrade but improved, mainly 

in terms of photo-generated current (+26% and +18% for un-patterned and patterned BL 

respectively), suggesting some perovskite crystal re-arrangements and/or interface 

improvements. We believe the humidity in particular played a crucial role, as already 

suggested by Hashmi et al[8], who demonstrated a performance improvement for C-PSCs, 

exposed to high humidity for over 200 h, and attributed it to an increase in perovskite 
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crystallite sizes, observed by XRD, as well as a TiO2/perovskite interface more favourable for 

electron injection, as confirmed by PL measurements, and a more intimate contact between 

the perovskite and the porous carbon.  

Thus, as a strategy to maximise potential PCE, the modules, after being stored for 144 hours 

in the dark at ambient conditions, were additionally exposed to 70% RH. As a result, after 48 

hours at 70% RH in the dark, their PCE showed a further improvement of 21% and 31%, 

respectively for un-patterned and patterned BL, as shown in Table 1. Again, considering a 

single strip in the module as an individual cell, un-patterned and patterned BL devices, at this 

point, delivered respectively 10.9 and 12.2 mA/cm2 of JSC and 0.7 and 0.9 V of VOC. 

Low currents and fill factors can be ascribed to the still poor quality of either perovskite 

crystallisation, albeit uniformly infiltrated throughout the stack (see cross section SEM in 

Figure 4), or TiO2/perovskite interface in terms of charge injection, or both, while 

recombination is the major contributor in reducing the VOC, possibly due to the BL being not 

very compact, thus allowing some direct contact between perovskite and FTO. Comparing the 

modules’ FF with best performing carbon cells, which can easily reach >60%, would be 

unfair as the design and quality of the interconnections between cells affect it significantly. 

Undoubtedly, patterning the BL resulted in both VOC and FF improvement (18% and 45% 

respectively, for the reverse scan, after 144 hours at ambient conditions and 48 hours at 70% 

RH) and reduction of the series resistances, as shown in Figure 5, by the I-V curve slope 

around VOC, which is much steeper for the module with patterned BL. The noticeable 

hysteresis is likely due to the modules’ heating during the measurements (~66 sec per scan, 

>2 min per measurement, causing the glass side to reach 50-55 °C measured by a 

thermocouple), as temperature can increase ion migration inducing hysteresis.[26, 27] It is also 

related to the slow response of perovskite materials upon illumination and to a light-induced 



  

9 

 

polarization, which can be explained by the build-up and discharge of mobile ions, affecting 

the interfacial recombination processes.[28] 

The observed FF improvement with BL patterning can be explained by the lower contact 

resistance, due to direct contact of one cell’s carbon top electrode to the FTO of the adjacent 

cell, without any TiO2 BL in-between. A lower contact resistance could reasonably reduce 

recombination, as charges transfer more easily from cell to cell, resulting in higher VOC.  The 

comparison between patterned BL (Carbon/FTO) and un-patterned BL (Carbon/BL/FTO) was 

carried out using TLM[25] to extract parameters such as transfer length (LT), contact resistivity 

(C) and contact resistance (RC, using 540 mm2 contact area), which are shown in the inset 

table in Figure 5. The contact resistivity (C) for Carbon/BL/FTO is equal to 147 Ω·mm2, one 

order of magnitude higher than for Carbon/FTO (34 Ω·mm2), due to the presence of the 

blocking layer between Carbon and FTO (Figure S3). As a result, the contact resistance is 

0.27 Ω and 0.06 Ω, respectively for Carbon/BL/FTO and Carbon/FTO. The transfer length, 

associated with the distance over which most of the current is transferred from the carbon 

electrode to the FTO, halves with patterning the BL, from 4.6 mm to 2.2 mm. This suggests 

an increase of the aperture ratio (active area/aperture area) for these modules is achievable, by 

reducing the contact area width from 3 to 2.2 mm.  

Interestingly, the best module with patterned BL maintained its performance for over 288 

hours at 70% RH as shown in Figure S4. It was then stored in a box with silica (~30% RH) 

and tested infrequently. After 528 hours following fabrication, it had reached almost 5% PCE, 

19.6 V of VOC (0.891 V per cell), 125 mA of ISC (13.9 mA/cm2) and 40% FF. After 2 months 

following fabrication, it was tested again as a thermostatically controlled holder had become 

available and the effect of light soaking at open circuit on performance could be assessed. An 

improvement of all the PV parameters was observed, as reported in Table 2, with light 

soaking the module for 10 minutes at open circuit before running the measurements, as well 
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as a better shape for the I-V curves, as shown in Figure 6, both at open circuit (reduced series 

resistances) and short circuit (higher shunt resistances). During the light soaking, ionic double 

layers discharge slowly and the ions migrate to the bulk, suppressing interfacial 

recombination.[28] As a result and thanks to the sample holder maintained at around 25 °C, the 

hysteresis was reduced and a PCE as high as 6.6% was achieved after 10 minutes of light 

soaking. A light soaking longer than 10 minutes did not improve further the performance, as 

shown by the PV parameters’ trend with light soaking time in Figure S5. At this point, the 

module delivered VOC=19.7 V (0.895 V per cell) and ISC=194 mA (21.6 mA/cm2) with 34.2% 

FF, suggesting that further improvements will likely originate from improving the latter.  

In order to provide a more reliable measurement, the module was held for several seconds at 

Vmax until it stabilised at 6.3% PCE, matching the PCE value obtained from the I-V scan. 

Note that the stabilised value was reached after only a few seconds because it was performed 

immediately after the I-V scans. 

The module also performed well at low light levels under illumination from fluorescent 

lamps, as reported in Figure 6-c and Table S2, yielding around 2 mW at 200 lux (usual indoor 

illumination level in living rooms), 6 mW at 600 lux (usual indoor illumination level in 

offices) and 10 mW at 1000 lux (usual indoor illumination level in hypermarkets, for 

example),[29] corresponding to 11%, 17% and 18% efficiency, respectively. For comparison, a 

5.44 cm2 inverted PSC device delivered 340 W under 1000 lux from fluorescent lamps.[30] 

Focussing on a lighting level of 200 lux from fluorescent lamps, the power density for our 

module is 10 W/cm2; under the same conditions and light source, polycrystalline silicon 

modules have been reported to yield 2.9 W/cm2,[31] amorphous silicon modules between 

3.9[31] to 5.9 W/cm2,[32] flexible dye sensitised solar modules 2.6[31] to 2.9 W/cm2;[32] an 

OPV module of 100 cm2 active area delivered up to 9.4 W/cm2 at 300 lux;[33] PSCs using 

SnO2/MgO electron transport layers generated 20.2 W/cm2 at 200 lux from LEDs.[34] 
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3. Conclusion 

A triple mesoporous C-PSC stack fabricated at large scale A4 size modules is demonstrated, 

using commercially available screen printable pastes and using only 1.6 ml of perovskite 

solution per module. As expected, patterning the BL improved both VOC and FF thanks to the 

reduced contact resistance of the Carbon/FTO connection compared to Carbon/BL/FTO. A 

further improvement came simply by storage in the dark at ambient conditions while no 

degradation was observed even after hundreds of hours at 70% RH. After 2 months since 

fabrication, the best module with patterned BL still delivered PCE as high as 6.6% (6.3% 

stabilised). We believe this to be an important breakthrough on the road to mass production 

and commercialisation. Work is ongoing to confirm these results on larger batches, assessing 

process quality and reproducibility, and to increase the still poor geometrical fill factor 

(45.5%) and the understanding of the physics behind these devices’ performance and stability.  

4. Experimental Section  

A Nd:YVO4 laser (diode end-pumped, 532 nm wavelength, at 50 kHz average output power 

30 W at 200 mm/s, pulse width 10.0 s) was used to etch the FTO glass substrates (XOP, 

TEC 7, 300 mm x 250 mm). The laser patterned substrates were cleaned using Hellmanex 

detergent (5% in deionised water, rinsed with deionised water, acetone and isopropanol and 

dried with nitrogen, then plasma cleaned for 10 minutes using a Nano plasma system (Diener 

Electronics) at 50% of its maximum power. Prior to the cleaning, half of the substrates were 

completely covered with high temperature Kapton masking tape (RS Pro, 65 m) which was 

then laser cut to mask the areas destined to the series interconnections only and to obtain a 

patterned compact TiO2 blocking layer (BL).  

The compact TiO2 BL was deposited in air at ambient conditions by spraying a 0.2 M 

titanium di-isopropoxide bis(acetylacetonate) solution in isopropanol onto the FTO substrates 

kept at 180 °C on a hot plate; 25 passes were performed, waiting 40 seconds between sprays 
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to allow solvent evaporation. The masks made of Kapton tape were removed from the 

substrates with patterned BL without leaving any residues. All substrates were heated at 300 

°C for 15 min and then left to cool down. A commercial TiO2 paste (Dyesol 30-NRD diluted 

1:1 in terpineol) was screen printed and then sintered at 550 °C for 30 min, to obtain an 800 

nm-thick mesoporous TiO2 layer. A 1.2 m-thick zirconia layer was deposited afterwards by 

screen printing (Solaronix ZT/SP) and heated at 400 °C for 30 min, followed by the screen 

printing of the carbon paste (GEM D3) to get a 10 m- thick top electrode, which was then 

also annealed at 400 °C for 30 min. The substrates were cooled down and kept at 150 °C until 

ready for the infiltration of the perovskite solution. All layers were printed in air at ambient 

conditions. 

An equimolar solution of PbI2 (TCI Chemicals) and MAI (Dyesol) in -butyrolactone (Sigma-

Aldrich) was prepared adding 5-AVAI (Dyesol) to obtain a 3% molar ratio between 5-AVAI 

and MAI and drop casted on the modules through the carbon layer, using 8 l/cm2. The 

infiltration was performed in a low humidity (30% RH) cleanroom to ensure the same 

ambient conditions for all the modules. After 30 minutes to allow the solution to percolate 

throughout the triple stack, the modules were annealed in a fan oven for 1 hour and 45 

minutes at 50 °C. 

The excess of substrate needed for the registration marks was cut, resulting in a final substrate 

size of 275 mm x 210 mm. Silver paint was applied to obtain busbars and wires soldered to 

ensure robust contacts on each module. 

IV measurements were carried out using in-house developed software and a Keithley 2400 

source meter under AM1.5 illumination from a sulphur plasma lamp (Plasma International 

GmbH) calibrated at 1 sun against a KG5 filtered silicon reference cell (Newport Oriel 91150-

KG5). The modules were scanned from VOC to ISC and vice versa at a scan rate of 330 mV/s, 

after 3 minutes of light soaking. For stabilized measurements, a bias, equal to the voltage at 
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maximum power determined by the IV sweep, was applied to the device and the current 

monitored under illumination. The modules were stored in the dark at different values of 

relative humidity, achieved as follows: for 55% RH, just a closed box stored in a cupboard in 

the laboratory; for 70% RH, a sealed box with a beaker containing an oversaturated solution 

of NaCl in water; for 30% RH, a sealed box with silica desiccant on the bottom. Each box had 

a humidity sensor to monitor the humidity level. While testing the shelf life of C-PSC 

modules, a more sophisticated system became available: a class AAA solar simulator 

(Solaronix, Solixon A-20), equipped with thermostatically controlled holder set at 25 °C, was 

used for all IV measurements from 550 hours after fabrication. 

The same software and source meter were used to measure the modules under illumination 

from compact fluorescent lamps, CFL (Osram L18W/827). The lux levels were measured by a 

luxmeter (LX-1330B) and the intensity calibrated as in previous work;[35] the CFL spectrum is 

reported in Figure S6. 

The morphology of films was studied using a JEOL-JSM-7800F field emission scanning 

electron microscope (5 kV acceleration voltage, a working distance of 10 mm and a 

magnification of x25,000). Energy dispersive X-ray spectroscopy (EDX) mapping was used 

to determine the element distribution using 20 kV acceleration voltage.  

X-ray diffraction data on the TiO2 blocking layers sprayed at different temperatures were 

collected on a D8 Discover (Bruker) X-ray diffractometer with a Cu  source (= 1.5418 

Å) operating at 40 kV and 40 mA. Scans were collected between 10 and 60 degree with a 0.02 

degree step. Raman spectroscopy on the same samples was performed with a Renishaw inVia 

Raman system with a 532 nm laser and 50x objective lens. Spectra were collected with 100% 

power and 10 accumulations for each sample with 2 seconds/accumulation. 
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FTO glass substrates (XOP, TEC 7, 57 mm × 57 mm) were used to measure the contact 

resistance between different layers, namely Carbon/BL/FTO and Carbon/FTO, using the 

transfer length method (TLM) and the layout reported by Matteocci et al.[25] A carbon layer 

was screen printed on both FTO and FTO with sprayed and sintered BL. After annealing at 

400 °C for 30 min, resistance (RTLM) between successive printed carbon contacts was 

measured using a Keithley and the data plotted against the distance between contacts and 

linearly fitted to extract TLM parameters. 

TiO2 and ZrO2 were profiled using a Dektak profilometer, with a 12 µg stylus force and 0.333 

µm measurement resolution.  Layer thickness, average roughness (Ra) and maximum peak 

height from average thickness (Rp) were calculated over 3 mm for the ZrO2 and 1 mm for the 

TiO2.  For the TiO2 an additional feature (AP) was measured (as indicated in Fig. S-2) to 

quantify fully the profile of the layer. 

White light interferometry measurements were conducted on the carbon layers using a 

WYKO NT9300 optical profiling system. A 5x magnification lens was used to measure a 1.22 

mm2 section incorporating substrate and printed ink edge, a 2-D analysis tool in Vision 32 

software was then used to measure ink film thickness as the height difference between cursors 

placed on the substrate and the ink (avoiding any edge effects and averaged over the 0.94 mm 

measurement width). Roughness data (Ra and Rp) were recorded using the 2-D analysis after 

isolating the ink film surface in the measurement. 
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Figure 1. (a) Cross-section schematics of adjacent cells in the module with nominal thickness 

of each layer, highlighting the laser-etched FTO, patterning of TiO2 blocking layer and the 

electrical vertical connection, ensured by the carbon back contact. (b) Module schematics, 

showing the different overlapping layers, the dimensions of the active area for both the 

individual single cell and the whole module as well as the distance between adjacent cells 

(inset). (c) Photo of a module; wires have been soldered to the silver painted busbars to 

provide more robust electrical contacts.   
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Figure 2. SEM images of TiO2 compact layers, sprayed at 300 °C, (a) before and (b) after sintering at 

550 °C for 30 min and sprayed at 150 °C, (c) before and (d) after sintering at 550 °C for 30 min. (e) 

Raman and (f) XRD spectra, showing the characteristic anatase peak respectively at 145 cm-1 and 25.3 

degrees. 

 

 
Figure 3. Profile of TiO2 layer, showing how Ap was measured to consider the different heights 

recorded at the edges and in the central part of the film; (b) white light interferometry of the carbon 

layer, revealing its significant roughness. Average values for thickness, average roughness Ra and peak 

roughness Rp are reported in the table. 
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Figure 4. Cross-section SEM image of one individual cell out the module and EDX maps for the 

elements, Sn (indicating the FTO conductive layer), Ti (indicating the porous TiO2 electron transport 

layer), Zr (indicating the porous insulating ZrO2 layer), C (indicating the porous graphite/carbon black 

top electrode), Pb and I (indicating the infiltrated perovskite throughout the stack). 

 

 

 

 
Table 1. Average PV parameters for modules with un-patterned and patterned BL (2 modules per 

type) after the infiltration and annealing of the perovskite (0 h), after 144 hours of storage in the dark 

at ambient conditions, i.e. room temperature and 55% RH, and after further 48 hours at 70% RH. 

 

Un-patterned BL VOC [V] st.dev. ISC [mA] st.dev. FF [%] st.dev. PCE [%] st.dev. 

0 h rev 16.3 0.9 78.1 9.3 29.2 6.2 1.9 0.7 

fwd 15.0 0.8 75.7 10.0 27.9 7.0 1.7 0.6 

144 h at 55% 

RH 

rev 16.1 1.4 98.6 2.9 26.7 7.2 2.2 1.6 

fwd 15.9 2.0 97.1 0.8 20.4 0.8 1.6 0.3 

144 h at 55% 

RH + 48 h at 

70% RH 

rev 16.2 1.4 98.2 11.0 27.3 8.8 2.3 1.1 

fwd 15.6 2.2 97.0 8.9 21.6 1.4 1.7 0.5 

Patterned BL VOC [V] st.dev. ISC [mA] st.dev. FF [%] st.dev. PCE [%] st.dev. 

0 h rev 18.2 0.1 91.0 19.3 38.9 4.2 3.2 0.3 

fwd 17.6 0.4 91.2 19.7 28.6 9.5 2.2 0.3 

144 h at 55% 

RH 

rev 18.0 0.2 107.4 3.9 37.2 1.7 3.6 0.3 

fwd 17.2 0.1 107.1 2.8 25.4 5.0 2.4 0.5 

144 h at 55% 

RH + 48 h at 

70% RH 

rev 19.2 0.1 110.0 8.9 39.6 1.3 4.2 0.5 

fwd 18.2 0.5 109.8 9.2 25.8 1.4 2.6 0.1 

 

 

 



  

20 

 

 
Figure 5. IV curves for the best modules with un-patterned and patterned BL (after 144 hours 

at ambient conditions and 48 hours of 70% RH treatment, left), showing the improvement in 

the curve shape, mainly due to lower series resistances and higher FF; measured TLM 

resistance values varying the contact distance (right) when the carbon is directly contacting 

the FTO, i.e. when the BL is patterned, and TLM parameters (inset table), namely transfer 

length (LT), contact resistivity (C) and contact resistance (RC, using 540 mm2 contact area) 

for patterned BL (Carbon/FTO) and un-patterned BL (Carbon/BL/FTO, measured values and 

linear fit not shown here because out of scale – see Figure S3). 

 
 

 
Figure 6. (a), (b) Effect of light soaking at open circuit prior to the I-V scans for the best 

module with patterned BL, after over 2 months since its fabrication and using a 

thermostatically controlled holder set at 25 °C: (a) I-V curves in both scan directions without 

any light soaking and after 10 minutes of light soaking and (b) output current stabilised over 

time at Vmax=10.8 V. (c) Maximum output power and PCE (reverse scan only) of best module 
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with patterned BL at different illumination levels under fluorescent lamps. I-V curves are 

shown in Error! Reference source not found.. 

 

 

Table 2. PV parameters of the best modules with patterned BL, after over 2 months since its 

fabrication and using a thermostatically controlled holder set at 25 °C, showing the effect of 

light soaking at open circuit prior to I-V scans. 

 VOC [V] ISC [mA] FF [%] PCE [%] 

 No LS 10 min LS No LS 10 min LS No LS 10 min LS No LS 10 min LS 

rev 18.2 19.7 173 192 28.9 34.2 4.6 6.6 

fwd 18.7 19.2 168 194 26.5 30.8 4.2 5.7 
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Low cost materials and equipment are used to demonstrate large area screen printed 

perovskite solar modules, advancing the route to commercialization of these solution 

processed devices. The screen printing process is optimized to avoid defects caused by 

printing such large areas. The resulting module with an efficiency of 6.3% is world leading 

for a device of this size. 
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All printable perovskite solar modules with 198 cm2 active area and over 6% efficiency 
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