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Highlights

• We study length-scale effect on response of an actuated CNT nano-actuator using a
nonlocal strain-Velocity gradient theory.

• The nano-actuator is modeled as a Euler-Bernoulli beam which accounts for von-
Karman strain and electric actuating forcing.

• Three length-scale parameters are included, namely a nonlocal, a strain gradient, and
a velocity gradient parameter.

• Equation of motion and boundary conditions are derived using Hamilton’s principle
and DQM was used to discretize the problem.

• The main objective is to study the effect of length-scale parameters on nonlinear
vibrational response of the nano-actuator.
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Abstract

This paper examines the length-scale effect on the nonlinear response of an electrically
actuated Carbon Nanotube (CNT) based nano-actuator using a nonlocal strain and ve-
locity gradient (NSVG) theory. The nano-actuator is modeled within the framework of
a doubly-clamped Euler - Bernoulli beam which accounts for the nonlinear von-Karman
strain and the electric actuating forcing. The NSVG theory includes three length-scale pa-
rameters which describe two completely different size-dependent phenomena, namely, the
inter-atomic long-range force and the nano-structure deformation mechanisms. Hamilton’s
principle is employed to obtain the equation of motion of the nonlinear nanobeam in ad-
dition to its respective classical and non-classical boundary conditions. The differential
quadrature method (DQM) is used to discretize the governing equations. The key aim of
this research is to numerically investigate the influence of the nonlocal parameter and the
strain and velocity gradient parameters on the nonlinear structural behavior of the carbon
nanotube based nanobeam. It is found that these three length-scale parameters can largely
impact the performance of the CNT based nano-actuator and qualitatively alter its resul-
tant response. The main goal of this investigation is to understand the highly nonlinear
response of these miniature structures to improve their overall performance.
Keywords: Carbon Nanotube (CNT) Euler-Bernoulli nanobeam; Nonlocal strain and ve-
locity gradient theory; Material length scales; Differential Quadrature Method (DQM);
Static and eigenvalue problem.

1 Introduction

Carbon nanotubes (CNTs) are considered as mechanical building blocks at the nano-scale
thanks to their outstanding characteristics including thermal, mechanical, electrical and
chemical properties. CNTs have received widespread interest of researchers from many dis-
ciplines, including material science, engineering, chemistry, and physics and in applications
involving nano-electronics, nanosensors, and nanodevices [1]-[6]. Therefore, an extensive
study of the structural behavior of CNTs under various conditions is a fundamental issue
in any nano-scale investigation.

1Corresponding author. Tel.: +974 4423 0674, e-mail: sami.el borgi@qatar.tamu.edu (Sami El-Borgi).
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The existence of size-dependency of CNTs was confirmed experimentally at the nano-
scale [7]. Recently, several models that include the effect of material length scales have been
developed to predict the size-dependent behavior of nanobeams. These include Eringen’s
nonlocal elasticity theory [7]–[10], modified couple stress theory of Mindlin [11], Koiter [12],
and Toupin [13] and the strain gradient theory [14]–[16].

Unlike classical continuum mechanics, nonlocal theories assume that the stress at a
point is not a function of the strain at that point but is a function of the strains in its
neighborhood [7]–[10]. These theories account for the inter-atomic long-range force but do
not consider the microstructure deformation mechanism as in the case of classical elasticity
[17]. Nonlocal elastic models can only model nanostructures exhibiting softening behavior
which indicates that ”smaller is more compliant” [18]. On the other hand, the gradient
elasticity theory considers only the higher-order microstructure deformation mechanism
without accounting for any inter-atomic long-range force. Furthermore, gradient elasticity
theory can only model nanostructures exhibiting hardening behavior which indicates that
”smaller is stiffer” [18]. Therefore, nonlocal elasticity and strain gradient theories represent
two different size-dependent behaviors and combining both theories allows the modeling of
nanostructures exhibiting at the same time hardening and softening behavior. Tian et al.
[19] were able to show experimentally on certain nanostructures stiffness enhancement and
softening effects, indicating the need for a unique theory capable of capturing both size-
dependent stiffness-softening and hardening phenomena. Recently, a number of researchers
employed the combined nonlocal strain gradient theory to investigate the effects of the two
length-scale parameters (ie, the nonlocal and strain gradient parameter) on the behavior of
nano/micro-structures [17]–[18],[20]–[21].

With the recent development in size-dependent continuum mechanics theories, there
has been more focus on investigating the vibration response of CNT nanobeams using a
number of numerical and analytical techniques and size dependent models. Many studies
investigated the linear free vibration of CNT beams. Thongyothee et al. [22] examined
the linear and free vibration of SWCNTs while taking into consideration the effect of small
length scale based on the nonlocal elasticity theory. Kiani [23] investigated the vibrational
behavior of simply supported inclined SWCNTs conveying viscous fluids flow using nonlocal
Rayleigh beam model. On the other hand, Xu and Deng [24] presented variational methods
to investigate the buckling and free vibration of CNT beams using the strain gradient
theory. Li et al. [25] studied numerically the longitudinal nonlinear vibration of nanorods
employing the nonlocal strain gradient theory. De Rosa and Lippiello [26] investigated
analytically the nonlocal vibration analysis of single-walled carbon nanotube Timoshenko
beam used in mass-sensor applications.

The aforementioned studies focused on linear vibration problems of CNT nanobeams.
Few investigations took into consideration the geometric nonlinearity associated with vibra-
tion of CNT nanobeams. Ke and his co-authors [31]–[33] made the first attempt to study
the nonlinear vibration of the single-walled and double-walled carbon nanotubes based on
nonlocal Timoshenko beam theory. Ke et al. [31] investigated the nonlinear free vibration
problem of functionally graded nanocomposite beams reinforced by single-walled carbon
nanotubes (SWCNTs) considering Timoshenko beam theory and von Karman geometric
nonlinearity. In another paper, Yang et al. [32] and Ke et al. [33] investigated, respec-
tively, the nonlinear free vibration response of embedded single-walled and double-walled
carbon nanotubes based on nonlocal Timoshenko beam theory. The aforementioned studies
by Ke and co-authors concluded that the nonlocal parameter has an insignificant effect on
the nonlinear mode shape but can considerably change the linear and nonlinear frequen-

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

cies. Ansari et al. [27] employed the strain gradient elasticity theory to study the torsional
vibration behavior of single-walled carbon nanotubes modelled as a Euler-Bernoulli beam
and the resulting problem was solved numerically using the Differential Quadrature Method
(DQM). Fakhrabadi et al. [28] investigated numerically the nonlinear free/forced vibration
of CNT under DC electrostatic load while assuming the so-called modified couple stress
theory. Mehdipour et al. [29] considered the nonlocal nonlinear vibration problem of an
electrostatically actuated cantilevered CNT based bio-mass sensor with a mass attached to
its free end. Fang et al. [30] analyzed the nonlinear vibration response of double-walled
carbon nanotubes based on nonlocal elasticity theory. Recently, Rahmanian et al. [34] stud-
ied the free nonlinear vibration of single walled carbon nanotubes using nonlocal elasticity
beam and shell models.

Another type of nonlinearity is caused by the electrostatic force in electrically actu-
ated CNT beams. Using the finite element method, Ribeiro [35] studied numerically the
nonlocal nonlinear structural behavior of electrically actuated carbon nanotube based nano-
actuators. Yang et al. [36] investigated the dynamic pull-in instability of electrically carbon
nanotube based nano-actuator using the nonlocal strain gradient theory and the solution
to the governing equations was obtained analytically using the Homotopy Perturbation
Method.

Size effect appears when the internal structure is not negligible in comparison to the
structural dimension. In order to improve the continuum model to capture this feature,
elastodynamic formulation should be generalized in a constitutive level. This generalization,
in principle cannot be limited to the stress-strain constitutive equation, and both strain and
kinetic energy should be generalized [37]–[38]. Then, it is only a matter of scale to see the
effect of the static and/or kinetic internal length scale in the behavior of the structure. A
limited number of investigators accounted for velocity gradient effect in studying vibration
of different structural elements. Guo et al. [39] investigated the torsional free vibration
linear response of a carbon nanotube using a combined nonlocal with strain and velocity
gradient theory. This study concluded that the effect of including velocity gradient weakens
the nanotube’s torsional rigidity and has a larger influence on higher-order frequencies
than on lower-order frequencies. Fernandes et al. [40] considered the nonlinear vibration
problem of a carbon nanotube bar embedded in an elastic medium using the strain and
velocity gradient theory. In another study, Fernandes et al. [41] examined the nonlinear
free and forced vibration response of a microbeam using finite strain and velocity gradient
theory. Finally, El-Borgi et al. [42] studied the torsional vibration of viscoelastic rods using
nonlocal strain and velocity gradient theory.

To the best of the authors knowledge, it can be concluded from the literature review
that, with the exception of the work of Yang et al. [36], all researchers have focused their
attention on studying the nonlinear dynamic behavior of electrically actuated CNT based
nano-actuator using either the nonlocal theory or the strain gradient theory / modified
coupled stress theory which account, respectively, for the inter-atomic long-range force and
the microstructure deformation mechanism. Additionally, the generalization of the strain
energy with strain gradient should be incorporated with the generalization of the kinetic
energy with velocity gradient. To fill these gaps in the literature, the novelty of this study
consists of combining nonlocal strain and velocity gradient theories to capture the size
effects in the vibration response of a CNT nanobeam with nonlinarities due to von Kármán
nonlinear strains and electrostatic forcing. As a result, both inter-atomic long-range force
and the microstructure deformation mechanism will be considered in the proposed theory. It
is noted that Yang et al. [36] analyzed the dynamic pull-in of functionally graded nanotubes
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reinforced nano-actuator without considering the velocity gradient. In this article, adopting
a different solution approach, in that the velocity gradient has been taken into account.
Hamilton’s principle is used to derive the equation of motion and the associated boundary
conditions of the nanobeam. The differential quadrature method (DQM) is then employed to
discretize the nonlinear equation of motion of the nano-actuator and the nonlinear response
is subsequently solved.

This paper is arranged as follows. Following this introduction, the proposed nonlo-
cal strain gradient theory is summarized in Section 2. The equations of motion for a
size-dependent Euler-Bernoulli CNT nanobeam employing the nonlocal strain and velocity
gradient theory along with von Kármán and electrostatic forcing nonlinearities are derived
in Section 3. The model discretization using the differential quadrature method is presented
in Section 4. Numerical results are presented and discussed in Section 5. Finally, the main
contributions and conclusions are provided in Section 6.

2 Nonlocal Strain Gradient Theory

In this section, we formulate the static and dynamic behavior of an electrically actuated
carbon nanotube resonator taking into consideration the nonlocal theory as well as both the
strain and velocity gradient theories. The considered boundary conditions for the carbon
nanotube (CNT) is a clamped-clamped beam, Fig. 1. The CNT is actuated by an electrode
underneath it with a gap width d. The CNT is modeled as an Euler-Bernoulli beam of radius
R̃, and length L. This beam has a cross-sectional area A = πR̃2, and an area moment of
inertia of I = πR̃4/4. The CNT is assumed to have a Young’s modulus E = 1 TPa and a
density ρ = 1.35 g/cm3 [43].

According to the non-gradient nonlocal elastic stress field theory [7, 44], the nonlocal
stress at a reference point x depends not only on the strain ε at that location but on the
strains at all other points within the domain V . Hence, the nonlocal internal energy density
potential U0 can be written as

U0 (εij , εij , α0) =
1

2
εijCijkl

∫

V
α0

(∣∣x− x′
∣∣ , e0a

)
εkldV (1)

The extended Eringen’s model including the nonlocality of higher-order strain gradients
εij,k reads

U0 (εij , εij , α0; εij,m, εij,m, α1) =
1

2
εijCijkl

∫

V
α0

(∣∣x− x′
∣∣ , e0a

)
εkldV +

l2s
2
εij,mCijkl

∫

V
α1

(∣∣x− x′
∣∣ , e1a

)
εkl,mdV =

1

2

∫

V

(
σijεij + σ

(1)
ijmεij,m

)
dV (2)

where σij = Cijkl

∫
V α0 (|x− x′| , e0a) εkldV and σ

(1)
ijm = l2sCijkl

∫
V α1 (|x− x′| , e1a) εkl,mdV

are, respectively, the nonlocal stress tensor and the higher-order nonlocal stress tensor.
Here, e0a and e1a are nonlocal parameters representing the significance of the inter-atomic
long-range force and ls is the material length-scale parameter associated with the strain
gradient. The nonlocal strain gradient theory [45] states that the total stress tensor tij can
account for not only the local stress tensor σij , but also the higher-order nonlocal stress

tensor ∇σ(1)ijm, as follows:

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tij = σij −∇σ(1)ijm (3)

Based on Eringen [8], the nonlocal parameters are assumed to be e0a = e1a = ea, which
reduces the general constitutive relations of the Nonlocal Strain Gradient (NLG) theory to
the following form:

[
1− (ea)2∇2

]
txx =

(
1− l2s∇2

)
E (z) εxx (4a)

[
1− (ea)2∇2

]
txz =

(
1− l2s∇2

)
G (z) γxz (4b)

where G (z) is the shear modulus, txx is the axial normal stress, εxx is the axial strain, txz
is the shear stress and γxz is the shear strain. Such model combines the Eringen’s nonlocal
elasticity theory and strain gradient theory. In the limiting cases:
1. Setting ls = 0, Equations (4a) and (4b) reduce to

[
1− (ea)2∇2

]
txx = E (z) εxx (5a)

[
1− (ea)2∇2

]
txz = G (z) γxz (5b)

which corresponds to Eringen’s nonlocal theory.
2. Setting ea = 0, Equations (4a) and (4b) reduce to

txx =
(
1− l2s∇2

)
E (z) εxx (6a)

txz =
(
1− l2s∇2

)
G (z) γxz (6b)

which is the strain gradient theory with l2 = ls, l0 = l1 = 0.

Fernández-Sáez et al. [46] and Romano et al. [47], and the references therein, high-
lighted a paradox in the transformation from the integral form of the nonlocal model to
the differential form for beam bending problems with an exponential nonlocal kernel. They
showed that the transformation implied a relationship between the bending moment and
the spatial derivative of the bending moment at the boundaries that must be satisfied. This
means that the bending moment obtained from the solution to the differential equation
should be checked to ensure the obtained solution is also a solution to the integral form of
the equation. This is readily done for problems with displacement type boundary condi-
tions, since the bending moment will be the solution of a second order differential equation,
and the constants of integration can be used to satisfy the bending moment boundary con-
ditions. However, it should also be recognised that the nonlocal model in integral form is
unable to model detailed local effects at boundaries, and hence there are always likely to be
discrepancies between the actual and simulated bending moment at the boundary. Given
that these discrepancies at the boundaries are always likely to be present whichever model
used, here the differential form of the equations is used.
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3 Equations of Motion of Size-Dependent CNT Nanobeams

Assuming an Euler-Bernoulli beam model, the carbon nanotube displacement field can be
expressed as

u1 = u (x, t)− zw (x, t),x , u2 = 0, u3 = w (x, t) (7)

Considering von-Karman nonlinearity for mid-plane stretching effect, the first order non-
linear strain-displacement relation is given by:

εxx = u,x +
1

2
w2
,x − zw,xx, εxy = εxz = εyz = εyy = εzz = 0 (8)

Therefore, the variation of the total strain energy can be expressed as

δUt =

∫

V

(
σxxδεxx + σ(1)xxx∇δεxx

)
dV =

∫

V

(
σxx −∇σ(1)xxx

)
δεxxdV +



∫

Ab

σ(1)xxxδεxxdAb




L

0

=

∫

V

txxδεxxdV + +



∫

Ab

σ(1)xxxδεxxdAb




L

0

(9)

Substituting Eq. (8) into (9) yields

δUt =

∫

V

txxδ

(
u,x +

1

2
w2
,x − zw,xx

)
dV +



∫

Ab

σ(1)xxxδ

(
u,x +

1

2
w2
,x − zw,xx

)
dAb




L

0

=

∫

V

(txxδu,x + txxw,xδw,x − ztxxδw,xx) dV +



∫

Ab

(
σ(1)xxxδu,x + σ(1)xxxw,xδw,x − zσ(1)xxxδw,xx

)
dAb




L

0

=

∫

V

(txxdAbδu,x + txxw,xdAbδw,x − ztxxdAbδw,xx) dx+

[
N (1)δu,x +N (1)w,xδw,x −M (1)δw,xx

]L
0

=

∫ L

0
(Nδu,x +Nw,xδw,x −Mδw,xx) dx+

[
N (1)δu,x +N (1)w,xδw,x −M (1)δw,xx

]L
0

(10)

where,

N =

∫

Ab

txxdAb, M =

∫

Ab

ztxxdAb, N (1) =

∫

Ab

σ(1)xxxdAb, M (1) =

∫

Ab

zσ(1)xxxdAb (11)

Considering the constitutive relation (3) and (11), the moment and the axial force can be
written as follows:
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M (x, t) =

∫

Ab

ztxxdAb =

∫

Ab

z
(
σxx − σ(1)xxx,x

)
dAb = M (0) −M (1)

,x (12)

N (x, t) =

∫

Ab

txxdAb =

∫

Ab

(
σxx − σ(1)xxx,x

)
dAb = N (0) −N (1)

,x (13)

in which

M (0) =

∫

Ab

zσxxdAb, N (0) =

∫

Ab

σxxdAb (14)

Substituting the general constitutive relations (4a) and (4b) and the strain-displacement
relationships (8) into Eqs. (12), (13) and (14) yields the following expressions:

M (x, t) = (ea)2M,xx + EI

(
1− l2s

∂2

∂x2

)
w,xx (15)

N (x, t) = (ea)2N,xx + EA

(
1− l2s

∂2

∂x2

)[
u,x +

1

2
w2
,x

]
(16)

Based on Mindlin derivations [48] related to the kinetic energy in the gradient elastic-
ity theory, kinematics quantities should be distinguished on the microscale structure. He
suggested a generalized kinetic energy in the gradient theory as

K =
1

2
ρui,tui,t +

1

2
ρl2kui,jtui,jt (17)

where ρ is the mass density, lk is the kinetic material length-scale parameter associated with
the velocity gradient and the index t denotes the time derivative. Therefore, the kinetic
energy Kt in the region V occupied by elastically deformed material (at time t) can be
expressed as:

Kt =

∫

V

KdV =
1

2

∫

V

ρ
(
ui,tui,t + l2kui,jtui,jt

)
dV (18)

and its variation is

δKt =

∫

V

ρ
(
ui,tδui,t + l2kui,jtδui,jt

)
dV (19)

Using the Euler-Bernoulli beam model and the displacement field given by Eq. (7), the
kinetic energy can be written as follows:

Kt =
1

2
ρ

x=L∫

x=0

∫

A

[
u21,t + u23,t + l2k

(
u21,xt + u21,zt + u23,xt

)]
dAdx (20)

For thin beams (valid for CNT), the kinetic energy due to rotation may be neglected when
compared to the other term, i.e, u21,xt ≈ 0 amd u23,zt ≈ 0. Therefore, the first variation of
the kinetic energy can then be written as:
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δKt = ρ

x=L∫

x=0

∫

A

[
z2w,xtδw,xt + w,tδw,t + u,tδu,t − 2z(w,xtδu,t + u,tδw,xt)

]
dAdx

+ρl2k

x=L∫

x=0

∫

A

[(
z2w,xxtδw,xxt + 2w,xtδw,xt

)]
dAdx =

ρI

x=L∫

x=0

w,xtδw,xtdx+ ρA

x=L∫

x=0

(w,tδw,t + u,tδu,t)dx+

ρl2kI

x=L∫

x=0

w,xxtδw,xxtdx+ 2ρl2kA

x=L∫

x=0

w,xtδw,xtdx (21)

Finally, the variation of the work of external forces takes the form

δWt =

x=L∫

x=0

(Felectric (x, t)− cw,t)δwdx (22)

In such systems, the state is described by using continuous functions of space and time.
The extended Hamilton Principle is given by

∫ t2

t1

δLtdt =

∫ t2

t1

(δKt − δUt + δWt) dt =0 (23)

where Lt is the Lagrangian, Kt is the kinetic energy, Ut is the elastic energy, Wt is the
nonconservative work done by external loads on the system, and t1, t2 are the initial and
final times. Substituting the expressions for δUt, δKt and δWt, from Eqs. (10), (21) and
(22) into Eq. (23), carrying out integration-by parts over time and space, and assuming
that the variations vanish at time t1 and t2 results in the following equations of motion:

N,x − ρAu,tt = 0 (24)

− (Nw,x),x −M,xx − ρAw,tt − cw,t − ρIw,xxtt − 2l2kρAw,xxtt +

l2kρIw,xxxxtt + Felectric (x, t) = 0 (25)

subjected to the classical boundary conditions

N or u evaluated at x = 0, L (26a)

M or w,x evaluated at x = 0, L (26b)

and the following non-classical boundary conditions:

N (1) or u,x evaluated at x = 0, L (27a)

M (1) or w,xx evaluated at x = 0, L (27b)
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Knowing that in such flexible structure configuration, the dynamics in the axial direction
is obviously less dominant as compared to its bending dynamics, and therefore the inertia
term in Eq. (24) can be neglected, i.e., u,tt ≈ 0, hence one obtains

N,x = 0→ N (x, t) = C (t) (28)

where C is a constant function of time. Substituting (28) into (16), the axial force function
N (x, t) is reduced to the following form:

N (x, t) = C (t) = (ea)2N,xx︸︷︷︸
=0

+EA

(
1− l2s

∂2

∂x2

)[
u,x +

1

2
w2
,x

]
=

EA

[
u,x +

1

2
w2
,x

]
− ∂

∂x

(
EAl2s [u,xx + w,xw,xx]

)
(29)

Using the relationship in Eq. (13), one obtains the following explicit expressions:

N (0) = EA

[
u,x +

1

2
w2
,x

]
(30a)

N (1) = EAl2s [u,xx + w,xw,xx] (30b)

Then, substituting (30a) and (30b) into (16) and in light of (28), one obtains

C (t) = EA

[
u,x +

1

2
w2
,x

]
−N (1)

,x (31)

Now, in the case of fixed-fixed beams, the axial displacements and the non-classical axial
load are equal to zero at the beam boundaries, i.e:

u (x = 0, t) = u (x = L, t) = 0 (32a)

N (1) (x = 0, t) = N (1) (x = L, t) = 0 (32b)

Integrating both sides of Eq. (31) from 0 to L and using (30a), (30b) and (31), the axial
normal force reduces to the following form:

N (x, t) = C (t) =
EA

2L




x=L∫

x=0

w2
,xdx


 (33)

In view of the size-dependent equilibrium Eqs. (25) and (26), the expression of the moment
(15) can be written as follows:

M (x, t) = (ea)2


ρAw,tt − ρAw,xxtt −

EA

2L




x=L∫

x=0

w2
,xdx


w,xx − Felectric (x, t)


−

EI

(
1− l2s

∂2

∂x2

)
w,xxx (34)
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Finally, using (25), (26), (33) and (34) yields the following size-dependent nonlinear equation
of motion for a CNT clamped-clamped nanobeam:

(
1− (ea)2 ∂2

∂x2

)[
ρAw,tt − ρIw,xxtt + cw,t −

(
EA
2L

x=L∫
x=0

w2
,xdx

)
w,xx − Felectric (x, t)

]
=

ρl2k (2Aw,xxtt − Iw,xxxxtt)−
(

1− l2s ∂2

∂x2

)
EIw,xxxx

(35)
subjected to the following boundary conditions:

w (x = 0, t) = w (x = L, t) = 0
w,x (x = 0, t) = w,x (x = L, t) = 0
w,xx (x = 0, t) = w,xx (x = L, t) = 0

(36)

The electric force of a CNT clamped-clamped based actuator can be written as

Felectric(x, t) =
πε0V

2

√
(d− w)

(
d− w + 2R̃

)(
cosh−1

(
1 + d−w

R̃

))2 (37)

Using the following non-dimensional parameters:

ŵ =
w

d
,x̂ =

x

L
,t̂ =

t

T
(38)

where T is a time constant defined by T =
√
ρAL4

/
EI. Dropping the hats, the nondimen-

sional equations of motion and associated boundary conditions for the clamped-clamped
carbon nanotube beam can be written, respectively, as

(
1− µs

∂2

∂x2

)
∂4w

∂x4
+

(
1− µ0

∂2

∂x2

)
∂

2w

∂t2
+ αd

∂w

∂t
− αr

∂4w

∂x2∂t2
− αs




1∫

0

(
∂w

∂x

)2

dx


 ∂2w

∂x2
− αeΓ (w)


 =

µk

(
2
∂4w

∂x2∂t2
− αr

∂6w

∂x4∂t2

)
(39)

w (x = 0, t) = w (x = L, t) = 0

w,x (x = 0, t) = w,x (x = L, t) = 0

w,xx (x = 0, t) = w,xx (x = L, t) = 0 (40)

where

αs =
Ad2

2I
, αe =

πε0L
4

EId2
, αr =

I

AL2
, αd = c̃

L4

EI
(41a)

µ0 =
(ea
L

)2
, µs =

(
ls
L

)2

, µk =

(
lk
L

)2

, R =
R̃

d
(41b)
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and

Γ (w) =
V 2

√
(1− w) (1− w + 2R)

(
cosh−1

(
1 + 1−w

R

))2 (42)

4 Differential Quadrature Method (DQM)

Due to the complexity of the governing equation Eq. (39) of the clamped-clamped carbon
nanotube, it is indispensable to use a numerical method to simulate its response. In this
work, we propose the use of Differential Quadrature Method (DQM). Various problems in
structural mechanics have been solved successfully with the aid of DQM, and it has been
shown that it leads to more accurate results at a lower computational cost.

4.1 General DQM Formulation

The basic concept of the differential quadrature (DQM) based discretization Technique is to
estimate the derivative of the required CNT nonlinear response function w (x) with respect
to the space variable x at a given random sample of points. The obtained differential
equation will formerly be converted into a set of algebraic equations for the static response
and into a set of ordinary differential equations (ODEs) for the dynamic response. For the
accuracy of the numerical results, the following grid point distribution is used [49]:

xi =
1

2

[
1− cos

(
i− 1

n− 1
π

)]
, i = 1, 2, ...n (43)

Such distribution was found to yield more accurate results and obtain the convergence of the
solution with a smaller number of grid points in comparison with other sampling schemes
[49]. Consequently, for a dimensionless variable x defined in the domain (0,1) and using n
discretization points over the domain, the pth-order derivative of w (x) at x = xi can be
expressed as

∂pw

∂xp

∣∣∣∣
x=xi

=
n∑

j=1

D
(p)
ij wj (44)

where, as an example, the off-diagonal terms of the weighting coefficient matrix of the first
order derivative are calculated as follows:

D
(p=1)
ij =

n∏
k=1,k 6=i

(xi − xk)

(xi − xj)
n∏

k=1,k 6=j

(xj − xk)

i, j = 1, 2, ..., n i 6= j (45)

On the other hand, the remaining higher-order derivative weighting coefficient matrices are
computed on the following recurrence relationship:





A
(p)
ij = p

[
Ap−1

ii A1
ij −

Ap−1
ij

xi−xj

]
i, j = 1, 2, ..., n i 6= j , 2 ≤ p ≤ n− 1

A
(p)
ii = −

n∑
k=1,k 6=i

Ap
ik i = 1, 2, ..., n 1 ≤ p ≤ n− 1

(46)
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In many cases, including our present problem, before applying the differential quadrature
method, one needs to integrate by parts few integrals and then make use of the assumed
boundary conditions to rewrite the integral terms. As example, the mid-plane stretching
term in Eq. (40), can be re-written after an integration by part as

x=1∫

x=0

(
∂w

∂x

)2

dx =

1∫

0

(
∂w

∂x

)(
∂w

∂x

)
dx =

[
w
∂w

∂x

]x=1

x=0︸ ︷︷ ︸
=0

−
1∫

0

∂2w

∂x2
wdx (47)

Then, this integral can be approximated using the Newton-Cotes formula as follows [49]:

1∫

0

w′′wdx =
n∑

i=1

Ciw
′′
i wiCi =




1∫

0

n∏

k=1,k 6=i

x− xk
xi − xk

dx


 (48)

It is worth mentioning that the above integral is discretized using the same set of grid
points as defined previously in Eq. (43). Next, applying the integral approximation as well
as the DQM differentiation scheme, Eq. (39) is reduced to the following form:

(
ẅi − µ0

n∑
j=1

D
(2)
ij ẅj

)
+

(
n∑

j=1
D

(4)
ij wj − µs

n∑
j=1

D
(6)
ij wj

)
+ αd

(
ẇi − µ0

n∑
j=1

D
(2)
ij ẇj

)
+

−αr

(
n∑

j=1
D

(2)
ij ẅj −

n∑
j=1

D
(4)
ij ẅj

)
+ αs

(
n∑

j=1

n∑
k=1

CjD
(2)
ij wjwk

)(
n∑

j=1
D

(2)
ij wj − µ0

n∑
j=1

D
(4)
ij wj

)
=

+µk

(
2

n∑
j=1

D
(2)
ij ẅj − αr

n∑
j=1

D
(4)
ij ẅj

)
+ αe (Γ (wi)− µ0Γ,xx (wi)) , i = 4, 2, ..., n− 3

(49)
Then, to get the total n-equations, the boundary conditions (40) can be used which can be
expressed as follows:

w1 = wn = 0

n∑

j=1

D
(1)
1j wj =

n∑

j=1

D
(1)
nj wj = 0

n∑

j=1

D
(2)
1j wj =

n∑

j=1

D
(2)
nj wj = 0 (50)

4.2 DQM Formulation for Static Analysis

In this work, we propose to study the effect of varying the nonlocal, the strain gradient
and the velocity gradient parameters on the CNT based nano-actuator performance when a
static DC voltage is applied. To get the nano-actuator response ws under a DC voltage, the
time-dependent terms in Eqs. (49) and (50) are eliminated. Therefore, the static behavior
of the carbon nanotube is given by

(
n∑

j=1
D

(4)
ij wsj − µs

n∑
j=1

D
(6)
ij wsj

)
+ αs

(
n∑

j=1

n∑
k=1

CjD
(2)
ij wsjwsk

)(
n∑

j=1
D

(2)
ij wsj − µ0

n∑
j=1

D
(4)
ij wsj

)
=

αr

(
n∑

j=1
D

(2)
ij ẅsj −

n∑
j=1

D
(4)
ij ẅsj

)
+ αe (Γ (wsi)− µ0Γ,xx (wsi)) , i = 4, 2, ..., n− 3

(51)
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ws1 = wsn = 0

n∑

j=1

D
(1)
1j wsj =

n∑

j=1

D
(1)
nj wsj = 0

n∑

j=1

D
(2)
1j wsj =

n∑

j=1

D
(2)
nj wsj = 0 (52)

Consequently, the equations are reduced to n-algebraic nonlinear equations that can be
solved numerically for the discretized static points wsi for i = 1, .., n.

4.3 DQM Formulation for Eigenvalue Analysis

In this section, we study the variation of the natural frequencies of the carbon nanotube
actuator with various nonlocal-parameter, strain gradient and velocity gradient levels under
a static DC voltage actuation. Toward this, we consider the DQM discretized equations
obtained in Eqs. (49) and (50), which can be re-arranged in a matrix form as:

LHS (w) ẇ = RHS (w) (53)

where w = [w1, w2, w3,...,wn,ẇ1,ẇ2,ẇ3,...,ẇn] is the carbon nanotube deflection discretized
DQM points vector, LHS (w) is a nonlinear matrix representing the right-hand side co-
efficients multiplying the vector ẇ and RHS (w) is a right-hand side vector representing
the forcing, stiffness, and damping coefficients. Both LHS (w) and RHS (w) are nonlinear
functions of the discretized nanotube deflection wi. Next, we split w into a static component
ws, representing the equilibrium position due to the DC static actuation, and a dynamic
component wm, representing the perturbation around the equilibrium position, that is

w = ws + wd (54)

Next, substituting (54) into (53), using an expansion based on a Taylor series while assuming
small wd, neglecting the higher-order terms and using the fact that RHS (ws) = 0, we obtain
the following linearized equation:

LHS (ws) ẇd = ∇RHS (ws)wd +HOT︸ ︷︷ ︸
=0

(55)

where ∇RHS (ws) is the gradient of the right-hand matrix evaluated at the equilibrium
static points ws. To determine the natural frequencies of the nano-actuator, we substitute
the stable static solution ws into the Jacobian matrix defined as

J = LHS−1∇RHS (56)

The eigenvalues λ of the jacobian matrix can be calculated by solving the following char-
acteristic algebraic equation:

det (J (ws)− λI) = 0 (57)

in which I is the identity matrix. Finally, the natural frequencies of the system are obtained
by taking the square-root of each individual eigenvalue.
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5 Numerical Results and Discussion

Two separate cases of carbon nanotubes are considered for simulation purposes in this paper,
both of which are summarized in Table 1. We have shown in a previous investigation that
using 11 discretization points in the DQM is enough to capture the response of a CNT and
assure convergence [50]. But since here we had to deal with few more boundary conditions
(two non-classical boundary conditions ), we decided to use 19 points in the DQM.

Table 1: Geometrical properties of the considered carbon nanotubes in this investigation

Case No. d [nm] L [nm] R̃ [nm] Reference

1 4 50 0.678 [35]
2 100 3000 30 [51]

5.1 Results Validation

In order to validate the formulation presented in this paper, a carbon nanotube of case 2
of Table 1 is studied. The DC voltage is used for different values of the nonlocal parameter
µ0 = 0 and 0.22 and the strain and velocity gradient parameters µs = µk = 0. Fig. 2 shows
the variation of the normalized maximum static deflection for carbon nanotube of case 2 of
Table 1 as a function of the DC voltage. The results show excellent agreement with those
reported in [35].

5.2 Parametric Study

In this section, a number of examples are studied to demonstrate the effectiveness of the
proposed formulation to predict the response of CNT nanobeams.

The first example consists of the carbon nanotube of case 1 of Table 1 with zero DC
voltage. To illustrate the effect of the internal length scales, variation of the normalized
higher-order frequencies versus three internal lengths (including nonlocal parameter, strain
gradient parameter, and velocity gradient parameter) are plotted in Figs. 3a, 3b, and 3c).
The first three natural frequencies are illustrated in each of these figures. It is observed that
higher values of nonlocal parameter and velocity gradient parameter results in a reduction
of the frequencies. In contrast, by increasing the strain gradient parameter, the frequencies
are increasing.

In the second example, the effect of the DC voltage is investigated. For the carbon
nanotube corresponding to case 2 of Table 1, Figs. 4a and 4b) show the variation of
the normalized frequencies with the nonlocal parameter for zero DC voltage and 6 Volt
DC voltage, respectively. It is observed that the first frequency of the latter possesses a
maximum in contrast to the case of zero DC voltage. It is also interesting to note that when
a DC voltage is applied, a cross-over of the first two natural frequencies for a value of the
nonlocal parameter equal to about 0.15 as shown in Fig. 4b in which the second mode of
vibration becomes the fundamental mode.

Next example addresses the effect of the nonlocal parameter on the maximum static
deflection as a function of the DC voltage, while it is assumed that µs = µk = 0. For the
carbon nanotube of case 1 of Table 1, the normalized maximum static deflection versus the
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DC voltage is plotted in Fig. 5. The results show that higher values of nonlocal parameter
lead to lower deflection and higher pull-in voltage indicating that the CNT beam becomes
stiffer due essentially to variation of the effective nonlinear stiffness. Furthermore, increasing
the DC voltage results evidently in higher deflection.

As a fourth example, the variation of the fundamental, second and third frequencies in
terms of the DC voltage are plotted separately to look into the effect of nonlocal parameter
while µs = µk = 0. As shown in Figs. 6a, 6b, and 6c, for the carbon nanotube of case 1 of
Table 1, the qualitative behavior of the second and third frequencies are somehow analogous,
nevertheless dissimilar as compared to the first frequency. In reality, the fundamental
first frequency shows a minor decline followed by an rise when increasing the assumed
DC load before the manifestation of the pull-in instability (the first frequency drops to
zero). It is also worth mentioning that increasing the nonlocal parameter values tends
to decrease this fundamental first frequency up to a DC load of about 40 volts and then
an contrasting outcome is experienced furthermore with a noticeable increase of the pull-in
voltage. Moreover, when the nonlocal parameter increases, the second and third frequencies
are decreased.

The variation of the normalized maximum static deflection for the carbon nanotube of
case 1 of Table 1 with the DC voltage is plotted in Fig. 7. Three different values of the
strain gradient parameter µs = 0, 0.12 and 0.22 with µs = µk = 0 are considered here. It
is observed that the deflection increases with voltage but decreases by increasing the strain
gradient parameter. Furthermore, comparing Figs. 5) and (7 indicates that the nonlocal
and strain gradient parameters have a similar overall effect but the effect of the latter
parameter is more prominent.

Considering a carbon nanotube of case 1 of Table 1, in the next example (Figs. 8a,
8b, and 8c), the variation of the normalized fundamental, second and third frequency with
the DC voltage are illustrated for three different values of the strain gradient parameter
µs = 0, 0.12 and 0.22 together with µs = µk = 0. Similar to example four, the fundamental
frequency exhibits qualitatively different behavior in comparison to the second and third
frequencies. Increasing the values of the strain gradient parameter leads to an increase in
the frequencies and in addition to a further growth of the pull-in voltage. This effect is
opposite to that of the nonlocal parameter.

For the carbon nanotube of case 1 of Table 1, the variation of the normalized fundamen-
tal, second, and third frequencies versus the DC voltage are plotted in Figs. 9a, 9b, and
9c for three different values of the velocity gradient parameter µk = 0, 0.12 and 0.22 with
µ0 = µs = 0. Again the fundamental frequency possesses a maximum value in contrast to
the other frequencies. Moreover, increasing the values of the velocity gradient parameter
leads to a decrease in the frequencies.

The final example considers simultaneous changes to the nonlocal parameters for fixed
DC voltage, and the results are shown in Fig. 10. It is clear that the fundamental natural
frequency reduces with µk (softening effect) and increases with µs (hardening effect). For
low values of µk the fundamental natural frequency reduces with µ0. However for high
values of µk the natural frequency increases with µ0 for low values of µs and reduces for
high values of µs; hence in this range of parameters the softening and hardening effects
approximately cancel.
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6 Conclusions

The static and dynamic nonlinear responses of an electrically actuated CNT based nano-
actuator was investigated using a nonlocal strain and velocity strain gradient theory. The
nano-actuator was modeled as a clamped-clamped Euler-Bernoulli beam with von Karman
strain nonlinearity. The principle of Hamilton was employed to establish the nonlinear
governing equation of motion of the CNT based nano-actuator along with its respective
classical/non-classical boundary conditions. The differential quadrature discretization tech-
nique was then employed to discretize the nonlinear equation of motion yielding nonlinear
static and free vibration equations.

The nonlocal parameter and the strain gradient parameters influences on the static
response was first examined. It was concluded that any rise of both parameters result into
a growth in the effective forcing on the CNT causing an apparent reduction in the beam
overall stiffness, which in turn reduces the static response and enlarges the pull-in voltage.
The free vibration response was obtained by linearizing the eigenvalue problem around the
static solution and the natural frequencies of the nano-beam were then computed. It was
shown that for a zero actuating load, any increase of the nonlocal parameter reduces all
natural frequencies up to the third mode. When a DC voltage is applied, the fundamental
frequency is first slightly decreased and then increased due to the hardening behavior of
the quadratic nonlinearity of the electrostatic force before dropping to zero at the pull-
in instability. The second and third frequencies exhibit an increase as a function of the
applied DC voltage and the nonlocal parameter tends to increase the voltage at the pull-in
instability. In contrast, it was shown that an increase in the strain gradient parameter
increases the fundamental frequency with the electric load. Finally, it was revealed that
an increase in the velocity gradient parameter results in a reduction of the fundamental
frequency without altering its overall variation pattern with the DC load. The acquired
results allow better understanding of the nonlinear behavior of tiny CNT devices and can
guide us to improve their overall performance accordingly.

Acknowledgements. The second author is grateful to the support of Texas A&M Uni-
versity at Qatar.
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Fig. 1: Schematic of an electrically actuated clamped-clamped carbon nanotube based
NEMS resonator.
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Fig. 2: Variation of the normalized maximum static deflection for carbon nanotube of case
2 of Table 1 with the DC voltage and for different values of the nonlocal parameter and
µs = µk = 0. In the figure: (?) and (x) are the results reported in [35].
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Fig. 3: Variation of the normalized higher-order frequencies for the carbon nanotube of
case 1 of Table 1 with the (a) nonlocal parameter, (b) strain gradient parameter, and (c)
velocity gradient parameter for zero DC voltage.
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Fig. 4: Variation of the normalized higher-order frequencies for the carbon nanotube of case
2 of Table 1 with the nonlocal parameter, and for (a) zero DC voltage, and (b) 6 Volt DC
voltage.
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Fig. 5: Variation of the normalized maximum static deflection for the carbon nanotube of
case 1 of Table 1 with the DC voltage and for different values of the nonlocal parameter
and µs = µk = 0.
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Fig. 6: Variation of the normalized (a) fundamental frequency, (b) second frequency, and
(c) third frequency, for the carbon nanotube of case 1 of Table 1 with the DC voltage and
for different values of the nonlocal parameter and µs = µk = 0.
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Fig. 7: Variation of the normalized maximum static deflection for the carbon nanotube
of case 1 of Table 1 with the DC voltage and for different values of the strain gradient
parameter µs = 0; 0.12; 0.22 and for µ0 = µk = 0.
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Fig. 8: Variation of the normalized (a) fundamental frequency, (b) second frequency, and
(c) third frequency, for the carbon nanotube of case 1 of Table 1 with the DC voltage and
for different values of the strain gradient parameter µs = 0; 0.12; 0.22 and for µ0 = µk = 0.
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Fig. 9: Variation of the normalized (a) fundamental frequency, (b) second frequency, and
(c) third frequency, for the carbon nanotube of case 1 of Table 1 with the DC voltage and
for different values of the velocity gradient parameter µk = 0; 0.12; 0.22 and for µ0 = µs = 0.
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Fig. 10: Variation of the normalized fundamental frequency as a function of the velocity
gradient parameter, µk, for different values of the strain gradient parameter µs = 0; 0.12; 0.22

and for fixed values of the DC voltage, VDC , and nonlocal parameter, µ0 (a) VDC = 40V
and µ0 = 0; (b) VDC = 40V and µ0 = 0.12; (c) VDC = 40V and µ0 = 0.22; (d) VDC = 50V
and µ0 = 0.12.
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