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Abstract — In this paper, our main goal is to solve optimal control problem by using reinforcement
learning (RL) algorithm for marine surface vessel system with known dynamic. And this algorithm
is an optimal control algorithm based on policy iteration (PI), and it can obtain the suitable approx-
imations of cost function and the optimized control policy. There are two neural networks (NNs),
where critic NN aims to estimate the cost-to-go and actor NN is utilized to design suitable input
controller and minimize the tracking error. A novel tuning method is given for critic NN and actor
NN. The stability and convergence are proven by Lyapunov’s direct method. Finally, the numerical

simulations are conducted to demonstrate the feasibility and superiority of presented algorithm.

Index Terms — Reinforcement Learning, Critic Neural Networks, Actor Neural Networks, Lyapunov

Method, Marine Vessel.

1 Introduction

Recently, marine vessels have been used in various fields, for example, ocean exploration, marine
transportation, etc. [1, 2, 3, 4, 5, 6, 7]. With the continuous development of society, the traditional

control methods are unable to satisfy the growth in the marine transportation and the needs for
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modern navigation safety. In order to increase tracking accuracy, there are a lot of studies have been

proposed with different control methods of marine surface vessels [8, 9, 10, 11, 2, 12, 13].

For marine surface vessel system, it is a difficult problem to ensure the stability in the brutal en-
vironment. Therefore, there have been many researches presented in the last couple of years. For
example, an adaptive robust tracking control law with finite-time for a fully actuated marine vessel
with unknown interference is proposed in [8]. In [14], a control law for trajectory tracking is pro-
posed for the marine vessels system with state constraints and dynamics uncertainties. The authors
present a control method of tracking the desired trajectory for a fully actuated marine vessel in [11].
And a control problem of a variable length crane system is investigated in [15]. In [10, 16], the

authors propose the sliding-mode control method for a surface vessels system.

In the mathematical view, the optimal control problem is equal to solve Hamilton-Jacobi-Bellman
(HJB) equation. Because of the difficulty of nonlinear nature of the HIB equation, more and more
researchers put effort into this field in order to solve this puzzle. More achievements have presented
the reasonable methods to cope with the discrete-time HJB equation. In [17, 18], many useful points

about this problem have been given.

Reinforcement learning is an approach to deal with the aforesaid problem [19, 18, 20, 21, 22, 23].
For a typical structure of reinforcement learning, there includes two neural networks, and the actor
neural network updates its output value based on the value of critic neural network. These two neural
networks must execute coordinately, and the ultimate target is to reach the global optimum of cost
function. The authors provide an adaptive neural network control by using RL algorithm for a robot
manipulator systems with unknown functions and input dead-zone in [24]. In this paper, we propose

a surface marine vessel by using reinforcement learning and prove its availability.

In recent years, PI has been discussed in [25, 26, 27, 28, 29, 30, 31]. This method belongs to optimal
learning for dealing with optimal control problems. For the linear time-invariant system, it can
reduce the problem of Kleinman algorithm to solve the Riccati function problem. It is the same as
other reinforcement learning algorithms, PI is applied on critic/actor neural networks which are used
to approximate the unknown parameters. In this paper, a method about synchronous policy iteration
is investigated and it is inspired by PI [32]. This method is one of the generalized PI proposed in
[33].



For the past few years, adaptive neural network has been applied for the nonlinear systems broadly,
and it can be learned to approximate solution of any nonlinear equations as long as the hidden layer
with enough nodes [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. In [46, 47], authors use NN
to approximate the unknown system parameters. Two NNs are utilized to approximate the input
deadzone and unknown system dynamics in [48]. In [49], a novel critic neural network controller
is presented for nonlinear feedback systems, and the control design is based on the predictor model.
An adaptive neural network controller is presented to cope with the problem of system uncertainties
[50, 51, 52, 53, 54, 55, 56, 57, 41, 12, 58, 59]. An adaptive NN control method based on radial basis
function for nonlinear multiagent systems is investigated in [60]. In [61], the authors employ an
adaptive NN method for an underactuated wheeled inverted pendulum model. In [62], a trajectory
tracking control for marine vessel with full-state constraints and system unknown is designed. In the
controller, an adaptive neural networks are used to compensate the dynamics uncertainties. To sum

up, the NN is a more and more important technique and can be applied to many fields.

In this paper, there are several main contributions. i) The critic NN is designed to approach the
optimal cost function of the marine vessel system, and we tune the critic NN weights when an
adoptable policy is specified. ii) And an extra NN actor neural is proposed, and in standard policy
iteration we adjust both NN synchronous in real time. iii) RL is applied to control the position of a
three degrees of freedom multiple-input-multiple-output (MIMO) marine vessel system, which has

a good control effect.

In what follows, section 2 covers problem formulation that contains system modeling and some nec-
essary lemmas, assumptions and properties. The two neural networks control design and stability
analysis are shown in Section 3. Next, the simulation is given to show the feasibility and effective-

ness of our controller. At last, Section 5 concludes this paper.

2 Problem Formulation

Some notations are proposed as follows, and we will use some symbols: R* denotes a positive real

number, R" is the n-dimensional Euclidean space, || - || is the norm of Euclidean vector, || is
the absolute value of a scalar w, ||cw|| is the norm of vector wo, that is ||| = Vw!w, and || - ||2

represents the matrix 2-norm.



2.1 System Modeling

In this paper, the dynamic of a marine surface vessel [1] is described as

i =J(nv
Mo+ Cw)v+ Dw)v+gn) =u (1)

where 1 = [1, 1, 7y]T € R? denotes the earth-frame positions and heading, v € R? presents the
control input of the systems, v = [v,, v,.vy]" € R? presents the velocities of vessel in the vessel-
frame. M € R3*3 is a symmetric positive definite inertia matrix, C'(v) € R3*? denotes centripetal
and Coriolis torques, D(v) € R**3 is the damping matrix, and g(n) presents the restoring force, and

J(n) is the transformation matrix which is defined as

cos 1y —sinmny 0
J(77) = lsinnw coanf 0:| (2)
0 0o 1
We can let z; = 1, x5 = v, then we are able to get following description of our system:
i’l = J(l’l)l’g
g = M~ u — C(x2)xs — D(w2)22 — 9(21)] (3)
Then the vessel dynamical system is given by
2(t) = Az(t)) + Bz(t))u(x(t)); 2(0) = o )
where
#(t) =[],
_ J(z1)z2
A<x(t>) o [ M_l[—C(ﬁfz)xz—D(ﬂ?z)ﬁ?z—g(rl)]] )
B(x(t)) = [ 4] (5)

with 05,3 denoting 3 X 3 zero matrices.



Assumption 1 [63] According to (4), we can assume B(x) is bounded, and matrix B(x) has full
column rank for all x € R", and we need to define BT = (BT B)™'BT is bounded and locally

Lipschitz.

Assumption 2 [64] Let x4(t) be the bounded desired trajectory, and we can assume that there exists

a Lipschitz continuous equation fy(-) € R™ with f;(0) = 0 such that

tq(t) = fa(wa(t)) (6)

Then denoting the tracking error as,

e = x(t) — xq4(t) (7)

From (3), (6) and (7), we can obtain the tracking error dynamics

é(t) = A(xz(t)) + B(x(t))u(z(t)) — fa(za(t)) (8)

The input controller u, corresponding to the desired trajectory x is

ud(xd) = B+(l’d)i}d — A(xd) (9)

Therefore, we need to define a new state € R'? as

w = [eT, z]]" (10)

According to (8) and Assumption 1, we can obtain the derivative of (10)

w = FE(w)+ F(w)v (11)



where the functions £ € R'?2, G € R'2*3, and controller v € R?, we have

B(w) = | At i plerau) (12)
Flw) = [ #20], v=u—u, (13)

Assumption 3 [18] We can assume that, A(0) = 0, A(x) + B(x)u is Lipschitz continuous on a set
Q) C R® which contains the origin, and the dynamics system achieves stability on Q). That is, there
exists a continuous control torque v(t) € U so that the system is asymptotically stable on ). On the

other hand, we assume that the system parameters M, C(v), D(v), and g(n) are all known.

2.2 The Optical Control and Problem Formulation

In this paper, we define the integral cost function as [63]

V(w) = /000 r(w(r),v(r))dr (14)

and we can define r(w, u) = Q(w) + v’ Rv, where () is positive and chosen as Q(w) = w” g,

and R € R**3 is a symmetric positive definite matrix, ¢ € R'?*!? is a positive semi-definite matrices.

Definition 1 [18]. We define a control policy p(x) as admissible with respect to (14) on ), and
w € V(Q), if p(w) is continuous on Q, u(0) = 0, v(w) = u(w) stabilizes (4) on ), and V (wy) is

finite Vo € L.

If V(w(t)) is smooth, through differentiation, the nonlinear Lyapunov equation is represented with

the feedback control policy as
0 =r(w, u(@)) + (VE) (E(w) + F(@)u(=)), V*(0) = 0 (15)

where V* is the partial derivative of V# with respect to c. And p(ww) denotes the admissible control
policy, if V#(w) conforms to (15), then V#(w) presents a Lyapunov function for the marine vessel

dynamics system (4).



Based on the optimal policy and the CT Hamiltonian function, we can define
H(w,v,Vy) =r(w,v) + (Vo) (E(w) + F(w)p) (16)
then, the optimal cost-to-go V*(w) is expressed as

V*(w(t)) = min ( /0 h 'r’(w(T),,u,(T))dT) (17)

u(t)eQ

where g is known. Then, we can obtain

0= min H(w,u, V> 18
“I(Itl)lenﬂ (w, p ) (18)

We can assume that the minimum on the term min,co H(w, i1, V%) of (18) exists and is unique, we

can design the optimal control as

p(w) = —%R—IFT(w)v; (19)

Substituting (19) into (15), we can obtain
0= Q@) + V2! (@) B(@) ~ 1V () Fla) R~ F(w) V() 20)
V*0)=0 2D

According to (19) and (20), we can solve this problem by the optimum control scheme. However,
it is difficult and impossible to find the solution as a result of the nonlinear characteristic of HIB

function (20).

Based on [65], the method of PI is adopted to cope with the optimal control problems. Therefore,
the method of synchronous PI used in this paper, and the of PI algorithm is designed as follows.
1. choosing admissible initial control ;(?) () .

2. given p (), solving for cost function vt through

0= r(w, (@) + (V) (E(w) + F(@)u?(w))

Ve 0) =0 (22)



3. updating the control policy

p™*Y = arg min H(w, v, VV.1V) (23)
which are also represented as
. 1 .
p ) () = —53—1FT(w)vvg> (24)

The convergence of PI algorithm have been proven in [66].

PI is a based on Newton iteration method. For the case of linear time-invariant, it can reduce the
problem of Kleinman algorithm [67] to solve the Riccati equation. Then, (22) becomes a Lyapunov

function.

2.3 Neural Network

As areinforcement learning algorithm, the PI is able to be applied in a critic/actor structure, and this

structure contains two NN to approximate the solutions of (22) and (23).

For this structure, the cost function V*" and the controller p V() are approximated by NN at
every step of the PI process. These NNs are designed as the critic NN and the actor NN, respectively.

The critic NN aims to solve (22) and the actor NN is tuned to deal with (24).

Assumption 4 [18] Eq. (15) is positive definite. It is guaranteed by the condition that Q(w) > 0,
w € Oy, Q(0) = 0 is positive definite.

Assumption 5 [18] Eq. (15) is smooth and V (ww) € V().

From Assumption 5, we can obtain that there exists a basis set {¢;(w)} so that the solution V(@) to

(17) and its gradient are estimated. In other word, the coefficients v; are defined as follows:

V(w) = Zvi%(w) = Zvi%(w) + Y vpw@) = V(@) + Y vipi@) (29

i=N-+1 N+1

V(=) _ ivawi(W) :EN: 9pi(=) | i . 99i(@) (26)

1 UZ 2
— Ow — Ow ol Ow



where ¢(w) = [p1(@), pa(@), - -, pn()]?, and the last term in (25) and (26) approach to zero as

N — oo.

Thus, there exists weights 11 and the value V' (w) is approximated as
V(w) = Wlo(w) + e(w) 27

where ¢(w) C R is the NN input vector, N states the number of neurons in the hidden layer,
W, € RY is the weight vector of NN, and ¢(z) denotes the error of NN. For the NN input functions,
{pi(w) : i = 1,2,..., N} are selected such that {p;(w) : ¢ = 1,2,...,00} provides a complete
independent set. Therefore, the derivative of V' (w) is represented as

ov (c’)gzﬁ(w)

v —>TW P AR (28)
Ow Ow 0w ‘

Then, as N — oo, the approximation errors € — 0, Ve — 0. Additionally, for fixed N, € and Ve are

bounded.

Taking the fixed controller v(t) into consideration, the nonlinear Lyapunov function (16) can be

expressed as

H(w,v,W.) = Q(w)+ v Rv+ (Ve+W!Ve)(E(w)+ F(w)u) (29)

According to Assumption 5 and (15), the nonlinear Lyapunov equation can be represented as
WIV(E(w)+ F(w)v) + Q(w) + v Rv = ey (30)
where the residual error € 1s

en = — (Vo' (BE(w) + F(w)v)

[e.e]

= —(V-W)"Vo(E(@) + F(@m)v) = Y _ vVgi(w)(E(w) + F(w)) (31)

i=N+1

In the basis of the Lipschitz assumption, we can assume that there exits a bounded for the residual

erTor cy.



Lemma 1 [18] There is an unique least-squares solution for (29) with the control policy u(t). we

can define if denoting this solution as W,

Volw) = W p(w) (32)

C
Then, as N — o0 :

a.sup leg| — 0
wel

b|W.—=V|2—0

c.sup [Vo = V| =0
we

d.sup |VVy —VV] =0
we

According to the results, V;(w) achieves convergence to the solution V() as N — oo, and the
weights converge to the first NV of weights, V is solved by (15). For HIB approximation error, we

can substitute (27) to (20)

Q(w) + (WIVe¢ + Ve E — }L(Wg’w +VEOFR'FT(V W, +Ve) =0 (33)

then, we can let

1

1
ey = —Ve E+ §WCT ¢FR'FTVe + ZVETFR_lFTVe (34)

therefore, we have
1
Q(w) + WIVoE — Z—chT VOFR'F'V¢'"W, = egn (35)

where Ve > 0,3N(€) : sup,cq |lenmsnl < e

10



3 Control Design

In this part, we design the critic NN and actor NN to optimize the cost function and obtain the

optimal controller. Fig. 1 provides the block diagram of learning control process.

Critic-NN to approximate

v - — — — .
=5 |_ cost function}/(zr)
2
c
2| g
< i Control action and %
Actor-NN t/) generate the Controller 1i(a@)
. » Marine vessel system
coptrol policy
//
4
System output

Figure 1: The block diagram of Reinforcement Learning structure.

3.1 Ciritic Neural Network and Adaptive Optimal Control

In this section, we focus on design of critic NN. The process investigates the adaptability and con-

vergence of the critic NN weights.

The cost function is designed as an observer for the value function. Hence, we design the critic NN

controller as

V(w) = W ¢e(w) (36)

where VVC expresses the estimated value of the desired critic NN weight vector .. Then, the non-

linear Lyapunov function is approximated as
H(w, W,,v) = Q(w) + v Rv + W (E + Fu(t)) (37)
In this paper, the critic weight approximation error is defined as

Wc - Wc - Wc (38)



Then, we can let e, = H (w, W, v), and we have
ec = —WLGAE + Fu(t)) + ey (39)

The system aims to minimize the squared error by choosing proper V., and we can define Lyapunov

function as

V.= =€’ e, 40)

A o a‘/; o O[C T o) T
W, = FC@WC = Fc(ozg’ac 1) la. W, + Q(w) + v' RV

where o, = Vo (E + Fu(t))

According to (31), we can obtain
Q(w) +v 'Ry = —WZX¢(E + Fu(t)) + ey (41)
Substituting (41) into updating law, we have

W, = —T.a.a" W, + Fc%ﬁH (42)

where a. = a./(afa.+ 1) and 9, = ala. + 1.

The next assumption and lemmas are proposed to guarantee the optimization of weight of error V.

Assumption 6 [68] Persistence of excitation (PE) assumption: with the persistently exciting &

belonging to [t,t + T, there exist constants & > 0,& > 0, T > 0 satisfying that for t,

t+T
61 < Sy = / a.(r)al (r)dr < &I (43)
t

It is necessary to present the PE assumption in adaptive controller because one effectively desires to

verify the critic arguments to approximate V (x).

12



Lemma 2 [69] We can define the error dynamics system as

€x
Ve
y=al, (45)

W, = —I'.a.al W, +I.a. (44)

The PE condition (43) is equal to the uniform complete observability (UCO) and there exist constants

&3> 0,8 > 0,T > 0 satisfying that for all t [70],

t+T
&GI< S, = / : ST (1, t)a.(T)al (1)@ (1, t)dr < &1 (46)

C

where ®(t1,tg),tg < t1 is the state transition matrix of (44), and I is an identity matrix.

Proof: Consider the system WC =T.a.u,y= dec based on the output feedback u = —y+ey /0.,
it is equivalent to the error dynamics system (44). For the error system, (43) is the observability

gramian. Wl

UCO shows that if input and output are bounded, the state W, for error system is bounded.

Lemma 3 [18] Take the error dynamics system (44) into consideration. &, is designed to be persis-
tently exciting. Then, we have

(a) The dynamic equation (44) achieves exponentially stable. Actually, if ey = 0, we can obtain
[We(kT)|| < e [, (0)] (47)

where

A= —% In(y/1 — 2I.&) (48)

(b) We can let ||ey|| < emax and ||[y|| < Ymax then ||W,|| achieves exponential convergence to the

residual set

VET
&1

W.(t) < {Ymax + 0&T e (Emax + Ymax)] } (49)

13



where 0 is a positive constant. The proof of this lemma is shown in [18]

The following performance indicates that the adaptive law (41) is valid under the PE condition, the
weights W, can converge to the unknown weights W,. Therefore, V(:c) achieves the convergence

approach to the value function under the controller v(t).

Theorem 1 With any admissible bounded control policy v(t), given the adaptive law (41) for the
critic NN and assuming that &, is persistently exciting, letting the residual error ¢ g be bounded and
satisfy ||€m|| < ||€max||, the critic parameter error achieves the exponential convergence with decay

factor (48) to the residual set, which is defined as

VET

51

We(t) < {[1 + 206 ] max } (50)

Proof: We design Lyapunov function candidate as
|
L(t) = étr{wc r,"w.} (51)

Considering (42), the derivative of L becomes

. ~ T ~ ~
L:—tr{WcTa;gC Wc}thr{WcT%;—H} (52)
Then, we obtain
2
ol . al’ - €H
L < —||==W, —< W, -H
9. Wl + 9. W, 9.
. T ~ T ~
Lg—C;—CWc[%—CWc—;—H] (53)
If €,,.x satisfies
T
€ a, x
1’TC < €max < F@ c (54)

therefore I, < 0 with |9:]] > 1.
If the condition (54) is satisfied, as L(t) decreases, a proper bound for ||a. W, || is provided.

14



Take the error dynamics system (44) with the bounded output ||y|| < €xyax into consideration. There-

fore, ||TW.|| achieves the exponential convergence to the residual set

We(t) < ¥ §2T
1

{[1 + 20&T ] €max } (55)

Remark 1 As N — oo, ey — 0 uniformly [66]. Thus, €., decreases as the number of hidden

layer neurons increases.

Remark 2 This theorem is obtained based on the assumption that the controller v(t) is bounded,

because ey is associated with v(t).

3.2 Action Neural Network and Adaptive Optimal Control

In this part, we propose an adaptive PI algorithm. Namely, we need to adjust the weights of actor
NN and critic NN simultaneously. This algorithm is based on the Generalized Policy Iteration (GPI),

and there is a particular introduction in [32].

For the actor NN, a rigorously justified form is required. Therefore, we take one step of the PI

algorithm into account. According to (23) and (24), update controller is designed as
1 o0
= _53—1FT(w) ;cngoi(w) (56)
Lemma 4 [18] Let W, as the least-squares solution to (29) and we can design
1 1
ve(w) = —§R_1FT(w)VVO(w) = —53-1FT(w)v¢Z(w)Wc (57)

where Vj is defined in (32).

Then, as N — oo:
(@) sup,eq [[ve — V|| — 0

(b) There exists an N satisfying that for N > N, v.(x) is admissible.

15



The proof is presented in [18]. According to the above results, we can consider the desired control
policy is as (57) with unknown weights. Consequently, based on the form of actor NN which can

compute the control input. And then we design the control policy as follows
1 .
vo(w) = —§R_1FT(w)V¢Z (@)W, (58)

where W, represents the approximated values of the desired NN weights W, for action NN. Then,

we design the actor NN evaluated error as follows

W, =W,—-W, (59)

The following definition and assumption are necessary conditions for our studies.

Definition 2 [t is said to be uniformly ultimately bounded (UUB) for the equilibrium point w, = 0
of (3) with a compact set © C R" for all wy € O, and there exits a boundary B and a time T with

|w(t) — we|| < Bforallt >ty +T.
Assumption 7 a. We can assume that E(-) is Lipschitz and F'(-) is bounded
[E@) < dellew]l, [[F ()] < dy-.

b. We can assume that the evaluated error of actor NN and the gradient of it are bounded on a

compact set €.
el < de, [|Vel < de,

c. We can assume that the basis functions of NN and their gradients are bounded
[¢e(@)|| < dy, [[Voe(@)]| < dy-

Then, we obtain the following main theorem. The adaptive laws for the actor NN and critic NN are
designed to ensure the convergence of the synchronized PI algorithm to the optical control policy

with the condition that the system is stable. Accordingly, we propose the theorem as follows.

16



Theorem 2 With the dynamics described as (3), the critic NN provided as (36) and the control input

represented by actor NN (58), then we can define the critic NN adaptive law as

X Oé(l A~
Wc = —ch[O{zWC + Q(W) + VaRVa] (60)

where o, = Vo.(E + Fu,(t)). With the assumption that &, = o,/(ala, + 1) is persistently

exciting, we have the adaptive law for the actor NN as

W, = T { (KW, — K.aTW,) — = Do(a)W,0TW,) 61)

Ny

where

Voo(w)F(w)RF (w)Ve! (@) (62)
Qg
(ag g +1)?

D,
Yy, (63)
K, > 0and K. > 0 are adaptive parameters, which are selected in the proof in detail. Then, there
is a constant Ny satisfying that for the nodes of hidden layer unites N > N, the state of closed-
loop system, the weights error of critic NN W.,, and the weights error of actor NN W, are uniformly
ultimately bounded. Furthermore, according to Theorem 1, €, is given in the appendix part such

that W, achieves the exponential convergence to the approximate optimal critic NN weight value

Ww..

Proof: According to analysis of Lyapunov stability, the convergence of the system can be proved. We

design the Lyapunov function candidate as
1 ~ < 1 - -
L(t)=V(w) + 5wtr{WcT Lo'Wet + 5w{WaT L, 'W,} (64)

Through the proper selection of adaptive laws, the errors W, and W, can be proved to be UUB, and

convergence can be obtained. We can let

1 - - L s 7
Ly = V(@) Lo = Gtr{WIT W}, Ly = Str (W] T W}

17



then,

For the first term L, its derivative is

Ly = W (Voee(z) — ~Du(w) W) + Vel (@) (B(w) — %FR‘lFTVqﬁZWa)

1
2
Because of
1 .
{(w) = V! (w)(B(w) — iFRleTVquWa)
So L, can be expressed as

Ly = W (Ve.E(w) - %Dc(:c)Wa) +é(x)
— WIVé.E(w) + %Wch(w)(Wc i) — %Wfﬁc(w)Wc +é(w)
= WIVOE(w) + W, Delw) Ve — SWI D ()W, + é(c0)

1 _ B
= Wla. + éWcTDC(z)Wa + é(w)

From the HIB equation, we can obtain

Then, we have

. 1 _ 1 _ -
L, = —Q(w) — ZWcTDc(w)Wc +€nsB + §WcTDc(w)Wa + é(w)

18
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(66)

(67)

(68)



For L., its derivative is

L. =W!'T,'W,

3 . 1w .
- TP_ch Ca ( r c - TDC a)
W. T, (T, 7 1) a, W+ Q(w) + 4Wa 4%
T a ~ 1.4 — A 1 _
== Wgwk—+1)2(agwc — CVZWC + ZLWEDCWG — Z_LWCTDCWC + EHJB)
_ 1T A (_ET i lATDN 1~TD~ )
Wc (Olg(l’a + 1)2 quc WC + 2Wa ch + 4Wa cWa + €HJB (69)
Since we defined o, as o, = V). (E + Fu,(t)), we have
; T Qq T1F l~p= =
Lc = Wc m(—aaWc+ ZWG DcWa‘l’EHJB)
1 . .
= Lo+ W% WD, (70)

4 (ala, +1)2 ¢

where

L.= WTL(—%TWC + €sB) = Wcha< —alWw, + (71)

6HJB>
“ (ala, +1)2

,19/

a

Substituting (68) and (70) into L, we can obtain

: 1 _ 1 _ .
L=—-Q(w)— ZWCTDC(w)WC + §WCTDC(w)Wa

o elrd x o
+€HJB+E+WuFa1Wa+WZ e

SEE SR
e  (_ T Ry 744
(aZaa+1)2< oWt 3 We DcWa+€HJB) (72)

Then we can obtain

. _ 1 _ ~ ~ X
L =Wlae+ Lot é+ W, De(@)We ~ Wol W,

1~ 1~ al 1~ al 1~
4WDW19/W 4WDW0,W+4WDWQ9,W+4WDWQ9/W (73)

where o, = and V', = ala, + 1.

Toz +1
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For the selection of the update law for the action NN, we have

. _ - R 1~ - . abf.
L =Wla,+ Loté—W! (r;lwa - Z—lWaDCWaZ—‘jWC)
1= Y T S B 1s = = al
a Dr c n aDc (:_a [ aDc c_a c n aDC a_a c 74
+2Wa ‘(w)W+4W 1% . 4W WﬁgW+4W WQ%W (74)
Therefore, we can define the actor adaptive law as
X ~ - 1 - - -
W, = T {(K,W, — K&l W,) — ZDC(w)WaﬁaTWC} (75)
According to the redefined actor adaptive law (75), there exists
- 1~ _ . @67; R
T (Fa W, — —WaDcWa—Wc)
4 A
= WIK,W, - WI'K.alw,
= WIK,(W.-W,) - WI'K.al(W, - W,)
=WI'KW, - WKW, - WIK.alw, + WIK.@," W, (76)
Finally, we have
. 1 . ~ ~ 4 -
L = —Q(w) — ;W' DWe + ensp + Wia,( - alw.+ Ff{;B) + WKW,
- - - - - 1 . 1~ _ AL .
_Wchd;{Wc + Wch@ZWC - WgKaWa tét §WaTDch + ZWaDcWC?;_?Wc
1. - al 1~ - - af
— Dc c_a c n aDc a_a c 71
4Wa WﬁgW+4W W%W (77)

It is necessary to utilize norm bounds at present. According to Assumption 7, for ¢, we have
) 1 -
62| < de dalleol + S i, ouin(R) (W] + 1) (78)

Since Q(w) > 0, there exists ¢ satisfying w' ¢'ww < Q(w) for w € S According to [18] that ¢
achieves uniform convergence as N increases.

Choosing proper €may > 0 and Ny(€max ), there is Sup_cq ||€nspll < €max. Next, let N > Ny and
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w
X = aaTWc , we have

Wa

. 1 _ 1
L < ZHWCHZHDCH + Edewdgd¢wo-min(R)HWCH + €max

rq'T 0 0
T
—XT 1o I LK DeWe X
2 897,
| o 7%K67ﬁDCWC Ka—2(DWedT+9,WI D,)
depda
€max
+XT A
(%DCJFKQ—KCO-({%DCWC@;F) Wet3idey, d2dg o, Omin(R)

Then, we define

q'I 0 0

T
U= o ; (“srgpaw) | X

0 —%Kc—ﬁécwc Ko— 2 (DWOL+9,WI D)

and

ey da
d = K2
(%D0+Ka_KadaT_iDchﬁg) Wc+%dewd§d¢w0min(R)
1 _ 1
WP IDell + 5 dee dgdo Ormin(R)[Well
By choosing proper parameters such that U > 0, we can obtain

L < —0mun(@)|IX|]? + [|d][[| X ]| + ¢ + €max (79)

In order to make the Lyapunov derivative negative, the following condition should be satisfied

ol 1P o+t emm
X _ 80
IX1> 2@ ™\ 202, @) T o) (80)
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4 Numerical simulations

In this part, we use the model of Cybership II, and it is built in a marine control laboratory in Nor-
wegian University of Science and Technology with a 1:70 scale [1, 71]. We set the ideal trajectories

of z; as
(

T124(t) = sin(0.5¢)

T1ya(t) = 0.14 cos(2t) 8D
_ —1( %14
\xwd(t) = tan (liyj)
J g = x99 (82)

Force of gravity is defined as g(x) = [0.4 cos(z14)—0.72 cos(x1y), 0.4 sin(z1,)+0.72 sin(x1y), 0.36].

The symmetric positive definite inertia matrix M, the Centripetal and Coriolis torques C' and the

damping matrix D are expressed as

m—Xqu 0 0
M = 0 m—Yg, mzg—Ya,

0 mxg—YdT Iz_Ndr
C11
= | Cn

C31

Ci2
Caz

Ci3
Cas
Cs2

Cs3

Ci1=Cla=0Cy =0Cy»=0, C3= (—m - Y;lv)vy - (mSUg - Y;lrvw)

C(23 = C(32 = (m - Xdu)Uocu C(31 - (m - Y;lv)vy + (mxg - Ydr)Uw

D11 Di2 Dis
D(U) = [D21 Das  Dos
D31 D3z Dss
2
Dy = —-X, — qu|Ua:| — TyuuVy, D1z = Diz = Dy = D3 =0

Dy = =Y, = Yovlvy| = Yioloyl,

D3y = =N, — va|vy| - NTU|U1/1|a
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In this paper, the parameters of system are chosen as follows

Table 1: Parameters of a marine vessel system

Parameter | Value Parameter | Value | Parameter | Value
m 23.8kg Ny, —1.0 || Yy, —10.0
I, 1.76 Ny, 0 Ny, 5.0437
Tg 0.046 Ya. 0 X, —2.0
Xy —0.7225 || Y}, N, 0.1052
Xuu —1.3274 || Y, 1 N, 0.8
Xuwu —5.8664 || Y, 3 Y, 0.1079
Y, —0.8612 || N,, 5 N, 0.5
Y. 36.2823 || N, 4

In our paper, we chose the initial parameters as: (0) = [0, 0.14, 0], v(0) = [2,0,0]", ¢ = 10015,
R = 0.115. For the neural network, the parameters are selected as: I'. = 100/150x150, [« =

5001150><150, Fc = 0-021150><150’ Fa = 0-51150><150'

The performances of simulation are presented in Figs. 2-7. From Fig. 2, it is obvious that the real
trajectory of position state x; can precisely track the desired trajectory of the closed-loop vessel
system. The tracking error e; is shown in Fig. 3, from which we can obtain that the system achieves
the stability with a very small tracking errors. The control input w is stated in Fig. 4. Fig. 5, and Fig.
6 present the values of the weight vectors W, and W,, respectively. Approximations of integral cost

function (14) with critic NN, actor NN and the real value are proposed in Fig. 7 respectively.

According to the above simulation results, we can draw the following conclusions. From Fig. 2
and Fig. 3, we can obtain the performance of trajectory tracking is very well and the tracking
error is very small that close to zero almost. From Fig. 7 we can get a good approximation of the
actual value function is being evolved. From these all figures, we can obtain the availability of our
algorithm applied in marine vessel system, and our study direction will now be directed towards
integrating the neural network with the actor/critic structure with the purpose of approximating the

system dynamics.
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Figure 3: Tracking error e; of RL control.

5 Conclusion

A controller for the fully actuated vessel with known dynamic by using reinforcement learning algo-
rithm is investigated in this paper. And then we have proven that the signals of closed-loop system
are uniformly ultimately bounded, the performance of trajectory tracking is very well. Simulation

part also has shown the effective and predominant results of the presented controller. In the future,
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Figure 5: Weights of critic NN.

we will concentrate our attention on practical experiment, and we will also extend the proposed
control method to deal with more complex issues such as constraints and deadzone. Furthermore,
we will try our best to do more research about the novel control methods, and apply them to more
domains, for example, robot arm, aircraft and so on. Due to the limitations in existing facilities and
lack of resources on the vessel systems, we were not able to conduct the practical validation with

good scaling for the proposed controls. Therefore, the next we will conduct some experiments to
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verify the feasibility of these methods.
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