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(small) external loading. Nevertheless, in our opinion, there is still a lack of more general,
comprehensive and quantitative approaches that can reveal some fundamental features of
packings. In addition, several Monte Carlo samples of packing in DEM may need to be
prepared for a given particle size distribution. However there are no existing approaches
available that can compare and quantify the difference or similarity of such packings.

A particle packing can be viewed as a specific spatial variation of solid material (assigned
a value of 1) and void (a value of 0). By discretisation of such a packing as a regular grid,
and each grid cell is viewed as a pixel with a weighted value, the packing can be represented
as a digitalised image with grey-scale ranging from 0 to 1. Then the empirical covariance
matrix of the image can be constructed and analysed by some techniques developed in the
field of computer graphics and imaging processing [10, 11]. Furthermore, some measures
[12, 13] are available that can be applied to compare the (dis)similarity of multiple images in
a quantitative manner.

Principal component analysis (PCA) [14, 15], and its many variants under different names
such as discrete Karhunen-Loeve or Hotelling transform is one of the most popular linear
transform based statistical techniques, and has been extensively used in a wide variety of
applications. It has proved to be a powerful tool that is often employed for data analysis
in general, and dimension reduction in multi-variance analyses, and pattern recognition in
signal and imaging processing in particular.

The current work attempts to develop a novel system that can characterise particle packings
by using their principal components or variances obtained from PCA, and particularly it
will prove that the principal variances can indeed qualify as the signature of a packing.
Furthermore, a dissimilarity coefficient or a similarity index will be defined which provides a
single valued metric to quantitatively compare two packings.

The paper is organised as follows. The whole numerical procedure, involving generation
of a packing image and subsequently application of PCA, is fully described in Section 2.
The principal variances of packings with special configuration features, such as repetition
and periodicity, are exploited in Section 3, and the conclusions are numerically validated by
some regular packings. In Section 4, a dissimilarity coefficient, or equivalently a similarity
index, between two packings is defined based on the introduction of a principal variance
function. Then comprehensive investigations for two sets of purposefully generated random
packings are conducted to fully understand the relationships of their principal variances with
packing features. Various issues, including effects of grid resolutions and packing density
on principal variances are discussed. In addition, how to apply principal variances to assess
spatial homogeneity and isotropy of packings are proposed. What relationship exists between
scaled packings and their principal variances is also considered. Concluding remarks are made
in Section 5.

2 Principal Component Analysis

This section is devoted to the full description of the numerical procedure that is involved in
principal component analysis of a packing and how such analysis can be applied to characterise
particle packings. As only the main principles of PCA are adopted in the current work,
some minor modifications are made and different terminologies are used when deemed to
be more appropriate. As it is well known that PCA can be derived from Singular Value
Decomposition[16], this is also applied for the current development.
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(a) a packing with a square analysis window (b) a 100 x 100 digitalised image

Figure 1: A random particle packing and a digital representation within the analysis window

2.1 Packing digitalisation and formation of packing image

First consider a circular particle assembly €, = |J,Q; where Q; is the domain of the i-
th particle, and arbitrarily choose a rectangular region A of Ly x Lo, termed the analysis
window. The window can be divided into a regular grid of M x N square cells with spacing
h = Li/M = Ly/N. For a grid cell at (i, j) with the area denoted as A;;, compute its average
area ratio covered by particles, or grey-scale as

92y 0 Ayl
al] N |‘AU| (1)

where || denotes the measure or area of a domain ; | A| = L1 Lo; and |A4;;| = h?. An empty
cell with no overlapping with any particle has a;; = 0; while a cell fully covered by a particle
has a;; = 1. A cell partially covered by particles has a;; < 1. So in general a;; € [0, 1].

The collection of all the cell average area ratios a;; forms an M x N matrix Ay, = {a;;},
which can be viewed as a digitalised grey-scale representation of the original packing €2, in
the region A, thus is termed as the packing matriz or image. Figure 1(b) illustrates such a
digitalisation of a disc particle packing shown in Figure 1(a). Clearly, Ay, is accurate within
particles or void space of the packing, but may introduce approximation around particle
boundaries. The accuracy of this representation for the original packing depends on the grid
spacing h, and will be accurate in the limit case:

lim Ay, =) 2
lim A, = 0,1 A (2)

2.2 Formulations and Numerical Procedures

The mean value of the packing matrix Ay, i.e. the packing density of the region A, can be

computed
M N
_9nAl 1
Pa=TAT T N 2 2 )
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Let a(x) be the material distribution function with a taking the value of 1 for a point within
a particle, and 0 otherwise. It is not difficult to derive that the total variance of a packing in
the region A is related to the packing density by

0. = mﬂé(a—pA>2dQ=pA<1—pA> (4)

The total variance of the matrix is defined as

M N
1
Oh = AN ZZ(%‘J‘ —pa)? <o, (5)
=1 j=1

i.e. the total variance of the packing o , is the upper bound of any packing image.

Let m; be the mean value of the j-th column of the packing matrix Aj,

1 M
mj = M;%’ (6)

which also provides an alternative way to compute the density
| N
Pa= N Z m; (7)
j=1

By subtraction of its mean from each column vector of Ay, the column centralised matrix
Ay of Ay, is obtained as:
AN:Ah—eMmN (8)

where e,, is an M x 1 column vector with all its elements being 1’s; and my is the 1 x N
mean value vector my = {m;}.

Define the covariance matrix of Ay as
1 -7 -
Sy =—AjNA 9
v = T AVAN Q)
where Sy is a N x N square matrix. Notice in the above that M instead of M — 1 is used.

Further define the column-wise total variance as

N

o = %Tr(SN) = ]]\-[ZZ;(SN)’L’L (10)

which may be (slightly) different from the total variance oy, in general.

By solving the eigenvalue problem of Sy, it yields the following matrix decomposition

SNVy =VayDy (11)
with
Dy =VEiSyVy, VIiVy=Iyx
where the diagonal matrix Dy = diag{d;} contains all the eigenvalues d; in descending

order, which are termed the principal variances (PVs); and V = {v;} are the orthonormal
vectors, termed the principal modes. As Ay is column centralised, Sy is a semi-positive
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definite matrix with at least one zero principal variance. It is also well known that the sum
of the PVs and the total column-wise variance is related by

XN
¥ > di=o% (12)
i=1
Sy can be recovered from the principal variances and modes as

N—-1
SN = VNDNV’ZZ\} = Z diViV? (13)
=1

In many applications, only the first few principal variances are needed to approximate Sy to
a reasonable degree, thereby significantly reducing the dimension of the problem concerned.
This is often the main objective of PCA, but not an issue for the current problem.

Further define the projection Uy of A onto the space spanned by Vy as

Uy =ANVy (14)
Then it has -
Dy = NUNUN (15)
and Ay and A can be recovered by
Ay =UnVL, A=Ay +eymy (16)

Similarly to Sy, Ay or Ay, can be optimally approximated by the leading principal variances.

The column-wise total variance o, the mean value vector my, the principal variance ma-
trix Dy and the corresponding modes Vy form a unique set Spr, termed the column-wise
characteristic set, that fully determines the packing in the vertical direction

C_/\/:{O']Cv,mN,DN,VN} (17)

As the PVs and the column-wise total variance is related by (12), and the total variance (and
also the column-wise variance) is related to the density (see (4)), the PVs play a dominant role
to characterise a packing image and therefore can be viewed as the (column-wise) signature
of the packing.

The above are developed based on the column-wise consideration of the matrix Ay. Equally,
another set can be derived following a row-wise consideration. By labelling the mean value
(column) vector for the rows of Ay, as mys, and the row-centralised covariance matrix Ay
as

AM :Ah—mMe]:C, (18)

where ey is a N x 1 vector of all 1’s, and the corresponding covariance matrix of M x M as

1 - -
Sy = NAMATA; (19)

the row-wise total variance can be computed as

M

ol = % Tr(Sy) = % ;(SM)ZZ (20)
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The M principal variances and modes can be found as
SuVau =VuDy, VIV =1y (21)
Consequently, the row-wise characteristic set of A becomes
Cm = {0}, mu, Dy, Vir} (22)

and Dy are the (row-wise) signature of the packing image. As mpy and my, are generally
different even when N = M, so Sy # Sy, and thus Dy # Djs. The difference will depend
on N and M, and the packing configuration.

For simplicity, only the column-wise related PCA is discussed below.

2.3 Principal Variance Function

To facilitate the comparison between different sets of principal variances, particularly when
they are obtained from different resolutions N, the ordinal number ¢ of a principal variance
d; is mapped from 1toN to a non-dimensional ”position” variable = € [0,1] by

26) =+ (i=3) (23)

Then a continuous function d(z),x € [0,1], termed the (column-wise) principal variance
function, can be constructed to interpolate the discrete variances d; using piecewise linear or
higher order interpolation functions such that

d(.%l) :di, :ci:x(i), ’izl,"- ,N (24)

The conversion from the ordinal number ¢ to the position x play an essential role to quanti-
tatively compare two images, with different or same resolutions, as demonstrated in Section
4.2.

3 Principal Variances and Modes of Some Special Packings

This section exploits what additional properties of the principal variances and modes that
some special packing configurations/images may have. Illustrative examples are provided to
validate the theoretical development in this section.

3.1 Permuted, Mirrored Packings

For a given packing matrix Ay, assume that another matrix A’y is obtained by permutating
columns. Let the permutation be represented by a permutation matrix Py of order N x N.
As P]:C,P ~ = Iy it is not difficult to prove that A’y will have the same principal variances
but the principal modes are the permutation of the original ones

Dy =Dy; Vi =PyVy (25)

A similar conclusion can be drawn if a matrix is obtained from row permutation.

Notice that permutation can mirror or reflect a packing and therefore it can be concluded
that the mirror packing has the same principal variances as the original packing.
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3.2 Repetitive, Periodic and Symmetric Packings

If the packing has a repetitive or periodic structure where a basic packing unit repeats
multiple times along the horizontal direction, PCA can be applied to this basic packing and
the principal variances and modes of the whole structure can be readily obtained, as derived
below.

Consider the simplest 2-repetition case where the basic structure is repeated twice. Use the
same grid spacing for both the basic structure and the whole packing, and let Ax be the
packing matrix of the basic packing. Then the whole packing matrix, Asy, consists of two
identical sub-matrices Ay

Aoy =[AN, AN] (26)

Let my, Ay and Sy be respectively the column mean vector, the mean centralised matrix
and the covariance matrix of my as defined before. Then for Aspy, the column mean vector
is

m,y = {mN? mN} (27)

which leads to the mean centralised matrix
Aoy = Aoy —eym,,, (28)

The covariance matrix takes the form

1 7 < 1
Son = MAQFNAQN = *{

vl sy sn ]

2
SN SN ( 9)
Again let V and Dy be respectively the principal variances and modes of S . Now construct
a matrix of order 2N x N

1 Vy
Vav =]y | (30)
Then
_L QSNVN _L QVNDN o
SanVon = \@[ 2SNV } B \/5[ 2VNDy ] = Van(2Dy) (31)

i.e. Vopn are the principal modes of Son and the corresponding principal variances are 2
times Dy. Note, however, that (Van,2Dy) only account for N or half principal pairs of

Son.
Construct another matrix of order 2N x N
1 Vi
/ [
2N — \/§|: _VN } (32)
Direct calculation leads to
SQNVIQN =0 (33)

which means that V) are also the principal modes, but the corresponding principal variances
are all zero. Combination of (31) and (33) concludes that the half of the principal variances
of the whole packing are 2 times those of the basic structure, but the rest are zero.

In general, for a m-repetition packing, 1/m of the principal variances will be m times those
of the basic structure, and the remaining principal variances are zero.

If the repetition occurs in the vertical direction, the whole packing matrix admits the following
partition for a 2-repetition packing

(34)
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(a) Packing R1 (b) Packing R4 (c) Packing R16

(d) Image R1(N) (e) Image R4(N) (f) Image R16(N)

Figure 2: Three regular packings (a-c) and their digitalised images (d-f) (N=100)

Utilising the fact that m,, = my, one can prove that
Son =Sn (35)

hence the principal variances and modes remain the same. This repetitive feature will be
exploited, nevertheless, when applying the row-wise PCA to the packing matrix.

If a packing is symmetric about a vertical line, one part can be obtained by mirroring the other
part against the symmetric line through column permutation, and so both parts will have
the same principal variances. Thus for the whole packing, the non-zero principal variances
will be twice those from each part.

It is also obvious that an exact scaling of both the packing and the image grid together will
lead to the principal variances and modes being unchanged.

3.3 Numerical Validation

Consider three regular packings within a unit square region as show in Figure 2(a-c), where
there are respectively 1, 4 and 16 equal-sized particles in the packings that are labelled as R1,
R4 and R16 respectively. The three packings have nested or exactly scaled configurations,
and have the same packing density p = 7/4 = 0.7854. The region is then divided into a
N x N square grid with spacing h = 1/N for each packing, and three resolutions N = 25,50
and 100 are considered. The resulting packing images are labelled as Ri(N)(: = 1,4,16; N =
1,50,100). The images with NV = 100 are depicted in Figure 2(d-f). The total column-wise
variances and first or maximum principal variances of the three packings for different grid
resolutions are respectively given in Tables 1 and 2.
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Table 1: Total variances of three regular packings with different grid resolutions

Grid Packing
N h R1 R4 R16
25 0.04 .1501 .1362 1112
50 0.02 .1589 .1501 1362
100 0.01 .1636 .1589 .1501

©

Table 2: The first principal variances of three regular packings with different grid resolutions

Grid Packing
N h R1 R4 R16
25 0.04 1.7665 1.7050 1.5133
50 0.02 3.5778 3.5329 3.4099
100 0.01 7.1816 7.1556 7.0657

Table 1 shows that the total column-wise variance exhibits a clear pattern: the values along
the main diagonal and two off-diagonal lines are the same. This can be easily explained due
to the nested relationship between the three packings.

For the first principal variances listed in Table 2, a pattern also emerges along the main
diagonal and two off-diagonal lines: the ratio between two consecutive values on a line is
exactly 2. This validates the theoretical derivation in this section for repetitive packings. For
instance, Image R4(50) is a 2-repetition of Image R1(25) (with an additional 2-repetition in
the vertical direction but having no contribution to the PVs), leading to doubled PVs for the
former; While Image R16(100) is also a 2-repetition packing of Image R4(50), thus having
PVs which are double of those of R4.

It is also observed, but without offering a rigorous proof, that for a quarter of disc which
has a diagonal symmetry and is the basic building block of a disc, the number of non-zero
principal variances is equal to | N(2 — v/2)/2], where |-] is the floor function.

The PVs of the three packings with N = 100 are plotted in Figure 3(a), and also in Figure 3(b)
with a logarithmic scale of x to achieve a zoomed view for the leading PVs. Both Table 2 and
Figure 3 show that very similar principal variances are obtained from the three packings with
the same grid resolution N. In fact, the dissimilarity coefficients of R4 and R16 against R1
are 0.0081 and 0.0275 respectively. The increased dissimilarity for R16 is due to the reduced
relative resolution in terms of ratio r/h.

Figure 4(a) displays all the PVs of Packing R1 for the three grid resolutions, with a zoomed
view for the main PVs shown in Figure 4(b). Both Table 2 and Figure 4 demonstrate the
dependence of the VPs on the grid resolution N. This issue will be further investigated in
Section 4.6.

The first three principal modes of R1(100), and the first modes of R1, R4 and R16 with
N=100 are plotted in Figure 5(a) and (b) respectively. The symmetric nature of all three
modes of R1(100) is evident as expected, while the first modes of R4(100) and R16(100) are
compressed and repetitive versions of the base case R1(100).
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Figure 3: Principal variances of R1, R4 and R16 at N=100
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Figure 4: Principal variances of R1 at N=25, 50, 100

4 Packing Characterisation using Principal Variances

As the main signature of a packing, principal variances will be comprehensively exploited in
this section to understand how they can be applied to characterise a packing or to quanti-
tatively compare the similarity or difference between different packings. In addition to the
three regular packings that have been used to validate some of our theoretical developments
for repetitive packings, additional two sets of random packings will be utilised to provide new
evidence as the basis for further exploitation. The detail of these packings are given in the
next subsection, while a number of characterisation issues will be developed and discussed in
other subsections.

4.1 Numerical Examples: Two Sets of Random Packings

Two sets of random but periodic particle packings are generated within the domain [—0.1, 1.1]x
[—0.1,1.1] with the periodic condition applied to both directions. The first set, or U-set, has
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Figure 5: Some leading principal modes of R1, R4 and R16 at N=100

Table 3: Some properties of two sets of random packings
Set Uniform Distribution (U-set) Gaussian Distribution (G-set)
Group Name Ul U2 U4 U8 Gl G2 G4 G8
Mean Density | .7074 | .7132 | .7143 | .6933 | .7141 | .7156 | .6999 | .7067
Particle No. 19617 | 4894 1216 291 12950 | 3214 791 210

Tmin 0.003 | 0.006 | 0.012 | 0.024 | 0.001 | 0.002 | 0.004 | 0.008
Trag 0.005 | 0.010 | 0.020 | 0.040 | 0.007 | 0.014 | 0.028 | 0.056
T 0.004 | 0.008 | 0.016 | 0.032 | 0.004 | 0.008 | 0.016 | 0.032

particle sizes uniformly distributed within a range; the second set, or G-set, has particle
sizes obeying Gaussian distributions with limited minimum and maximum sizes. FEach set
has four groups each having the particle size range doubled from the previous group, while
within each group 10 random packing samples with the same size distribution are generated.
The packings and their images at N = 100 of the U set are displayed in Figure 6; while the
packings of the G set are displayed in Figure 7.

Table 3 lists all the details about the packings up to the group level, including the minimum,
maximum and average particle sizes, Tmin, "'maz, T, and the average number of particles in
each group. In the U-set, the size distributions of groups U2, U4, U8 are respectively 2, 4,
and 8 times of the base group Ul. This also applies to the G-set. The average particle size
r is the same for the corresponding groups between the two sets: Ui and Gi (i=1,2,4,8) have
the same r;. For the G-set, the standard deviation of the Gaussian distribution for a group
is taken to be (rmaz — Tmin)/2-

The default analysis window is chosen to be the unit square region [0, 1] x [0, 1], so M = N.
Although the packing density is set to be p = 0.7, the packing density within the analysis
window is slightly different from 0.7, as the window is smaller than the packing region. The
mean density for each group is listed in Table 3. Because all the mean densities are very close
to 0.7, no significant effect on principal variances is expected.

A column-wise PCA is applied to each sample with required grid resolutions N. For each
group, the principal variances at a given resolution N are taken to be the average of all the



QOO ~NOUIDAWNLE

OO UIUIUIUUUICIUTUUDNDADAANARNDNARNARNWWWWWWOWWWWWNNNNNNNNNNRPRPRRERRRPRRRR
ORAONROOONOGNRONROOOVNOUTRWNROOONOGNRONROOO~NOUNRWNROOO~NOUONWNER

AR A N
L :'?..,"-'-":.‘“'F?{'J"F
AT

(e) Image U1(N) (f) Image U2(N) (g) Image U4(N) (h) Image U8(N)

Figure 6: U-set: Four uniform packing groups in region [-0.1, 1.1] x [-0.1, 1.1] (a-d); and
their digital images (with N=100) within region [0, 1] x [0, 1] (e-h)

(e) Image G1 (f) Image G2 (g) Image G4 (h) Image G8

Figure 7: G-set: Four Gaussian packing groups in region [-0.1, 1.1] x [-0.1, 1.1] (a-d); and
their digital images (with N=100) within region [0, 1] x [0, 1] (e-h)

samples in the group.

The first three principal modes of U1(100) and G1(100) are also plotted in Figure 8(a) and
(b) respectively for illustrative purpose. The randomness/irregularity of the modes are the
dominant feature compared to the regular packing case (see Figure 5). No further discussion
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Figure 8: First three principal modes of Ul and G1 at N = 100

regarding the principal modes will be conducted.

4.2 Packing Image Similarity

Consider two packing images with their principal variance functions d; (x) and d2(x) obtained,
define a so-called dissimilarity coefficient (DC) between these two images as

D. = | L [ do(x)dz] € (0,1 36
= |l r)— T x e |0,
= [ras | @) da) 0.1 (36)
where N7 and N are respectively the (column) resolutions of the two images; and ¥; and
Y9 are defined as

¥ = /ldf(;c) dr (i=1,2)

0

Consequently, the degree of similarity of these two packing images can be quantified by the
similarity indez € [0,100] defined as

Sy = (1—"D,) x 100 (37)

4.3 Dis/Similarity between Packing Samples and Groups

For each packing group, the PVs of all 10 samples are computed and their averages are taken
to be the PVs of the group. For illustrative purpose, the principal variance functions of
the 10 samples for groups Ul and G1 at three grid resolutions N=100, 400, and 1600 are
displayed in Figure 9. Clearly the PV functions of the 10 samples at each set are located
within a narrow band around the group mean value where the maximum difference appears
at the leading variances but the difference is much reduced for smaller PVs. This indicates
that these samples randomly generated from the same distribution indeed have very similar
statistical features.

To quantify the difference, the dissimilarity coefficient of 10 samples in each group are cal-
culated based on the formula (36) against their group average for three resolutions: N=100,
400 and 1600. The average dissimilarity coefficients of 10 samples in each group for the
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Table 4: Average dissimilarity coefficient of each group in two sets of random packings

N U1 U2 U4 Us Gl G2 G4 G8
1600 | 0.0094 | 0.0196 | 0.0374 | 0.0621 || 0.0160 | 0.0239 | 0.0401 | 0.1301
800 | 0.0101 | 0.0199 | 0.0366 | 0.0599 | 0.0161 | 0.0231 | 0.0371 | 0.1193
400 | 0.0126 | 0.0215 | 0.0372 | 0.0602 || 0.0178 | 0.0238 | 0.0371 | 0.1200
200 | 0.0201 | 0.0261 | 0.0397 | 0.0622 | 0.0223 | 0.0266 | 0.0387 | 0.1235
100 | 0.0378 | 0.0379 | 0.0465 | 0.0662 | 0.0286 | 0.0335 | 0.0435 | 0.1303

Table 5: Dissimilarity coefficients between groups in two sets of random packings

N Ul-G1 U2-G2 U4-G4 US-G8
1600 | 0.1610 0.1616 0.1835 0.1471
800 0.1792 0.1672 0.1892 0.1421
400 0.2329 0.1851 0.1970 0.1439
200 0.3459 0.2359 0.2153 0.1482
100 0.5021 0.3427 0.2634 0.1577

three resolutions are provided in Table 4. The DCs between the corresponding groups, Ui-Gi
(i=1,2,4,8), of the two distribution sets are also computed and given in Table 5, where their

group averaged PVs are used for the calculation.

To visualise the DCs, the sample DCs of the corresponding groups of the two sets for each

0 0.1 02 03 0.4 05 06 07 08 09
X

(a) U1(100)

X

02 03 04 05 06 07 08 09

(b) U1(400)

1 0 01 02 03 04 05 06 07 08 09 1

X

(c) U1(1600)

0
0 0.1 02 03 0.4 0.5 06 07 08 09
X

(a) G1(100)

1 0 01 02 03 0.4 0.5 0.6 0.7 0.8 0.9

X

(b) G1(400)
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X

(b) G1(1600)

Figure 9: Average principal variance functions of groups Ul and G1 for three resolutions:
N=100, 400, 1600
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Table 6: Dissimilarity coefficients of Submatrices of 4 packing images at N=1600

Comparison Within Group With the whole image
Submatrix size | 800 400 200 800 400 200
U1(1600) 0.012 | 0.037 | 0.050 | 0.010 | 0.009 | 0.014
G1(1600) 0.015 | 0.029 | 0.052 | 0.009 | 0.022 | 0.022
U4(1600) 0.054 | 0.095 | 0.167 | 0.038 | 0.069 | 0.109
G4(1600) 0.140 | 0.194 | 0.221 | 0.139 | 0.221 | 0.318

grid resolution, together with the group DC as a reference value, are all plotted in Figure 10.
Clearly, dissimilarity reduces when N increases, and in all cases the coefficient seems to
converge to a value of around 0.16, or a similarity index = 84, regardless of groups.

It may be concluded: 1) 10 samples within each group have very small differences, and the
similarity indices of most groups can reach 99; but the difference increases when the number
of particles in the packing decreases. 2) The dissimilarity between the corresponding groups
of the two distributions are substantially larger than that of the samples within each group,
indicating that the PVs can indeed be utilised to effectively classify packings.

4.4 Packing Uniformity and Isotropy

Principal variances can be employed to exploit the properties of a packing in more detail,
such as its spatial uniformity or homogeneity and isotropy.

4.4.1 Uniformity

For one packing, its uniformity in space can be checked by applying a moving analysis window
and obtaining the PVs at some selected locations, and then compute the DCs of these PVs
by (36). A uniformly small DC indicates that the packing may be statistically homogeneous.

Alternatively, if the image A, of a packing within a large analysis window is given, by
selecting smaller analysis windows with the same grid spacing h, or by simply selecting sub-
matrices/sub-images from Ay, the spatial uniformity of the packing can also be investigated
at a smaller scale. To illustrate this approach, U1(1600) and G1(1600) are used as examples.
A number of equally-sized sub-matrix blocks are randomly extracted from the two packing
images and PCA is applied to every sub-matrix to obtain its PVs. Three different sizes of
sub-matrices 800 x 800,400 x 400, and 200 x 200, equivalent to analysis windows of [0.5 X
0.5],0.25 x 0.25], and [0.2 x 0.2], are considered and their numbers are 10, 20, 40 respectively.
For the same sized sub-matrices, their dissimilarity coefficients against the average PVs are
evaluated, and the averaged dissimilarity coefficients are also obtained.

Figure 11 depicts the average PVs of the three different sized sub-matrices against those of
4 images U1(1600), U4(1600), G1(1600), and G4(1600) respectively. The logarithmic scale
for x is used to enlarge the differences around the leading PVs, otherwise almost identical
curves are observed at a normal scale. Both dissimilarity coefficients within each sub-matrix
group and against the associated whole image are presented in Table 6. Furthermore, the
individual dissimilarity coefficients of the sub-matrices against the averaged value of each
group are displayed in Figure 12.

Table 6 shows that for U1(1600) and G1(1600), the differences between the submatrices and
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their associated whole images are generally very small, and no larger than 5% even with the
smallest block size of 200; while for U4(1600) and G4(1600) which have much fewer particles,
the differences are higher and reach about 20 ~ 30% for the block size of 200, indicating that
it is more difficult to generate statistically equivalent particle packings with a small number
of particles.

It can be seen from Figure 12 that the distribution of the dissimilarity coefficient over the
entire selection samples for each case is not constant. For Ul and G1 cases, a small level
of spatial in-homogeneity exists in the four packings concerned, but for U4 and G4, a large
degree of in-homogeneity is observed, as expected.

It is worth in highlighting that the above similarity comparisons between images with different
resolutions can not be properly done without using the principal variance function defined
earlier.

4.4.2 Isotropy

By comparing a column-wise and a row-wise PCA to a packing image can reveal if the packing
within the analysis window is (an)isotropic in these two directions. A more detailed isotropy
check of the packing may be conducted by rotating the analysis window from 0° to 180°, and
applying PCA to each angle, as illustrated by Figure 13(a). Then the DCs of the PVs of
these rotated packings against their averaged PVs will reveal if the given packing is generally
isotropic or not in a broader sense. Take G1 as an example, and choose an analysis window of
[0.5 % 0.5], the DCs of the rotated packings with two resolutions N=100 and 400 are displayed
in Figure 13(b). It indicates that weak isotropy exists for the packing.

In a similar fashion, strong anisotropy of a packing can also be identified by PVs. Figure 14(a)
shows a packing generated from U4 but some particles being removed from a central strip
to make it anisotropic. By applying both a column-wise and a row-wise PCA to the packing
image at N = 100, the two sets of PVs in the two perpendicular directions are attained and
displayed in Figure 14(b), demonstrating that the strong anisotropy is indeed captured by
significant differences in the leading PVs.

4.5 Packing Density Effects

It is not obvious how packing density affects PVs and more specifically, if two different
densities could lead to two very similar PV sets. Such an effect is briefly considered by
examples. For each group of U4 and G4, another group of 10 samples is also generated with
a smaller packing density of p = 0.65. The dissimilarity coefficients between the groups with
different densities for five resolutions N = 1600, 800, 400, 200, 100 are computed and given
in Table 7, showing around 10% difference on average. It also appears that reducing the
packing density tends to increase the (total and principal) variances. This may be explained
by the density-variance relationship (4) from which the maximum total variance is reached
when py = 0.5, i.e. achieve a maximum spatial material variance in the packing. As in the
current case, reducing the density from 0.7 to 0.6 should increase the variances in general,
leading to increased dissimilarity coefficients. This provides further evidence that PVs can
indeed be taken as the signature of a packing which can differentiate packings with different
densities.
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Table 7: Dissimilarity coefficients of two groups with two packing densities

Group | N=1600 | N=800 N=400 N=200 N=100
U4 0.0659 0.0670 0.0684 0.0714 0.0783
G4 0.0986 0.0976 0.0983 0.1019 0.1106

4.6 Principal Variances via Grid Resolutions

Many results presented earlier clearly demonstrate a strong dependence of PVs on the grid
resolution IV or spacing h. Generally speaking, both the total variance and the PVs increase
with the increase of N or decrease of h, but their limits exist. Further investigations reveal
that the total variance and the leading PVs converge almost linearly towards the limits as
1/N or h tends to zero. A similar convergent behaviour has already been observed for DCs
within samples of the same group, as shown in Table 4, and between different groups of
the two sets as shown in Table 5. Note, however, that these DCs are computed for two
packings with the same sized analysis window and grid resolution. While in Section 4.4.1,
the comparison is conducted for different sized analysis windows and resolutions but with the
same spacing h, showing a convergence of PVs as the size of the selected analysis window
increases.

4.7 Principal Variances for Scaled Random Packings

The packing groups within each set considered are deliberately generated to have their size
distributions scaled from the base group by a factor of 2" (m = 1,2, 3) so that the relationship
between PVs (and DCs) and the scaling factor can be easily established.

The principal variance functions of U2(800), U4(400) and U8(200) against U1(1600) are
plotted in Figure 15(a) and the corresponding DCs against U1(1600) are also shown; while
the PV functions of G2(800), G4(400) and G8(200) against G1(1600), together with their
DCs, are displayed in Figure 15(b). Notice that the ratio between the average radius and the
spacing 7/h is kept to be 0.15 for all the cases. The figure clearly indicates that the PVs of
U1(1600), U2(800), U4(400) and U8(200) are very similar, with the maximum difference being
about 10%, or the minimum similar index = 90. The same applies to G1(1600), G2(800),
G4(400) and G8(200). In other words, the PVs of a set of scaled packings may be very close
if different resolutions are chosen such that r « N or r/h is a constant.

It is, however, not the case for the regular packings discussed in Section 3.3, where similar
PVs are obtained for the same grid resolution N or spacing h. This apparent contradiction
can be explained without offering a rigorous proof as follows.

Packings R4 and R16 are scaled and repetitive versions of R1, making them 100% correlated.
The relationship in their PVs has been fully established in Section 3.2. While for random
packing U1(1600) or G1(1600), when it is split into 4 800 x 800 blocks, these sub-matrices
are (almost) statistically independent but have very similar PVs, making their PV functions
very close to that of U1(1600) or G1(1600), as demonstrated earlier in Figure 12. On the
other hand, U2(800) or G2(800) is statistically equivalent to a 2-time up-scaled 800 x 800
block of U1(1600) or G1(1600), thereby having a similar PV function to the block (refer to
Section 3.2 for the reason), and therefore also close to U1(1600) or G1(1600).
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5 Concluding Remarks

The present work has proposed a Principal Component Analysis based novel methodology
to characterise particle packings. It involves first the digitalisation of a packing into a grey-
scale image; and then the application of PCA to obtain the principal variances of the image.
Another important development is the definition of a dissimilarity coefficient or equivalently
a similarity index, by which the degree of (dis)similarity of two packing images can be quan-
titatively compared and evaluated. This has been made possible by the definition of the
principal variance function that maps the ordinal numbers of individual principal variances
into a non-dimensional unit interval [0,1]. From comprehensive investigations on the effec-
tiveness of characterising some purposefully generated regular and random packings, it can
be concluded that the principal variances are the signature of a packing image.

Note that the packing characterisation through the illustrative examples has been mainly
focused on the quantitative comparison between different packings using their principal vari-
ances or the dissimilarity coefficient. More work is worth being pursued to gain a full under-
standing how PVs and other values in the characteristic sets, Caq and C oy, are directly related
to the packing features of a packing, such as packing density or porosity, anisotropy, hetero-
geneity, and particle size distribution etc. Furthermore, the methodology developed can be
extended to 3D cases [17] and non-spherical particle packings, and can also be applicable to
some other problems in particle systems, which will be reported later.
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Figure 10: Dissimilarity coefficients of four packing groups Ul, U4, G1 and G4

(a) U1, G1 Groups

Dissimilarity Coefficient Dissimilarity Coefficient Dissimilarity Coefficient

Dissimilarity Coefficient

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.14

0.12

0.1

0.08

0.06

0.04

0.02

o
()

different image resolutions N = 100, 200, 400, and 800

N=100
* U4
* G4
E ——U4-G4 [
¥
*
L * 1
,,,,,, * e
L " . 1
. . *
,,,,,, * . ____________
L * 1
*
% * *
*
1 2 3 4 5 6 7 8 9 10
Sample No.
N=200
* U4
L * G4 ||
——U4-G4
% 1
L * 4
*
e o e = — = * = — ]
* * i
[ ¥ . __  _*x_ ,
% * * * ¥
L * * 4
. . . . . . . .
1 2 3 4 5 6 7 8 9 10
Sample No.
N=400
T T
* U4
* G4
F ——U4-G4 [
L * 4
*
*
L ¥ U
*
*
¥
Lo x oot 1
* * * * ¥
1 2 3 4 5 6 7 8 9 10
Sample No.
N=800
* U4
* G4 ||
t ——U4-G4 |
*
* * *
""" ">">F">">7>"”>">°*>°”>"%”="”-"¥%/+¥¥7/¥0/ 00— 0™~ ¥ 1
* *
*
*
L __ X oot 4
* * 3
* * i
*
, , , , \ , * ,
1 2 3 4 5 6 7 8 9 10
Sample No.
(b) U4, G4 Groups
with four




O©CoO~NOUTAWNER

o
H=

35 ‘ ‘ ‘ 25
—— U1(1600) —— U4(1600)
L — U1(1600)-800 | | —— U4(1600)-800
3 ——— U1(1600)-400 ol —— U4(1600)-400 | |
—— U1(1600)-200 —— U4(1600)-200
25
15
oL
= 2
15 ol
e
5L
05
0 0
104 10 107 10t 10° 10 10° 1072 107 10°
X X
(a) U1(1600) (b) U4(1600)
45 ; ‘ 70 ‘
—— G1(1600) —— G4(1600)
Ar —— G1(1600)-800 | | 60 | —— G4(1600)-800 | |
—— G1(1600)-400 —— G4(1600)-400
35 —— G1(1600)-200 | | —— G4(1600)-200
50 -
3l
25 40 -
= 2
2+ a0k
15
20 +
e
10+
05
0 ‘ ‘ ‘ 0
104 10 1072 10t 10° 10 10° 1072 107 10°

X

(a) G1(1600)

X

(b) G4(1600)

Figure 11: Principal coefficients of four images U1, U4, G1, G4 at N=1600 with three different

sub-matrix blocks: 800 x 800,400 x 400, and 200 x 200




OO UIUIUIUUUICIUTUUDNDADAANARNDNARNARNWWWWWWOWWWWWNNNNNNNNNNRPRPRRERRRPRRRR
ORAONROOOVNOGNRONROOOVNOUTRWNROOONONRWONROOONOUNRWNROOONOURNWNROOO~NOURNWNER

N
L)

0.022 0.09 012

_ L |— — Average 4 — — Average
002 Average | 4 0.08 o
*
007 q
= 0018 = * H *
g g * g 008 **
e £ 00sr * 1€ N * L
g 0016 3 8 *
3 % o o * *
2 005F 1 2006 5 *
8 0.014 f_é * * * g [ ok g ———— *_ x|
E * £ 0.04 1 E * * *
2 2 | - e K 20041 % * «* %
Qoolf ————————— &) a * ** * *
* 0.03[ ] %
* *
* * 0.02 * *
001 * * 0021 * * ] ’ *
* x ¥ % ox * *
* *
0.008 0.01 . . . . . . . . . ° . . . . . . .
1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40
Selection No. Selection No. Selection No.
(a) U1-800 (b) U1-400 (c) U1-200
0.03 0.06 0.12 *
* Selection * * Selection 011
* — — Average 0.055 verage | | 11T | = — average
0.025 005 B 0.1
*
z = € 009 *
s 0,045 * 1 *
= = € 00
£ 002 5 e
T ¥ © |s *
8 8 oo4 * 8 * *
g r 2 * 2007
E * 500351 * * * 18 * *
g0015F £ % E 006 * * * %
2 « * Boosr 4B g - S ——
a « a « a . ** *x * * * g X X
0025 q *
0.01 * * * « * 004r L % *
* * * *
* 0.02 * * * 4 oo N * *
* * * *
0.005 . . . . . . . . 0.015 . . . . . . . . 0.02
1 2 3 4 5 6 7 8 9 10 o 2 4 & 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40
Selection No. Selection No. Selection No.
(a) G1-800 (b) G1-400 (c) G1-200
0.08 0.18 T T T T T T T T T 035 T T T T T T T
[ '
0.075 L —— i - *
0.16 % Average 03 Average
0.07 *
* o * « 014t 4 * *
€ 0.065 g * =025 % v
3 ¥ S * 8 * *
S So12f 18
£ £ Kk *
§ 0.06 ] * S 02pk ¥ * *
3 [§} * [} *
00SSF z 01f * ¥ 4z | * X *__ % x|
2 * £ e === = * %
s & * 8015 *
E 005 E L 1z % "
E £ o008 * * * | 5 * *
3 0045 ] * * a * *
° * 006 *  * 120 * * *
0.04 * * *
* 0041 1 005 * *
0.035 * *
*
0.03 0.02 0
1 2 3 ) 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40
Selection No. Selection No. Selection No.
(a) U4-800 (b) U4-400 (c) U4-200
0.2 ¥ 05 08 "
% Selecton % Selecion
— — Average 0451 * Average |1 0.7 [ | = — Average
_ % 0 04r 1 ; 06
9015 * * 4 Sosst . 12
Kl * 2} S os
E - T £ £
] 8 o3r 18 *
o (o] ©
> > * * 204 *
= * 50251 18 * ¥ *
S g = M
E E * x| 502 * *x
2 1% t B * *% %
o 01 @ 02r * T @2 * *
a a > * x - o e * T x|
01sf * 02ry, *
T * * 3 *
* * *
" * * o . * % o P
.l * % 1 * ¥
* *
0.05 0.05 0
1 2 3 4 5 6 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40
Selection No. Selection No. Selection No.

(a) G4-800 (b) G4-400 (c) G4-200

Figure 12: Dissimilarity coefficient distributions at randomly selected positions of groups Ul,
G1, U4 and G4 for 3 sizes of sub-matrices: N=800, 400, 200



O©CoO~NOUTAWNER

OO UIUIUIUUUICIUTUUDNDADAANARNDNARNARNWWWWWWOWWWWWNNNNNNNNNNRPRPRRERRRPRRRR
OARONROOOVNOGNRONROOOVNOUTRWNROOONONRWONROOONOUNRWNROOO~NOUNWNEO

o
[\S)

Dissimilarity Coefficient

T
—%— G1-100
—%— G1-400

(a) A rotating 0.5 x 0.5 analysis window (b) Dissimilarity coefficients for different angles

Figure 13: Isotropic check for G1 using a rotating analysis window

14

12

column-wise
row-wise

107 102 10t
X

(a) An anisotropic packing

Figure 14: Packing anisotropic checking in two directions

10°

(b) Dissimilarity coefficients for two directions




O©CoO~NOUTAWNER

o
NG

4 5
—— U1(1600) —— G1(1600)
35} ——U2(800) DC=0.0118| | 457 ——G2(800) DC=0.0120| ]
—— U4(400) DC=0.0240 ——G4(400) DC=0.0536
U8(200) DC=0.1138 4r G8(200) DC=0.1096 | |
sl i
350 i
25 sl
2 2 225
15F 2r
151
A
i
05 o5k
0 0
10 107 1072 10 10° 10 10° 1072 107 10°
X X
(a) U-set (b) G-set

Figure 15: Comparison of the principal variance functions and dissimilarity coefficients of
scaled packing groups with different resolutions but with the ratio r/h kept the same



