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In this Letter, based on the notion of Gauge/Gravity duality we explore the low frequency behaviour 
associated with the retarded two point correlators in the ground state of the strongly correlated quantum 
liquid that is dual to η-deformed background in (2 + 1)D. The massless charge carriers in the dual gauge 
theory are sourced due to some probe N f flavour Dp brane configurations in the bulk. In our analysis we 
stick to the NS sector and compute the two point correlators by turning on fluctuations associated with 
the worldvolume gauge fields in the bulk spacetime. Our analysis reveals the existence of holographic 
zero sound modes for (1 + 1)D QFTs those are dual to bosonic η deformed AdS3 × S3 with vanishing RR 
fields.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Overview and motivation

AdS5 × S5 superstrings are known to be classically integrable 
for a long period of time [1–6]. The classical integrability of the 
superstring sigma model implies the existence of an infinite tower 
of conserved charges associated with the 2D superconformal field 
theory with the target space being the P SU (2,2|4)

S O (4,1)×S O (5)
supercoset 

[1,3]. Given the integrable structure of AdS5 × S5 superstrings, the 
quest for the corresponding integrable deformation of the theory 
has been an active area of research for the last couple of decades1

[7–13].
Very recently, based on the general notion of classical Yang–

Baxter (YB) deformations, the authors in [13] had proposed an 
interesting as well as elegant way of deforming the AdS5 × S5

superstring sigma model which naturally breaks the supersymme-
tries of the original string sigma model still allowing the possibility 
to solve the system exactly. It turns out that at the classical level 
this deformation possesses two basic characteristic features of the 
original GS superstrings namely, (1) the existence of the fermionic 
kappa symmetry and (2) the Lax connection which thereby guar-
antees the existence of an infinite tower of conserved charges as-
sociated with the 2D sigma model.

Soon after the discovery, various crucial features associated 
with the η-deformed sigma model has been explored both from 
the perspective of the 2D worldsheet theory [14–22] as well as 

E-mail addresses: dibakarphys@gmail.com, 
Dibakar.RoyChowdhury@swansea.ac.uk.

1 See [10] for a nice and comprehensive review on this subject.

that of the (deformed) target space geometry [23–34]. However, 
the later direction of understanding becomes crucial as soon as 
one starts exploring various physical properties associated with the 
dual gauge theory at strong coupling.

Considering these facts, the purpose of the present article is to 
perform a systematic analysis along this second direction with a 
view towards understanding the various physical properties asso-
ciated with the dual gauge theory at finite charge density and/or 
chemical potential (μ). In particular, in the present analysis, we 
probe the dual gauge theory in its ground state and explore the 
low frequency properties associated with the retarded two point 
correlators at strong coupling. The key idea is to obtain the dis-
persion relation looking at the pole of the retarded two point 
correlators in order to find traces of the zero sound mode [35–49]. 
Typically, in a generic holographic Landau Fermi Liquid (LFL) the-
ory, the leading order contribution to the dispersion relation goes 
linearly with the power of the corresponding momentum (q) cou-
pled to a real coefficient. The next subleading correction appears 
with a complex coefficient and goes quadratically with the mo-
mentum (q2) and which is thereby suppressed (compared to that 
with the leading term) in the limit of low momentum [35].

In order to compute the two point correlator, we probe the 
η-deformed target space with N f (� N) flavour Dp branes and 
turn on fluctuations associated with the world volume gauge 
fields2 corresponding to these flavour Dp brane configuration. In 
the language of AdS/C F T duality, this corresponds to turning on a 

2 For the purpose of our present analysis one might ignore the RR fields as well 
as the dilaton [46] and consider the so called ABF background [15] together with 
the NS-NS fluxes.

https://doi.org/10.1016/j.physletb.2018.01.020
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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global (diagonal) U (1) ⊂ U (N f ) operator and an associated chemi-
cal potential (μ) for the dual quantum liquid at strong coupling. At 
this stage, it is worth pointing out that in the present analysis we 
model only massless charged carriers in the dual gauge theory and 
we leave the corresponding scenario associated with the massive 
charge carriers for the purpose of future analysis.

The organisation of the paper is the following: In Section 2, we 
start our analysis with a formal introduction to the η-deformed 
background (associated with the original bosonic supercoset model 
[15]) in 6D which could be realised as a consistent truncation of 
the original 10D background with a vanishing B field [18]. We 
express the AdS3 sector of the η-deformed target space in the 
so called Poincare patch with proper Lorentzian signature. As a 
next step of our analysis, in Section 3, we consider flavour Dp
brane embeddings in this deformed background and compute the 
retarded two point correlators in order to explore the low fre-
quency behaviour associated with the pole of the retarded corre-
lator which eventually leads us towards the so called dispersion 
relation exhibiting a strong evidence in favour of the zero sound 
modes associated with the ground state of the system. Finally, we 
conclude our analysis in Section 4.

2. The background

We start our analysis with a formal introduction to the 
η-deformed AdS3 × S3 background which acts as a dual target 
space for the strongly correlated quantum liquid under investi-
gation. In our analysis, we would be solely concerned with the 
bosonic sector of the full 10D solution [18]. Under such circum-
stances, one could visualize the η-deformed AdS3 × S3 supercoset 
as a consistent 6D reduction of the full 10D solution with a 
vanishing B field. The resulting background could be formally ex-
pressed as a direct sum of the individual spaces namely [18],

ds2
AdS3×S3 = ds2

AdS3

⊕
ds2

S3

=
[
−h(�)dt2 + f(�)d�2 + �2dψ2

]⊕[
h̃(θ)dϕ2

+ f̃(θ)dθ2 + cos2 θdφ2
]

(1)

where, the individual metric functions could be formally expressed 
as,3

h = 1 + �2

(1 − κ2�2)
, f= 1

(1 + �2)(1 − κ2�2)

h̃ = sin2 θ

(1 + κ2 cos2 θ)
, f̃= 1

(1 + κ2 cos2 θ)
(2)

such that the Kalb Ramond two form (B) vanishes during the 
process of consistent 6D reduction starting from the original 
AdS5 × S5 solution [18]. Notice that, here ϕ , θ and φ character-
ize the so called angular coordinates on κ-deformed S3. Before 
we proceed further, it is customary to notice that as there does 
not seem to be any coordinate mixing between the two subspaces, 
hence one could decouple the S3 part from the rest of the analysis 
and perform computations only for the deformed AdS3 sector.

Notice that the deformed AdS3 sector of the above target space 
(1) exhibits a non trivial singularity at a finite radial distance, 

3 Notice that, here the deformation parameter κ is related to the original de-

formation parameter η as, κ = 2η
1−η2 [15]. Henceforth, in our analysis, we would 

refer the deformation parameter as being κ instead of η. Notice that, under this 
definition of variables, the large (κ → ∞) deformation limit in the new variable 
corresponds to taking the limit, η → 1 in terms of the original deformation param-
eter.

� ∼ κ−1 [18]. As a natural consequence of this, one needs to put 
the corresponding dual field theory at a finite cutoff surface close 
enough to � ∼ κ−1 and imagine the so called holographic screen
[23,24] that replaces the usual notion of the boundary in generic 
AdS/CFT correspondence. In other words, the holographic screen 
defines a valid physical region, 0 < � ≤ κ−1 within the bulk where 
holographic computations make sense.

The first step towards our current analysis would be to perform 
a series of coordinate transformations in order to express the de-
formed AdS3 sector of (1) in the so called Poincare coordinates 
with proper Lorentzian signature. This would eventually lead us 
towards a Poincare version of the κ-deformed AdS3 that possesses 
smooth conformally flat AdS3 space–time in the limit of the van-
ishing (κ → 0) deformations.

To start with, we define the so called global coordinates namely,

� = sinhχ (3)

which finally leads to,

ds2
AdS3

= −
(

cosh2 χ

1 − κ2 sinh2 χ

)
dt2 + dχ2

(1 − κ2 sinh2 χ)

+ sinh2 χdψ2. (4)

For better understanding of the holographic correspondence, it 
is customary to express (4) first in the Euclidean signature and 
then Wick rotate back it to the usual Lorentzian signature. In order 
to proceed further, we perform a Wick rotation (t → it̃) along the 
time axis and define the following map namely,

coshχ = 1

cosγ
(5)

which yields the following,

ds2
E AdS3

= (dt̃2 + dγ 2)

cos2 γ − κ2 sin2 γ
+ sin2 γ

cos2 γ
dψ2. (6)

Next, we define the following set of coordinate transformations,

z = et̃ cosγ , r = et̃ sinγ (7)

that essentially yields,

ds2
E AdS3

= 1

z2

(
dz2 + dr2

1 − κ2r2

z2

+ r2dψ2

)
. (8)

In order to get back to the usual Cartesian coordinates, we de-
fine

x0 = t= r sin ψ, x1 = x = r cosψ (9)

which eventually leads to the following Euclidean metric [30],

ds2
E AdS3

= 1

z2

(
dz2 + dx2

1 − κ2x2

z2

)
− κ2(tdx− xdt)2

z2(1 − κ2x2

z2 )
. (10)

Finally, performing a second Wick rotation one essentially ar-
rives at the κ-deformed Poincare metric of the following form,4

ds2
L AdS3

= 1

z2

⎛
⎝dz2 + ηabdxadxb

1 − κ2x2
L

z2

⎞
⎠ + κ2(tdx− xdt)2

z2(1 − κ2x2
L

z2 )

(11)

4 Notice that throughout our analysis we set the length scale of the AdS equal 
to unity. Therefore in our analysis, we essentially work with entities with no mass 
dimension.
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where the entity, x2
L = t2 − x2 denotes the square of the distance of 

separation between two events at the boundary in the Lorentzian 
signature, ηab = diag(+1, −1). However, for the sake of our current 
analysis, we rewrite (11) in the following way,

ds2
L AdS3

= Z(z, xL)dz2 + T (z, xL)dt
2 +X (z, xL)dx

2

+ 2K(z, xL)dtdx (12)

where, the individual metric functions could be formally expressed 
as,

Z(z, xL) = 1

z2(1 − κ2x2
L

z2 )

, T (z, xL) = (1 + κ2x2)

z2

(
1 − κ2x2

L
z2

)

X (z, xL) = −(1 − κ2t2)

z2

(
1 − κ2x2

L
z2

) , K(z, xL) = −κ2tx

z2

(
1 − κ2x2

L
z2

) . (13)

3. Retarded correlators

The purpose of this Section is to explore the low frequency (as 
well as the corresponding low momentum) behaviour associated 
with retarded two point correlators by considering fluctuations 
corresponding to the worldvolume gauge fields associated with the 
N f flavour Dp brane configurations at the linearised level. In par-
ticular, we explore retarded current–current and density–density 
two point function at zero temperature and finite chemical poten-
tial (μ). The motivation for our present computation rests over the 
previous novel observations [35] which indicate that one should be 
able to find traces of zero sound modes in the pole structure asso-
ciated with the retarded two point correlators at low frequencies.

In order to compute the density and current correlators at 
strong coupling, one first needs to expand the on-shell DBI action,

S = −N f Tp

∫
dτdnσ

√−det(Gab + Fab) = N f Tp

∫
dτdnσL

(14)

upto quadratic order in the corresponding U (1) fluctuations 
(sources) namely,5

Aμ →Aμ(z) + aμ(z, t, x) (15)

where, μ = z, t, x and az = 0 [35]. Here, Tp is the tension associ-
ated with flavour Dp branes together with τ and σ a(a = 1, .., n) as 
being the worldvolume coordinates. Here, Gab = gμν∂a Xμ∂b Xν is 
the induced metric on the worldvolume of the Dp brane and Fab
is the U (1) field strength tensor associated with the corresponding 
(abelian) worldvolume gauge field.

The DBI action (14), expanded upto quadratic order in the fluc-
tuations reads,6

S(2) = N f Tp

2

×
∫

dtdxdz

[
T a′2

x + f2txZ√
D

− Na′
xa

′
t +Qa′2

t −K2A′2
t a

′2
x

D3/2

]

(16)

5 At this stage, it is noteworthy to mention that the gauge fluctuations are also in 
the diagonal of the corresponding flavour gauge group U (N f ).

6 At this stage, one should notice that in the limit of the vanishing (κ → 0) back-
ground deformations, the corresponding DBI action (16) boils down to the usual 
undeformed form [36] with signature (+, −).

where, each of the individual entities above (16) could be formally 
expressed as,

D(z,�xL) = T |X |Z +K2Z + |X |A′2
t

N (z,�xL) = 2KZ(K2 + T |X |)
Q(z,�xL) = Z|X |(K2 + T |X |)

ftx = ∂tax − ∂xat. (17)

Notice that, here, �xL = √
�T 2 − �L2 ≥ 0 corresponds to some 

fixed time like separation associated with the dual field theory liv-
ing on the hypersurface (at a fixed radial distance, z = z0) that is 
infinitesimally closed to the holographic screen [23,24] mentioned 
earlier. It is noteworthy to mention that, here �x2

L corresponds to 
the value of the function x2

L appearing in (11) near the holographic 
screen, z = z0 ∼ zB . Here zB is the location of the holographic 
screen that might be regarded as the UV cut-off (εU V ≡ ε) of the 
theory.

Our next task would be to solve these fluctuations in the mo-
mentum space. In order to do this, we consider the following 
Fourier transform,

aμ(z, t, x) =
∫

dwdq

(2π)2
e−iwt+iqxaμ(z,w,q). (18)

Substituting (18) back into (16), we arrive at the following set 
of equations of motion,

∂z

(
Qa′

t

D3/2

)
+ 1

2
∂z

(
Na′

x

D3/2

)
− (wqax + q2at)

Z√
D

= 0

∂z

(
T a′

x√
D

)
− 1

2
∂z

(
Na′

t

D3/2

)
+ ∂z

(
K2A′2

t a
′
x

D3/2

)

+ (wqat +w2ax)
Z√
D

= 0. (19)

Clearly, compared with the earlier results [36], here we observe 
the emergence of additional structures in (19) those are propor-
tional to functions like N (z, �xL) or K(z, �xL) which are therefore 
purely contributions due to background κ-deformations. However, 
as noticed earlier [35], there also exists another (constraint) equa-
tion corresponding to az (subjected to the gauge choice, az = 0) 
which is obtained by varying the DBI action (14),

D3/2∂x

(
T√
D

)
a′
x + iqT Da′

x + K
2
A′
t∂xD(1)

−D3/2∂x

(
K√
D

)
a′
t − iqKDa′

t

−D3/2∂t

(
K√
D

)
a′
x + iwKDa′

x + |χ |
2

A′
t∂tD(1)

−D3/2∂t

( |χ |√
D

)
a′
t + iwD|χ |a′

t = 0 (20)

where, the entity,

D(1) = 2KA′
ta

′
x + 2|χ |A′

ta
′
t (21)

contains terms only first order in the fluctuations in the DBI ac-
tion (14).

For the purpose of our present analysis, we rewrite (20) as,

H(z, xa)a′
x −Q(z, xa)a′

t = 0 (22)

where, the individual functions above in (22) could be formally 
expressed as,
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H(z, xa) = D3/2
(

∂x

(
T√
D

)
− ∂t

(
K√
D

))
+ iD(qT +wK)

+ iA′2
t K(qK −w|χ |)

Q(z, xa) = D3/2
(

∂x

(
K√
D

)
+ ∂t

( |χ |√
D

))
+ iD(qK −w|χ |)

− iA′2
t |χ |(qK −w|χ |). (23)

Using (22), one could re-express (19) as,

a′
t = C(1)

�(w,q, z, xa)
(24)

where, C(1) is some integration constant and the function at the 
denominator could be formally expressed as,

�(w,q, z, xa) = Q+ NQ

2H
+ q

w

T DQ

H
− qN

2w
+ qQ

wH
K2A′2

t . (25)

Notice that, the set of equations (19)–(20) possesses the resid-
ual gauge symmetry of the following form,

at → at −wξ(t, x)

ax → ax + qξ(t, x) (26)

which thereby implies that only physical degrees of freedom of 
the system are those which are gauge invariant. Therefore, in our 
analysis, instead of solving the equation for at , we would rather 
solve the following gauge invariant combination namely the elec-
tric field [35],

E = wax + qat. (27)

Using (27) and the constrained equation (22) we finally obtain,

E′ = wC(1)

H�

(
Q+ q

w
H

)
. (28)

Substituting (27) into (16) and using the Fourier transform (18), 
the corresponding DBI action (in the frequency space) finally turns 
out to be,

S(2)|z∼ε ≈ N f Tp

2

∫
z∼ε

dzdwdq I(w,q, z) (29)

where, the integrand could be formally expressed as,

I(w,q, z) = 1

w2

(
〈Q〉 + q〈H〉

w

)−2 ( 〈Q2〉〈T 〉√〈D〉
− (〈NQH〉 + 〈QH2〉 − 〈K2A′2

t Q
2〉)

〈D〉3/2

)
E′2 − 〈Z〉√〈D〉E

2

= B(z, κ)E′2 − 〈Z〉√〈D〉E
2 (30)

where, by performing the above computation we always assume 
that we are close to the UV cut-off, namely z ∼ ε � zB where we 
consider a fixed time like separation, �xL = √

�T 2 − �L2 ≥ 0. The 
following analysis is valid only when one could average over tem-
poral as well as spatial dependencies appearing in the metric func-
tions (13) by their respective values corresponding to (�T , �L) 
namely,

T (xa, z)|z∼ε ∼ 〈T (z)〉z∼ε � T (�L, ε) (31)

and so on. This is also equivalent of considering the fact that 
the metric functions near the boundary is a slowly varying 

(
| δgab

δxa | � 1
)

function of the boundary coordinates so that we 

could replace them by some suitable averages of the above form7

(31).
Finally, by performing the integration by parts, the boundary 

action turns out to be,

S
(2)
B |z∼ε = − N f Tpε

2

∫
dwdqB(w,q, κ)E(ε)E′(ε) (32)

where, the function B(ε, κ) could be formally expressed as,

B(w,q, κ) ≈
√

1 − 2κ4�L4

(q2 +w2 + (q2 −w2 − 2qw)κ2�L2)
. (33)

Given the on-shell action (32), one can immediately write down 
the retarded two point correlators by taking functional deriva-
tives [36],

GR
tt = q2B(w,q, κ)�(w,q, κ)

GR
tx = qwB(w,q, κ)�(w,q, κ)

GR
xx = w2B(w,q, κ)�(w,q, κ) (34)

where, we identify,

�(w,q, κ) = δ2S
(2)
B

δE2(ε)
. (35)

The solution to the Eq. (28) contains to unknown integration 
constants (C(1) and C(2)) which are to be determined from some 
physical considerations. Notice that Eq. (28) is valid for all z. Since 
we are interested in computing retarded correlators (which are 
related to the response parameters of the system) therefore one 
must take into account the effect of attenuation and/or the dissi-
pation into the system and which is related to the fact that the low 
frequency (wzn � 1) as well as low momentum (qzn � 1) modes 
(collectively the hydrodynamic modes) must satisfy in-going wave 
boundary conditions in the interior of the bulk8 [36]. Therefore, 
the fluctuations that we finally solve for (near the boundary) must 
be consistent with the in-going wave boundary condition in the 
bulk. This information is hidden in the above integration constants 
(C(1) and C(2)) that finally appear in the retarded correlator (38). 
In other words, the retarded correlator we compute is a physical 
one and is consistent with in-going wave boundary condition. In 
order to determine these constants we need a matching criteria 
which is obtained (i) first by expanding (28) into large z and then 
taking a small frequency expansion and (ii) to solve (28) for small 
frequency first and then expanding into large z.

However, before getting into that, it is customary note down 
the low frequency solution close to the boundary,

E(z) � C(2) + C(1)(αw+ βwq+ γ
w2

q
+ ζw2)z (36)

along with the properly defined coefficients of the following form,

α =
√

�L2
(
κ4�L4 − κ2�L2 − 1

)
κ2�L3

(
1 − 2κ4�L4

)2

β = i
√

�L2
(
κ2�L2 + 1

)
4κ8�L8 − 2κ4�L4

7 Under such an approximation, one could in fact get rid off the spatial integrals 
appearing in (16) by using the usual definition of Fourier transform of delta function 
in the momentum space.

8 Here, n(≥ 9) is some sufficiently large positive integer.
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γ =
(
κ2�L2 − 1

) (
κ2�L2 + 1

)2

κ4�L4
(
1 − 2κ4�L4

)2

ζ = i
(−2κ4�L4 + κ2�L2 + 1

)
2κ6�L5

(
2κ4�L4 − 1

) . (37)

Substituting (36) into (32) we find,

S
(2)
B |z∼ε = − N f Tp

2

∫
dwdqC(1)C(2)B(w,q, κ)(αw+ βwq

+ γ
w2

q
+ ζw2) (38)

Our next task would be to determine the constants C(1) and 
C(2) following the physical arguments mentioned above. The first 
step would to solve fluctuations first in the limit z → ∞ and then 
consider small frequency (wzn � 1) as well as small momentum 
(qzn � 1) expansion while keeping the ratio, w

q
fixed. Our analysis 

reveals that in the large z limit, the solution (28) indeed behaves 
like an ingoing wave of the following form [36],

E(z) ∼ ei(wς−q̂q)z9/9 (39)

such that the entity, ς could be formally expressed as,

ς = (2ω̃ − q̃)

2κ2�t2
− q̃

2
+ 2�x

(
2ω̃�x+ �t(ω̂ + i)

)
�t2

(40)

where, we set, ω̃ = |w�x| � 1, q̃ = |q�t| � 1, ω̂ = |w�t| � 1 and, 
q̂ = |q�x| � 1.

Next, we would like to take the small frequency (wzn � 1) as 
well as the small momentum (qzn � 1) limit of the large z solution 
[36] corresponding to (28) which finally yields,

E(z) ≈ C(3)

+ C(3)wz9
(
1 − κ2�t2

) (
1 − κ2�x2

)
9κ2�t�x

(
2κ4�t2�x2 + κ2�s2 − 1

) (
κ2�t2

(
2κ2�x2 − 1

) + 1
)

+ iC(3)wqz9

9�t3
(
4κ6�x2 − 2κ4

) + 2κ2�t

(41)

where, �s2 = �t2 − �x2 ≥ 0 stands for some fixed time like inter-
val corresponding to some fixed IR (z → ∞) hyper-surface at the 
deep interior of the bulk.

Following the approach of [36], our next task would be first to 
obtain the general solution (valid for arbitrary values of z) corre-
sponding to (28) in the regime of small frequency (wzn � 1) as 
well as small momentum (qzn � 1) and then consider the large z
limit of this solution which finally yields,9

E(z) � C(2) + C(1)

(
iwz9

(
q+ 2iκ2�x

)
�t

36κ2�x2

)
+O

(
wzn

zm

)
(42)

where, n = 9 and m ≥ 2 are two positive integers.
Comparing (41) and (42), we finally obtain,

C(1) = C(2)

(
q�(2) − �(1)

q�(3) + �(4)

)
(43)

where, the coefficients � could be formally expressed as,

9 At this stage, it is indeed worthwhile to point out that in order to obtain so-
lution (42), we had taken care of the fact that in the limit of small frequency and 
momentum and for generic background (κ > 0) deformations it is in-fact quite rea-
sonable to set the limit, wκ2 � 1 as well as, qκ2 � 1.

�(1) = i
(
1 − κ2�t2

) (
1 − κ2�x2

)
(9κ2�t�x

(
2κ4�t2�x2 + κ2�s2 − 1

) (
κ2�t2

(
2κ2�x2 − 1

) + 1
)
)

�(2) = 1

(9�t3
(
4κ6�x2 − 2κ4

) + 2κ2�t)

�(3) = 1

36κ2�x2
, �(4) = i�t

18�x
. (44)

Using (38) and (43), the low frequency (as well as the low 
momentum) behaviour associated with the retarded two point cor-
relator finally turns out to be,

�̃(w,q, κ) = B(w,q, κ)�(w,q, κ)

= Cw
c1q

2 − c2w
2 − γ c1

α wq− �(w,q, κ)
(45)

where, apart from some overall numerical (real) pre-factor (C), one 
could formally express the other entities as,

c1 = 1√
1 − 2κ4�L4

, c2 = c1

(γ n

α
− 1

)
, n = w

q
,

χ = �(3)

�(4)
+ �(2)

�(1)

�(w,q, κ) = c1

α
(ζ + γχ)w3 + c1

(
β

α
− χ

)
q3

+ c1

(
β

α
− χ

)
w2q+ c1

α
(ζ + γχ)wq2 +O(4).

(46)

The above two point function (45) is the main result of this 
paper. It clearly indicates, that at low frequencies the quadratic 
order fluctuations, w2 always dominates over the self energy cor-
rection, �. Therefore, at low frequencies, it is the quadratic order 
term in the fluctuations that controls the behaviour of the retarded 
two point correlator (45).

In order to check the existence of zero sound, one first needs 
to explore the pole of the retarded correlator (45) which amounts 
to set,

c1q
2 − c2w

2 − γ c1

α
wq− �(w,q, κ) = 0. (47)

The above equation (47) could be easily solved in the domain 
of low frequency regime as a perturbative expansion in the small 
momentum which finally yields,

w(q) � d(1)q+ d(2)q2 +O(q3) (48)

where, the entities above could be formally expressed as,

d(1) = − γ c1

2αc2

⎛
⎝1 ∓

√
1 + 4α2c2

γ 2c1

⎞
⎠

d(2) = − c1

2αc2

⎛
⎜⎝ζ + γχ +

2α2

γ

(
β
α − χ

)
+ (ζ + γχ)√

1 + 4α2c2
γ 2c1

⎞
⎟⎠

+ γ c2
1

2αc2
2

(
β

α
− χ

)⎛
⎝1 ∓

√
1 + 4α2c2

γ 2c1

⎞
⎠ . (49)

Before we proceed further, a number of crucial observations are in 
order. First of all, it is worth emphasizing that the above dispersion 
relation (48) is exact in the background deformations (κ ) and is 
therefore valid for any (non-singular) value of κ(> 0). The second 
observation is that the coefficient (d(1)) associated with the linear 
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momentum term is purely real whereas on the other hand, the 
coefficient (d(2)) associated with the quadratic momentum term is 
purely imaginary. This therefore clearly suggests the existence of 
the so called holographic zero sound speed,

υ0 = d(1) (50)

in the spectrum as the imaginary part falls at a rate faster than 
that of the real part in the limit of low momentum. In summary, 
the pole structure associated with the retarded current correlators 
is quite similar to that what has been observed in previous holo-
graphic analysis performed in higher (D > 2) dimensions [35,36].

4. Summary and final remarks

We conclude our analysis with a brief summary of the analy-
sis performed along with mentioning some of its possible future 
extensions. In this paper, we explore the low energy behaviour as-
sociated with retarded two point correlators for certain classes of 
(1 + 1)D strongly correlated quantum liquids those are dual to clas-
sical (bosonic) η-deformed AdS3 spacetime in (2 + 1)D [18]. The 
corresponding pole structure associated with these retarded cor-
relators reveals an astonishing fact, namely the existence of zero 
sound like excitations as observed in the context of ordinary LFL 
theory in higher (D > 2) dimensions. In other words, the quan-
tum liquid (dual to η-deformed AdS3) behaves like ordinary LFL in 
(1 + 1)D which is indeed quite unusual as well as surprising from 
the point of view of (1 + 1)D theory [44]. Therefore it is actually 
through holography where we have been able to discover some non 
trivial LFL like phase even in (1 + 1)D. One of the reasons why we 
observe LFL like phase in (1 + 1)D might have its origin in the so 
called η-deformations. However, this issue does not seem to be 
resolved at the moment and thereby definitely merits further in-
vestigation along this particular direction.
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