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Abstract: Photocatalytic H2 production through water splitting represents an attractive route to generate a renewable fuel. 

These systems are typically limited to anaerobic conditions due to the inhibiting effects of O2. Here, we report that sacrificial H2 

evolution with CdS quantum dots does not suffer from O2 inhibition and can even be stabilised under aerobic conditions. The 

introduction of O2 prevents a key inactivation pathway of CdS (over-accumulation of metallic Cd and particle agglomeration) and 

thereby affords particles with higher stability. These findings represent a route to exploit the O2 reduction reaction to inhibit 

deactivation, rather than catalysis, offering a strategy to stabilize photocatalysts that suffer from similar degradation reactions. 

Clean-burning, renewable H2 fuel can in principle be generated effectively through solar-driven proton reduction 

coupled to water oxidation as an abundant source of electrons.[1] Alternatively, this reaction can be undertaken through 

the oxidation of organic species, either in the form of biomass-derived substrates, such as EtOH, MeOH, glucose or 

lignocellulose,[2–4] or through selective organic oxidation reactions to generate higher-value products.[5] Semiconductor 

particles are particularly well-suited to the underlying reactions behind artificial photosynthesis and as such, rapid light-

driven H2 evolution has been reported for numerous metal oxide, sulfide, selenide and nitride-based semiconductors.[6,7] 

The ubiquity of O2 in the atmosphere, as well as its possible production in the water-splitting reaction, requires a 

proton-reduction catalyst able to tolerate its presence during activity.[8–10] To date, little research has considered the 

effect of O2 on semiconductor-driven H2 evolution, and only few reports are available on O2-tolerant molecular proton-

reduction catalysts.[11–14] Several strategies have therefore sought to protect proton reduction photocatalysts from O2 to 

allow catalysis to proceed. For example, deposition of thin layers of metal oxides, such as Cr2O3 and SiOx/TiOx,
[15,16] on 

the surface of a proton reduction catalyst can selectively prevent diffusion of O2 to the catalyst, albeit under low levels of 

O2 (< 1 atm of pressure). 

Previously reported systems have shown that proton reduction catalysts fall into two groups: O2 sensitive, where a 

catalyst is irreversibly damaged by O2, or O2 tolerant, where a catalyst is able to function under O2, but at a reduced rate 

(Scheme 1).[8] Nevertheless, the intrinsic oxidizing nature of O2 does not need to be considered exclusively as a 

disadvantage and methods that use O2 to stabilize activity can be envisioned. O2 reduction is thermodynamically more 

facile than proton reduction and therefore its presence in solution offers a route to prevent a photocatalyst from a 

reductive deactivation pathway. CuIRhIIIO2 and CuIFeIIIO2 delafossite-structured H2-evolving photocathodes were 

previously demonstrated to operate most effectively under air using this strategy.[17],[18] In these examples Cu0 

accumulates under inert conditions, which can be avoided through introduction of O2, thereby increasing the electrode 

stability.  

 
Scheme 1. The potential influence of O2 in catalytic proton reduction.

[8]
 

 

 



In this study, we demonstrate for the first time that O2 can be used to stabilize photocatalytic activity in colloidal ‘one-

pot’ photocatalytic schemes and that even an enhancement in catalytic H2 evolution rate can be achieved with CdS 

quantum dots (QDs). CdS QDs are nanocrystals below 10 nm in diameter that have previously demonstrated excellent 

photophysical properties for light-driven proton reduction in the presence of sacrificial electron donors, catalyzing this 

reaction at unprecedented rates.[19] 

The photocatalytic H2 evolution activity with CdS has been reported to drop by 20% under 21% O2 when compared 

to anaerobic conditions.[20] This observation can be assigned to the competitive reduction of O2 vs. protons, as seen for 

other O2-tolerant catalysts (Scheme 1); however, we show that by encouraging sufficiently fast H2 evolution, over-

accumulation of reduced Cd0 at the particle occurs. Addition of O2 to this system precludes Cd0 formation and affords 

rapid and stable light-driven H2 evolution. 

Capping-ligand-free CdS QDs were synthesized with a diameter of 4-5 nm,[21] as confirmed by transmission electron 

microscopy (TEM, Figure 1a, see Supporting Information for experimental details). [3] Photocatalytic experiments were 

undertaken by combining the QDs with Co(BF4)2 (0.25 mM), as a co-catalyst for the proton reduction reaction, and 

MeOH (10 M), as a sacrificial electron donor, in a sealed photoreactor that was irradiated with simulated solar light (AM 

1.5G, 100 mW cm–2) at 25 °C. The production of H2 was analyzed at designated time intervals by headspace gas 

chromatography (Table S1). Control experiments showed no H2 was produced in the dark or in the absence of CdS 

(Table S2). 

 

Figure 1. (a) TEM image of ligand-free CdS QDs. (b) Illustration of CdS/CdOx formation from particles of ligand-free CdS-BF4. (c) Photocatalytic 

H2 production (AM 1.5G, 100 mW cm
−2

) at 25 °C from CdS QDs (0.5 μM) in various concentrations of aqueous KOH (2 mL) containing MeOH (10 

M) in anaerobic (solid traces) or aerobic (dashed traces) conditions with 0.25 mM Co(BF4)2. (d) UV-visible spectra of CdS/CdOx QDs at designated 

intervals after photocatalysis in aqueous KOH (2 mL, 5 M) containing MeOH (10 M) in the presence of Co(BF4)2 (0.25 mM) under anaerobic 

conditions (N2). (e) The aerobic equivalent of the experiment in (d). 

 

In highly-alkaline solutions (>1 M KOH), a surface layer comprised of CdO/Cd(OH)2 (CdOx, Figure 1b), forms on the 

particles, creating CdS/CdOx QDs.[3] This layer is believed to enhance the rate of photocatalysis. As such, in anaerobic 

conditions (Figure 1c, solid lines), CdS QDs displayed the highest rate of H2 evolution in 5 M KOH, as previously 

reported.[22] However, the activity is not stable and slows down after only a few hours (Figure 1c). This coincides with the 

formation of a black precipitate in the solution and a loss of the CdS absorption peak in the UV-visible spectrum (Figure 

1d). In contrast, in 0.5 M and 0.05 M KOH the rate of H2 evolution was slower, but did not drop significantly over time 

and the solution remained yellow. Electron transfer from photoexcited CdX semiconductors (X = S, Se) has previously 

been proposed to originate from surface Cd0 sites,[23] and the black colour was therefore assigned to over-formation of 

Cd0 (see below for characterization). 

Photocatalysis was subsequently performed in a closed vessel with an aerobic headspace to determine whether the 

extent of Cd0 formation could be reduced using O2. Depending on the rate of H2 evolution, the presence of O2 had 

differing effects (Figure 1c, dashed lines). In 0.5 M and 0.05 M KOH, the introduction of O2 led to a decrease in 

photocatalytic performance by a factor of 48 % and 82 %, respectively. This effect is expected, as the O2 reduction 

reaction competes with the desired proton reduction reaction (Scheme 1). In 5 M KOH, the aerobic activity was 

surprisingly enhanced relative to anaerobic conditions, with a reduced formation of the black precipitate. Figure 1e 

illustrates the change in UV-visible spectra of an aerobic sample over time; showing the retention of the CdS absorption 

band over 3 h of photocatalysis. In this sample an eventual slowdown of the catalysis was visible after 6 hours (Figure 

1c), which was a result of consumption of O2 within the vessel headspace.  

Transient absorption (TA) and Raman spectroscopy were subsequently employed to gain further understanding of 

the processes occurring. The relationship between the pH and electron/hole dynamics was first probed under aerobic 

conditions by TA. Figure 2a shows the TA spectrum of CdS/CdOx QDs in 10 M, 0.1 M and 0 M KOH with EtOH as an 

electron donor at a 1.5 ps delay, normalized to unity. The band-edge bleach of the CdS/CdOx QDs appears at ~488 nm, 

arising from electrons being excited to the conduction band. The spectra also display a second negative peak at 600-

700 nm, which is tentatively assigned to surface-state traps.[22]  

Given the lower magnitude of the CdS signal in 0 M and 0.1 M KOH relative to CdS in 10 M KOH (see Figure S4 for 

absolute absorbance data), we propose that fewer photogenerated electrons are available due to ultrafast trapping and 

recombination pathways in the less alkaline conditions. In addition, a proportionally stronger bleach signal at 675 nm 



indicates that a larger fraction of electrons is trapped in the surface states rather than the conduction band at low pH.  

The growth of a CdOx layer on the CdS surface may therefore increase the efficiency of photocatalysis by ensuring 

electrons remain in the conduction band, rather than other trap states. The greater accumulation of electrons in the 

conduction band at high pH is likely to lead to a greater propensity for proton reduction, as well as the self-reduction of 

CdS to Cd0. 

 

Figure 2. (a) UV-visible transient absorption spectra of CdS/CdOx in varying concentrations of KOH, showing the band edge bleach at 490 nm. (b) 

Raman spectra of CdS under Ar after irradiation with 1 mW of a 413 nm laser line for various time intervals. The spectra show the CdS LO and 

2LO region of CdS/CdOx (10 μM) in 10 M KOH (1 mL) with EtOH (1 mL) recorded using a 514 nm laser line (5 mW) with a 30 s accumulation time. 

(c) Raman spectra from (b) at lower wavenumbers, showing the emergence of a peak assigned to Cd
0
 formation at 115 cm

–1
. (d) TEM image of 

CdS/CdOx QDs after 50 minutes of photocatalysis in 10 M KOH (1 mL) and MeOH (1 mL) in the presence of Co(BF4)2 (0.25 mM). (e) Illustration of 

the photocatalytic processes behind H2 evolution on CdS/CdOx QDs and their relation to particle agglomeration and O2-driven stabilization. 

 

Raman spectroscopy under anaerobic conditions supports the proposed formation of Cd0 after electron accumulation. 

QD solutions in 10 M KOH with EtOH were irradiated with a 413 nm laser (1 mW) over various time intervals and spectra 

were recorded using a 514 nm excitation beam (Figure 2b). The QDs show two bands in all cases, corresponding to the 

first and second overtone of the longitudinal optical phonon (LO) of CdS at 305 cm–1 and 605 cm–1, respectively.[24] 

Shoulders on either side of the LO peak were observed due to CdO on the CdS surface at high pH, consistent with 

previous reports.[3,25] Although Cd0 does not show Raman bands, Cd nanoparticles around 5 nm in size (as well as 

analogous Ag-based clusters) exhibit collective vibrations that give rise to appreciable bands in the low frequency region 

at 115 cm–1.[26–29] Such a peak is visible after 2 min of irradiation using CdS/CdOx QDs, which is believed to arise from 

Cd0 localized at the particle surface (Figure 2c, note that the low resolution of this peak is due to its location at the edge 

of the spectral window).[23] At 5 and 10 min of irradiation, the peak is less pronounced, which is assigned to 

agglomeration after photocatalysis. This agrees with the observation of particle agglomerates in TEM images (Figure 

2d). 

 
Figure 3. Photocatalytic H2 evolution activity from a solution of CdS/CdOx (0.5 μM) in 5 M KOH, Co(BF4)2 (0.25 mM) and (a) EtOH (7.5 M) or (b) 

MeOH (10 M). In each case the photoreactor was irradiated (AM 1.5G, 100 mW cm
−2

 at 25 °C) whilst being purged with constant flow of air or N2 

gas at 3 mL min
–1

. 

 

Based on these experiments, the route to O2-stabilization in this system is summarized in Figure 2e. The 

consecutive processes are illustrated as (1) light absorption, (2) donor oxidation and (3) proton reduction. As reactions 

(1) and (2) are substantially faster than (3) in strongly alkaline conditions, excited electrons can accumulate on the 

particle surface in the form of Cd0 sites. Formation of Cd0 causes the QDs to agglomerate, which significantly lowers 

activity. O2 provides an easily-reduced secondary substrate in the photoreactor that precludes the accumulation of Cd0 

and thereby maintains the stability of the particle during photocatalysis. Note that this mechanism consumes a portion of 

electron donor without concomitant release of H2. 

Taking this mechanism into account, a photocatalytic system was designed where the continued presence of O2 was 

exploited to stabilize the rate of photocatalysis. A constant flow of air was introduced into a photoreactor containing QDs 

in 5 M KOH with EtOH (7.5 M) as an electron donor and a cobalt co-catalyst. The vial was irradiated and the outlet gas-

stream was continuously analyzed by gas chromatography.  



The rate of H2 evolution reached a maximum activity of 432 mmolH₂ g–1 h–1; the highest reported rate for 

photocatalysis driven by an organic oxidation reaction on CdS under AM 1.5G, 100 mW cm−2 irradiation (to the best of 

our knowledge higher activity has only been reported when using a S2– donor).[19] Here, the constant influx of O2 was 

able to stabilise H2 production relative to an N2-purged equivalent that operated at only 202 mmolH₂ g
–1

 h
–1 (Figure 3a). 

MeOH-promoted H2 evolution was similarly high, exhibiting a rate of 165 mmolH₂ g
–1 h–1 under air (Figure 3b). 

In summary, the presented system demonstrates how photoredox reactions can be tuned to ensure discharging of 

potentially inhibiting deactivation reactions. This counter-intuitive strategy employs O2 to regenerate/stabilize a damaged 

photocatalyst and has achieved unmatched rates of proton reduction driven by organic oxidation. Consideration of 

aerobic strategies to benefit photocatalysis may therefore be vital in attaining both fast and stable systems in solar fuel 

and organic photoredox catalysis, where the presence of O2 is often seen as a source of inhibition. 
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