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Adaptive finite element analysis for damage detection of Non–uniform Euler–Bernoulli 

beams with multiple cracks based on natural frequencies 

ABSTRACT 

Purpose 

In this study, an adaptive finite element method (FEM) is developed for structural eigenproblems 

of cracked Euler–Bernoulli beams via the superconvergent patch recovery displacement technique. 

This research comprises the numerical algorithm and experimental results for free vibration 

problems (forward eigenproblems) and damage detection problems (inverse eigenproblems).  

Design/methodology/approach 

The weakened properties analogy is used to describe cracks in this model. The adaptive strategy 

proposed in this paper provides accurate, efficient, and reliable eigensolutions of frequency and 

mode (i.e. eigenpairs as eigenvalue and eigenfunction) for Euler–Bernoulli beams with multiple 

cracks. Based on the frequency measurement method for damage detection, utilizing the difference 

between the actual and computed frequencies of cracked beams, the inverse eigenproblems are 

solved iteratively for identifying the residuals of locations and sizes of the cracks by the 

Newton–Raphson iteration technique.  In the crack detection, the estimated residuals are added to 

obtain reliable results, which is an iteration process that will be expedited by more accurate 

frequency solutions based on the proposed method for free vibration problems. 

Findings 

Numerical results are presented for free vibration problems and damage detection problems of 

representative non-uniform and geometrically stepped Euler–Bernoulli beams with multiple 

cracks to demonstrate the effectiveness, efficiency, accuracy and reliability of the proposed 

method. 

Originality/value 

The proposed combination of methodologies described in the paper, leads to a very powerful 

approach for free vibration and damage detection of beams with cracks, introducing the mesh 

refinement, that can be extended to deal with the damage detection of frame structures. 

KEYWORDS: Adaptive finite element method, Beam with multiple cracks, Damage detection, 

Free vibration, Forward eigenproblems, Inverse eigenproblems
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1.  INTRODUCTION 

Free vibration and damage detection problems for frame structures are widespread in engineering 

practice. In one of the special cases, the beam members contain multiple cracks, and the existence 

of these cracks changes the mechanical properties of the entire structure, thereby affecting its 

safety and applicability. Exploration of the dynamic characteristics and identification of crack 

locations and sizes for frame structures with multiple cracks, as shown in Figure 1, effectively 

guarantees the safety of the structures throughout their life cycles. Based on the dynamic 

characteristics of a cracked structure, there are well-developed damage detection methods (Wang 

et al., 1997; Hassiotis and Jeong, 1993). Damage detection methodologies based on actual 

measured frequencies are practical and effective for evaluating frame structures with multiple 

cracks (Pawar, P.M. and Ganguli, R., 2003; Zacharias et al., 2004; Yan et al., 2007) .  

 

Figure 1. Frame structure with multiple cracks. 

As shown in Figure 2, the free vibration of a beam with cracks is a forward eigenproblem that 

involves solving for the frequencies and modes based on knowledge of the material properties. 

Correspondingly, damage detection is an inverse eigenproblem that involves solving for the 

material properties (i.e. cracks) and modes based on knowledge of the actual frequencies (Farrar et 

al., 2001). The present paper addresses both forward eigenproblems and inverse eigenproblems.  

 

 

 

 

 

Figure 2. Free vibration problem (forward eigenproblem) and damage detection problem (inverse 

eigenproblem) of a beam with multiple cracks 

In recent years, several other methods have been proposed that are dedicated to free vibration 
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forward eigenproblems. Methods for free vibration of uncracked beams are well developed: e.g. 

Euler–Bernoulli beams and shear-flexible arches with various cross-section depths and various 

types of supports (Wang et al., 2015; Kaveh and Dadfar, 2007; Litewka and Rakowski, 2001); 

consequently, the corresponding forward eigenproblems for cracked beams naturally became the 

next research target. Labib et al. (2014) used the exact dynamic method and the Wittrick–Williams 

algorithm to solve the free vibration of beams and frames with multiple cracks; the method is 

applied effectively for uniform beams. Nandwana and Maiti (1997) and Chaudhari and Maiti 

(2000) used semi-analytical methods for solving free vibration problems for cracked beams. To the 

best of the authors' knowledge, SLEUTH (Greenberg and Marletta, 1997) is the only code that 

specifically solves beam members based on Euler–Bernoulli beam theory in the challenging form 

of a regular fourth-order eigenproblem. SLEUTH uses piecewise constant approximations of the 

variable coefficients in fourth-order eigenproblems with shooting methods used to locate 

eigenvalues. Unfortunately, this code does not impose error control on the eigenfunctions; hence, 

it cannot serve as a complete eigensolver. Caddemi and Morassi (2013) used Heaviside and Dirac's 

delta distribution functions to solve vibration problems of Euler–Bernoulli beam with multiple 

cracks. Caddemi and Caliò (2014) proposed an exact procedure for the reconstruction of multiple 

instances of concentrated damage on a straight beam. Hsu (2005) formulated the eigenvalue 

problems for clamp-free and double-hinged Euler–Bernoulli beams with elastic foundations, a 

single edge crack, axial loading, and excitation force by using the differential quadrature method. 

Rizos et al. (1990) simulated cracks in beam members as springs with rotational stiffness and used 

the actual frequencies to identify damage; their results were in good agreement with the 

experimental analysis, so the crack model has widely been used in subsequent finite element (FE) 

analyses. Chinchalkar (2001) also used the approximation of a spring with rotational stiffness 

within the conventional finite element method (FEM) to solve the free vibration problem for 

cracked wedges and two-segment beams. Lee (2009) used the conventional FEM to analyse 

cantilever beams with two and three cracks. Therefore, it is necessary to reliably solve problems 

for the accurate frequencies and modes of non-uniform beams with multiple cracks. Furthermore, 

damage detection can be well developed based on these dynamic solutions. The above FE methods 

are generally not adaptivity-oriented and lack aspects required in an adaptive package. 

To improve the validity and reliability of conventional FEM for solving free vibration problems, 

adaptive FEM has been proposed. Superconvergent patch recovery (SPR) and the corresponding 
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adaptive technique originally proposed by Zienkiewicz and Zhu (1992a, 1992b) have been applied 

to static and dynamic problems to estimate spatial discretisation errors and to improve the solution 

of stresses. For problems on the free vibration of beams and structures without cracks, Wiberg et al. 

(1999a, 1999b)  presented an application of local and global updating methods to improve the 

natural frequencies and modes predicted by the FE solutions in free vibration analysis, in which 

the local updating was based upon the superconvergent patch recovery displacements technique. 

The adaptive mesh refinement technique of FEM has been utilized to establish a three-dimensional 

model for rock stability analysis (Wang et al., 2017a, 2017b). Furthermore, adaptive FEM has 

been applied to successfully solve structure eigenvalue problems: e.g. buckling problems for 

non-uniform Euler–Bernoulli beam members (Yuan et al., 2013) and free vibration problems for 

two-dimensional structures (Yuan et al., 2014).  

Considering the practical and theoretical importance of these problems, the crack detection 

problem has been extensively investigated as an inverse eigenproblem in structures, and many 

methods have been proposed to solve this problem, as have been comprehensively summarized in 

the summary of Dimarogonas (1996). Most fundamental studies concerning crack detection in a 

beam dealt with cases of single crack.  The frequency contour plot method has been one of the 

most favoured tools to identify a single crack by using the lowest three natural frequencies 

obtained via a frequency measurement method (Moezi et al., 2015; Guan and Karbhari, 2008). 

Owolabi et al. (2003) proposed that the location and size of a crack could be identified by finding 

changes in frequencies and amplitudes of frequency response functions.  A beam with multiple 

cracks was modelled as a massless rotational spring or other models based on the Euler–Bernoulli 

theory, and this scheme was subsequently adopted for crack detection in stepped beams 

(Maghsoodi, et al., 2013; Al-Said, 2007, 2008). In most studies, the crack was assumed to be open 

and normal to the beam surface. Morassi (2001) studied crack detection problems involving an 

inclined- edge-type crack or a crack beneath the beam surface. Lele and Maiti (2002) and 

Nikolakopoulos et al. (1997) extended the frequency contour plot method to the crack detection in 

beams based on the Timoshenko beam theory and in-plane frame, respectively.  In many cases, the 

three curves of the frequency contour plot unfortunately did not intersect because of the inaccuracy 

of modelling results as compared to measured results, and the zero-setting procedure was 

recommended for such cases (Maghsoodi, et al., 2013; Al-Said, 2007, 2008; Morassi, 2001; 

Morassi, 2001). Narkis (1994) showed that, if a crack is very small, the only information required 



 5 / 35 

for crack detection is the variation of the first two natural frequencies due to a crack.  Dado (1997) 

presented a direct mathematical model to detect a crack in a beam, where the lowest two natural 

frequencies were required as input data. Hu and Liang (1993) introduced a technique to detect 

multiple cracks. The continuum damage model was used to identify the discretizing elements of a 

structure that contained the cracks, and the spring damage model was used to quantify the location 

and size of the discrete crack in each damaged element. Patil and Maiti (2003) presented a method 

that combined vibration modelling through the transfer matrix method and the approach proposed 

by Hu and Liang (1993).  The detection of multiple cracks in beams was regarded as an 

optimization problem by Ruotolo and Surace (1997), who selected the combination of 

fundamental functions as the objective function and utilized a solution procedure employing 

generic algorithms. Shifrin and Ruotolo (1999) proposed that n+2 equations are sufficient to form 

the system determinant for a beam with n cracks.  Labib et al. used the Wittrick-Williams 

algorithm and dynamic stiffness method to analyse the free vibration and detect the cracks of 

cracked structures (Labib et al., 2014, 2015), but their analytical method is only applicable to 

beams with uniform cross sections. Using the traditional FEM and cracks modelled as rotational 

springs, Chinchalkar (2001) determined crack location in beams using natural frequencies for 

cracked wedge and two- segment beams, on the other hand, in the similar approach, Lee et al. 

(2009) identified a cantilever beam with triple as well as double cracks. The above FE methods are 

generally not adaptivity oriented and lack the ingredients required in an adaptive package. 

Furthermore, the basic methodology for damage detection based on the dynamic solutions is well 

developed; on the other hand, it is necessary to solve the problem of acquiring reliable and 

accurate frequencies and modes for non-uniform beams with multiple cracks. 

This paper initially introduced an adaptive method based on the conventional FEM and the 

superconvergent patch recovery displacement technique for solving forward eigenproblems of 

beams with multiple cracks. The superconvergent computation technique is applied to calculate 

superconvergent solutions, which are henceforth referred to as superconvergent solutions, for 

eigenfunctions during the FE post-processing stage. These superconvergent solutions are then 

used as if they were exact solutions to estimate the errors in the FE solutions, which are used to 

guide mesh refinement. This yields a simple, efficient, reliable, and general adaptive FE procedure 

that can find sufficiently fine meshes to obtain FE solutions with the desired accuracy for the 

eigenvalues and eigenfunctions for beams with multiple cracks. Based on the solution dynamic 
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solutions of forward eigenproblems, the inverse eigenproblems could be solved smoothly. The 

objective of the present study is to present an adaptive FE algorithm and procedure based on the 

adaptive FE solutions of frequencies via the superconvergent computation technique and on the 

Newton–Raphson iteration technique to identify multiple cracks in a beam, which requires 2n 

natural frequencies to detect n cracks in a beam.  In this paper, the presented procedure is applied 

to inverse eigenproblems of a beam with multiple cracks by utilizing the Newton–Raphson 

iteration technique to obtain damage information.  Our simple, efficient, reliable, and generally 

adaptive FE procedure can find sufficiently fine meshes such that the obtained FE solutions satisfy 

the pre-specified error tolerance for both the locations and sizes of cracks in beams with multiple 

cracks. 

2.  ADAPTIVE APPROACH FOR DAMAGE DETECTION OF CRACKED BEAMS 

2.1 Formulation and analogy of cracked beams 

The goal of solving a regular fourth-order eigenproblem for a beam member based on Euler– 

Bernoulli beam theory is to find the frequencies   and modes w  of the fourth-order ordinary 

differential equation (ODE), 

wxmwxEILw )())(( 2= ,  lx 0 , (1) 

subject to the default boundary conditions (BCs), 

000000 ==== )(,)(,)(,)( lwlwww , (2)  

where )(xEI  is the member’s flexural rigidity, E  is the elastic modulus, )(xm  is the linear 

density, and l  is the length of the beam. The symbol L  used in Eq. (1) is the associated 

fourth-order self-adjoint operator. In the eigenproblem, the frequency and mode are the eigenvalue 

and eigenfunction, respectively, which together are known as an eigenpair. 

        Figure 3 demonstrates a geometric model of a beam with cracks. Here, parameters haα /=  

and ls /=  denote the normalized crack depth and location, respectively, where a  and s  are the 

absolute crack depth and location, and h  is the height of the beam. 

               
                   Figure 3. Beam with multiple cracks.                            Figure 4. FE model with crack. 

In the immediate region surrounding a single crack, the FE element containing the crack has 



 7 / 35 

two nodes with four degrees of bending and rotational freedoms ),( jjw   and ),( 11 ++ jjw  , as 

shown in Figure 4, where the narrow crack is described with a width 
c  set at Tol.010 , where 

Tol  is the pre-specified error tolerance for both frequencies and modes. Using the weakened 

properties analogy to reflect the presence of cracks, the flexural rigidity and density at the crack 

are reduced as the crack deepens: 

12

)(1 33 −
=

Ebh
EIc  (3a) 

)(1 −= bhmmc  (3b) 

where cEI  and cm  are the flexural rigidity and linear density at crack c  respectively; b  is the 

width of the beam and m  is the density. 

2.2 Stop criterion 

Suppose n  cracks ),( ii   ),,21,( ni =  are required and the pre-specified error tolerance for 

both the locations and sizes is Tol .  The ultimate aim of the procedure presented here is to find FE 

solutions ),( h

i

h

i   ),,21,( ni =  on sufficiently fine meshes   such that 

niTol i

h

ii ,,2,1),1( =+−   

niTol i

h

ii ,,2,1),1( =+−   

 (4a) 

 (4b) 

Since the exact solutions ),( ii   are not usually available, the proposed procedure uses the 

following stop criterion instead: 

nkTol kk

h

k ,21,2,),( =+−  1  (5) 

where k and h

k  are the actual and computed frequencies of cracked beams, respectively. The 

above stop criteria in absolute error estimation for eigensolutions in adaptive analysis show 

satisfying effect (Yuan et al., 2013; Yuan et al., 2014; Yuan et al., 2017). 

In detail, as summarized in Table I, the ultimate aim of damage detection is to obtain the exact 

solution of the problems. Unfortunately, the exact solution cannot be obtained for major problems; 

consequently, no solution can be used as the stop criterion. Therefore, the proposed procedure uses 

the new stop criterion introduced in Eq. (5), which has been shown to be effective through some 

numerical results involving the examples in Section 7.  According to the uniqueness theory of the 

solution, the errors of each crack location and size compared to the exact solution are consistent 

with the errors of each frequency compared to the actual frequency for the structure with cracks; 

therefore, the latter is used as the stopping criterion in the proposed method. 
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Table I. Ultimate aim and stop criterion. 

Problem type Ultimate aim Stop criterion 

Damage detection problem 

(Inverse eigenproblem) 

 Errors of FE solutions of 

each crack location and 

size compared to the 

exact solution are less 

than Tolerance 

 Errors of FE solution of each 

frequency compared to the 

actual frequency for a beam 

with cracks are less than 

Tolerance 
 
2.3 Analysis strategy 

The adaptive FEM algorithm contains the free vibration analysis and damage detection of a beam 

with cracks, which are the forward eigenproblem and inverse eigenproblem, respectively, as 

shown in Figure 5. The proposed method intends to combine the free vibration analysis and the 

Newton–Raphson iteration technique to solve the inverse eigenproblem through the following 

three-step adaptive strategy: 

(1) Adaptive analysis. Under the current crack damage condition (the initial crack damage is 

provided by the user), the computed frequencies fully satisfy the pre-specified error tolerance by 

the adaptive FEM (forward eigenproblems), as described in Section 3.  

(2) Newton–Raphson iteration. Utilizing the difference between computed frequencies and 

actual frequencies, the damage residuals of the computed and actual cracks are obtained by the 

Newton–Raphson iteration technique, as described in Section 4. 

(3) Damage refinement. The crack locations and sizes are updated by the residuals of cracks 

damage to form the new crack damage condition.  Then, the procedure returns to the first step (i.e., 

adaptive analysis) until all frequency errors satisfy the pre-specified error tolerance, as described 

in Section 5. 

3.  ADAPTIVE ANALYSIS  

3.1 FE solution 

Utilizing the conventional FEM, the element stiffness matrix 
e

K  and mass matrix 
e

M  are 

computed and assembled to form the global stiffness matrix K  and mass matrix M . The FE 

equation of a beam member based on Euler–Bernoulli beam theory can be derived as an 

eigenvalue equation in the following matrix form: 

MDKD
2=  (6) 
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Figure 5. Adaptive FEM algorithm flowchart for free vibration problem (forward eigenproblem) and damage detection problem 

(inverse eigenproblem). 
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where D  is the mode vector, and the matrices K  and M  are both independent of  . The element 

model adopted is the conventional polynomial element of degree 3m , and 1Cwh   denotes the 

conventional FE solution on the given mesh  , in which 1C  is the space of functions that are 

continuous up to their first-order derivative. As in common practice, the shape functions for hw  

are Hermite polynomials. Given an arbitrary trial value a  as the shift value, Eq. (6) can be 

equivalently written in the shifted form (Zienkiewicz and Taylor, 2000) 

DMDK =a     with MKK
2

aa −= , 22

a −=                               (7) 

In the proposed method, the convectional FE computation for eigenpair solutions is based on the 

Sturm sequence property (Clough and Penzien, 1993), which can be expressed as  

T
LLDMK )(2  =−  (8) 

where L  is a lower triangular matrix with leading diagonal elements being one, 
T

L  is its 

transpose, and )(D  is a diagonal matrix in which the number of eigenvalues less than the 

arbitrary trial value a  equals the number of negative leading diagonal elements in )( aD . The 

Rayleigh quotient is used to accelerate the convergence on the eigenvalues: 

DMD

DKD
T

T

=2  (9) 

Utilizing the above Sturm sequence property and the convectional bisection method (Clough 

and Penzien, 1993), the intervals of each eigenvalue can be determined, and the inverse iteration 

technique is successfully introduced to compute the eigenpairs (Yuan et al., 2013; Yuan et al., 

2017). Based on these considerations, the following inverse iteration procedure is adopted: 
















=

=

=

+

+
++

++

+
+

−

+

)max(
)sgn(

1

1
11

11

1
1

1

1

i

i
ii

i

T

i

i

T

i
i

iai

D

D
D

DMD

DMD

DMKD



                                                (10) 

where i  is the loop index. The above inverse iteration procedure is terminated when the following 

conditions are met  

Tolii −+  1   and Toli +1max D  (11) 
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        After the above inverse iteration converges, an FE solution ),( hh
D  (i.e. ),( hh

D  where 

h

a

h  += 22)( ) is obtained. However, the current mesh may not be sufficiently fine, in which 

case the accuracy of this FE solution must be estimated by a more accurate solution, namely, the 

superconvergent solution, which is discussed in the following section. 

3.2 Error estimation and mesh refinement 

The superconvergent patch recovery displacement technique was developed for computation of 

superconvergent displacements for FE solutions of static and dynamic problems (Wiberg et al., 

1999a, 1999b). The displacements provided by the superconvergent computation technique can be 

applied to eigenfunctions. For example, as shown in Figure 6, element e is the superconvergent 

computation element, and elements e–1 and e+1 are neighbouring elements, in which FE nodes 

j–1, j, j+1, and j+2 are selected for computation.  

 

Figure 6. Computation of superconvergent displacements for element e. 

      The superconvergent displacements for element e can be computed as 


==

+=
s

i

ii

r

i

h

ii wxNwxNxw
1

*

1

* )()()(  (12) 

where r(=2) is the number of end nodes, s is the number of internal nodes, and )(xNi  is the shape 

function. The degree of the shape function is improved by one order as r+s = m+1. To make the 

best use of the superconvergent order )( 2mhO  for displacements at end nodes, the displacement 

recovery field can be expressed by FE nodes as 

Pa=)(* xw  (13) 

where P  is the given function vector, and a  can be obtained by the least squares fitting technique 

for the coincidence of displacements at the end nodes in the recovery field and the conventional FE 

field. The superconvergent displacements at the end nodes in recovery field )(* xw  are used in Eq. 

(12) to obtain the superconvergent solutions on element e. Because the accuracy of the 

superconvergent solution w* is at least one order higher than that of 
hw , for elements of degree 
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3m , a very simple strategy for error estimation is to use *w  instead of the exact solution w  to 

estimate the errors in hw . This error estimation method has shown good reliability and 

effectiveness (Wiberg et al., 1999a, 1999b). 

The superconvergent solutions of Eq. (13) can be used in the Rayleigh quotient (Clough and 

Penzien, 1993) to obtain estimates of the eigenvalue: 

),(

),(
**

**
*

kk

kk
k

wwb

wwa
= ,   nk ,21,2,=  (14) 

where xvwxEIvwa
l

d)(),(
0 =  and xwvxmvwb

l

d)(),(
0=  

are the strain energy inner product 

and the kinematic energy inner product, respectively. The estimated eigenvalue is a stationary 

value when taken over all possible functions that satisfy the essential BCs. The stationary values 

computed by Eq. (14) are superconvergent eigenvalues and the corresponding functions *

k  are 

the superconvergent solutions. The Rayleigh quotient, Eq. (14), can be expressed based on 

elements as 

 

 
=

e

b

a
kk

e

b

a
kk

k

xwwxm

x''w''wxEI

e

e

e

e

d)(

d)( **

* ,   nk ,21,2,=                                       (15) 

where ea  and eb  are the end nodes of the boundary for element e. 

        Here, each element on the current mesh is divided into a grid of M equal subintervals. For the 

1−M  interior grid points on a typical element e, the conventional FE solutions 
h

gw  and the 

superconvergent solutions 
*

gw  at the g-th interior point ( 1,2,1, −= Mg  ) are calculated. Then, 

the errors at the 1−M  interior points are calculated and estimated to determine if all of them 

satisfy the given tolerance: 

21
2

,

2

, 










 + ekw

h

k
e

kw newTole **
,   nk ,21,2,=   (16) 

where 
*

kwe ,  is the error of the superconvergent displacements *
kw  and the computed displacements 

h

kw , en  is the number of elements,   2/1
),( wwaw = . Eq. (16) can be equivalently written in the 

following form 
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kw

e
kw

k
e

e

,

,

*

=    with   
21

2

,

2

, 










 += ekw

h

kkw newTole *
,   nk ,21,2,=           (17) 

where k should satisfy 

1k ,   nk ,21,2,=  (18)  

Usually it is more than sufficient to set M  in the range of 84  M . Therefore, without loss of 

generality, M  is set to 6 for the remainder of this paper. 

        If Eq. (18) is not satisfied for any interior point, the corresponding element needs to be 

subdivided into uniform sub-elements by inserting some interior nodes through h-refinement 

(Zienkiewicz and Zhu, 1992a, 1992b; Zienkiewicz et al., 2000), which are calculated by 

old,

1

new, k

m

kk hh −= ,   nk ,21,2,=  (19)  

where new,kh  is the length of the sub-element, old,kh  is the original length of element e, and     

represents the ‘floor’ operator, i.e. rounding down to the nearest integer. The above element 

subdivision approach is implemented as 

 ( )dn m

kk ,min 1

new,

−=  ,   nk ,21,2,=  (20)  

where new,kn  is the number of subelements after element subdivision, and d  is the limit number 

for avoiding too many redundant elements. Each element e that does not satisfy the pre-specified 

error tolerance is uniformly subdivided, e.g. 6old,new, kk hh =  as shown in Figure 7. 

 

Figure 7. Uniform subdivision of element e (e.g. 6old,new, kk hh = ). 

4.  NEWTON–RAPHSON ITERATION  

Based on the frequency measurement method, the residuals of the frequencies and cracks are 

consistent with each other; therefore, the Newton–Raphson iteration technique can be introduced 

(Clough and Penzien, 1993).  For the identification of n cracks in a beam, there should be 2n 
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unknown crack parameters: 
1 , 1 , 

2 , 2 ,…, n , and n .  To match the number of equations 

and the number of unknown parameters, it is assumed that 2n natural frequency measurements 0

1 , 

0

2 ,…, 
0

2 1−n  and 
0

2n  are available in advance.  The Newton–Raphson iteration procedure is 

applied in this paper as follows: 

(a) The user assumes initial values of 
1 , 1 , 

2 , 2 ,…, n , and n  and the FE mesh of the 

beam.  

(b) Locate the positions that represent the cracks according to the new crack locations parameters 

1 , 2 ,…, n .  

(c) Solve the forward eigenproblem to obtain FE solutions for 
h

1 , h

2 ,…, h

n2  with the crack 

parameters 
1 , 1 , 

2 , 2 ,…, n , and n , and evaluate the Jacobian matrix 



































































































=

n

h

n

n

h

n

h

n

h

n

h

n

h

n

n

h

n

hhhhh
n

h

n

hhhhh









































































22

2

2

2

2

1

2

1

2

22

2

2

2

2

1

2

1

2

11

2

1

2

1

1

1

1

1









J  (21) 

and compute the residuals of frequencies 

0

k

h

kkR  −= ,   nk ,21,2,=  (22) 

(d) Solve the following equation by Newton–Raphson iteration: 

TT
RCJ −=d  (23) 

where 
T

nn

T ),,,,,,( 2211  =C  and 
T

n

T RRR ),,,( 21 =R , through which the 

residuals of n  cracks )d,(d ii   ),,21,( ni =  will be obtained. 

(e) Update the crack parameters by utilizing the residuals of cracks:  

niiiiiii ,,2,1,d)()(,d)()( oldnewoldnew =+=+=   (24) 

where new)(  and old)(  represent the new and old cracks in the last step, respectively. Update 

each old crack with the new one, as shown in Figure 8. 

(f) In the new crack condition, return to step (a) and repeat the loop until the residuals of 

frequencies become sufficiently small. 
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Note that the FE mesh of conventional FEM for the Newton–Raphson iteration procedure is 

determinate without mesh refinement. However, the adaptive FE analysis proposed in this paper 

will have more accurate results and a better convergence rate compared to the conventional FE 

analysis, which is shown in the numerical examples in Section 7. 

 

Figure 8.  Update of size and location of cracks in one iteration step. 

5.  DAMAGE REFINEMENT  

The matrix elements in the Jacobian matrix J are related to the frequencies and crack parameters 

because the most widely used method, damage detection based on the optimization theory, is 

reduced to a linearized system of equations.  The matrix elements of the Jacobian matrix J are the 

sensitivities of the natural frequencies with respect to the crack parameters. Morassi (2001) 

developed an explicit expression of the frequency sensitivity to damage, assuming that the sizes of 

the cracks were sufficiently small.  In this study, however, the cracks are not assumed to be small, 

and the elements of the Jacobian matrix J are computed numerically introducing the method by 

Lee (2009).  For example, 11 /    and 11 /   are computed, respectively, as follows: 

1,
),,,,(),,,,( 21112111

1

1 
−+

=











 nn 
 (25a) 

1,
),,,,(),,,,( 21112111

1

1 
−+

=











 nn 
 (25b) 

where   is a value far less than one. Because the crack condition is inaccurate in the initial stage 

of Newton–Raphson iteration, the residuals of cracks can be adjusted to accelerate the procedure 

(Lee, 2009). The forward eigenproblem is solved 2n+1 times per iteration to build the Jacobian 

matrix J and the residuals. To suppress overshoots in the early stage, relaxation is performed 

during the beginning iterations steps as follows: 

niiii ,,2,1,d25.0)()( oldnew =+=   (26a)  

niiii ,,2,1,d25.0)()( oldnew =+=   (26b) 
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6.  ALGORITHMS 

The basic algorithm of the proposed adaptive FEM for free vibration problems (forward 

eigenproblems) is given as follows: 

(1) For the kth-order eigenpair (frequency and mode), the initial FE mesh is imported from the final 

mesh for the previous eigenpair solution, 
1k −
 ),21,2,( nk =  (the initial mesh 

0  for the 

first-order eigenpair and the pre-specified error tolerance Tol  are given by user). 

(2) For the current order and adaptive step, the FE mesh t

k  is obtained. 

(3) The material properties (i.e. flexural rigidity and linear density) are reduced at the cracks using 

Eq. (3) to form the whole beam model. 

(4) The conventional FE solutions for the eigenpair ),( h

k

h

k w  ),21,2,( nk =  are computed on 

the current mesh t

k  utilizing the inverse iteration procedure of Eq. (10). 

(5) Superconvergent FE solutions for eigenpair ),( **

kk w ),21,2,( nk =  are computed using the 

superconvergent patch recovery displacement methodology and Rayleigh quotient of Eqs. (12) 

and (14), respectively.  

(6) The errors of the FE solutions are estimated utilising the superconvergent solutions, in the 

implementation of the procedure, these errors are estimated at interior points using Eq. (18); if 

the errors are not satisfied, element subdivision Eq. (20) is used to form the new FE mesh 1+t

k . 

(7) The mesh index is updated as 1+= tt  and the algorithm returns to step (2) unless the errors are 

satisfied. 

(8) The kth-order mesh is finalized as t

kk  = , the eigenpair index is updated 1+= kk , and the 

algorithm returns to step (1) unless the final order ( nk 2= ) has finished. 

      Based on the computation of free vibration problems (forward eigenproblems), the global 

algorithm of the proposed adaptive FEM for damage detection problems (inverse eigenproblems) 

is proposed as follows: 

(1) The actual frequencies of the beam with cracks and initial predicted cracks 0c  are provided, 

noting that the detection for n cracks needs 2n actual frequencies. The initial FE mesh 
0  and 

the pre-specified error tolerance Tol  are given by the user.  

(2) Introducing the above basic algorithm for free vibration problems, the conventional FE 
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solutions for eigenpair ),( h

k

h

k w  )2,2,,( nk 1=  and superconvergent FE solutions for 

eigenpair ),( **

kk w  )2,2,,( nk 1=  on the current mesh are computed. Then the errors of the 

FE solutions are estimated and the element subdivisions are evolved until the errors are 

satisfied based on the mesh refinement. Finally, accurate and reliable frequencies of the current 

crack condition are obtained. 

(3) The actual and computed frequencies are compared to analyse their residuals using Eq. (22). 

(4) With the Newton–Raphson iteration technique and frequency residuals, the crack residuals are 

computed using Eq. (23). 

(5) With the current crack condition and crack residuals, the new crack condition is computed 

using Eq. (24). 

(6) In the new crack condition, return to step (1) and repeat the loop until the stop criterion in Eq. 

(5) is satisfied. 

7.  NUMERICAL EXAMPLES 

The proposed adaptive strategy has been coded into a Fortran 90 program; in this section, it was 

verified by solving four representative numerical examples for free vibration problems, on the 

other hand, which examples are also selected as damage detection problems to show that the 

method is correct and competitive. Also, for comparison, whenever needed, both the free vibration 

and damage detection problems are dealt with together by setting one-to-one corresponding 

examples respectively, e.g. Example 1 and Example 5 cases. All of these examples were run 

utilizing the Intel(R) Visual Fortran Compiler on a DELL Optiplex 380 desktop computer with an 

Intel(R) Core(TM) 2.93 GHz CPU, with double-precision floating-point numbers (approximately 

14 decimal digits). For all the examples, the tolerance olT  is set to 
310−
 and the fifth-order ( 5=m ) 

polynomials are used for each element.  

       For free vibration problems, the error of the computed frequency
h  is  






+

−
=

1

h

 (27)  

where   is the exact frequency or a reliable result obtained through other methods. The first 

example is a double-clamped non-uniform uncracked beam, whose exact solution can be 

computed using SLUTH (Greenberg and Marletta, 1997) with a strict tolerance setting of 
910−
. 
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Therefore, the results obtained from the present method are compared with these exact solutions. 

For the other three examples, only the calculated results from other studies are available because 

exact solutions are not available for cracked beams. Every eigenfunction solution shown below is 

normalized to its biggest value. 

For damage detection, the errors of the computed crack depth h  and location 
h  are 






+

−
=

1

h

,      



 

+

−
=

1

h

 (28)  

where   and   are the exact crack depth and location or reliable results obtained through other 

methods.  For all the examples, it was found that the present procedure produced satisfactory 

results, with both locations and sizes of cracks fully satisfying the pre-specified error tolerance. 

7.1 Free vibration problems 

Example 1: Double–clamped uncracked beam with a sinusoidal cross section 

Figure 9(a) shows the double-clamped uncracked beam, and the material data are 

12

)(
)()()())sin(100.5()(

3

0

xEbh
xEIxρbhxm

l

x
hxh ==+= ，，1  (29) 

This example was selected to check the reliability of the proposed method for non-uniform 

uncracked beams. The first ten frequencies and the final adaptive mesh computed by the proposed 

method are shown in Table II. This table also displays the solutions computed using SLEUTH with 

a strict tolerance setting of 
910−
, which serves as the exact solution because this problem does not 

have an analytic solution. It is evident that the pre-specified error tolerance is well satisfied for 

frequencies. The first three computed modes are shown in Figure 9(b); clearly, the vibration 

becomes more complicated as the order increases, which means that more elements are necessary 

to effectively analyse the free vibration problem, as shown in Table II.  
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Figure 9. Model and modes of Example 1. Notes: (a) Double-clamped uncracked beam with a 

sinusoidal cross section. (b) Computed results for first three modes. 
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Table II. Computed results for frequencies of Example 1. 

k 

Present method  SLEUTH solutions 

h

kω  ωε  Elements  kω  

1 21.446122 7.97E-04 7  21.428254 

2 56.805177 2.84E-05 9  56.803537 

3 124.219103 6.28E-05 9  124.211235 

4 196.270778 5.59E-04 9  196.160646 

5 293.647288 2.49E-05 12  293.639963 

6 411.989517 1.30E-05 12  411.984134 

7 550.268718 2.21E-05 12  550.256549 

8 708.331094 9.42E-06 16  708.324415 

9 886.135673 5.20E-06 16  886.131057 

10 1083.668240 4.66E-06 20  1083.663183 

Example 2: Stepped cantilever beam with a single crack 

Figure 10(a) shows the stepped cantilever beam with a single crack with lengths 
1l  and 

2l , heights 

1h  and 2h , and the following material data 

m0.2521 == ll ,   Pa102.1 11=E ,   
3kg/m7800=ρ ,   0.3= . (30) 

This model was previously analysed using a semi-analytical method (Nandwana and Maiti, 

1997). Three cases are considered, as shown in Table III, for different sizes of cracks and different 

beam heights. The first four computed frequencies are shown in Table III. Therein, the results of 

the present method are compared with the solutions with the semi-analytical method for 

m0.021 =h  and m0.162 =h  as Cases (a) and (b). Furthermore, the frequencies were computed 

for a large step ratio m0.021 =h  and 
2 0.16mh =  in Case (c) to check the stability of the proposed 

method; the exact solution for Case (c) was calculated using the proposed method with a strict 

tolerance setting of 
910−
. The computed solutions are consistent with the semi-analytical solutions 

for Cases (a) and (b); furthermore, the computed solutions for Case (c) using the pre-specified 

error tolerance 
310−=Tol  agree with the solutions using the strict tolerance of 

910−
. The first 

three computed modes of Case (c) are shown in Figure 10(b). This figure shows that the modes 
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become more complicated in the domain of relatively small stiffness. For further consideration, the 

10th-order modes for Cases (a) and (c) are shown in Figs. 11(a) and (b), respectively. In these 

figures, the final adaptive mesh is shown as tick marks on the horizontal axis. Because the stiffness 

is fairly constant in Case (a), the modes are smooth and the mesh is fairly uniform. In contrast, 

because the left half of the beam in Case (c) is much stiffer, the mode varies significantly 

throughout the beam, and a finer mesh is required near the tip of the beam. 
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Figure 10. Model and modes of Example 2. Notes: (a) Stepped cantilever beam with single crack. 

(b) Computed results for first three modes of Case(c). 

Table III. Computed results for frequencies of Example 2. Source: a Results from paper 

Nandwana and Maiti (1997) 

Cracks k 

Present method
 

 
Results a 

(Cases (a) & (b))
 

h

kω  ωε   kω  

 0.1001 =  

0.2001 =  

m0.021 =h  

m0.0162 =h  

1 457.308321 9.49E-03  453.0 

Case (a) 

2 2376.679751 1.32E-02  2345.7 

3 6649.213179 2.32E-02  6498.4 

4 12790.812926 ——  —— 

 0.2001 =  

0.2001 =  

m0.021 =h  

m0.0162 =h  

1 457.308321 4.24E-02  477.6 

Case (b) 

2 2376.679751 1.37E-02  2344.6 

3 6649.213179 2.60E-02  6480.9 

4 12790.812926 ——  —— 

 0.1001 =  

0.2001 =  

m0.201 =h  

m0.0162 =h  

1 1344.066976 4.97E-04  1344.736216 

Case (c) 

2 8300.314483 1.44E-04  8301.508858 

3 16333.267628 6.07E-04  16323.357462 

4 24216.911236 1.31E-04  24220.074496 
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Figure 11. Computed 10th-order modes for different stepped height ratios and final meshes in 

Example 2. Notes: (a) Case (a). (b) Case (c).  

Example 3: Cantilever beam with double cracks 

Figure 12(a) shows a cantilever beam with two cracks, and the material data are  

m0.5=l ,   m0.02=h ,   Pa102.1 11=E ,   3kg/m7860=ρ ,   0.3= . (31) 

This example was selected to check the reliability of the proposed method for computing the 

frequencies and corresponding modes of beams with multiple cracks. This model was previously 

analysed using the torsional spring method for simulating the cracks (Lee, 2009). Three cases were 

considered, as shown in Table IV for different locations and sizes of cracks. The first four 

computed frequencies are shown in Table IV. These solutions are compared with the solutions 

from the torsional spring method. The computed solutions are consistent with the torsional spring 

method for the three cases. The first three computed modes for Case (c) are shown in Figure 12(b).  
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Figure 12. Model and modes of Example 3. Notes: (a) Cantilever beam with two cracks. (b) 

Computed results for the first three modes of Case (c). 
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Table IV. Computed results for frequencies of Example 3. Source: a Results from paper Lee 

(2009) 

Cracks k 
Present method  Results a 

h

kω  ωε   kω  

Case (a) 

0.11 =  

0.21 =  

0.12 =  

40.2 =  

1 419.709187 6.29E-03  417.0794 

2 2630.272577 3.01E-03  2622.389 

3 7364.839379 3.20E-03  7341.322 

4 14432.145781 4.45E-03  14368.22 

Case (b) 

0.11 =  

40.1 =  

20.2 =  

60.2 =  

1 419.709187 3.56E-03  418.2175 

2 2630.272577 1.82E-02  2583.284 

3 7364.839379 1.09E-02  7285.600 

4 14432.145781 4.02E-03  14374.36 

Case (c) 

0.11 =  

60.1 =  

20.2 =  

80.2 =  

1 419.709187 5.86E-04  419.4628 

2 2630.272577 6.99E-03  2612.009 

3 7364.839379 1.43E-02  7260.865 

4 14432.145781 1.94E-02  14158.15 

Example 4: Cantilever beam with triple cracks 

Figure 13(a) shows a cantilever beam with three cracks; the material data are the same as Example 

3. Three cases were considered as shown in Table V for different locations and sizes of cracks. The 

first six computed frequencies are shown in Table V. These solutions are compared with the 

solutions from the torsional spring method for Cases (a) and (b). Similar to Example 2, exact 

solutions were obtained for Case (c) using the proposed method with a strict tolerance of 
910−
. In 

Case (c), the frequencies were computed for deep cracks to check the stability of the proposed 

method. The computed solutions are consistent with the torsional spring method for Cases (a) and 

(b), and the solutions computed with the pre-specified error tolerance 
310−=Tol  match the 

solutions with the tolerance of 
910−
. The first three computed modes of the deep cracks for Case (c) 

are shown in Figure 13(b). This figure shows that the modes become more complicated as the 

cracks deepen. For further consideration, uncracked and deeply cracked beams are compared in 

Figs. 14(a) and (b), respectively. In these figures, the final adaptive mesh is shown as tick marks on 

the horizontal axis. Because there are no cracks in the case shown in Figure 14(a), the modes are 

smooth and the mesh is fairly uniform. In contrast, the cracks in the case shown in Figure 14(b) 
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cause the mode to grow in magnitude as it passes through the cracks, and a finer mesh is necessary 

in the vicinity of the cracks.  

Table V. Computed results for frequencies of Example 4. Source: a Results from paper Lee (2009) 

Cracks k 

Present method  Results a 

h

kω  ωε   kω  

Case (a) 

0.11 =  

0.21 =  

0.12 =  

40.2 =  

0.13 =  

60.3 =  

1 419.709187 6.74E-03  416.8933 

2 2630.272577 6.97E-03  2612.065 

3 7364.839379 5.59E-03  7323.879 

4 14423.380407 4.65E-03  14356.68 

5 23823.591113 9.91E-03  23589.91 

6 35634.541339 8.59E-04  35603.94 

Case (b) 

0.11 =  

0.21 =  

0.12 =  

40.2 =  

0.13 =  

0.83 =  

1 419.709187 6.32E-03  417.0652 

2 2630.272577 3.78E-03  2620.375 

3 7364.839379 6.34E-03  7318.436 

4 14415.115577 8.05E-03  14299.97 

5 23824.135951 9.48E-03  23600.29 

6 35630.346532 1.59E-03  35573.62 

Case (c) 

 

0.31 =  

0.21 =  

0.32 =  

40.2 =  

0.33 =  

60.3 =  

1 419.809187 2.38E-04  417.332753 

2 2630.309132 1.39E-05  2616.921931 

3 7364.539463 4.07E-05  7335.876113 

4 14432.168001 1.54E-06  14377.867894 

5 23657.374210 4.45E-05  23658.501681 

6 35638.841304 7.15E-04  35613.380555 
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Figure 13. Model and modes of Example 4. Notes: (a) Cantilever beam with three cracks. (b) 

Computed results for first three modes of Case (c).  
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Figure 14. Tenth-order computed modes and final meshes for different crack sizes in Example 4. 

Notes: (a) Uncracked beam: 3)2,1,(0.0 == ii . (b) Deeply cracked beam: 3)2,1,(0.3 == ii . 

7.2 Damage detection problems 

Example 5: Double–clamped uncracked beam with a sinusoidal cross section  

Consider the clamped-clamped uncracked beam in Figure 15(a) and the material data are the same 

as Example 1 as shown in Eq. (29). This example is selected for checking the reliability of the 

proposed method for non-uniform uncracked beams.  Because exact frequencies do not exist in 

this case, the first four frequencies of forward eigenproblems computed by the proposed method 

are used as actual frequencies, as listed in Table VI.  Assuming the existence of two cracks, the first 

four frequencies and crack properties computed by the proposed method are listed in Table VI. It 

can be seen that the two detected cracks are located at 0.152241 =  and 0.651632 = , and the 

differences between the computed and actual sizes (0.000) of the cracks satisfy the pre-specified 

error tolerance 
310−=Tol , revealing that there are no cracks in this non-uniform beam.  In Table 

VI, the differences between the computed and actual frequencies also satisfy the pre-specified 

error tolerance. The Newton–Raphson iteration results for cracks are shown in Figure 15(b), where 

the Newton–Raphson iteration converges after only 6 iteration steps. 
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Figure 15. Model and damage detection results of Example 5. Notes: (a) Clamped-clamped beam 

with sinusoidal cross section. (b) Newton–Raphson iteration results for cracks. 
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Example 6: Stepped cantilever beam with a single crack 

Consider the stepped cantilever beam with a single crack in Figure 16(a) with lengths 
1l  and 

2l , 

heights 1h  and 2h , and the material data are the same as Example 2 as shown in Eq. (30).  This 

model had been analysed by a semi-analytical method (Nandwana and Maiti, 1997).  Considering 

three cases with different locations and sizes of cracks as 0.1001 = , 0.2001 =  and 0.2001 = , 

0.2001 = , the first four computed frequencies are listed in Table VII and compared with the 

solutions obtained using the semi-analytical method for m0.021 =h  and m0.162 =h  as case (a) 

and case (b). On the other hand, the frequencies were computed for a large step ratio with 

m0.201 =h  and m0.0162 =h  as case (c). The first four frequencies of forward eigenproblems 

computed by the proposed method, considered as the actual frequencies, are listed in Table VII. 

Assuming the existence of two cracks, the first four frequencies and crack properties computed by 

the proposed method are also listed in Table VII. It can be seen that the two detected cracks are 

located at 0.1001 = , 0.2001 =  and 0.2001 = , 0.2001 = , and the differences between the 

computed and actual sizes of the cracks satisfy the pre-specified error tolerance, revealing that 

there is only one crack in this non-uniform beam. In Table VII, the differences between computed 

and actual frequencies also satisfy the pre-specified error tolerance. The Newton–Raphson 

iteration results for cracks are shown in Figure 16(b), where the Newton–Raphson iteration 

converges after only 6 iteration steps as in Example 5.  The final meshes of the 4th order for 

different Newton–Raphson iteration steps are shown in Figure 17, where the domain near the 

cracks needs more elements in the 1st, 3rd, and 7th iteration steps. 
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Figure 16. Model and damage detection results for Example 6. Notes: (a) Stepped cantilever beam 

with a single crack. (b) Newton–Raphson iteration results for cracks. 
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Figure 17 Final meshes of the 4th order computed results for different Newton–Raphson iteration 

steps of Example 6 (symbol ‘×’ represents the crack). 

Example 7: Cantilever beam with double cracks  

Consider the cantilever beam with two cracks in Fig. 18(a) and the material data are the same as 

Example 3 as shown in Eq. (31). This model had been analysed by the torsional spring model 

method for simulating the cracks (Lee, 2009).  Considering different locations and sizes of cracks 

as case (a) 0.11 = , 0.21 = , 0.12 = , 40.2 = ; case (b) 0.11 = , 40.1 = , 20.2 = , 

60.2 = ; and case (c) 0.11 = , 60.1 = , 20.2 = , 80.2 = , the first four computed frequencies 

are listed in Table VIII and compared with the solutions obtained with the torsional spring model 

method. The first four frequencies of forward eigenproblems computed by the proposed method, 

considered as the actual frequencies, are listed in Table VIII. In Table VIII, the differences between 

the computed and actual frequencies satisfy the pre-specified error tolerance.  The 

Newton–Raphson iteration results of 6 iteration steps for cracks are shown in Figure 18(b), which 

demonstrates that the proposed method yields a higher convergence rate compared to the 

conventional FE analysis (Lee, 2009).   
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Figure 18. Model and damage detection results for Example 7. Notes: (a) Cantilever beam with 

double cracks. (b) Newton–Raphson iteration results for cracks. 
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Table VI. Computed results for cracks and frequencies of Example 5. 

Cracks 
Present method  

Actual cracks 

 

k 
Present method  

 

 

kω ( 310−=Tol ) Computed cracks ε  and 
ε    h

kω  
ωε   

1  0.00026 0.26E-3  0.000  1 21.42747 8.31E-04  21.446122 

1  0.15224 ——  ——  2 56.80232 4.94E-05  56.805177 

2  0.00059 0.59E-3  0.000  3 124.21091 6.54E-05  124.219103 

2  0.65163 ——  ——  4 196.15611 5.81E-04  196.270778 

 

Table VII. Computed results for cracks and frequencies of Example 6. 

Cracks 
Present method  

Actual cracks 

 

k 
Present method   

kω ( 310−=Tol ) Computed cracks ε  and ε    h

kω  
ωε   

 

 

Case (a) 

1  0.10061 5.55E-04  0.100  1 457.334903 5.80E-05  457.308321 

1  0.20044 3.67E-04  0.200  2 2376.781991 4.30E-05  2376.679751 

2  0.00059 5.90E-04  0.000  3 6649.372784 2.40E-05  6649.213179 

2  0.01214 ——  ——  4 12797.592587 5.30E-04  12790.812926 

 

 

Case (b) 

1  0.19931 5.75E-04  0.200  1 457.318404 2.20E-05  457.308321 

1  0.20023 1.92E-04  0.200  2 2376.708283 1.20E-05  2376.679751 

2  0.00015 1.50E-04  0.000  3 6651.540754 3.50E-04  6649.213179 

2  0.98124 ——  ——  4 12791.746728 7.30E-05  12790.812926 

 

 

Case (c) 

1  0.10085 7.73E-04  0.100  1 1344.073836 5.10E-06  1344.066976 

1  0.20046 3.83E-04  0.200  2 8300.430701 1.40E-05  8300.314483 

2  0.00049 4.90E-04  0.000  3 16335.391083 1.30E-04  16333.267628 

2  0.35243 ——  ——  4 24217.783081 3.60E-05  24216.911236 
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Table VIII. Computed results for cracks and frequencies of Example 7. 

Cracks 
Present method  

Actual cracks 

 

k 
Present method   

kω ( 310−=Tol ) Computed cracks ε  and 
ε    h

kω  
ωε   

 

 

Case (a) 

1  0.10026 2.36E-04  0.100  1 419.839607 3.10E-04  419.709187 

1  0.20085 7.08E-04  0.200  2 2630.433085 6.10E-05  2630.272577 

2  0.10032 2.91E-04  0.100  3 7365.170842 4.50E-05  7364.839379 

2  0.40015 1.07E-04  0.400  4 14437.341713 3.60E-04  14432.145781 

 

 

Case (b) 

1  0.10012 1.09E-04  0.100  1 419.759672 1.20E-04  419.709187 

1  0.39956 3.14E-04  0.400  2 2630.496235 8.50E-05  2630.272577 

2  0.20010 8.33E-05  0.200  3 7365.119281 3.80E-05  7364.839379 

2  0.60015 9.37E-05  0.600  4 14432.997337 5.90E-05  14432.145781 

 

 

Case (c) 

1  0.10045 4.09E-04  0.100  1 419.710617 3.40E-06  419.709187 

1  0.60082 5.13E-04  0.600  2 2630.304152 1.20E-05  2630.272577 

2  0.19971 2.42E-04  0.200  3 7365.111915 3.70E-05  7364.839379 

2  0.80036 2.00E-04  0.800  4 14444.846949 8.80E-04  14432.145781 
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Example 8: Cantilever beam with triple cracks 

Consider the cantilever beam with three cracks in Figure 19(a) with the same material data as 

Example 7.  Three cases are considered for different locations and sizes of cracks as case (a) 

0.11 = , 0.21 = , 0.12 = , 40.2 = , 0.13 = , 60.3 = ; case (b) 0.11 = , 0.21 = , 0.12 = , 

40.2 = , 0.13 = , 0.83 = ; and case (c)
 0.31 = , 0.21 = , 0.32 = , 40.2 = , 0.33 = , 

60.3 = .  The first six frequencies of forward eigenproblems computed by the proposed method 

are listed in Table IX and compared with the solutions obtained using the torsional spring model 

method.  In Table IX, the differences between the computed and actual frequencies satisfy the 

pre-specified error tolerance.  The Newton–Raphson iteration results for cracks are shown in 

Figure 19(b), where the Newton–Raphson iteration converges after 6 iteration steps as in the above 

three examples, demonstrating that the proposed method yields a higher convergence rate 

compared to the conventional FE analysis (Lee, 2009).  The final meshes of the 6th order for 

different Newton–Raphson iteration steps are shown in Figure 20, where the domain near the 

cracks needs more elements in the 1st, 3rd, and 7th iteration steps. Furthermore, the adaptive FE 

procedure makes mesh refinement possible. 
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Figure 19. Model and damage detection results for Example 8. Notes: (a) Cantilever beam triple 

cracks. (b) Newton–Raphson iteration results for cracks. 
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Figure 20. Final meshes of the 6th order computed results for different Newton–Raphson iteration 

steps of Example 8 (symbol ‘×’ represents the crack). 
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Table IX. Computed results for cracks and frequencies of Example 8. 

Cracks 
Present method  

 

Actual cracks 

 
k 

Present method   

kω ( 310−=Tol ) Computed cracks ε  and 
ε    h

kω  
ωε   

 

 

Case (a) 

1  0.09952 4.36E-04  0.100  1 419.720125 0.26E-4  419.709187 

1  0.20036 3.00E-04  0.200  2 2630.301521 0.11E-4  2630.272577 

2  0.10051 4.64E-04  0.100  3 7366.312547 0.20E-3  7364.839379 

2  0.39926 5.29E-04  0.400  4 14423.899685 0.36E-4  14423.380407 

 
3  0.10082 7.45E-04  0.100  5 23839.791835 0.68E-3  23823.591113 

 
3  0.60012 7.50E-05  0.600  6 35636.144938 0.45E-4  35634.541339 

 

 

Case (b) 

1  0.10064 5.82E-04  0.100  1 419.715498 0.15E-4  419.709187 

1  0.20076 6.33E-04  0.200  2 2630.314677 0.16E-4  2630.272577 

2  0.09994 5.45E-05  0.100  3 7371.100342 0.85E-3  7364.839379 

2  0.40026 1.86E-04  0.400  4 14415.432732 0.22E-4  14415.115577 

3  0.10014 1.27E-04  0.100  5 23832.713000 0.36E-3  23824.135951 

3  0.79812 1.04E-03  0.800  6 35631.843049 0.42E-4  35630.346532 

 

 

Case (c) 

1  0.30026 2.00E-04  0.300  1 419.815499 0.15E-4  419.809187 

1  0.20014 1.17E-04  0.200  2 2630.506480 0.75E-4  2630.309132 

2  0.29881 9.15E-04  0.300  3 7369.768996 0.71E-3  7364.539463 

2  0.40011 7.86E-05  0.400  4 14432.355632 0.13E-4  14432.168001 

3  0.30023 1.77E-04  0.300  5 23660.686382 0.14E-3  23657.374210 

3  0.60074 4.63E-04  0.600  6 35641.050974 0.62E-4  35638.841304 
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8.  CONCLUSIONS 

In this study, a new adaptive FEM methodology was presented for accurate computation of both 

the frequencies and modes of cracked Euler–Bernoulli beams, and the adaptive analysis 

technology has been developed and applicated for the reliable computation of the locations and 

sizes of multiple cracks.  Some key techniques are utilized, i.e., adaptive FE analysis for 

eigensolutions, Newton–Raphson iteration, and damage refinement techniques, based on the 

conventional frequency measurement method for damage detection, which has yielded a simple 

and practical adaptive FE procedure that finds sufficiently fine meshes for the accurate locations 

and sizes of multiple cracks to match the pre-specified error tolerance.  Numerical examples are 

provided, including ones known to be representative of a non-uniform and geometrically stepped 

Euler–Bernoulli beam with multiple cracks, to demonstrate the accuracy, reliability, and 

effectiveness of the proposed adaptive FE algorithm and procedure.  Based on frequency 

measurements for damage detection, the inverse eigenproblem computation makes full use of the 

forward eigenproblem computation for frequency solutions. As a result, making the two forward 

and inverse complementary parts of the research series work together, the proposed FE procedure 

reduces the cost of computation and improves the accuracy of the solutions for determining the 

locations and sizes of cracks in beams. The present paper is limited to Euler–Bernoulli beam 

beams with cracks, but with conventional numerical treatments of integration of beams, the 

present method can also solve some frame structure problems in an indirect way.  Looking forward, 

a very welcoming and encouraging feature of this presented methodology is that it can readily be 

extended to damage detection problems of frame structure with multiple cracks as engineering 

practice, which will be addressed in future papers. 
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