=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Swansea University E-Theses

Quality Assessment and Variance Reduction in Monte Carlo
Rendering Algorithms

Whittle, Joss

How to cite:

Whittle, Joss (2018) Quality Assessment and Variance Reduction in Monte Carlo Rendering Algorithms. Doctoral

thesis, Swansea University.
http://cronfa.swan.ac.uk/Record/cronfa40271

Use policy:

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from
the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference
above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/


http://cronfa.swan.ac.uk/Record/cronfa40271
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Quality Assessment and Variance Reduction in
Monte Carlo Rendering Algorithms

Joss Whittle

May 1%, 2018






Swansea University

Prifysgol Abertawe
Swansea University

Department of Computer Science

Computer Graphics Group

PhD Thesis

Quality Assessment and Variance Reduction in
Monte Carlo Rendering Algorithms

Joss Whittle

1. Reviewer  Kurt Debatista

Centre for Scientific Computing
University of Warwick

2. Reviewer ~ Xianghua Xie

Department of Computer Science
University of Swansea

Supervisors Mark W. Jones and Benjamin Mora

May 1S, 2018



Joss Whittle

Quality Assessment and Variance Reduction in Monte Carlo Rendering Algorithms
PhD Thesis, May 1%, 2018

Reviewers: Kurt Debatista and Xianghua Xie

Supervisors: Mark W. Jones and Benjamin Mora

Swansea University

Computer Graphics Group
Department of Computer Science
Faraday Tower, Swansea University
Swansea, SA2 8PP

United Kingdom



Declaration

I declare that the work presented in this thesis has not previously been accepted in
substance for any degree and is not being concurrently submitted in candidature for
any degree.

Swansea, May 1%, 2018

Joss Whittle

That this thesis is the result of my own investigations, except where otherwise stated
and that other sources are acknowledged by footnotes giving explicit references and
that a bibliography is appended.

Swansea, May 1%, 2018

Joss Whittle

That I give consent for the thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

Swansea, May 1%, 2018

Joss Whittle






Abstract

Over the past few decades much work has been focused on the area of physically
based rendering which attempts to produce images that are indistinguishable from
natural images such as photographs. Physically based rendering algorithms simulate
the complex interactions of light with physically based material, light source, and
camera models by structuring it as complex high dimensional integrals [Kaj86]
which do not have a closed form solution. Stochastic processes such as Monte
Carlo methods can be structured to approximate the expectation of these integrals,
producing algorithms which converge to the true rendering solution as the amount
of computation is increased in the limit.

When a finite amount of computation is used to approximate the rendering solution,
images will contain undesirable distortions in the form of noise from under-sampling
in image regions with complex light interactions. An important aspect of developing
algorithms in this domain is to have a means of accurately comparing and contrasting
the relative performance gains between different approaches.

Image Quality Assessment (IQA) measures provide a way of condensing the high-
dimensionality of image data to a single scalar value which can be used as a represen-
tative measure of image quality and fidelity. These measures are largely developed
in the context of image datasets containing natural images (photographs) coupled
with their synthetically distorted versions, and quality assessment scores given by
human observers under controlled viewing conditions. Inference using these mea-
sures therefore relies on whether the synthetic distortions used to develop the IQA
measures are representative of the natural distortions that will be seen in images
from domain being assessed.

When we consider images generated through stochastic rendering processes, the
structure of visible distortions that are present in un-converged images is highly com-
plex and spatially varying based on lighting and scene composition. In this domain
the simple synthetic distortions used commonly to train and evaluate IQA measures
are not representative of the complex natural distortions from the rendering process.
This raises a question of how robust IQA measures are when applied to physically
based rendered images.

Vii



viii

In this thesis we summarize the classical and recent works in the area of physically
based rendering using stochastic approaches such as Monte Carlo methods. We
develop a modern C+ + framework wrapping MPI for managing and running code
on large scale distributed computing environments. With this framework we use
high performance computing to generate a dataset of Monte Carlo images. From this
we provide a study on the effectiveness of modern and classical IQA measures and
their robustness when evaluating images generated through stochastic rendering
processes. Finally, we build on the strengths of these IQA measures and apply
modern deep-learning methods to the No Reference IQA problem, where we wish to
assess the quality of a rendered image without knowing its true value.



Acknowledgement

To everyone who has helped me throughout my time at Swansea University, thank
you. This experience would not have been what it has without you all.

I would like to offer my sincerest gratitude and thanks for the support of my advisor,
Professor Mark Jones, who during my undergraduate studies at Swansea encouraged
me to pursue my interest in computer graphics and mentored me along the path to
becoming a researcher.

To my friends and colleagues at Swansea, I offer my sincerest thanks. The wealth of
knowledge and experience you hold have been a tremendously valuable resource
throughout my research. It has truly been a privilege to work with all of you.

This research has been supported by EPSRC through Doctoral Training Award
EP/K502935/1 whom I thank for the amazing opportunity they have afforded me.

Finally, I would like to offer my deepest thanks to my parents, John and Catheryne
Whittle, and my sisters, Claire Whittle and Sarah Warrick, whose unwavering support
and encouragement I could not have done this without. I would also like to give
my thanks to my brother-in-law Dr. Edmund Warrick, who originally inspired me to
pursue a doctorate when I was still in high school, and whose detailed feedback and
advice have benefited this thesis immeasurably.






Contents

1

Introduction 1
1.1 Research Methodology . . . . ... ... ... .. ... .. ...... 2
1.2 Thesis Structure . . . . . . . . . . i v i it e e e 3
1.3 Contributions . . . . . . . . . . .. e e 6
Related Work 9
2.1 Probability Theory . . ... ... ... . ... .. . ... ... ... 9
2.1.1 Bayes’Theorem . . . . ... ... ... ... uuine.n.. 10
2.1.2 DisCUSSION . . .« v v v vt e e e e e e e e e 12
2.2 Monte Carlo (MC) Sampling . . . . .. ... ... ... ........ 12
2.2.1 Accept Reject Sampling (ARS) . . . . ... ... ........ 15
2.2.2 Markov Chain Monte Carlo (MCMC) Sampling . .. ... .. 17
2.2.2.1 Metropolis-Hastings Monte Carlo (MHMC) Sampling 17
2.2.2.2 Hamiltonian Monte Carlo (HMC) Sampling . . . . . 20
2.2.3 Importance Sampling (IS) . . ... ... ... ... ...... 23
2.2.3.1 Self Normalized Importance Sampling . . . . .. .. 24
2.2.4 Multiple Importance Sampling (MIS) . . .. ... ... .... 25
2.2.4.1 One Sample Estimator . . . . .. ... ... ..... 27
225 DiscussSion . . . . . ... e e e 28
2.3 Physically Based Rendering . . . .. ... ............... 29
2.3.1 Bidirectional Scattering Distribution Function (BSDF) . . . . . 32
2.3.2 LightEmitters . . . . . . . . . .. ... e 34
2.3.3 CameraModels . . . . ... ... ... ..., 35
2.3.4 PathTracing (PT) . . . . . . . . . . .. ... 36
2.3.4.1 DirectLighting . . ... ... ... .......... 38
2.3.5 Light Tracing (LT) . . . . . . . . .. ..., 40
2.3.5.1 Direct Pixel Contribution . .. ... ......... 42
2.3.6 Bidirectional Path Tracing (BDPT) . . . . .. ... .. ... .. 43
2.3.6.1 Weighting Function . .. ... ... ......... 46
2.3.7 Advanced Sampling Methods . . . ... ............ 49
2.3.7.1 Metropolis Light Transport (MLT) . . ... ... .. 49

2.3.7.2 Primary Sample Space Metropolis Light Transport
(PSSMLT) . . . o o o e e e e e e e 50
2.3.7.3 Multiplexed Metropolis Light Transport (MMLT) . . 50

Xi



Xii

24

2.5

2.6

2.3.7.4 Energy Redistribution Path Tracing (ERPT) . . . .. 51
2.3.7.5 Anisotropic Gaussian Mutations for Metropolis Light
Transport Through Hessian-Hamiltonian Dynamics . 52

2.3.7.6 Gradient Domain Rendering . . . . . ... ... ... 54
2.3.7.7 Selective Progressive Rendering . . . . ... ... .. 55
2.3.8 DiISCUSSION . . . . . v v vt e e 57
MachineLearning . . . . . . . . . . . .. ... . 58
2.4.1 Multi-Layer Perceptron . . . . . .. ... ... ... ... .. 59
2.4.1.1 Activation Functions . . . . . .. ... ... ... .. 61
2.4.1.2 LossFunctions . ... ................. 63
2.4.1.3 Training by Back-Propagation . . . . . ... ... .. 65
2.4.2 Convolutional Neural Networks (CNN) . . . .. ... ... .. 66
243 DiSCUSSION . . .« v v v vt e e e e e e e e 68
Image Quality Assessment . . . . ... ... ... ........... 68
2.5.1 Full-Reference Image Quality Assessment . . . ... ... .. 69
2.5.2 Reduced-Reference Image Quality Assessment . . . . . . . . . 70
2.5.3 No-Reference Image Quality Assessment . . . ... ... ... 70
Summary . . ... L 71

A modern C++4 approach to High Performance Computing with MPlI 73

3.1
3.2
3.3

MEL - The MPI Extension Library . . . . . ... ... ... ...... 73
Static Safety and Implicit Parameter Deduction . . ... ... .. .. 74
MEL - Deep-Copy . . . .« v v v v i e e e e 75
3.3.1 RelatedWork . ... ... ... .. ... . ... .. ... ... 77
3.3.2 Whentouse Deep-Copy . . . . . v v v v v v v i i 80
3.3.2.1 Buffered vs. Non-Buffered . . . . . ... ....... 83
3.3.3 MEL - Deep-Copy Algorithm Design . . . . ... ... ..... 85
3.3.3.1 Top-Level Interface . . . . .. ... ... ....... 86
3.3.3.2 Detecting objects that require Deep-Copy . . . . . . 87
3.3.3.3 Message Transport-API . . ... ........... 87
3.3.34 Anexamplecopy . ... ... ... .. ... ..., 89
3.3.3.5 Transport Method . ... ............... 91
3.3.3.6 Hashing shared pointers . . . . . ... ........ 92
3.3.3.7 External Deep-Copy Functions . ... ........ 93
3.3.4 MEL - Deep-Copy Implementation Details . . ... ... ... 95
3.3.4.1 Detecting the Deep-Copy Function . . ... ... .. 95
3.3.4.2 Transport-API Implementation . ... ... ... .. 96
3.3.4.3 Transport Method Implementation & Usage . . . . . 101
3.3.4.4 Hash-Map Implementation ... ........... 104
3.3.5 MEL - Deep-Copy Performance Benchmarks . ... ... ... 105
3.3.5.1 Case Study: Ray-Tracing Scene Structure . ... . . 105
3.3.5.2 Case Study: Graphswith Cycles. . . . ... ... .. 108



3.4 ConcluSionS . . . . . v v v v i e e e e e e e e 111

3.4.1 FurtherWork . .. ... ... ... ... . ... .. ...... 111

4 Analysis of Error in Monte Carlo Rendered Images 113
4.1 Introduction . . . . . . . . . . . .. e 114
4.2 Image Quality Assessment (IQA) . . . . .. ... ... ... ..... 114
4.3 Computing Error . . .. ... ... ... o 117
4.4 OurExperiment . . . . . . .. ... . ... 120
4.4.1 Monte Carlo Image Dataset Generation . . . . . ... ... .. 120
4.4.2 Computing IQA Robustness . . . . . ... ... ........ 122
4.4.2.1 LogAccuracyRatio. ... ............... 122

4.5 DISCUSSION . . . v v v v i e e e e e e e e e e e e e e e e e e e 124
4.5.1 Critical Analysis of IQA Measures . . . . . .. ... ...... 125

4.6 Recommendations and Conclusions . . . . . . ... .......... 131
4.6.1 FurtherWork . ... ... ... .. ... .. ... . ...... 132

5 A Deep Learning Approach to No-Reference Image Quality Assessment

using Convolutional Neural Networks 135
5.1 Introduction . . . . . . . . . . o v i it e e e 135
5.2 Related Work . . . . ... .. . . ... ... 136
5.2.1 IQA in Monte Carlo Rendering . . ... ............ 138
5.2.2 Machine Learning . . . ... ... ... ..., 139
5.3 Experimentl . ... ... . ... ... 142
531 Training . . . . . . . . o v i e e e e e e 143
5.3.2 Resultsand Discussion . . . . .. ... ... .......... 147

5.3.2.1 Patch Based No Reference Image Quality Assessment
(NR-IQA) . . . . e 151
5.4 ExperimentIl . ... ... .. .. ... 153
541 Training . . . . . . . ... e 156
5.4.2 Resultsand Discussion . . . . .. ... ... .......... 157
5.5 Conclusion and Discussion . . . . . . . ... ... ... ........ 162
5.5.1 FurtherWork . ... ... ... . ... ... ... ... ... 164
6 Conclusion 167
6.1 Summary of Contributions . . . . ... ... ... ... ........ 174
6.2 FurtherWork . . . ... ... ... ... ... ... 175
Bibliography 177
A Appendix 193
A.1 MEL Experiment 1: Broadcasting a large tree structure . . . ... .. 193
A.1.1 Scene object containing MEL Deep Copy methods . . . . . .. 194
A.1.2 Hand coded Non-Buffered Bcast of Scene object . . . . . . .. 196

xiii



A.1.3 Hand coded Buffered Bcast of Scene object . ... ... ... 197
A.2 MEL Experiment 2: Communicating Generic Directed Graph structures200
A.2.1 Factory functions for building Directed Graphs in different

shaped structures . . . . . . . ... ... ..o 201

A.2.2 Generic implementation of Directed Graph container . . . . . 203

A.3 NR-IQA Experiment 1: PatchBased . . . . . ... ... ........ 204
A.3.1 Training and Validation Curves without HSV Jitter . . .. .. 204

A.3.2 Training and Validation Curves with HSV Jitter . . . ... .. 206

A.4 NR-IQA Experiment 2: Full Convolutional . .. ... ......... 208
A.4.1 Training and Validation Curves for £y Loss . . . . . . ... .. 208

A.4.2 Training and Validation Curves for Lo Loss . . . . . . . .. .. 210

A.4.3 Training and Validation Curves for Lo Loss . . . . . . . . ... 212

A.4.4 Training and Validation Curves for Ly LOSs . . . . . . . .. 214

B List of Acronyms 217
C List of Figures 219
D List of Tables 223

Xiv



Introduction

Any one who considers arithmetical methods of
producing random digits is, of course, in a state
of sin. For, as has been pointed out several times,
there is no such thing as a random number —
there are only methods to produce random
numbers, and a strict arithmetic procedure of
course is not such a method.

— John von Neumann

Physically based rendering methods allow for the generation of high quality syn-
thetic images which can often be indistinguishable from natural images such as
photographs. Due to the complex nature of light interactions with different mediums
and the high volume with which light energy flows through natural environments,
the simulation of such light transport problems can quickly become intractable to
compute through classical numerical methods.

Through the application of stochastic methods such as Monte Carlo sampling, al-
gorithms for the simulation of light transportation problems can be derived which
faithfully capture the complexities and subtleties of light phenomena observed in
nature. These algorithms are structured such that they converge to a true solution to
the posed simulation problem as increasingly more computation is performed, only
achieving full convergence in the limit as the number of random samples goes to
infinity. Early halting of the simulation after a finite amount of computation has the
effect of creating a coarse approximation of the true solution.

A significant benefit to this approach is it allows for the accuracy of the final simula-
tion to be balanced against the sensitivity of the observer to errors present in the
coarse approximation and the practicality of continuing the computation to further
reduce simulation error. When machine precision and hardware limitations of output
devices (such as computer monitors with finite colour depths) are considered, this
allows for previously intractable problems to be faithfully simulated with a finite
amount of computation without introducing any perceivable error.



2

Over the previous four decades our increased access to large scale computational
resources such as increased memory capacity, processor speeds, thread counts, and
the use of acceleration devices such as GPUs and co-processors have allowed us to
tackle problems of increasing complexity and scale. Much work has been done in
the area of developing reusable and extensible systems for managing hardware and
the mapping of software onto hardware in large scale, often distributed, computing
environments. However, even as the power and scale of the available hardware
increases, our desire to keep pushing the limits of the hardware currently at our
disposal requires the development of new and more efficient algorithms which are
able to better use the information which is readily available within the simulation.

The use of a finite amount of computation in the stochastic simulation of complex
light transportation problems has the effect of generating a coarse approximation
of the true solution. The coarseness of the approximate solution presents itself as
error compared to the true solution. In order to compare and contrast the relative
performances of competing rendering algorithms robust measures for comparing
the coarse outputs of different algorithms to the true solutions are needed. These
measures, termed Image Quality Assessment (IQA) measures, have in the past been
based on simple numerical divergences. However, such methods do not reflect the
sensitivities of the human visual system to different types of distortions. In recent
years much work has been focused on the task of developing efficient algorithms
which accurately reflect the sensitivities of the human visual system when comparing
images.

1.1 Research Methodology

This thesis investigates the use of IQA measures when applied to images generated
with Monte Carlo rendering algorithms, exploring the robustness of existing IQA
methods, and developing novel ones which are able to faithfully predict image
quality when presented with only a distorted test image. When we review images
reported in the physically based rendering literature we observe that in many
cases visible noise is present in images labelled as Ground Truth (GT) references,
which should by definition be completely distortion free. We seek to answer the
question of by how much do these types of distortions in reference images effect the
accuracy of results reported by IQA measures? We also consider whether many
existing IQA measures report quality assessments that are representative of the
perceived quality of distortions observed in rendered images. These measures have
largely been developed with the aim of assessing the quality of specific distortion
types. Most commonly these are synthetic distortions that are applied to datasets of
natural images such as photographs. We ask the question of whether these synthetic

Chapter 1 Introduction



distortions are representative of the types of complex and spatially varying distortions
that we observe naturally as a result of under-sampling within Monte Carlo rendering
processes?

To this end, we summarize the classical and recent works in the areas of image quality
assessment, machine learning, and physically based rendering using stochastic
approaches such as Monte Carlo methods. We present a modern C+ + framework
on top of Message Passing Interface (MPI) for managing and running code on large
scale distributed computing environments, with particular care made to improve
compile-time error handling and type-checking over previous works. Leveraging this
framework, we implement Monte Carlo rendering algorithms in High Performance
Computing (HPC) environments, and use this to generate a large dataset of rendered
images containing varying amounts of natural distortion. Using the dataset we
provide an ensemble study on the effectiveness of modern and classical IQA measures
used in comparing digital images, and their robustness when evaluating images
generated through stochastic rendering processes. Finally, we build on the strengths
of these IQA measures and apply modern deep-learning methods to the NR-IQA
problem, where we wish to assess the quality of a rendered image without knowing
its true value.

1.2 Thesis Structure

Chapter 1

The remainder of chapter 1 summarizes the structure of this thesis and the contribu-
tions that are presented.

Chapter 2

In chapter 2 we review the literature on Bayesian Statistics, Monte Carlo Simulations,
Physically Based Rendering, Image Quality Assessment, and Machine Learning. This
chapter is intended to give an overview of the topics upon which this thesis builds.
At beginning of chapters 3, 4, and 5 there are additional literature reviews pertaining
specifically to each chapter.

Chapter 3

Monte Carlo rendering algorithms are slow to converge and require a large amount
of computation to produce visually acceptable results. In order to generate large

1.2 Thesis Structure



4

datasets of images to analyze we made use of HPC methods to implement rendering
algorithms on large distributed computing environments. The implementation
of these parallel rendering algorithms led to the development of a modern C+ +
framework which addressed several issues we encountered while working in HPC
environments.

Chapter 3 describes the development of MPI Extension Library (MEL), a modern
C++11 framework around the MPI 3.0 standard. MEL is a header-only library with
the goal of creating a lightweight and robust framework for building distributed
parallel applications for use in HPC environments. MEL is designed to introduce
no (or minimal) overheads while drastically reducing code complexity and allowing
for a greater range of common MPI errors to be caught at compile-time rather than
during program execution when it can be far more difficult to debug.

One of the main goals of MEL is to give higher-level functionality that is not natively
available within the MPI standard. To demonstrate this we tackle the issue of
performing deep copy on complex hierarchical and potentially cyclical data structures
between disjoint hosts in a distributed computing environment. We approach this
problem by creating a set of generic deep copy semantics that can easily be applied
to user data structures, and a traversal and transportation algorithm which can then
walk the data structure performing the desired transport operations. Our semantic
mark-up is generic both in that it can be applied simply to any user defined structure,
but also in its abstraction of the transport operation that will later be performed
on it. Once a data structure has been prepared for our deep copy algorithm it can
be passed to all transport functions within the API, allowing for MPI send, receive,
broadcast, and file IO operations to all be performed. Additionally we provide a
variant of each of the above transport operations which internally buffer data into
or from a contiguous block of memory during transmission, yielding considerable
performance increases on appropriate data structures.

Chapter 4

In chapter 4 we provide and ensemble study on the robustness of IQA measures when
evaluating images created through Monte Carlo rendering processes. When assessing
image quality in Monte Carlo rendered images the use of a reference image or GT is
a common method to provide a baseline with which to compare experimental results
as we often need to determine the relative quality between images computed using
different algorithms and with varying amounts of computation.

We show that if not chosen carefully the quality of reference images used for IQA
can skew results leading to significant misreporting of error. We present an analysis

Chapter 1 Introduction



of error in Monte Carlo rendered images and discuss practices to avoid or be aware
of when designing an experiment.

The issue stems from the fact that ground truth images are never truly available, as
they are the product of a stochastic rendering process just the like the test images
we wish to evaluate. Monte Carlo rendering processes are known to converge in the
limit, as the number of samples goes to infinity. For any finite number of samples
used to approximate an image there will always be some distortion or bias introduced
into the image estimate. By rendering reference images to a significantly higher
visual quality than the test images they will be used to evaluate we can limit the
bias introduced by distortions in reference images. However, this raises the question
of by how much distortions in reference images affect the results of IQA measures
when evaluating test images.

To answer this question we used our HPC implementations of several Monte Carlo
rendering algorithms to render a large dataset of images containing a range of
scene, material, and lighting compositions to increasing numbers of image samples.
We constructed an experiment where we used this dataset of images at varying
qualities to calculate the reported quality score of test images compared to each of
the potentially noisy reference images drawn from the dataset, using a collection of
IQA measures we gathered from the literature. We used the highest sampled images
as approximate ground truth images, and use these “true” quality values to compute
the amount by which each error metric under- or overestimates its quality score
for each comparison, as a function of the quality of the potentially noisy reference
image that was used.

By this method we can compute and visualize the robustness of each IQA measure
we sample from the literature when we consider the scenario where the reference
image used in image quality assessment is not a perfect representation of the ground
truth image and contains some magnitude of distortion.

Chapter 5

Finally, in chapter 5 we investigate the use of deep-learning models applied to the
task of NR-IQA in the context of evaluating images rendered with Monte Carlo
rendering processes. As these models require a large corpus of data in order to learn
robust and generalized strategies for inference we again make use of the image
dataset we generated using distributed computing.

In Full Reference Image Quality Assessment (FR-IQA), images are compared with
ground truth images that are known to be of high visual quality. These metrics are

1.2 Thesis Structure



6

utilized in order to rank algorithms under test on their image quality performance,
usually using an equal time or equal sample comparison. However, during an
intermediate stage of a Monte Carlo rendering process we do not have access to
ground truth images with which to compare our current image estimate, as this
would imply the availability of the final image. To evaluate our current image
estimate we need to utilise NR-IQA methods which compare the image under
evaluation to the distribution of natural images we are likely trying to compute.

When reviewing existing NR-IQA methods we observe that the vast majority of
measures in the literature are trained on images from publicly available datasets
such as Live [She+14], TID2008 [Pon+09], TID2013 [Pon+13], Kodak Lossless
True Colour [Fra99], MICT [Hor+11], and IRCCyN/IVC [AB09], which contain clean
reference images (photographs) and their synthetically distorted test images, coupled
with subjective quality scores given by and pooled over a set of human observers.
We find that in many cases synthetic distortions do not present a representative
target for training and evaluating metrics that will be applied to naturally distorted
images. In our experiments we show that we can train models directly on images
containing naturally occurring distortions from unconverged Monte Carlo rendering
processes.

We propose a deep-learning approach to NR-IQA trained specifically on noise from
Monte Carlo rendering processes using the dataset of images we created, which
significantly outperforms existing NR-IQA methods, and produces performance close
to the approximated FR-IQA measure.

Chapter 6

Lastly, in chapter 6 we conclude with a summary of the contributions made in each
of the three main chapters of the thesis, and present a summary of further work.

1.3 Contributions

The major contributions of this work are:

* A review of classical and recent works on Monte Carlo Simulations, Physically
Based Rendering, Image Quality Assessment, and Machine Learning.

* A modern C++ framework for HPC built on top of MPI, designed to intro-
duce no (or minimal) overheads while drastically reducing code complexity,

Chapter 1 Introduction



increasing type-safety, and adding higher-level functionality such as deep-copy

semantics.

* A dataset of images rendered with Monte Carlo rendering algorithms, com-
puted using HPC, containing varying degrees of image quality intended for use
in analyzing and developing IQA methods on domain specific image distortions.

* An ensemble study on the robustness of existing IQA measures when eval-
uating images created through Monte Carlo rendering processes using the
aforementioned dataset.

* A deep-learning approach to the NR-IQA problem aimed at assessing the

quality of Monte Carlo rendered images containing natural image distortions

from the rendering process.

1.3 Contributions






Related Work

In this chapter we will review the literature on Bayesian Statistics, Monte Carlo
Simulations, Physically Based Rendering, Image Quality Assessment, and Machine
Learning that form the foundation of the topics discussed throughout the remainder
of this thesis.

2.1 Probability Theory

As a prerequisite to much of the information covered in this chapter relating to
Monte Carlo methods and rendering processes we will first introduce some of the
key concepts and relations from probability theory which appear frequently in those
areas. Probability is a measure of the likelihood of an event occurring and can be
represented as a numerical value between 0 and 1. For an event .A we can say its
probability of occurring independently is P(.A) € [0,1]. An example of this could
be the outcome of flipping a fair coin, we can say that P(head) = 1/2 and similarly
P(tail) = 1/2. Since there are only two outcomes of flipping a fair coin it makes sense
that the probabilities of each possible outcome should sum to 1.

We can formalize this idea by defining the joint probability of one event or another
occurring, P(Aor B) = P(AU B) = P(A) + P(B). In our coin flipping example
we can now write that P(head U tail) = P(head) + P(tail) = 12+ 12 = 1. This
definition of or holds because our events are mutually exclusive of one another,
which is to say that both cannot occur at the same time — either the coin has landed
on heads or on tails but never heads and tails. Or more formally, P (head and tail) =
P(head Ntail) = 0.

In order to describe potentially overlapping events where P(.4 N B) > 0 we need to
extend our definition to account for the probability of events in the overlap between
distributions being double counted when we sum the probabilities of the independent
events, P(AU B) = P(A) + P(B) — P(AN B). In the case of mutually exclusive
events such as our coin example we can see that the intersection of events occurs
with 0 probability, meaning the definition simplifies to what we saw previously.



10

To calculate the probability of both events occurring for the above definition of or
we need to define another logical construct, and. To illustrate this let’s modify our
coin flip example to be the outcome of flipping two fair coins independently of one
another, with events head, and tail, for the first coin flip, and events head; and taily
for the outcome of the second coin flip. Given the small scale of this example we can
enumerate the four possible outcomes as (heady, head;), (heady, tail; ), (taily, head;),
(tailp, taily ). From this enumeration it is trivial to see that the probability of both coins
landing on heads is !/4. Formally, we can say that the probability of two independent
events both occurring is equal to the product of each of the events occurring,
PANB) = P(A)P(B). In our two coin example this is, P(heady N head;) =
P(headp)P(head;) =12 1/2 =1/

Events are not always independent of one another, however. In many instances we
would like to be able to compute the probabilities of events which are dependent on
other events. An illustrative example of this is drawing cards from a deck of playing
cards without replacement. By not replacing cards as they are drawn the distribution
of possible outcomes from subsequent draws changes each time a card is removed
from the deck, making each draw dependent on the outcome of previous draws.
Imagine we want to compute the probability of two subsequent draws yielding aces,
event ace is the first draw and ace; is the second draw. The probability of drawing
an ace as the first card is simply P(acey) = 4/52 as there are four aces in a 52 card
deck. For the second card the distribution of the deck has now changed, we now
have three aces left and only 51 cards in the deck giving probability P(ace;) = 3/51
from the updated deck. Given that the change in distribution of the deck was
conditional on the first card being an ace we say that the probability of the second
draw is a conditional probability distribution P(ace;|acey) = 3/51. Formally we say,
P(B|.A) is the conditional probability of event B occurring, given that event .A has
already occurred. Putting this together we can compute the probability of the two
non-independent events both occurring by taking the product of the first event and
conditional second event, P (acepNace;) = P(ace;|acey)P(acey) = 3/51x4/52 ~ 9/2000.
Formally this gives us, P(ANB) = P(B|A)P(A).

2.1.1 Bayes’ Theorem

As we have just seen the joint probability of two non-independent events can be
modelled as the product of the probability of one event happening and probability
of the other event happening given the first one occurred. Because logical and is
commutative, P(ANB) = P(BN.A), this implies that the order of events in our joint
probability can be swapped while achieving the same result, equation 2.1.

P(ANB) = P(AIBYP(B) = P(BIAYP(A) = P(BN A) @2.1)

Chapter 2 Related Work



This equality is a powerful tool as it allows us to model the relationship between a
conditional event and its inverse. In the above equation it is trivial to see we can
solve for the conditional probability P(.4|8) by dividing both sides of the equation

by P(B), and similarly we can solve for P(5|.A) by dividing both sides by P(A).

Equation 2.2 shows the case where we solve for P(A|B).

P(B|A)
P(B)

P(AIB) = P(A) (2.2)
This equation is known as Bayes’ Theorem, also called Bayes’ Rule or Bayes’ Law,
and it formalizes a method which allows us to update our beliefs given an initial
assumption and new evidence. In this equation P(.A) is the prior distribution
which represents our initial assumptions about event A occurring without any
other knowledge. P(B) in the denominator represents the marginal distribution of
the condition occurring independently without any other knowledge. And P(5|.A)
represents the likelihood of the condition occurring given we know the outcome. The

fraction Pg&';;l) is referred to as the likelihood ratio which represents the “support” for

our change in assumption. Finally, the result P(.4|B) forms the posterior distribution
which represents our updated beliefs after taking the new evidence into account.

As an illustrative example of Bayes’ Theorem let us explore the following problem.
Imagine we have two bags, bag 4 and bagy. bag 4 contains two black balls and four
white balls, bagy; contains three black balls and one white ball. If we randomly draw
a single black ball from either bag, what is the probability the ball came from bag ,?
Formally we are asking to compute the conditional probability P(bag 4 |black). With
Bayes’ Theorem in hand we begin by rewriting the formula with our variables and
conditions (equation 2.3).

P(black|bag 4)

P(bag 4|black) = P (black)

P(bag ) (2.3)
To determine what we need to compute each part of our equation we can rewrite our
problem as a table listing black versus white balls as the columns, and the contents
of bag 4, versus bagy as the rows.

| black white
bag 4 2 4
bagy 3 1

Because the problem stipulated that the drawn ball could come from either bag we
can see that the prior probability that “a” ball came from bag 4 is simply P(bag 4) =
1/2. The likelihood of a ball being black given that it came from bag 4 is simply

2.1 Probability Theory

11



12

the proportion of balls in bag , that are black. From our table we can see that
bag 4 contains six balls, two of which are black — this gives us P(black|bag 4) = 2/s.
Finally, the marginal probability that a randomly drawn ball from either bag is
black is simply the proportion of black balls out of all the balls. We can compute
this by summing the black column of our table and dividing the sum of all values
by it, giving P(black) = 5/10. Equation 2.4 shows the result of substituting in our
computed probabilities and computing the answer to our question.
2 1

P(bag 4 |black) = —2H1— « 5

24+3+4+1

_ ey,
5/10

= 1?21/2

2.4

:1/3

The resulting probability that a randomly drawn black ball came from bag 4 is
P(bag 4|black) = 1/3. This is in contrast to our original prior assumption that
because we drew the ball randomly from either bag that the probability would
be 1/2. The prior assumption did not take into account the additional information
we had about the compositions of each bags contents. By utilizing this additional
information we were able to correctly answer the posed question.

2.1.2 Discussion

Bayesian statistics has powerful applications in a broad range of problems that are of
interest in computer graphics and machine learning. We can apply techniques from
this area whenever we have initial assumptions about the distribution of our variables
and would like to update our beliefs to take account for additional data which may
challenge our initial assumptions. This framework allows us to account for variable
change and correctly report the meaning of our statistics. In the following sections of
this chapter we will see the repeated use of Bayesian statistics applied in areas such
as Monte Carlo sampling methods and their subsequent application to physically
based light transport simulations.

2.2 Monte Carlo (MC) Sampling

A Monte Carlo (MC) process is a well defined tool in mathematics that allows for
the evaluation of difficult multidimensional integrals that would be prohibitively

Chapter 2 Related Work



expensive or impossible to compute by alternative means. A simple Monte Carlo
Estimator is given by equation 2.5. The expectation of a function f and its Probability
Density Function (PDF) p over a given (n-dimensional) sample space © can be
approximated by drawing N independent and identically distributed (i.i.d.) random
samples 0,y  © distributed uniformly within the sample space O, and taking the
average of the function f for each of these samples scaled by the probability p of
the sample being drawn. The Central Limit Theorem tells us that in the limit, as the

number of samples goes to infinity, N — oo, the error of the estimator goes to zero.

BN =p= [ fOpO@ =~ pv=y 3 f60w0)
i=1 .

where 6 x ©

The basic Monte Carlo sampler gives us a framework with which to approximate
the expectation of arbitrary integrals with a finite number of samples. While it
is true that as the number of samples used goes to infinity, N — oo, the error of
the approximation goes to zero, in practice when the function being evaluated is
expensive to compute, or has high variance, the number of samples needed to even
roughly approximate the true expectation quickly becomes intractable. Another
scenario where this can occur is when the probability distribution p(©) has a finite

(and potentially small) volume compared to its domain (i.e. © is unbounded in R"™).

In such situations drawing samples uniformly from the full domain # « © might
yield an inordinately large number of samples with little to no contribution to the
final expectation. By instead drawing samples proportionally to the distribution

0 x p(©) we explicitly focus the computation to relevant areas under the integral.

To compensate for oversampling regions of high contribution we need to divide the
out the probability with which samples are generated. Simplifying through this has
the effect of dropping the p(#) term, yielding equation 2.6.

Els(©)] == [ L0 ew—/f

p(0

Zf( i 61 Zf (2.6)
=1

’L

where 6 p(@)

Variance of the random variable f(©) can be modelled as equation 2.7. This relies
on the availability of the final expectation, meaning that when the functions f and p
have unknown distributions the true variance of the random variable can only be
determined after the simulation has converged.

0? = V,[f(O)] = E,[f(0)] — 17 2.7)

2.2 Monte Carlo (MC) Sampling

13



14

The variance of the final estimate . is given as:

0_2

Vplu] = ﬁ (2.8)

which goes to zero as the number of samples goes to infinity, N — oo. Before
convergence is achieved the sample variance [Zwi02] (equation 2.9) of the random
variable {f(6;)|i € 1..N} can be used to approximate the variance of f(©) where
N is the number of samples currently used in the simulation and p is the current
estimate of p.
R 2
o~ oy = Vp[{f(6i)li € 1.N}] = ~N_1 > (F(6:) — pw) (2.9)
i=1

By applying equation 2.8 to the sample variance we can approximate the variance of

i as:

2
Vo] = V,[un] = U\]/%l (2.10)

This relies on the ability to draw samples proportionally to the probability distribution
p(O). Figure 2.1 shows an exemplar target distribution we will use to demonstrate
several methods for generating samples with desired probability. The distribution
is bivariate Gaussian p(©) = Na2(u, X)) with mean p = [0, 0] and covariance matrix
[ 0.33 0.05

0.06 0.1

Fig. 2.1.: An exemplar probability distribution we will use to compare and contrast Monte
Carlo sampling strategies. The distribution is a bivariate Gaussian p(©) = Na(u, X2)
0.33 0.05 ]

with mean p = [0, 0] and covariance matrix ¥ = { 0.05 0.1

In this simple case of an n-dimensional multivariate Gaussian distribution, samples
x o Ny (i, X) can be drawn in a closed form manner by transforming values drawn
from independent univariate normal distributions z o A/(0,1) [Pap85]. First as
a preprocessing step the covariance matrix ¥ is decomposed via a Cholesky de-
composition [DKO3] yielding a row vector of n elements A, where AA"™ = X. For

Chapter 2 Related Work



each sample to be drawn from the multivariate distribution a column vector of
n elements z is constructed where each element is drawn from an independent
normal distribution, z; o« A (0,1). Finally, the independent vector z is transformed
by A and the multivariate mean p by = = pu + Az giving a vector of n elements z
where z < NV, (p, ). Figure 2.2 shows the results of drawing 10,000 random i.i.d.
samples from p(O) using the above method. The middle (b) and right (c) sub-plots
visualize the correlation from one sample to the next, where correlation in each axis
is signified by a linear trend along the diagonal of the respective plots. In the case of
the closed form sampling method used here samples are drawn independently of
one another and so no linearity is visible in the plots.

0.5

-0.5

Samples drawn from 6 o« p(©)

0.5

-0.5

0., vs 0,, , correlation for 6 « p(©)

0.5

-0.5

By, vs Oy,

correlation for 6  p(©)

-0.5 0.5 1

Lo

0.5 1

So

-0.5

(a)
Fig. 2.2.:

(b) (c)

An example of the scenario where there is a closed form method for drawing
samples directly from the distribution p(©). (a) 10,000 random i.i.d. samples are
drawn from p(©). (b) The x component of the i*" random sample is plotted w.r.t.
the 2 component of the (i — 1) sample. (c) The y component of the i*" random
sample is plotted w.r.t. the y component of the (i — 1)** sample. In (b) & (c) no
linear trend emerges indicating that samples are independently distributed and
uncorrelated w.r.t. one another.

2.2.1 Accept Reject Sampling (ARS)

A closed form solution for drawing samples proportionally to the desired distribution
p(©) may not always be available, or may be prohibitively expensive to evaluate. In
such cases we can use a coarse approximation ¢(0) ~ p(©) which can be sampled
from more efficiently to draw samples which we can then transform into the target
distribution p(©). Accept Reject Sampling (ARS) [Cas+04] works by conditionally
discarding samples drawn proportionally to the auxiliary proposal distribution ¢(©)
according to an acceptance probability based on the ratio between between the
target and proposal distributions. Equation 2.11 gives probability of accepting a

2.2 Monte Carlo (MC) Sampling

15



16

sample drawn from ¢(©) where M is a hand tuned value giving the upper-bound for
the probability of acceptance.

Pageept = min (1, ]\55}?9)) where 6 x ¢(O) (2.11)
The full ARS scheme is given by algorithm 1. To generate a batch of NV i.i.d. samples
the algorithm loops to N only incrementing when a sample is accepted. At each
iteration a sample ¢’ « ¢(©) is proposed using the auxiliary proposal distribution
and its probability of acceptance is calculated. A trigger value £ oc U(0, 1) is sampled
from the uniform distribution, and the sample is conditionally accepted or rejected
based on whether the trigger value is less than the probability of acceptance.

Algorithm 1: ARS algorithm for drawing random samples proportional to the target
distribution p(©) using the auxiliary distribution ¢(©) which coarsely approximates

the target and is simpler to sample from.
Input :The number of samples N to draw from the target distribution p(©), using

the auxiliary proposal distribution ¢(©) which can be directly sampled
from, and the tunable upper-bound for the ratio M between the p(©) and
q(©) distributions.

Output : A set of N samples {6;|i € 1..N} drawn proportionally to p(©).

function ARS (N,p(©),q(©), M)

i=1 // Initialize sample -+index.
while (: < N) do // While more samples are needed.
0" o q(©) // Draw sample from proposal distribution.
Piccept = min (17%) // Compute probability of acceptance.
& oxU(0,1) // Sample acceptance trigger.
if (£ < Paccept) then // Accept or reject new sample?
0, =0
1=i+1 // Accept new sample and increment index.
end
end
return {0i|i € 1..N} // Result samples.
end

To apply ARS to sample from the exemplar distribution we first define the auxiliary
proposal distribution ¢(0) = U>(—1, 1) to be a 2-dimensional uniform distribution
with support between [—1, 1) in both dimensions, and rejection rate M = 20. Figure
2.3 shows the effect of ARS with the above settings. ARS produces i.i.d. samples
which are uncorrelated w.r.t. one another. A limitation of ARS is that its efficiency
is bounded by how closely the auxiliary proposal distribution ¢(©) approximates
the target distribution. When the target distribution p(©) has unknown distribution,

Chapter 2 Related Work



perhaps due to being conditional on many parameters unknown before simulation

time, an auxiliary distribution ¢(©) might be impractical to select reliably making

ARS difficult to apply effectively.
Samples drawn from 6 o< p(©)

0., vs 0,, , correlation for 6 o p(©) 6y, vs 0,,_, correlation for 6 o« p(©)

1 1 1
0.5 0.5 0.5
< 0 q; 0 & 0
-0.5 -0.5 -0.5
1 -1 1
1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
0, bs, O,
(a) (b) ()
Fig. 2.3.: An example of ARS for drawing samples from the distribution p(©) using the

auxiliary proposal distribution ¢(©) which coarsely approximates p(©), and a
rejection rate M. (a) 10,000 random i.i.d. samples are drawn from p(©). (b) The
x component of the i*" random sample is plotted w.r.t. the 2 component of the
(i — 1)*" sample. (c) The y component of the i** random sample is plotted w.r.t.
the y component of the (i — 1)th sample. In (b) & (c) no linear trend emerges
indicating that samples are independently distributed and uncorrelated w.r.t. one
another. This is consistent with the closed form solution shown in figure 2.2 as
both methods draw i.i.d. samples.

2.2.2 Markov Chain Monte Carlo (MCMC) Sampling

Markov chains represent states in a system and the probabilities of transitioning
between them. In the context of Monte Carlo sampling methods Markov chains can
be used to model a deterministic sampling process whereby each random sample can
be drawn given the location of the previous sample. By iteratively drawing samples
in this manner the location of the sampler appears to randomly walk around the
sample space in a semi-deterministic fashion.

2.2.2.1. Metropolis-Hastings Monte Carlo (MHMC) Sampling

With ARS we saw that an auxiliary proposal distribution ¢(©) could be used to
sample from the target distribution ¢(©). However, this relied on the availability
of a distribution which coarsely approximated the entire target distribution to
a reasonable degree of accuracy. In practice such an auxiliary distribution may
not be available or may be as expensive to sample from as the original target
distribution. In Metropolis-Hastings Monte Carlo (MHMC) [Has70] independent
samples drawn from the full proposal distribution are substituted with Markov

2.2 Monte Carlo (MC) Sampling

17



18

chain updates drawn from a local conditional proposal distribution centred around
the previous sample. Drawing from Bayesian statistics, the conditional proposal
distribution ¢(#’|0) represents the probability of a new sample §’ being drawn given
the previous sample 6, and can be sampled directly to yield §’ « ¢(6).

As with ARS proposed samples are accepted or rejected with a probability determined
by the relationship between the target and proposal distributions. Due to the
deterministic nature of Markov Chain Monte Carlo (MCMC) methods, in order to
keep the sampler unbiased time reversibility must be maintained. This constrains
the proposal distribution to be symmetric meaning the probability of transitioning
from state # — 6’ must equal the probability of transitioning from ¢ — 6. In practice
this may not be the case and so the transition probability for both directions is
incorporated into the acceptance probability as shown in equation 2.12.

o p(0')q(0]6")
Paccept = min <1, p(e)q(@lw) ) (212)

The full MHMC sampling method is shown in algorithm 2. It is almost identical
in implementation to the ARS algorithm with the main difference being that each
proposal sample is drawn from the conditional distribution centred around the
previously accepted sample. The initial seed location for the sampler is drawn from
the full sample space and the choice of this initial location can often be the cause of
bias early in the sampling process. A common way to avoid this issue is through the
use of a burn-in sampling phase, where the first n samples drawn from the sampler
are discarded with the aim that by the n'* sample the effects of this initial bias will
have been dissipated.

The efficiency and quality of the MHMC sampler is controlled by the choice of
conditional proposal distribution ¢(6'|6). If the support of proposal distribution is
too wide around the currently accepted sample then the MHMC sampler will reduce
to that of an ARS sampler, conversely if the support is too narrow the sampler will
spend an inordinate amount of time exploring only a narrow region of the target
distribution and will be slow to converge properly.

Applying MHMC sampling to the exemplar target distribution we select a conditional
proposal distribution with ¢(6) = N2 (6, oI) where o = 0.01 which is a small bivariate
Gaussian distribution with zero covariance centred around the previous sample 6.
The variance of the independent Gaussian distributions was hand tuned to find

Chapter 2 Related Work



an appropriate balance between sample space exploration and rate of proposal
acceptance.

Algorithm 2: MHMC algorithm for drawing random samples proportional to the
target distribution p(©) by constructing a Markov Chain of samples using the con-
ditional proposal distribution ¢(¢’|6) which models the symmetric probability of
transitioning from one sample to another.

Input :The number of samples N to draw from the target distribution p(©), using

the conditional proposal distribution ¢(¢’|#) which models the symmetric
probability of transitioning from one sample to another.

Output : A set of N samples {6;|i € 1..N} drawn proportionally to p(0).
function MHMC (N, p(©), q(6'|0))

X<NC] // Initial sample location drawn uniformly or hardcoded.
i=1 // Initialize sample -tindex.
while (i < N) do // While more samples are needed.
0" o< q(0) // Draw sample from conditional proposal distribution.
Piccept = min (1,%) // Compute probability of acceptance.
& oxU(0,1) // Sample acceptance trigger.
if (£ < Paccept) then // Accept or reject new sample?
0, =0=40¢
i=1+1 // Accept new sample and increment -dindex.
end
end
return {Gi\i € 1..N} // Result samples.
end

Figure 2.4 shows the results of generating 10, 000 samples from the accepted states
of the MHMC random walk. In (a) the green line denotes the path of the sampler
over the 50 most recent accepted proposals. In (b) and (c) we see a strong linear
trend along the diagonal which signifies the correlation from one sample to the
next. At low sample counts this correlation has a large effect on the quality of the
sampler as it is likely to have only sampled a small sub region of the full sample
space, introducing bias into the estimate of the equation being approximated. This
bias only goes away as more samples are added, and the sampler is able to traverse
the full sample space in a representative manner.

2.2 Monte Carlo (MC) Sampling 19



20

Samples drawn from 6 « p(©)

0.5

-0.5

0.5

-0.5

0,, vs 0, , correlation for 6  p(©)

0.5

-0.5

6y, vs 0, correlation for § o p(©)

(a)
Fig. 2.4.:

-0.5 0 0.5 1

(b)

-0.5 0 0.5 1

(c)

An example of MHMC for drawing samples from the distribution p(©) using the

auxiliary conditional proposal distribution ¢(6’|#) which proposes a sample in
the local neighbourhood of the previous sample. (a) 10,000 random Markovian
samples (grey dots) are drawn from p(0O), where the trajectory of the final 50
samples are highlighted with blue dots and a green line. (b) The 2 component
of the i** random sample is plotted w.r.t. the x component of the (i — 1)**
sample. (c) The y component of the i** random sample is plotted w.r.t. the y
component of the (i — 1) sample. In (b) & (c¢) a strong linear trend emerges
along the diagonal indicating that samples are not independently distributed and
are strongly correlated w.r.t. one another. This is due to the conditional proposal
distribution ¢(¢’|0) which proposes a new sample ¢’ from a symmetric distribution
centred around the current sample 6.

2.2.2.2. Hamiltonian Monte Carlo (HMC) Sampling

Hamiltonian Monte Carlo (HMC), sometimes referred to as Hybrid Monte Carlo is
a random walk sampling scheme derived from the modelling of a physical process
[Neall]. In MHMC, new samples were proposed by drawing them from a conditional
proposal distribution centred around the previously accepted sample. The choice
of proposal distribution therefore needed to be tuned to the problem at hand. In
HMC, we instead envision the target distribution p(©) in terms of the potential
U(z) = —In(p(z)) and kinetic K (v) = 1 > v? energy of a frictionless puck sliding
on the surface of the distribution. By simullating the puck’s movements over a fixed
interval we find that the puck will gravitate towards regions of low potential energy
(high probability). By sampling from the end points of these simulated runs a valid
MCMC sampler can be derived. To sample the end points, at the end of a simulated
run the samplers position is conditionally accepted using a variant on the MHMC
acceptance formula, which balances the change in total energy of the system from
the start point to the end point of the simulated run (equation 2.13).

Prceept = min (1, exp((U(zo) + K (vo)) — (U(zs) + K(vs)))) (2.13)

Chapter 2 Related Work



Algorithm 3: HMC algorithm for drawing random samples proportional to the target

distribution p(©) by constructing a Markov Chain of samples from the end points of

Hamiltonian Dynamics run trajectories.

Input :The number of samples N to draw from the target distribution p(©), and
the HMC run length £ and step size €.

Output : A set of N samples {6;|i € 1..N'} drawn proportionally to p(0).
function HMC (N,p(©),£, L)

U(z) = -In(p(z)) // Potential Energy of the target distribution.
dU(m):B%—y) // Jacobian of the Potential Energy distribution.
K()= 3>} // Kinetic Energy Distribution.
X<NC] // Initial sample location drawn uniformly or hardcoded.
i=1 // Initialize sample index.
while (: < N) do // While more samples are needed.
To=1xs =10 // Run starts from previously accepted sample.
vo = vs x Np(0,1) // Momentum sampled from zero mean Gaussian.
i=1
while (j < £) do // While more leapfrog steps are needed.
vy = vy — £dU(zs) // First half step for momentum.
Ts =Ts + EVs // Full step for position.
vs = vs — £dU (zs) // Last half step for momentum.
j=j+1
end
Paccepr = min (1, exp((U(z0) + K (v0)) — (U(ws) + K(vs))))
& oxU(0,1) // Sample acceptance trigger.
if (£ < Paccept) then // Accept or reject new sample?
‘ 0 = xs // Update sample to be recorded.
end
0, =0
i=1i+1 // Record sample and increment index.
end
return {6;]i € 1..N} // Result samples.
end

The full HMC sampling method is shown in algorithm 3. As with MHMC the sampler
is initialized at a random or hard-coded location. Each simulated run starts at the
location of the previous sample and a random momentum is sampled from the kinetic

energy distribution K (v) = % S~ v?. This usually takes the form of a multivariate
i

Gaussian with zero covariance, vy o< N, (0,I). The simulation is then evaluated for a
fixed number of steps £ and a fixed step size £ which are hand tuned parameters for
the sampler. Each step is evaluated in a leapfrog fashion, first the momentum of the
puck is updated halfway using the local gradient of potential energy distribution,
then position is updated using the adjusted momentum, and finally the momentum is

2.2 Monte Carlo (MC) Sampling

21



22

updated the remaining halfway using the new local gradient of the potential energy
distribution. By repeating the leapfrog steps the puck traverses the target distribution
proportionally to its potential energy, spending more time in high probability regions
which have low potential energy. In MHMC when a proposed sample was rejected
the sampler continued to propose new samples until one was accepted. In order to
converge to the correct target distribution, HMC sampling slightly alters this, reusing
the previously accepted sample again when a new sample is rejected. The next
simulated run begins from this location also, with a newly sampled momentum.

Samples drawn from 6 o p(©) 0,, vs 6, , correlation for 6 « p(©) 6y, vs 0, correlation for 6 oc p(©)

1 1 1
0.5 0.5 0.5
< 0 g0 &0
05 -0.5 -0.5
1 -1 1
1 0.5 0 0.5 1 1 0.5 0 0.5 1 1 0.5 0 0.5 1
0, 0, 0,
(a) (b) (9
Fig. 2.5.: An example of HMC for drawing samples from the distribution p(©) using leapfrog

updates. (a) 10,000 random samples (grey dots) are drawn from p(©), where the
trajectory and sub-steps of the final 10 accepted samples are highlighted with blue
dots and a green line. (b) The x component of the i*” random sample is plotted
w.r.t. the z component of the (i — 1)*"* sample. (c) The y component of the i*"
random sample is plotted w.r.t. the y component of the (i — 1)** sample. In (b)
and (c) no strong linear trend emerges indicating that despite new samples being
generated from the prior one, the properly tuned HMC sampling scheme is able
to generate samples that appear independently distributed and uncorrelated w.r.t.
one another.

Figure 2.5 shows the results of generating 10, 000 samples using the HMC sampling
algorithm with £ = 20 and £ = 0.03. In (a) the green trajectory denotes the path
taken by the sampler over the 50 most recent simulated runs. The green dots show
the end points of the runs on the trajectory. It can be observed that the trajectory
varies smoothly except at these points where the momentum values are randomly
resampled. In (b) and (c), even though the HMC method is still drawing samples
according to a Markov chain random walk like MHMC, no discernible linearity
presents itself. This allows the sampler to be representative even at low sample
counts.

The correctly tuned HMC sampler offers a good balance between Markov chain style
exploration of difficult regions of the target distribution and the low correlation
between the samples of a non-Markov chain sampler. This comes at the cost of
needing to evaluate the gradient of the potential energy distribution at each step

Chapter 2 Related Work



of the leapfrog update. When it is computationally expensive to evaluate p(0), the
derivative of its potential energy distribution, or to compute offset sample locations
for use in a finite difference approximation of the derivative, HMC can be impractical
or intractable to use.

2.2.3 Importance Sampling (IS)

So far we have investigated methods for drawing samples from the target distribution
p(©) for the purpose of evaluating a Monte Carlo estimator over an integral sampled
w.r.t. to the probability distribution p(©). In ARS this was accomplished by sampling
directly from an auxiliary proposal distribution ¢(©) which closely approximated
p(©), and by conditionally accepting or rejecting these proposed samples to com-
pensate for the differences between the two distributions. This strategy worked, but
caused a large number of samples to be discarded when the probability of acceptance
was low, wasting the computational effort used to generate the proposal. In Impor-
tance Sampling (IS) we aim to use every proposed sample, even those that occur
with low probability, directly within the Monte Carlo estimator itself [Ken16].

We begin with the standard Monte Carlo estimator (equation 2.14) which is sampled
w.r.t. to the uniform sample space § « ©. By introducing an the auxiliary proposal
distribution ¢(©) from ARS we can see that the equation remains consistent if we
both apply and compensate for the auxiliary proposal distribution by having it in
both the numerator and the denominator (equation 2.14).

EU@W=M=/f@M<w—éfﬁ§®ﬂﬁw
~ 1 & f(0)p(6:) o (2.14)
RN = Z f(0 =% ; 469 ——2q(6:)

where 0 x ©

Recall that in order to sample w.r.t. the target distribution p(©) in the original Monte
Carlo sampler (equation 2.6) we had to divide by the probability of sampling a given
point p(f) to compensate for over sampling. In order to sample the estimator w.r.t.
the auxiliary proposal distribution we now need to divide by the probability of the
sample being drawn from the proposal distribution (equation 2.15).

B L)) == [ Tl w-/fe@

q
1N f(0 )P(9)q(9)

~ = Ly o 40 i (91 )
UN N a(0)

i=1 'L:l

(2.15)

where 6 x ¢(©)

2.2 Monte Carlo (MC) Sampling

23



24

2.2.3.1. Self Normalized Importance Sampling

The importance sampling scheme discussed above can be used when both the target
p(0) and auxiliary ¢(f) distributions can be evaluated directly, and the auxiliary
distribution can be sampled from. In many cases these distributions are only known
up to a constant scaling factor such that p(6) = ¢,po(0) and ¢(6) = c4q0(6) [Kenl6].
¢, and ¢, can be derived from the integral on each distribution by computing
cp = 1/ [, po(0)d and ¢, = /[ aqo(¢)a6 but this may be prohibitively expensive to
compute. The need to compute the scaling constants can be avoided by recognizing
that the ratio between distributions is more useful than the values themselves.

Jof (9)% 0
0
Jo 250

c 4
o ugﬁ%w

Cp P
Jo qug
_Jo S0 gw

9
bﬁ&w

»Q

O

v

(2.16)

%zﬁﬁﬁ”

@
S L0 R

1=

where 6 x ¢(O)

Equation 2.16 shows the derivation of self-normalized importance sampling whereby
the constraint that p(f) and ¢(f) each integrate to 1 is removed. It begins by
recognizing that if [ p(#)df and [g ¢(6)d6 both integrate to 1, then the integration
of the ratio g %dﬂ also integrates to 1. By rewriting the original importance
sampling integral over 1 and then substituting the denominator for the integral of
the ratio a valid estimator can still be constructed. Rewriting instances of p(¢) and
q(0) as the product their scaling constants and un-normalized distributions c,py(¢)
and c,qo(0) the constant ratio Z—Z appears in both the numerator and denominator
of the final estimator. Removing the constant terms we can see that the ratio of the
integrals on the normalized distributions p(6) and ¢(0) is equal to the same ratio of

Chapter 2 Related Work



integrals on the un-normalized distributions py(#) and go(6), eliminating the need to
compute the scaling constants. When substituting the integrals with the numerator
and denominator estimators over a discrete set of samples a minor optimization
can be made by recognizing that the constant 4 term in both the numerator and
denominator can also be dropped yielding a ratio between summations rather than
averages.

2.2.4 Multiple Importance Sampling (MIS)

In IS and ARS we saw that we could sample according to the target distribution
p(©) using an auxiliary proposal distribution ¢(©) which closely approximates the
target distribution but is easier to sample from. However, in many cases a single
proposal distribution that approximates the entire target distribution may not be
available. Rather, proposal distributions which accurately represent different regions
of the target distribution may be more easily constructed such that the union of these
distributions closely approximates the full target distribution. It is therefore desirable
to construct an estimator which combines samples generated with all available
sampling techniques such that the combined estimator still correctly converges to
the target distribution. Such a method is proposed in the seminal work on Multiple
Importance Sampling (MIS) by Veach and Guibas [VG95] and later formalized in
Veach’s doctoral thesis [Vea97].

Equation 2.17 shows the general form of the multi-sample estimator. For a set of
K proposal distributions ¢;(©) which are potentially overlapping, the estimator
is defined as the weighted summation of estimates computed from the samples
drawn from each proposal distribution independently. The weighting function w; ()
determines the amount of contribution a sample makes to the final estimate, given
the proposal distribution it was drawn from and where it is located within the sample
space. From each proposal distribution ¢;(©) a fixed number of samples n; are drawn
and combined with the familiar importance sampling equation (equation 2.14).
A
BA(O)] =pmpv =) -

i=1 """ j=

™ (g, ] Gii)p(6ig)
jz_:l i(is) qi(6;.5)

X« (2.17)
where 6; x¢;(©) and N = an

=1

In the original work by Veach and Guibas the number of samples drawn using each

proposal distribution was constrained to be equal between all sampling distributions.

The justification for this was that the gain in sampling efficiency from drawing
varying number of samples with each technique would only matter up to a theoretical
limit, and that a greater impact on efficiency could be made by constraining the

2.2 Monte Carlo (MC) Sampling

25



26

number of samples proposed and instead improving the efficiency with which
samples were drawn. This claim was made in the context of Bidirectional Path
Tracing (BDPT) (section 2.3.6), where drawing samples generated by ray tracing
is a severe performance bottleneck. In their work, Veach and Guibas propose to
draw a single sample from all proposal distributions in the multi-sample estimator
simultaneously by constructing a single eye and light sub-path by ray tracing, and
extracting individual samples from the possible combinations of the path vertices.
The individual samples can then be recombined with optimum weights computed
using multiple-importance sampling.

In recent work, Sbert and Havran [SH17] have shown that in the general case for
multi-sample estimators, a large increase in sampling efficiency can be achieved by
adaptively tuning the number of samples taken from each proposal distribution as
the estimator is evaluated. In their work the sample variance of each estimator is
tracked using a secondary estimator on the optimal proportion of samples to take
from each proposal distribution, constructed using the Harmonic Mean [LP08] which
is robust to outliers, and the tracked variances.

The choice of weighting function used to combine samples generated with different
proposal distributions is at the core of the multi-sample estimator and can have a
large impact on its performance. Weighting functions are afforded a large amount of
flexibility and are only subject to two constraints on their behaviour. Equation 2.18
shows the constraints for a valid weighting function. W1 ensures that for a given
sample generated from any of the proposal distributions the weights assigned to it
for each proposal distribution should sum to 1. This ensures that the multi-sample
estimator is a weighted average of individual estimators. W2 ensures that where the
ith proposal distribution is zero the weight assigned to samples by the i** weighting
function is also zero. In this way it ensures that proposal distributions that only
represent a sub-space for the full integration space do not bias the estimate of the
integral in regions outside of their support.

K
W1 ;(0) =1
(W1) ;w() 2.18)

(W2) w;(§) =0 where ¢(6) =0

The above weighting function constraints allow for a variety of sampling techniques
to be performed by the multi-sample estimator. For example, if we slice the full
sample space © into separate non-overlapping regions ©; for 1 < i < K, and define
a weighting function such that a given sample has weight one if and only if it was
sampled from that region of the sample space (equation 2.19), then this represents
the stratified sampling technique for non-overlapping strata. We can see that this
weighting function fulfils both constraints as only one of the weighting functions

Chapter 2 Related Work



will have a value of one for a given sample, and because each proposal distribution
only produces samples within its non-overlapping window where the weight for it is
non-zero.

1 iffeo;

w;(0) = (2.19)

0 else
The real power of the multi-sample integrator comes from its ability to combine the
benefits of stratified sampling, which allows for a good distribution of samples to be
generated across the entire sample space; and the benefits of importance sampling,
which allows for samples to be generated proportionally to the distribution being
estimated. When there is no single representative proposal distribution for drawing
samples proportionally to the target distribution it can be advantageous to instead
sample from multiple distributions which are each representative of different regions
within the sample space. These regions may overlap, and in such cases it is necessary
that the weighting function reflects the quality of the contribution that can be made
by each of the overlapping proposal distributions at that point.

The Balance Heuristic (equation 2.20) is one such weighting function. It is defined
as the ratio between the value of the i*” proposal distribution and the sum of all the
proposal distributions at the sample point. This ratio is scaled by the proportion of
the total samples that were drawn explicitly from the i*" distribution to remove bias
from oversampling on one or more of the proposal distributions. We can see that
over all weighting functions w;(0) this satisfies both constraints W1 and W2.

wiw) o nz‘%’(@)

= — (2.20)
Ykt near(0)

In scenarios where one proposal distribution performs better than its peers, exac-
erbating the effect of the best performing proposal can lower the overall variance
of the estimator. By raising both the numerator and denominator of the Balance
Heuristic to the power of a constant 3 we increase the effect of the strongest proposal
distribution at the given sample location. This leads to the Power Heuristic (equation
2.21) which is most commonly used with § = 2.

(n:q:(0))”
w;(0) = (2.21)
) SR (nkgr(9))”

2.2.4.1. One Sample Estimator

As discussed above in Veach and Guibas’ original work on bidirectional path tracing
the estimator was constrained to use a single sample from each proposal distribution

2.2 Monte Carlo (MC) Sampling 27



28

so that all samples could be generated by a single ray tracing pass. This constraint
leads to the simplified one sample estimator shown in equation 2.22.

f(0:)p(0:)
F= Zw” qi(6;) (2.22)

where 6; x ¢;(0O)

In this form a coarse approximation of the expectation F' is computed from a
single sample from each simultaneously generated proposal. In order to ensure
convergence multiple estimates of F' are computed and combined using a standard
Monte Carlo estimator (equation 2.23). It is important to note that the number of
samples N now represents a different quantity from previous estimators as each MIS
sample is the ensemble of a single sample drawn from each proposal. However, when
samples are drawn simultaneously as in bidirectional path tracing, the efficient use of
existing information otherwise wasted by the single sample estimators above makes
a compelling argument for measuring performance of MIS w.r.t. to the number of
samples in the primary estimator, N.

N
E[f(©)] ~ % Y F (2.23)
Jj=1

Finally, due to the above simplifications the weighting function no longer needs
to consider the proportion of samples generated with each proposal distribution.
Equation 2.24 shows the simplified form of the Power Heuristic for the one sample

estimator.
qi(0)°

Zlé{:l Qk(e)ﬁ (224

w;(0) =

2.2.5 Discussion

Monte Carlo methods offer us a way to approximate the expectation of complex
integrals by expending a finite amount of computation. These methods work by
averaging many samples drawn randomly from the integration domain. As we
increase the amount of computation dedicated to the approximation the variance of
the estimator goes to zero. In the limit, as the number of samples goes to infinity,
this guarantees that the estimator will converge to the true expectation.

The standard Monte Carlo estimator draws samples with uniform probability from the
integration domain. This means that when the function being integrated has small
volume and exists on a large, potentially unbounded, domain a vast majority of the
samples computed will have little to no contribution to the final expectation. In this
section we have studied several strategies for overcoming such issues, with particular

Chapter 2 Related Work



focus given to MCMC methods such as MHMC which iteratively update the position
of a random sample by drawing new proposal samples from a conditional distribution
centred around the previous sample. This allows the sampler to randomly “walk”
the integration space, often being able to visit regions of the function space which
were extremely unlikely to be sampled but can potentially have a large contribution
to the final expectation. HMC presents an alternate sampling strategy adopted
from the physics literature which treats the probability distribution being sampled
as an energy potential and the head of the sampler as a frictionless puck riding
on the surface of that energy potential. For each subsequent sample, the puck is
simulated as it slides across the function space, spending proportionally more of
its time in regions of high probability (low potential energy). HMC computes well
distributed and low variance samples at the cost of computing a first order derivative
of the target function multiple times per update. In certain domains computing
the derivative of the target function is prohibitively expensive, making this method
infeasible.

Due to the way in which sample proposals are stochastically accepted or rejected
by an acceptance probability in MCMC methods, it is possible for samples which
are expensive to draw from the proposal distribution (path-space samples drawn
iteratively via ray tracing) to be discarded due to the random chance of not being
accepted. Wasting important information about the function estimate despite the
computational expense used to draw the sample. A powerful class of techniques for
improving sampling efficiency comes in the form of IS and the more generalized MIS.
These methods provide a solution to the problem of throwing away computation
by considering the contribution of every sample that is drawn and combining these
contributions in a non-uniform weighted average based on the ratio between the
proposal distribution to the target distribution.

In the following section we will introduce physically based rendering and see how
Bayesian statistics and Monte Carlo sampling techniques are used in numerous places
to approximate the expectation of complex high-dimensional integrals modelling
the way in which light interacts with simulated environments.

2.3 Physically Based Rendering

Physically based rendering algorithms allow for a plethora of photo-realistic lighting
phenomena to be simulated such as indirect illumination, depth of field, participating
media, caustics, and physically based materials (figure 2.6). These algorithms can be
used to create synthetic images which exhibit a high degree of visual fidelity and can
often be indistinguishable from natural images (photographs) when shown to human

2.3 Physically Based Rendering

29



30

observers. Due to the complex nature of light interactions with different materials
and the high volume of light particles (photons) which are present within a real
world environment, the number of calculations we need to consider when simulating
the light interactions in even a simple scenario can quickly become intractable as we
consider longer and more complex chains of interactions. To handle this complex
simulation domain stochastic methods are commonly used which can decompose
an intractable problem into a series of tractable sub-problems. The equilibrium or
expectation of these sub-problems can be used to coarsely approximate the original
intractable problem, and the error of the approximation can decrease as more
sub-problems are considered and allowed to contribute to the approximation.

(c) (d)

Fig. 2.6.: A selection of physically based rendered images created with software developed
for our research. (a) Geometric instancing is used to duplicate a high-polygon
Stanford Bunny mesh without additional memory requirements. The bunnies
are rendered with a glass material leading to caustic illumination patters on the
floor beneath them. (b) A sub-surface-scattering model is used to simulate a
rubbery material on instanced dragon meshes. (¢) Temporal lens sampling is used
to simulate a finite length shutter-speed in front of a spinning coin. (d) Diffuse
transmission and scattering is used to simulate a dragon laser etched inside of a
crystal.

The Rendering Equation

The rendering equation was originally presented by Kajiya [Kaj86] and built off
previous work on radiance transport from Whitted [Whi80], Cook [Coo+84], and

Chapter 2 Related Work



Goral [Gor+84]. The equation defines the amount of energy leaving a point x
laying on a surface within an environment in direction w, as the summation of light
emitted by the surface at = in direction w,, and the integral of all light reflected or
transmitted from x in direction w, incident from all directions around z, (equation
2.25). The equation is additionally parameterized over a light wavelength A and a
time value ¢. In practice the wavelength A is usually replaced with a wavelength
distribution (spectrum) or a finite tuple over important wavelengths (RGB triple).

Lo (x,wo, A, t) = Le (2, wo, A, t)
b [ @ A1) £ 0000, 1) (wiom) de (2.25)
Q

where L; (z,w;, \,t) = L, <x', —wj, /\,t)

In the integral over possible incoming directions the function £; (x,w;, A, t) repre-
sents the amount of light incident on point = from direction w;. This function can
be re-parameterized as the amount of light leaving the point z/, visible from x in
direction w;, in the direction towards x. Through this re-parameterization a recursive
relationship presents itself. We can see that to integrate the equation from point z
we will look in all surrounding directions and traverse to the point z’ visible in each
direction. From the new points we will look in all directions surrounding them and
again traverse to each one in turn yielding point z”, and so on. This formulation
of the equation is both infinitely recursive and infinitely branching at each level of
the recursion making standard integration techniques computationally intractable
as the depth of the recursion increases. If we sample a single direction to traverse
from each point and recur for a random number of levels the sequence of points
generated can be seen as the vertices of a random path drawn from the sampling
domain over all possible paths of all possible lengths within the environment. We
refer to this domain as the path-space of the environment.

Path vertices can be sampled on the surface of sensing elements such as virtual
cameras, emitting elements such as light sources, and scattering elements represent-
ing solid surfaces. Scattering elements are defined by their Bidirectional Scattering
Distribution Function (BSDF) function f (z,w;,w,, A, t) which defines the proportion
of light leaving in direction w, which was incident to z from direction w;. Emitting
elements are primarily defined by their emission distribution function £, (z,w,, A, t)
which represents the amount of light they emit in direction w, from point z. A
scattering element which does not emit light would define its emission distribution
function as L. (z,w,, A\,t) = 0 and similarly an emitting element which does not
scatter incoming light would define f (z, w;, w,, A, t) = 0. In this formulation, allow-
ing x to vary over the union of all surface elements will naturally account for the
differences between emitting and scattering materials in the environment. Lastly,
the (w;en) term in the integral part of the equation accounts for the decreased prob-

2.3 Physically Based Rendering

31



32

ability of light being scattered or emitted from a surface in a direction approaching a
glancing angle [Lam92].

2.3.1 Bidirectional Scattering Distribution Function (BSDF)

The BSDF of a surface represents the proportion of light that is scattered out from
a point for a given incident direction. The BSDF is the general form of the Bidirec-
tional Reflectance Distribution Function (BRDF) which represents the proportion of
light reflected back from a surface and the Bidirectional Transmittance Distribution
Function (BTDF) which represents the proportion of light transmitted through a
surface from one medium to another. For opaque surfaces the BRDF is sufficient to
model the material as light cannot penetrate beneath the surface of the object. For
translucent materials such as dielectrics like glass and various plastics both the BRDF
and BTDF must be considered to correctly model the surface as light can be reflected
off either side of the object boundary or transmitted through the boundary.

Lambert BRDF

A simple BRDF model which is commonly used in physically based rendering is
the Lambertian BRDF. This model simulates the interaction of light with a matte,
perfectly diffuse surface which scatters light incident from any direction to any
outgoing direction.

In nature there are no known examples of a perfectly diffuse surface [Hab10], though
synthetic materials such as Spectralon [AES93] have been developed which can
approach > 99% of the diffuse reflectivity expected from a perfectly diffuse surface.
Unless viewed from near glancing angles the Lambertian model is, in general, a good
enough approximation of many real world matte materials (such as paper, unglazed
ceramics, and wall paint) that it can be used in the creation of high quality synthetic
imagery without causing visually implausible artefacts to be introduced.

The BRDF of the Lambertian model is defined uniformly for all pairs of incoming
and outgoing directions as %, where K| is the diffuse albedo (reflectant colour)
of the surface and 7 is the projected area of the hemisphere above the path vertex
x. While the amount of light reflected by the surface is uniform for all directions
the probability of a photon being scattered in a given direction is not uniform.
Specifically the model scatters light with a smaller probability towards glancing
angles following Lambert’s Cosine Law [Lam92] which states that the observed light
coming from a point on a perfectly diffuse surface is proportional to the cosine of
the angle between the surface normal and observer. Equation 2.26 defines the BRDF

Chapter 2 Related Work



and PDF for the Lambertian model in terms of a path vertex x; we wish to shade
given the previous path vertex x;_; and subsequent path vertex x; ;. The PDF of
the model is a conditional distribution P(x; — z;4+1|z;—1 — ;) representing the
probability of scattering from x; to x;11 given that we previously scattered to x;

from z;_1.
K
f@ic1 = xi = @iq1) = 7(1
cos Oy
P(xi = @ig1|Tio1 — x) = Tﬂ (2.26)

where wy; = ||z; — 201

cos 01 = wien;]

Because the right-hand side of the PDF does not reference the previous vertex x; 1
the definition of the Lambertian PDF can reduce to a non-conditional distribution
P(zi = xit1) = P(xi = xiy1|zi—1 — x;), and similarly the definition of the BRDF
can reduce to f(z;) = f(zi—1 — x; — z;+1). However, for the sake of consistency
when considering other more advanced BRDF models we will keep the notation of
the conditional distribution throughout.

Lastly, we need a way to draw samples proportionally to the PDF of the model for use
when sampling paths through the environment. Here we adopt the notation w_; to
refer to the direction from vertex z; to z;1 in world space and similarly wLEl?al to refer
to that direction in the local coordinate system around vertex x; which is transformed
so that the surface normal n; is aligned to the y-axis. Moving the evaluation and
sampling of BRDF and PDF values into the local coordinate system allows for shading
computations to be greatly simplified. Equation 2.27 shows the process of drawing
a random direction proportionally to the PDF. To sample a direction from the PDF
in the local coordinate system we draw two uniform random values &, and &; in
the range [0, 1) and warp them through a polar-coordinate transformation onto the
surface of a cosine weighted hemisphere aligned with the y-axis as the up-vector. The
resulting directional vector w!?! can then be transformed from the local coordinate
system at x; to world coordinates yielding w,;. The next path vertex z;;; can then
be found by tracing a ray from z; in direction w; to the first intersection of the ray
with a surface in the environment.

wyi X P(|lzicr — x;)

whﬁ’fal = {vs*sin(u), &, vx*cos(u)}

(2.27)
w,; = LocalToWorld (wff al xz)

where u=27¢ v=+1—-& and &),& xU(0,1)

2.3 Physically Based Rendering



34

2.3.2 Light Emitters

As we have previously shown, the rendering equation is defined as the summation of
light emitted from a point in a direction towards the observer and the integral over
the proportion of light reflected towards the observer, incident to the point from all
directions. Having handled the latter case through the definition of the BRDF and
the re-parameterization of £; (x,w;, A, t) as an instance of £, (z/, —w;, A, t) exposing
the recursive nature of the equation, we now turn our attention to the definition of
the light emitted from a point towards the observer, L. (x, w,, A, t).

Diffuse Area Light

A light emitting surface, also called an area light, is one of the most simple light
sources to consider when implementing a physically based light simulation. An area
light can emit energy from any point on its surface and the direction of the emitted
energy can be modelled by an emission distribution function over the outgoing
directions on the hemisphere around the point. When we consider the scenario of a
light source which can emit light in any direction over the hemisphere orientated to
the normal of the surface we have a diffuse area light as modelled in equation 2.28.
For a point sampled on the surface of the light source yo we define £9(yo) = K, as
the amount of energy emitted by the light source at that location, where K, is an
intensity or distribution of intensities related to the spectrum of light frequencies
being accumulated in the simulation. This value includes the integral of energy
emitted in all directions over the hemisphere orientated to the emitting surface.
To determine the amount of energy leaving the surface in a specific direction we
define the emission distribution function at yo as £L(yo — y1) = =. This is similar
in definition to the Lambertian BRDF discussed in section 2.3.1 with the minor
modification that the numerator is now set to one so that the emission distribution
function does not tint the light emitted from the light source.

£g(?/O) = K.

Pa(yo) =

Area

1
Li(yo— y1) = =

cos B
Pyo = yilyo) = ———

(2.28)

™

where wio = |lyo — 1]

cos 40 = |wroen|

Chapter 2 Related Work



As with the throughput of the light source we also split the computation of the

PDF into two parts to aid in its implementation. For the point yy on the surface

of the light source we can compute the probability of uniformly sampling that
1

point P4(yo) = x5, as simply being one over the surface area of the light source.

For the conditional directional probability we borrow the PDF definition from the

% where cos 61 is the cosine of the

Lambertian model giving P(yo — y1|y0) =
angle between the surface normal at yy and the outgoing direction. With the PDF
of the emission matching that of the Lambertian PDF we can reuse the method for
sampling directions proportionally to the emission PDF by drawing samples from

the cosine weighted hemisphere orientated to the surface normal at yj.

2.3.3 Camera Models

While it is not explicitly shown in the definition of the rendering equation we also
need to define a model of the camera being used during image synthesis. The
camera model can be seen as the inverse of an emitting surface, and represents the
proportion of light incoming from each direction that will contribute to the image
estimate. Different camera models can be used to achieve varying visual aesthetics by
modelling physically plausible distortions such as depth of field where image regions
become out-of-focus and blurred, chromatic aberration where different wavelengths
of light diverge while refracting through lens elements within the camera resulting in
visible colour banding, and field of view distortions like those exhibited by fish-eye,
wide-angle, or telephoto lenses.

Pin-hole Camera

A simple but physically plausible camera model is the pin-hole camera. This model
gets its name from the idea of using a camera aperture with infinitesimally small area
to project incident light onto a virtual film plane. Because the aperture is infinitesi-
mally small, distortions such as depth of field cannot be captured in the resulting
images. As with the above definition of a diffuse area light we split the evaluation
and sampling of the camera model into spatial and directional components to make
the model easier to implement and integrate into rendering algorithms (equation
2.29). Sampling a point on the aperture of the camera z; we can see that the single
point must be able to absorb all incoming light W9(z) = 1 given that the aperture
is infinitesimally small and all of the light will therefore be incident on 2. For the
directional component, modelling light incident on 2, coming from the next path

vertex z; we can define the proportion of light reaching z, from this direction as the

L1
WH>

through a point on the image plane and a value of zero otherwise. The probability

area of a single pixel in a W x H resolution image, |D| = if the direction passes

2.3 Physically Based Rendering

35



36

distributions for the model are defined similarly and for this simplified camera model
are identical to the equations for the throughput.

|D| if zo — 2z hits the image plane (2.29)

0 else

|D| if zo — 2z hits the image plane

else

2.3.4 Path Tracing (PT)

To evaluate Kajiya’s rendering equation [Kaj86] we need a sampling strategy that can
draw samples from an infinitely recursive formula which branches infinitely at each
level of the recursion. Path Tracing, also called forwards ray-tracing, is a method of
approximating the rendering equation while limiting the exponential explosion of
computational complexity that occurs as paths become longer. Applying the standard
Monte Carlo estimator (equation 2.5) to the inner integral of the rendering equation
we see that the luminance incoming from the hemisphere over the point = can
be coarsely approximated using a fixed number of rays sampled proportionally to
the PDF of the BRDF at that point. This coarse approximation will only converge
as the number of samples approaches infinity, however, it can be shown that the
approximation will also converge if a single branch is followed at each level in the
recursion and the entire path is re-sampled repeatedly. Through this transformation
the complexity of evaluating the contribution of paths to the integral scales linearly
by their length rather than exponentially in the original formulation.

A random path Z is sampled from the path-space by first sampling a point of the
camera lens zp with probability P4(z). The first point in the scene z; is sampled by
drawing a direction proportional to the PDF at vertex zy, wio x P(+|z0), and tracing
a ray from z( in direction w, to find the next intersection z;. From this point we can
iteratively sample the path to generate the (i + 1) vertex by drawing a direction
wy; < P(+|zi—1 — 2z;) from the BRDF around vertex z; given the previous vertex z;_
and tracing from z; in direction w.; to find the next intersection z; .

Paths can sampled to an arbitrary fixed length, however, this introduces bias to the

estimate as paths longer than the arbitrary length can never contribute to the image.
An alternative strategy is to halt path generation by Russian Roulette sampling. At

Chapter 2 Related Work



each vertex we randomly choose to stop tracing with probability ¢; (equation 2.30).
If the path is continued we modify our definition of the probability for the event to
account for the random choice that was made, yielding P(z; — zit+1|zi-1 — 2) =
GP* (2 = zig1|zio1 — 2i).

Zic1 — % — %
¢; = min [ 1, iz = # 2 zit) (2.30)
P(ZZ' — Zi+1|zi—1 — Zi)
At this point we have sampled a path z = z,--- , z;_1 of ¢ vertices starting at the

camera lens and we need to define a method for evaluating the contribution of
light that occurs along this path. Because we are going to re-sample the entire path
multiple times to build our estimate of the final contribution we can define the
expectation for the j** pixel of the image as being a standard Monte Carlo estimator
over paths sampled going through the j** pixel (equation 2.31).

1 %FE (2.31)
J N; pard J

For a given full path, the contribution to the image is a summation over the contri-
butions of the sub-paths of each length. We define this path contribution in equation
2.32 where we split the contribution of each sub-path into a precomputed value o’
which represents the contribution of the path before vertex z;_; and an interaction
contribution ¢; which represents the unique part of the sampling strategy for the t**
sub-path.

FF=3%"C

>0 (2.32)
where C; = ctaf

The reason we split the contribution of each sub-path is to leverage the fact that
the portion of the sub-path o is dependent on the value of the previous sub-path
oF |. This allows us to compute all the o values in a single forward pass along the
path without having to recompute previous values for each sub-path. Equation 2.33
shows the iterative method of computing the sub-path contributions.

aéE =1
E _ WS(ZO)
831
Pa(zo)
E_ E Wi(zo — 21) (2.33)
oy =o) ———=

of = oF | Jt(zie3 = zi—2 = zi—1)
! TP (zic2 = zie1|ziesz = 2i2)

With the sub-path contributions up to the last vertex in the sub-path computed,
the only thing left is to construct full sub-paths by combining the precomputed

2.3 Physically Based Rendering

37



38

contributions with the contributions of the interaction with the last vertex in the
sub-path. For standard forward path tracing we only consider one sampling strategy,
where the path randomly intersects a material which emits light (L. (z,w,, A, t) in
the original rendering equation). To evaluate this we simply take the light emitted
by the sub-path end vertex z;_; modelled by £%, and scale it by the proportion of
that light that is emitted in the direction from 2; 1 — 2;_5 modelled by the emission
distribution function £! (equation 2.34). If the vertex z;_; does not lie on a light
emitting entity then the contribution of the sub-path is naturally zero, and the
computation of the PDF associated with £!, P(z,_1 — 2:_2|21), is also zero.

Ct = ﬁg(zt_l)ﬁé(zt_l — Zt_g) (234)

2.3.4.1. Direct Lighting

A shortcoming of the standard path tracing algorithm is that it requires that paths
traced starting from the camera randomly intersect with light emitting surfaces
within the scene. When light sources are small, distant, or heavily occluded such
random intersections will occur with low probability meaning that the vast majority
of paths computed will contribute no energy to the image. Another scenario where
this can occur is when light sources are represented without using geometry such
as a point- or directional-light source. In these cases it is impossible for a path
generated from the camera to randomly intersect the light source.

A strategy to improve rendering performance in scenes where this is the case is
to explicitly sample a point on a known light emitting entity in the scene and
to compensate for having explicitly forced the connection to the sampled point
[Shi+96]. To allow for this we introduce two helper functions which will be used
repeatedly in the process of combining paths sampled through different strategies.
Equation 2.35 shows the definition of function V(y < z) which gives a binary value
denoting if there is an occluding object between path vertices y and z, and function
G(y & z) which is referred to as the geometric attenuation function. This function
measures the projected area from one vertex to another over the hemispheres of
both vertices which are assumed to both lie on locally flat surfaces with normal
vectors n, and n, respectively.

1 if the path from y to z is unobstructed
V< z) =
0 else
[nyov]in-et] (2:35)
Glyez)=Vy<e Z)T

where v=y — 2

Chapter 2 Related Work



Previously our path tracing definition only considered paths with vertices sampled
from the eye path, which is equivalent to saying paths which contain some number
of eye vertices and zero light vertices. However, with direct light sampling we also
must consider paths which contain one vertex on the light path. Equation 2.36
shows the updated version of the path contribution formula where we now also sum
over the combinations of zero or one light path vertices denoted by subscript s. The
sub-path contribution C; has also now been modified to w;;Cy, where C7, is the
un-weighted contribution of a path with s light path vertices and ¢ eye path vertices,
and w,; is a weighting function satisfying the constraints from equation 2.18 from
the section 2.2.4 on MIS. Computation of the weighting function will be covered
more in-depth in section 2.3.6.1 but for now it suffices to say that the weighting
function must sum to one over all combinations of sub-path lengths s and ¢ which
sum to the same path length. That is, our final estimator is over samples which are
the sum of the weighted averages of paths of each length.

FE: Z Zw&tC;‘,t

1>s>0t>0 (2.36)
where (g, = alegaf

The un-weighted contribution C7, is split into several parts so that we can leverage
the fact that parts of the contribution are shared between paths of different lengths.

t'" vertex on the eye path o,

As before we have the eye path contribution up to the
the contribution of the combination event ¢, ;, and now we also have the contribution

up to the s vertex on the light path a% (equation 2.37).

046 =1
0
Oéf — ﬁe(y(])
Pa(yo)

o =1 (2.37)
of — We (20) .

U7 Palzo)

E_ E We (20 = 21)

2 L P2 — 21]20)

g 1 filziiz = zio— 2zi1)
Q7 = o
P(zi—e = zi—1|zi—3 = 2zi—2)

K3 1

Finally the contribution of the full sub-path can be computed by calculating the
event at cs ;. As in standard path tracing we have the event ¢y which is computed
identically to event ¢; in the original algorithm and computes the contribution of
the eye path randomly intersecting a light emitting entity. With the direct lighting
calculation we now also consider ¢; ; which is the contribution of the sampled point
on the light source ¥, shining on point z;_;. Because the emittance of point yq is

2.3 Physically Based Rendering

39



40

calculated in of the contribution of ¢, ; starts with the directional throughput £}
between yy and z;_1. This is scaled by the value of the BRDF at z;_; coming from
219 and going towards ¥, and again scaled by the geometric attenuation function G
to account for the mutual visibility between vertices z;_; and yy (equation 2.38).

cot = ﬁ%(zt—1)ﬁi(zt—1 — 2t-2) (2.38)
cie =L, (Yo = z—1)[t(yo = z—1 = 2—2)G(yo & 2—1)

2.3.5 Light Tracing (LT)

Even with the addition of direct lighting the standard forwards path tracing algorithm
can often have difficulties sampling paths where there is heavily occlusion of emitters
or when hard to sample effects such as caustic illumination are dominant in the
converged image. The backwards ray tracing algorithm [AC86] is able to sample
caustic illumination paths efficiently by generating multiple vertices on the light
path and relating them back to the image plane to accumulate their contribution.

A random path y is sampled from the path-space by first sampling a point of a
light source yy with probability P4(yo). The first point in the scene y; is sampled
by drawing a direction proportionally to the PDF at vertex yg, w4+ < P(-|yo), and
tracing a ray from g in direction w, to find the next intersection y;. From this
point we can iteratively sample the path to generate the (i + 1) vertex by drawing
a direction w4; < P(-|y;—1 — y;) from the BRDF around vertex y; given the previous
vertex y;—1 and tracing from y; in direction w; to find the next intersection ;1.

A key difference between the path tracing and light tracing algorithms is in the
method by which sample contributions are accumulated. In path tracing, paths
always contained at least two vertices on the eye path, meaning for a given path we
always knew which pixel in the image that path contributed to. With light tracing,
however, this is not the case. As the path is sampled outwards from the light source
each bounce has the ability to contribute to a different pixel as it can lie anywhere
on the projected image plane. To account for this the accumulation method used in
light tracing forms a sum over all samples which eventually reach the j** pixel of
the image. This sum is scaled by the projected area of the pixel on the image plane
|D| divided by the total number of paths sampled from the light source N (equation
2.39).

If = (ID|/N) > Ff (2.39)

The contribution of a path is now computed as a sum over the contributions C; of
possible sub-paths generated from the light source. As before, the evaluation of C; is

Chapter 2 Related Work



split into a precomputed component X and a contribution event ¢, (equation 2.40).

Ft=3%"C
520 (2.40)
where C, = af Cs

In the previous section on direct lighting (section 2.3.4.1) we defined the first two
terms in o for use when the light path contained zero or one vertices. For the
full light tracing algorithm we continue to define the remaining o for paths of
two vertices or longer. A key difference is in the computation of the BRDF. When
computing the eye path we used the version of the BRDF f; and now in light tracing
we use the notation f, to denote the subtle difference between eye and light paths.
For most BRDF models f;(z;—1 — x; = xiy1) = fs(xi41 — i — z;—1), however,
in certain scenarios such as when dealing with refractive surfaces there is a small
difference in light transmission between paths tracing forwards and backwards
through material. To account for this the definition of f, for non symmetric BRDF’s
contains a small correction term which is not present in f;.

L

L _ L2(yo)
Pa(yo) (2.41)
1 .
ol = qb Lelbo = 1)

Py — yilwo)
1 JfsWiiz = yi2 = yii1)
o =05l
P(Yyi—2 = Yi-1|yi—3 — Yi—2)

7 7

Finally we need to calculate the contribution of a sub-path to the image. In standard
forward path tracing this was done by assuming the last vertex on the sub-path was
on a light emitting entity, and calculating the energy output from the last vertex in
the direction of the preceding one. For light tracing we want to compute the opposing
connection, by assuming that the last vertex on the sub-path y;_; lies on the camera
lens, and that light incoming to the lens from the direction of the preceding vertex
ys—o contributes to the image at a given pixel. This is done through the spatial and
directional components of the camera model, W? and W! respectively, which we
saw used in the computation of o and of in the path tracing algorithm.

cs = WO (yse ) )W (ys—2 — ys_1) (2.42)

2.3 Physically Based Rendering

41



42

2.3.5.1. Direct Pixel Contribution

As with forwards path tracing there is an inherent shortcoming of standard light
tracing which makes it difficult to utilise for a variety of scene compositions. In light
tracing, paths generated from the light source must randomly intersect with the
camera lens in order to contribute their energy to the estimation of the image. This
requires that the camera lens is modelled as a geometric component of the scene.
In reality, camera lenses are often small compared to the size of the environment
or subject being captured meaning a similarly sized geometric representation of a
camera lens is unlikely to be randomly intersected during path generation. Further,
only paths which intersect the lens from a narrow cone of directions will find their
way through the lens to the image sensor, making the chance of contributing to the
image even more unlikely. Often in computer graphics a much simpler camera model
such as a pin-hole camera is employed as it is much simpler to compute and in many
cases has little effect on the final image. Like the point- or directional-light sources
discussed in the section on direct lighting (section 2.3.4.1) a pin-hole camera has
no geometric representation and therefore cannot be used with the standard light
tracing algorithm.

To improve sampling performance on hard to sample paths including small lens
elements or pin-hole cameras we can extend the standard light tracing algorithm
in an analogous manner to the addition of direct lighting to standard path tracing.
We do this by explicitly sampling a point zj on the camera lens and computing the
contribution of paths composed of zero or one eye path vertices and some number
of light path vertices. We start by updating the equation for the full contribution of a
path to be the summation over an arbitrary number of light path vertices and zero
or one eye path vertices (equation 2.43). The sub-path contribution C is swapped
for ws;C;, where C7, is the un-weighted contribution of the composed sub-path
and w,; is a weighting function like the one used for direct lighting (section 2.3.4.1)
and satisfying the constraints from equation 2.18 from the section 2.2.4 on MIS. The
un-weighted contribution C7, is composed of the precomputed ok from the light
path vertices and o from the eye path vertex, and the combined contribution given

by Cst-

FL = Z Z ’LUstC:;t

s>01>t>0 (2.43)

* _ L E
where Cf, = aycsay

Chapter 2 Related Work



Borrowing from the definition for standard path tracing we define o) and o¥ for
the vertex sampled explicitly on the camera lens (equation 2.44).

aOL =1
L _ 52(?/0)
O[l =
Pa(yo)
L Lyo — y1)

L—

27 TN Plyo — yilwo)
Lo JsWi-3 = Yi—2 = yi-1) (2.44)
P(yz—Q — yz—l‘yz—?) — yz—2)

a

aéE =1
WO
Oéf} _ e (20)

Lastly we define the new case for the combined contribution of a path with one eye

path vertex. This is defined similarly to the combined contribution for direct lighting.

The spatial component of sampling the point on the lens W? is computed as part
of the computation of o, meaning the combined contribution can start with the
computation of the directional component W! from the sampled lens vertex z to
the point at the end of the light sub-path y,_;. This is scaled by the BRDF at the
end of the light sub-path coming from the preceding vertex y,;_o and going towards
the sampled lens vertex z(, and again scaled by the geometric attenuation function
between the connected vertices.

Cs,0 = Wg(ysfl)wg (ysz — ysfl)

. (2.45)
cs1 =W, (20 = Ys—1)fs(Ys—2 = Ys—1 = 20)G(ys—1 < 20)

2.3.6 Bidirectional Path Tracing (BDPT)

While light tracing effectively solves the problem of hard-to-intersect light sources
and difficult-to-sample caustic paths it has a number of shortcomings which severely
limit its applicability in a large number of scenarios. One main limitation is the
inability to allow path contributions from mirror- or glass-like surfaces which are
directly visible in the image. In order for such events to contribute to the image
estimate a light path vertex on a diffuse surface must scatter in a randomly sampled
direction before going through one or more specular bounces consisting of reflections
and refractions, finally intersecting the camera lens in a direction which contributes
to the image estimate. Because specular surfaces form Dirac distributions (equation
2.46) where the probability of the event equals 1 if and only if the outgoing direction
is a perfect reflection or refraction from the incoming direction and 0 everywhere

2.3 Physically Based Rendering

43



44

else, this means direct pixel contribution methods as described in section 2.3.5.1
cannot be applied as the probability of the forced connection will be zero.

1 ifx; 1 — x; — x4 forms
PO (2 — ipa|ziog — 24) = a perfect specular reflection around n; (2.46)

0 else

For the same reason, forwards path tracing struggles to account for the contribution
of caustic paths, which result from a path vertex on a diffuse surface scattering
through one or more specular bounces before intersecting a light source. For small
light emitting elements the probability of randomly intersecting the light source is
prohibitively small, and for non-geometric emitters such as point- or directional-light
sources the probability is zero.

Another limitation is shared by both the path tracing and light tracing algorithms. In
the same manner an eye path may struggle to explore beyond a large occluding body
in front of a light source, so too will light tracing struggle to explore beyond a large
occluding body in front of the camera. Even with direct lighting and direct pixel
contributions considered the probability of generating paths connected to the light
sources or the camera lens becomes prohibitively low when using these algorithms
in complex scenes.

To account for the limitations of both approaches bidirectional path tracing samples
multiple vertices on both the eye and light paths and considers all possible paths that
can be constructed using sub-paths of varying lengths. First proposed by Lafortune
et. al. [LW93], bidirectional path tracing allows for the efficient generation of
complex paths and has given a greatly improved our ability to render complex
scenes. Bidirectional path tracing was later formalized by Veach et. al. [Vea97]
who developed MIS as a way to compute near optimum weights for combining the
contributions of sub-paths.

Because we will now consider paths which can contribute to a specific pixel or
to any pixel, based on how they are sampled, we split the accumulation of path
contributions into two separate images to ease the implementation. Paths with two
or more vertices on the eye path are accumulated into an eye image as in forward
path tracing, and those with zero or one vertex on the eye path are accumulated
and scaled into a light image as in backward light tracing. The final bidirectional
image is computed as the sum of the eye and light images (equation 2.47). As we
will see shortly, due to the nature of the weighting function used for combining
sub-path contributions, both the eye and light images will be missing illumination

Chapter 2 Related Work



from the sampling strategies accumulated into the other image and will therefore
look incorrect on their own.

1 3
E __ E
I =5 2 F
J i=0

L __ L
Ij = (IDI/N)Y_ F;
B E L

(2.47)

With two images for different sampling strategies we now have two accumulation
equations. However, just as with the direct lighting extension on path tracing and
the direct pixel contribution extension to light tracing the contribution is still of the
form w; ;C7, where the un-weighted contribution C7, represents the throughput of
a specific sampling strategy, and the weighting function w;; ensures the sum of all
strategies forms a summation over the weighted averages of all considered strategies
of each length (equation 2.48).

FE == Z Z ws7tC;t

s>0t>2

FE=3" 3" w,,CF, (2.48)

5>01>t>0

where C7, = alegaf

We bring in the full eye and light path sampling steps from path tracing and light
tracing to compute the o and of values respectively for the sub-path contributions
(equation 2.49).

aOL =1
L _ ES(QO)
041 =
Palyo)

L_ o Lelyo =)

2 L P(yo — v1lwo)

o fsWiez = yie — yic1)
1

o = o
TPy = vi1lyiz — vii2)
(2.49)
ag =1
E _ WS(ZO)
Oél =
PA(ZU)

E_ FE Wi(z0 = 21)

27 T Pa0 — 21l20)

E_ B Jt(zims = zice = zi1)

‘ TIP(zig — zio1|zieg — zio2)

Finally we can compute the combination contribution for the sub-path. We start
by copying the definitions for ¢, from path tracing, c; ; from direct lighting, ¢,

2.3 Physically Based Rendering

45



46

from light tracing, and ¢, ; from direct pixel contribution. Now we need to define a
combination strategy for a path composed of an arbitrary number of eye and light
path vertices ¢, ;. In this strategy both sub-path endpoints will lie on the surfaces
of objects within the scene. The combined throughput between the two vertices is
therefore the product of the BRDF for each vertex given the preceding vertex on
each sub-path and going towards the vertex at the end of the other sub-path, scaled
by the geometric attenuation function between the two end vertices (equation 2.50).

cor = LAz 1)L z-1 — 2-2)

cre =L yo — z-1) filyo = 21 — 20-2)G (Yo < 2-1)

Cs0 = W (Ys—1)W2 (Ys—2 = Ys—1) (2.50)

cs1=WHz0 = ys—1) fs(Ys—2 = ys—1 — 20)G(ys—1 < 20)

Cot = fs(Ys—2 = Ys—1 = 2—1) [t (Ys—1 = 21 = 2t—2)G (Ys—1 < 21—1)

2.3.6.1. Weighting Function

Until now we have avoided discussing the details of the weighting function used in
direct lighting, direct pixel contribution, and bidirectional path tracing. We know
that to be a valid MIS estimator the weights of paths of equal length must sum to
one so that our estimator forms a summation of weighted averages over paths of
each length. For each sub-path that was sampled this requires us to compute the
probability that the sub-path occurred using all of the other sampling strategies we
consider. To help simplify the computation of the weighting function it is helpful to
re-parameterize the path composed of s light path vertices and ¢ eye path vertices as

apathz,; = xo,--- ,x; where k = s+t — 1, (equation 2.51).
Zt—1," " 21,20 ifs=0
a_:,t:xO?"')xk: 0, Y1, yYs—1 ift:()
’ vo- Y (2.51)
Yo,y Ys—1,2t—1," " , 20 lfS>0,t>O

where k=s+t—1

Like the o and o values used in computing the throughput of sub-paths we can
make use of shared information to pre-compute part of the full probability for each
sub-path. Equation 2.52 shows the progression of computing the partial probabilities
for the sub-paths that were actually sampled during creation of the eye and light

Chapter 2 Related Work



paths. The final probability p, ;(Z,) for one of the sampled paths z,; is simply the
product of the two partial probabilities from each sub-path.

Py =1
L_
1 = Palyo)
Py = piP(yo — n1ly0)G (Yo < y1)
pF = pl PWice = vic1lyios — ¥i2)G(Yi—a < yi1)

o (2.52)
p{‘? = PA(ZO)
pY = pPP(2 = 21|20)G(20 & 21)

pE =pF P(ziie = zio1]ziis — 2i2)G(2i—2 & 2i1)

Ds,t (fis,t) = ng pf

For the path z,; which was sampled with probability p,+(z,+) we need to compute
the probability that the same vertices that form path z,; were sampled using the
s + t other valid sampling strategies for paths of that length. Because we know that
no matter how zs; was sampled it contains s + ¢ vertices, it is useful to define the
probability that the vertices in z,; were in fact sampled using some other number
of light vertices 7 and implicitly determining that the resulting number of eye path
vertices used should be (s 4 t) — i. Equation 2.53 defines the notation used in the
following equations — p; represents the probability that a path actually sampled
with s light vertices and ¢ eye vertices was instead sampled with 7 light vertices and
(s +t) — i eye vertices.

Ds = ps,t(i‘s,t) (2.53)

Di = Di(s+4)—i(Ts,t)

When ¢ = s we have the special case p, which is simply the probability p, +(z, ;) with
which we actually sampled the path. Because we have access to the value p, but not
the remaining values for p; when i # s it is efficient to define the remaining p; values

in terms of ps. Equation 2.54 shows the relationship between values of p; and p; .

Because both methods of sampling path z,; only differ in how they sample vertex
x; the relationship between them simplifies to just the difference in probability and

2.3 Physically Based Rendering

47



48

geometric attenuation used to sample the specific vertex as a member of either the
eye or light path.

P Pa(zo)

Po P(xo — xlla:o)g(xl = xo)

piv1 _ P@icn = milwi o — 2i1)G (v & 1)
— (2.54)
pi  P@it1 = zilzive = 2it1)G (2 < zit1)

Prr1  Plrp—1 = oplop—o — 2 1)G (2 < p1)

Dk Pa(xg)

Another way of interpreting this is given the known probability of sampling a path
using 7 light path vertices and (s + t) — 7 eye vertices p;, the probability of instead
sampling the path using ¢ + 1 light path vertices and (s + ¢) — (i + 1) eye vertices
pi+1 is simply the original probability p; divided by the probability of sampling
vertex z;41 on the eye path, multiplied by the probability of instead sampling it as
part of the light path. Equation 2.55 shows the steps for computing the value of
p; for increasing ¢ covering ps41,ps+2,- - , Pk, Pk+1. Lhe ratio defined in equation
2.54 is applied repeatedly to yield the next term in the sequence. The reciprocal
ratio between p; and p;_; is defined similarly to equation 2.54 and allows for the
remaining ps_1,ps—2," - - , po to be computed iteratively.

Ds = Psit (js,t)

7D(l‘sfl - $s|x572 — $3,1)g($3 = xsfl)
P(rst1 = s|Tsi2 = 2511)G(75 & T511)

Ps+1 = Ps

P(xs — $S+1‘$s—1 — 25)G (541 & )
Toyo = Toy1|Tsr3 — Ts12)G(Tst1 & Tst2)

s = Ps 2.55
Ps+2 p+1p( ( )

P(wp—1 — Tp|rp—2 = 2p—1)G () & Tp—1)
Pa(zk)

Pr+1 = Pk

With values of p; computed for all i the weighting function is simply defined as
the relative probability with which we actually sampled the path, out of the sum
of all the probabilities with which we could have sampled the path using different
sampling strategies. Here we adopt the commonly used power heuristic weighting
function discussed previously in equation 2.20. An important distinction here is that
the sum in the denominator is only over the sampling methods that were actually
used during sub-path creation. For instance, when using a minimal camera model

Chapter 2 Related Work



such as a pin-hole camera it is impossible to randomly intersect a lens element
of the camera as it does not have a geometric representation. In this scenario
we must ensure that the weighting function reflects the fact that we can never
accumulate contribution using sampling strategy c;o. To accommodate this we
make the elements of the denominator a product of the probability of sampling each
sub-path and a value u; = u; (,44)—; with value 0 or 1 denoting whether we consider
paths using strategy Z; s44)—; during the path generation stage of the algorithm,
(equation 2.56). As an illustrative example, the weighting scheme used for the direct
lighting extension of standard path tracing would only consider sampling strategies
of the form wp; = u;+ = 1 for all eye path lengths ¢, and us; = 0 for all s > 2.

p2
ws = . — (2.56)
(i wa)?

2.3.7 Advanced Sampling Methods

Since the development of bidirectional path tracing [LW93; Vea97] much work has
been done in the area of improving the efficiency and effectiveness of sampling
strategies based on this approach. In this section we will review some of the
significant contributions in this area.

2.3.7.1. Metropolis Light Transport (MLT)

In addition to the contribution of using MIS to compute near optimum path weight-
ings in bidirectional path tracing, Veach also presented a novel application of MHMC
sampling applied to the sampling of paths during the rendering process [VG97].
Starting with an initial “seed” eye and light path sampled using the standard bidirec-
tional path tracing procedure outlined in section 2.3.6 a Markov chain is constructed
by applying a mutation operator to the current path composed of the full eye and
light paths, yielding a new path proposal. This proposed new path is then accepted
or rejected using the MHMC acceptance probability where the target distribution is
based on the luminance of the throughput between the full MIS contributions of the
original and mutated paths, and the conditional proposal distribution is written as
the transition probability of the mutation occurring in either direction in the manner
that it did, (equation 2.57).

_ (@) T @ = )
flum(f)T(iﬂ - j/)

Az = &) (2.57)

Mutations can be designed in a flexible way such that certain mutations focus
on sampling specific types of paths. Examples of mutation strategies include lens

2.3 Physically Based Rendering

49



50

mutations which update the eye path, caustic mutations which update the light path,
and manifold mutations [JM12] which update multiple vertices surrounding and on
specular surfaces in coordination with one another so as to respect the dependencies
imposed by Dirac distributions on specular surfaces.

A key aspect of the Metropolis Light Transport (MLT) algorithm is that path mutations
are performed in path-space. For instance, a lens mutation which inserts a new
vertex on the eye path between two existing vertices would be sampled by rotating
the outgoing direction from the existing vertex (in polar-coordinates) before the
insertion point, tracing to the first intersection in that direction to find the new
vertex location, and then connecting the new vertex to the existing next vertex on
the path. The implementation of such mutation strategies can be complex and error
prone and computation of the probabilities with which mutations occur can also be
difficult to validate the correctness of.

2.3.7.2. Primary Sample Space Metropolis Light Transport (PSSMLT)

A greatly simplified variant on MLT is proposed by Kelemen et. al. [Kel+02], who
propose to move the computation of path mutations from path-space to the primary
sample space from which paths are generated. When generating the initial seed
paths Primary Sample Space Metropolis Light Transport (PSSMLT) recognizes that
in order to sample the next vertex on the path a tuple of uniform random numbers
(usually two or three) is sampled which are transformed onto the target sampling
distribution of the PDF at the vertex. By treating this sequence of random values as
the seed for generating the path we can see that the same path can be re-generated
by tracing it out again and using the same random values to sample the outgoing
direction at each vertex. By performing simple numerical mutations on the stream
of random numbers directly and then using the mutated streams to re-generate the
eye and light paths we can sample mutated paths without having to worry about the
many edge cases that occur when implementing MLT.

2.3.7.3. Multiplexed Metropolis Light Transport (MMLT)

Another improvement on MLT and PSSMLT is proposed by Hachisuka et. al
[Hac+14]. In MLT, seed eye and light paths are sampled to a fixed maximum
length or to a length determined by Russian roulette path termination. In PSSMLT
the sequence of random values tracked for path generation is usually stored to a
maximum length representing an implicit upper bound on the sampled path length,

Chapter 2 Related Work



though it is allowed that the path corresponding to a given random stream may
terminate before all of the values in the stream have been used.

However, there are many scenarios where the path will naturally mutate into high
throughput regions of the path-space, where lighting predominantly contributes to
the image through short eye and light paths in directly visible regions near light
sources. In these regions it is wasteful to spend time computing full-length eye and
light paths that will predominantly contribute to the image through the shortest of
their MIS weighted sub-paths. In Multiplexed Metropolis Light Transport (MMLT)
the length of path traced is also sampled as part of the mutation and proposal scheme
with a transition probability between sampling paths of discrete lengths. This allows
the target path length to grow or shrink as needed while the mutated path walks
its way around the path-space. This significantly decreases the amount of time the
algorithm spends constructing proposal paths for each mutation.

2.3.7.4. Energy Redistribution Path Tracing (ERPT)

There are significant advantages to using MHMC based rendering algorithms such as
MLT, PSSMLT, and MMLT as they allow for difficult to sample paths which occur
in low probability but high contribution regions of the path-space to be efficiently
explored. However, there are also several drawbacks to these methods inherited
from the underlying MHMC sampling strategy. One drawback is that paths sampled
through the mutation process exhibit high correlation with one another, while
their contributions to the image estimate during accumulation is assumed to be
independent. This means that for any finite length sub-sequence of the random
walk the expectation over the sequence of sample contributions will be a biased
estimate of the true expectation. This inter-sample correlation combined with the
arbitrary seed path sampled by bidirectional path tracing (which was not sampled
w.r.t. the transition function of the random walk) can result in significantly biased
image estimates at low sample counts.

A commonly used method to remove the start-up bias is to use a “burn-in” phase after
seeding the sampler with a path sampled by bidirectional path tracing. During the
burn-in the first N steps of the random walk will be discarded and do not contribute
to the image. After a sufficiently large number of the burn-in steps the random walk
of the sampler should have traversed to a representative region of path-space where
accumulation can begin without affecting the stability of the estimate. For short
sequences after the burn-in phase there is still an issue caused by high correlation
between samples, but this is greatly reduced and will allow the estimate to converge
to the expected value as more mutation steps are computed.

2.3 Physically Based Rendering

51



52

Energy Redistribution Path Tracing (ERPT) [Cli+05; BatO5] takes a different ap-
proach to the start-up bias problem of MHMC samplers by combining the strengths
of both standard Monte Carlo and MHMC methods. In ERPT a seed path sampled
with bidirectional path tracing is used to compute an image contribution. A MHMC
style random walk is then performed for a small number of mutation steps — at
each step a fraction of the seed path’s contribution is accumulated to the pixel which
the current mutated path corresponds to. By using a small number of mutation steps
this strategy leverages the initial bias of the random walk being highly correlated
to the seed path to smear its contributions over the local highly correlated region
of the path-space. This region projected onto the image plane can correspond to a
local anisotropically distributed neighbourhood of pixels in the accumulated image
which can cause light bleeding and other visual distortions when a small number of
seed paths are used.

At a high level, the relationship between MLT based methods and ERPT is that the
former attempts to construct long mutation sequences from a small number of seed
paths per-pixel, allowing the sampler to spend more time in high contribution regions
of the path-space to avoid bias, while ERPT uses short mutation sequences initialized
from a large number of seed paths per-pixel to leverage the high correlation between
the seed path and neighbouring regions of the path-space.

2.3.7.5. Anisotropic Gaussian Mutations for Metropolis Light Transport
Through Hessian-Hamiltonian Dynamics

The flexible way in which mutation strategies are designed for MLT based algorithms
allows strategies to be specialized, focusing on sampling specific types of paths. As
we saw previously in section 2.2.2.2, HMC offers an alternative approach to MHMC
based on Hamiltonian Dynamics style particle simulations. Adopted from the physics
literature, HMC uses long and curved arcs across the sampling domain to generate
a Markov chain of samples with low temporal correlation, greatly improving the
robustness of estimates at low sample counts.

A draw back of HMC is that at each time-step during the tracing of an arc to find the
new sample proposal we need to compute the derivative of the target function in
order to update the momentum of the simulated particle. In problems where the
derivative is expensive to compute this makes HMC sampling impractical to apply as
many derivative calculations are needed to generate a new proposal.

Li et. al. [Li+15] present Hessian Hamiltonian Monte Carlo (HHMC), a novel
method for approximating Hamiltonian Dynamics based on the Hessian of the target

Chapter 2 Related Work



function in problem domains where the derivative is expensive to compute. The
Hessian of a function is a matrix representation of all of its second-order partial
derivatives. The Jacobian is a vector of the first-order partial derivatives of a function
and is often referred to as the function gradient due to its representation of the local
linear slope of the function at a given point. It follows that the Hessian, representing
second-order partial derivatives can therefore be thought of as the local quadratic
curvature of the function at that point.

Applying Taylor’s Theorem (equation 2.58) we can show that given the value of a
function f at a given vector valued point z we can approximate the value of the
function at a nearby point #. If the function is locally flat then we can say that

f(&) = f(x) as there is no change in the function value between the two points.

Assuming the function is linear w.r.t. its inputs we can interpolate from our known
point x to & by using the local gradient [J;(z) scaled by the distance between the
points (Z—x), this gives the first-order Taylor expansion f(Z) = f(x)+J¢(z)(Z—x).

While the assumption of linearity across the whole function is unlikely to be valid,
a local assumption of linearity in the region surrounding x can be sufficient to use
the first-order Taylor expansion to approximate & when it is nearby to x which is
what we see in the original HMC algorithm. When the function f has increasingly
high curvature, the region around x which can be approximated accurately with
the first-order Taylor expansion diminishes. By adding higher-order terms to the
expansion the region which can be trusted increases. Adding a term using the
Hessian matrix 7 ;(x) the second-order Taylor expansion is now given by f(Z) =
(@) + Tp (& — 2) + 3@ — a)Hy(2)(@ — ).

(2.58)

;(3% —x)Hs(z) (T — )’

In the work of Li et. al. [Li+15] the computation of the full MIS path contribution
used in the PSSMLT target function for mutations is implemented using an Automatic
Differentiation framework [NeilO]. This allows for the first- and second-order
derivatives of the target function to be computed w.r.t. the values used to generate
the path. By sampling paths from within a local Gaussian window around the
current path w.r.t. the local curvature of the path-space they are able to perform
an approximate Hamiltonian Dynamics update arc in a single step. Despite the
computation of the Hessian matrix being slower to compute than the Jacobian, this
is mitigated by the need to only compute a single Hessian matrix per-mutation, as

2.3 Physically Based Rendering

53



54

opposed to many individual Jacobian computations per mutation in the standard
HMC sampling process.

2.3.7.6. Gradient Domain Rendering

Recent work has aimed at applying Monte Carlo rendering algorithms to estimate
the gradient of the contribution across the image plane rather than the direct
contribution estimated by standard Monte Carlo rendering algorithms. By designing
algorithms that estimate the gradients of path contributions while also accumulating
a coarse approximation of the direct image estimate, this data can be fed into
a “screened” Poisson solver [CK11] in order to reconstruct the underlying image.
Further it can be shown that as the estimate of the gradients converges along with
the coarse approximation of the direct image, this strategy computes an unbiased
estimate of the expected true image.

In the seminal work on gradient domain rendering, Lehtinen et. al. [Leh+13]
proposed Gradient Domain Metropolis Light Transport (G-MLT), a modification of
MLT where the target function used for path mutations is designed to drive the
Markov chain sampler towards regions of path-space where the image gradient is
high. This drives computation into regions where fine details and complex light
interactions are prevalent, maximizing the usefulness of the samples which are
computed.

To mutate paths, their work adopts the lens mutation strategy from standard MLT
along with the specular manifold exploration strategy from [JM12]. These strategies
are extended to form a shift-mapping which mutates a path going through a given
pixel to a path going through one of the neighbouring pixels which is highly corre-
lated with the original path. By applying the constraint that shifted paths are similar
to the original paths through half-vector constraints, it ensures that the magnitude
of the finite difference gradient of the contributions between paths will be a more
robust estimate of the underlying image gradient.

While G-MLT greatly increases the efficiency of rendering compared to standard MLT
there are also drawbacks to this approach. The complexity of the MLT implementa-
tion due to its dependencies on path-space mutation strategies is shared by G-MLT,
and even exacerbated by the additional constraints of the shift-mapping, making
independent implementation of the method a complex task. Another issue shared
with MLT is the need for a burn-in phase to avoid start-up bias, and the unreliability
of the estimate at low sample counts.

Chapter 2 Related Work



More recently, Kettunen et. al. [Ket+15] from the same research group, present
Gradient Domain Path Tracing (G-PT) as a hybrid approach between standard path
tracing and G-MLT to address the issues that arise from the use of MLT based
methods. In G-PT, eye paths traced through each pixel are used to form a coarse
image of direct path contributions. For each path, a shift-mapping is used to create
an offset path going through a neighbouring pixel which is used solely for a finite
difference approximation of the image gradient between paths. The shift-mapping is
based on sampling a pixel adjacent to the one used in the seed path and attempting
to reconnect the shifted path to the seed path as soon as possible. Specifically, this
occurs when the shifted path intersects a diffuse surface, and the corresponding next
vertex on the seed path is diffuse, allowing for an explicit connection to be made.
This approach is considerably more simple to implement than the G-MLT algorithm
and behaves more stably at low sample counts.

Lastly, in a follow-up to their work on G-MLT and G-PT, Manzi et. al. [Man+15]
develop Gradient Domain Bidirectional Path Tracing (G-BDPT) as a similar hybrid
approach between bidirectional path tracing, G-MLT, and G-PT. In this work the
shift-mapping used to create offset paths is based on the mapping used in G-MLT.
This is preferable to the mapping developed for G-PT as the latter does not consider
the use of a light path which can allow for the offset eye path to be connected back
to the remaining path after a single diffuse vertex, as opposed to after two diffuse
vertices for G-PT. This helps minimize the difference between offset and seed paths
allowing for more robust gradients to be accumulated.

2.3.7.7. Selective Progressive Rendering

By default, rendering algorithms such as path tracing (section 2.3.4) dedicate and
equal computation budget to each pixel, usually parameterized by the number of
samples evaluated per pixel. Conversely, the dual algorithm light tracing (section
2.3.5) allows evaluated samples to contribute to any pixel through which the cur-
rently considered path vertex is visible through. This allows proportionally more
samples to contribute in image regions which have a higher volume of light energy
flowing through them. This concept is extended in algorithms such as MLT and
PSSMLT which iteratively mutate seed paths to form a Markov Chain of proposal
paths which spends proportionally more or its time in regions of the path space with
high contribution to the image.

Selective progressive rendering methods offer a means of balancing a computational
budget over the pixels of an image generated with a progressive rendering algorithm
such as path tracing. The heuristic used to guide load balancing must be chosen

2.3 Physically Based Rendering

55



56

carefully, as to proportionally increase the computation on one area of the image
is also to reduce the computation of other areas. If the method used to distribute
the computation budget is not representative of perceived image distortion then the
resulting images may appear to be of lower visual quality than uniformly sampled
images.

Another application of such techniques is used to recognize programmatically when
an image has reached a desired quality to halt the rendering process before the
maximum computation budget is reached. By evaluating the change in images
as samples are progressively added, Myszkowski et. al. [Mys98] and Bolin et.
al. [BM98] showed that FR-IQA, in the form of Visual Difference Predictor (VDP)
[Dal93] and Visual Discrimination Model (VDM) [Lub95] respectively, could be
applied to the task of early halting in a path tracing software. A drawback of their
approaches was that the computational expense of computing the FR-IQA measures
often outweighed efficiency gains from early halting.

Ramasubramanian et. al. [Ram+99] apply perceptual measures to pre-compute an
initial sample density map based on direct illumination and an ambient approxima-
tion term. This is used to progressively direct a computational budget during the
computation of indirect illumination. As the render progresses, the sample density
map is updated periodically by comparing the current rendering solution to the one
from the previous iteration. Rendering continues until convergence is achieved.

A similar scheme applied to animated sequences was proposed by Myszkowski et.
al. [Mys+00]. In their work, predefined camera paths (non-interactive rendering)
through a virtual scene allow for the sparse computation of high quality key-frames
to be interpolated between using Image Based Rendering (IBR) [KS00] techniques.
Using an adapted form of VDP termed Animation Quality Metric (AQM), which
was modified to work on temporal image sequences, they determine whether the
IBR interpolated images are of sufficient visual quality for use in the animated
sequence. When they are found not to be of sufficient quality a new key-frame is
recursively computed between the two existing ones and the surrounding frames are
re-interpolated through IBR. This process continues until the entire sequence has
been generated to a sufficient visual quality.

Debattista [Deb06] provides a thorough review of selective rendering approaches
and develops techniques for selective progressive rendering based on time and
visual quality constraints. This work also investigates the use of component-based
rendering where geometric entities are rendered to different qualities based on their
visual persistence in resulting images.

Chapter 2 Related Work



Recent work from Harvey et. al. [Har+17] studies the use of selective progressive
rendering in multi-modal rendering domains such as virtual environments containing
both audio and visual stimulus. In a controlled user study using offline rendering,
they show that the sampling density from the interactions of simulated acoustics in
virtual environments can be used as an indicator of user attention, allowing selective
rendering techniques to drive more computation into image regions where the user
was predicted to be focussing without a perceivable loss in quality.

2.3.8 Discussion

When applied to physically based rendering, Monte Carlo methods give us a robust
and extensible framework to build rendering algorithms which converge to the
true solution as the number of samples used to approximate a rendered image is
increased in the limit.

In the path tracing algorithm we see Monte Carlo methods applied in several places
to approximate an integral formulation of the rendering equation [Kaj86] which is
both infinitely branching and recursive. To sample individual paths, a Markov Chain
is constructed to compute each light bounce by iteratively drawing the reflected
ray direction for the next bounce from the conditional probability distribution,
predicated on having arrived at the current intersection from the direction of the
previous intersection. For each pixel, a standard Monte Carlo sampler is computed
by averaging the contributions of all paths sampled through that pixel in the image.
By re-sampling individual paths continually, the overall estimator converges to the
underlying integral without incurring the issues associated with infinite branching
and recursion. Importance sampling is commonly applied when sampling the
conditional distributions to get the reflected direction at each bounce during path
construction, this technique greatly reduces variance in the overall estimator by
focusing computation towards high-probability regions of the local path-space that
are likely to contribute highly to the estimator.

Throughout this section we have explored the application of advanced Monte Carlo
sampling strategies to various parts of the rendering process. These methods are
appropriate in specific situations but often can perform poorly when sampling regions
of the path-space which do not lend themselves to one sampling strategy or another.
Rendering algorithms based on BDPT [LW93; Vea97; VG97; Kel+02; Cli+05; Bat05]
try to resolve this issue using multiple importance sampling by constructing a unified
estimator which draws samples from multiple, potentially overlapping, regions of
the sample space while being sure to maintain an unbiased estimator.

2.3 Physically Based Rendering

57



58

Algorithms such as MLT [VG97] and PSSMLT [Kel+02] extend bidirectional sampling
strategies using Markov Chains, by constructing seed paths which are repeatedly
mutated to walk around the path-space. In such methods, the sampler ends up
spending proportionally more of its time in regions of the path-space with high
contribution to the final expectation; this has the effect of lowering the overall
variance of the estimator because each sample has a higher likelihood of being
representative of the final expectation. By using a wide range of different mutation
and sampling strategies together in a single estimator [JM12; Li+15] MLT based
methods allow for rapid and stable convergence across a wide variety of challenging
material, lighting and scene compositions.

The novel application of Poisson solvers to Monte Carlo rendering algorithms led
to the development Gradient Domain [Leh+13; Ket+15; Man+15] rendering tech-
niques. These methods showed that unbiased estimators can be constructed from
coarse rendering approximations combined with estimates of the 1% order image
gradient computed from path sampling strategies similar to ERPT [Cli+05; Bat05]
and Manifold Exploration [JM12], greatly reducing the impact of impulse noise
in under-sampled image regions while still converging to the correct rendering
solution.

Finally we saw how the above rendering algorithms could be augmented with se-
lective progressive rendering [Mys98; BM98; Ram+99; Mys+00; Deb06; Har+17]
techniques. These methods aim to control the distribution computational resources
by delegating them to image regions with lower perceived quality. By reducing
the computation requirements of image regions with low error significant perfor-
mance gains can achieved within a fixed computation budget over uniform sampling
techniques.

2.4 Machine Learning

Machine learning as a sub-field of computer science is the study of designing and
training algorithms to extract robust strategies directly from data that are repre-
sentative of the chosen problem domain. Machine learning includes a variety of
tasks such as image classification and segmentation, natural language processing,
generative models which synthesize images, text, and audio data, and many others.
In recent years, the increased accessibility of massively parallel compute devices
such as GPU has allowed for an unprecedented surge in machine learning research.
This surge has also been leveraged by the increased scale of data that we are able to
store and process.

Chapter 2 Related Work



While there are many types of machine learning algorithm, one area has benefited
particularly well from the recent renaissance in machine learning. Artificial Neural
Network (ANN) [MP43] were the result of early work which aimed to improve our
understanding of how biological processes involving neurons work within the brain.
These early methods showed compelling results but were infeasible to work with
on the hardware available at the time. This is analogous to the recent surge of
interest in Monte Carlo rendering algorithms. When the rendering equation was first
introduced by Kajiya in 1986 [Kaj86] the applicability of the proposed path tracing
algorithm was prohibitively expensive to evaluate on the available hardware. This
had the effect of severely stalling the development of improved methods until access
to more powerful hardware became feasible for researchers to utilize.

Contributions to the field of machine learning generally fall into one of two camps:
supervised learning, where example input data is labelled with the desired output
data that the model should learn to predict; and unsupervised learning, where
unlabelled data is used to train models which (generally) attempt to find represen-
tations for the data which have lower dimensionality but are still representative
of the higher dimensional source data. Unsupervised methods can be thought of
as clusterings, dimensionality reductions, or data embeddings and have a wide
range of applications due to the abundance and availability of raw unlabelled data.
Supervised methods are also applicable to a broad range of applications and can be
thought of as a class of function approximators which potentially both accept and
predict high dimensional values.

2.4.1 Multi-Layer Perceptron

Rosenblatt [Ros57] formalized much of the early work on neural networks, devel-
oping the idea of a perceptron as a simple function approximator that can be fit to
observed data and and provide inference on unseen data. Perceptrons were later
generalized to Multi-Layer Perceptron (MLP) [Rum+85] which stacked multiple
perceptrons together, feeding the output from one perceptron as input to the next
in a feed-forward architecture. Deep models like MLP are able to efficiently model
arbitrary functions, allowing them the capability to extract complex trends directly
from raw data or from hand-crafted features.

Equation 2.59 shows the general form of a single perceptron unit. Each element j in

the output feature vector aé*l is the result of a unique weighted summation over
each value from the incoming feature vector a.. When [ = 0, a! is the model input
and for [ > 0 it is the output from the previous layer. To compute ;j** output feature,

the ¢** input feature is scaled by weight Wilj when summed. The summation is added

2.4 Machine Learning

59



60

to a scalar bias value Bé-“ which shifts the result before it is fed to an activation
function f(-) which often contains some form of non-linearity.

Nl
aitt = f [ BIT + > alw (2.59)
=1

The weights WzlJ form a rectangular matrix of size N* x N'*1, By arranging the input

Pas a1 x N vector the weighted summations for each element can be

features a
rewritten as a single matrix multiplication of a'W'. Equation 2.60 shows the vector

form of the perceptron.

al+1 — f (BlJrl + alwl) (260)

Fig. 2.7.: An example of a Multi-Layer Perceptron with two hidden layers. An input vector
of three features a° (orange) feed into a vector of four features a' (blue) through
a dense matrix multiplication with weight matrix W°. Bias vector B! is added
to the result and an activation function f(-) is applied element-wise, yielding
the output feature vector a'. This process is repeated for the remaining layers,
feeding in the feature vector a' to compute a'*!.

Figure 2.7 shows the general structure of an MLP with two hidden layers and one
output neuron. The hidden layers represent the learned intermediate representation
of the model. We call them hidden layers because their values are extracted from
data during the training process and are not readily interpretable to us. Features
in these layers have complex non-linear relationships with one another, and with
features in the surrounding layers. This complexity is what allows MLP to accurately

Chapter 2 Related Work



model the relationships in complex data. Equation 2.61 shows the vector form of the
MLP in figure 2.7 along with the sizes of the bias vectors and weight matrices.

a'=f (Bl +a0W0) where B' = {1 x N'}, W% ={N° x N1}
a’=f <32 +a1W1) where B2 = {1 x N2}, W' = {N! x N?}
a’=f <33 +a2W2) where B? = {1 x N3}, W? = {N? x N3}
(2.61)
ang<B3+f<BQ—|—f(B1+aOWO)W1> W2>

where N°=3 N!'=4 N?=2 and N®=1

2.4.1.1. Activation Functions

The activation function f(-) is a non-linearity that is applied element-wise to the
output feature vector of a layer. The choice of function is somewhat arbitrary. Many
activations functions have been proposed and used over the years, each with varying

degrees of effect on model accuracy when working with different types of data.

Figure 2.8 shows four common activation functions.

The classic choice in non-linearity was the Sigmoid function (equation 2.62) which
is a smooth stepped function in the range [0, 1] with a smooth falloff as it approaches
the extremes. An issue with this function as that the truncation of values as the
function approaches 0 or 1 causes the gradient of the activation to go to zero. When
multiple layers are stacked together in an MLP these truncated gradients compound
with each other, leading to the so called vanishing gradient problem. When training
these models the gradient of the network w.r.t. an objective function is used to
optimize the values of the weight matrices and bias vectors. If the gradient of an
individual parameter becomes too small it will take an extremely long time for it to
move away from its current value to help minimize the objective function. This can
stall training and effect stability.

1
l4+e ™

fSigmoid (z) = (2.62)
The TanH function (equation 2.63) is a similar smooth step activation, this time in
the range [—1, 1]. This function can also suffer from the vanishing gradient problem
but allows output features to carry negative values to the next layer.

1— €—2m

- - 2.63
14+e 2 ( )

fTanH (x)

2.4 Machine Learning

61



62

Sigmoid f (z) = — TanH f (z) = %

15; 1+e* 15
1+t
1+
0.5
E 05t 2 oo
“— “—
-0.5
0
-1
-0.5 : ‘ : -1.5 :
-10 -5 0 5 10 -5 0 5
x T
(a) (b)
ReLU f(x) = max (0,x) Leaky ReLU f (z) = max (az, z)
157 1571
1r 1
£ 05 Z 05
“— “—
0 0
-0.5 : : ‘ -0.5 : : :
-1 -0.5 0 0.5 1 -1 -0.5 0] 0.5 1
T x

(c) (d)

Fig. 2.8.: A selection of activation functions commonly used with neural networks. (a)
Sigmoid activation which outputs in the range [0, 1], (b) TanH activation which
outputs in the range [—1, 1], (c) ReLU activation which outputs in the range [0, oo},
and (d) Leaky or Parametric ReLU activation which outputs in the range [—o0, 0]

In recent years, Rectified Linear Unit (ReLU) activation (equation 2.64) has seen a
surge in popularity due to its efficiency and performance in many problem domains.
ReLU is defined as being linear for positive inputs, and 0 for all negative inputs. This
can be implemented efficiently by computing the maximum value of each feature x
and zero.

freru () = max (0, x) (2.64)

One issue with ReLU is that when activations are negative the gradient is zero.
This can cause training slow or for neurons to “die” because the model learns a
strategy that never utilizes some of its capacity. A solution to this problem is to use
a “leaky” ReLU that has a small positive slope in the range [0, 1]. This limits the
extent to which negative activations contribute to the next layer, but allows for a well

Chapter 2 Related Work



defined gradient that is easier to optimize over. Leaky-Rectified Linear Unit (LReLU)
[Maa+13a] can be implemented efficiently like ReLU by taking an element-wise
maximum value, this time between the input feature x and that feature scaled by
a multiplicative gain factor az (equation 2.65). If « is in the range [0, 1] then the
maximum will cause the unscaled value to be used for positive inputs, and the scaled
value to be used for negative inputs. A commonly used « value or “leak” is a value
of 0.2.

fféaky reLyu () = max (ax,z) where 0<a<1 (2.65)

He et. al. [He+15b] propose a subtle variant on LReLU which makes the leak value
« a trainable parameter optimized by gradient descent along with the other weights
and biases. A separate « value can be learnt for every activation in each layer. This
has been shown to increase accuracy in a number of applications [Xu+15], at the
expense of adding a large number of trainable parameters which slow the efficiency
by which the model can be optimized.

2.4.1.2. Loss Functions

In order to train MLP models we must first define a measure of goodness-of-fit
with which to drive our optimization process. This is commonly structured as the
minimization of a function representing the current accuracy or quality of prediction
our model is making. The two main forms of loss function are regression losses,
which attempt to synthesize real valued and possibly high dimensional output
predictions that accurately fit trends in the input data; and classification losses that
attempt to make predictions which are used to model a decision boundary between
a discrete set of class labels.

Regression In the regression setting the most commonly used loss functions are
the £, and £, losses due to their simplicity and empirical performance in many
applications. The main difference between these objective functions is that the £;
loss weights deviations from the expected value linearly while the £, loss weights
deviations quadratically. For the £ loss, this has the effect of exacerbating the con-
tribution to the overall loss from examples in the data which are poorly represented
by the model, implying that a good way to minimize the objective function is to
work on better predicting these misrepresented examples. A limitation of the L5 loss
is that by weighting the deviations quadratically the gradient of the loss function
becomes large for values that far from their expected value. This can cause instability
during training leading to an “exploding gradient” problem. A drawback of the £;
loss is that its derivative is discontinuous as the loss function passes over origin with

2.4 Machine Learning

63



64

a value of +1 without a smooth transition in between these extremes. This can also
have the effect of causing instability during training as it is desirable for the gradient
of parameters to suppress as they become close to their ideal values.

C
Ly =) lyi— il
=1
1 & .
Lo==> (yi— i)

2 i=1

(2.66)

Equation 2.66 shows the general form of the £; and £ loss functions for a set of
predicted values output from the model § and their expected values from the dataset
y. These loss functions are defined as a summation over the C' output neurons from
the model. This generalizes the loss functions from working on scalar values to
operate on higher dimensional regression targets such as signals, images, volumes,
and more.

Classification For classification tasks the goal of our model is to predict a probabil-
ity for each of our possible output classes that represent the models confidence that
the given input is an example of that class. To do this, we structure our models to
have as their output a feature vector containing the same number of features as we
have classes. Our model is trained to predict a greedy decision boundary between
these features such that the feature with the biggest activation for a given input
is considered to be intended classification choice. We refer to this task as “logistic
regression” where the output features of our model are termed “logits”. For a given
input the predicted logits can have any real numbered value making them difficult
to interpret w.r.t. one another. To transform these raw values into predicted class
probabilities we can transform them using a Softmax activation function (equation
2.67). This non-linearity forces all logits to become in the range [0, 1] where a flat or
multi-modal distribution between values represents low certainty and a uni-modal
distribution represents high certainty.

et

c
>, e
j=1

A

i =

(2.67)

With our logits transformed into predicted class probabilities we define the Categori-
cal Cross-Entropy, Lcategorical> 10ss for a model with C output classes as a measure of
mutual information between the expected and predicted probability vectors. In this
formulation, the true values from the dataset are constructed as “one-hot” vectors
where the expected value for each output class is 0 except for the intended class

Chapter 2 Related Work



which is given probability 1. Equation 2.68 shows the general form of the Lcategorical
loss operating on Softmax activated logits.

C
ECategorical = - Z yi lng; (2.68)
=1

A drawback of this formulation for the Lcaegorical 10ss is that it forces the intermediate
evaluation of the sum over the constant e is raised to a power. By combining
equations 2.67 and 2.68 and simplifying the result we can formulate the Lcategorical
loss to operate directly on un-activated logits. Equation 2.69 shows the combined

activation and loss which now only contains two natural logarithms per output class.
In this configuration, the true class labels y are still represented as one-hot vectors.

C
LCategorical = - Z yilna; + (1 —y;) In(1 — a;) (2.69)
=1

2.4.1.3. Training by Back-Propagation

Until now we have only loosely discussed how ANN models such as MLP are trained
to perform a given task. Given a large corpus of labelled data containing example
inputs and their desired outputs, and a randomly initialized set of model weights,
Rumelhart et. al. [Rum+85; Rum+95] propose a method of training ANN models
by minimizing an objective function by gradient descent. For this training scheme
we begin by extending our definition of the loss function to be an average loss over
the NV examples in our dataset (equation 2.70).

1
L=5D> Ln (2.70)

At each training step, we compute the average loss over all examples in the the
dataset and use this value to compute the derivative of each trainable parameter that
we would like to optimize w.r.t. the loss. For each parameter we update its value by
stepping a small amount downhill in the opposite direction of the gradient of our
parameters. The distance we step for each parameter is determined by scaling its
gradient by a learning rate n which is tuned to give stable and consistent training
performance. Equation 2.71 shows the general form of a gradient update for each of
the trainable weight matrices and bias vectors described in equation 2.61.

oL
V=V -na where Ve {WO,Bl, Wl,BQ,W2,B3} (2.71)

2.4 Machine Learning

65



66

To compute the gradient of our parameters w.r.t. the loss function we recursively
apply the chain-rule to step backwards through the network, propagating the gra-
dient calculation from one intermediate result to its predecessors until we have
evaluated the gradients for all of the parameters we want to update. Recently,
Automatic Differentiation [NeilO] frameworks have come into widespread use in
popular programming frameworks such as Tensorflow [Aba+15]. These frameworks
model arbitrary mathematical formulas as static computation graphs which know
how to compute the derivatives of their constituent parts. For performance critical
derivative calculations hand coded and optimized implementations can be specified,
however, in many cases this is not necessary. By simplifying the process of defining
the gradients of our models w.r.t. their parameters it is now easier than ever to
experiment with complex and exotic model architectures.

A limitation of training by gradient descent is that in order for models to accurately
learn strategies for complex tasks a large amount of training data, on the order of
hundreds of thousands or millions of examples, is needed for the model to extract
a robust and generalized strategy. This often causes severe limitations on memory
complexity and model size when we try to implement our models on GPU devices.
Stochastic Gradient Descent [Bot10] offers a solution to this problem by drawing
random batches of training samples from the dataset without replacement and
performing a gradient descent step for each batch of samples. When the dataset has
been exhausted the process repeats, sampling batches from the dataset in different
combinations and order without replacement. Each full pass of the dataset is
generally referred to as an “epoch” of the training procedure. In this setting we can
see that the standard gradient descent algorithm is simply an instance of stochastic
gradient descent where the batch size is equal to the size of the dataset. Recent work
has focused on the development of more advanced optimization algorithms which
build off of stochastic gradient descent [TH12; KB14; Duc+11]. These methods draw
inspiration from work in the physics domain, applying concepts such as momentum,
velocity, and friction to structure gradient descent as a physical simulation of a mass
sliding on a high dimensional surface.

2.4.2 Convolutional Neural Networks (CNN)

A major limitation of models such as MLP is that the number of weights needed grows
proportionally to the product of the number of input and output features in each
layer. When the input features are the pixels of images, potentially with multiple
colour channels, the number of parameters can become infeasible to optimize over.
The seminal work by LeCun et. al. [LeC+98] developed a powerful generalization on
MLP type models, replacing individual scalar features with tensors (single channel
images in the 2D case) and scalar entries in the weight matrices with convolutional

Chapter 2 Related Work



kernels. This constrains the model such that individual pixels in the feature maps of
one layer are only connected to a small local neighbourhood of pixels in the feature
maps of the next layer. This greatly reduces the number of parameters needed,
making the training of extremely large models that operate on signal, image, or
volumetric data computationally feasible to train [Kri+12; SZ14; Sze+14; He+15a;
Hua+16].

To convolve a single feature map a with a kernel K, the kernel is placed centred
over each pixel of « in a sliding window over the image. As the kernel slides over
each pixel, the value of the output pixel in @’ is the summation of element-wise
multiplication between each element in the kernel and the pixel value currently
beneath it. Equation 2.72 shows the general form of convolution on a single
channel image. The auxiliary variables mn are the offsets indices of the local pixel
neighbourhood around the current pixel ;.

d=axK
K. Ky
a;j = Z Z Amn K uv
u=lv=1 (2.72)
. Ky
where m = (2—7)+(u—1)
Ky

The extension of the element-wise form of equation 2.59 from MLP to operate on
feature maps, and using convolution rather than multiplication, can be seen in
equation 2.73.

Nt
I+1 +1 l l

where B! = {1 x N't1}
and W!={N!'x N x K! x K\ }

(2.73)

In this form, N* input feature maps are transformed into N'*! output feature maps.
The bias vector B'*! still contains only a single scalar additive gain for each output
feature map, now applied to each of its pixels. However, the weights 1/ are now
a 4D tensor of convolutional kernels with size N' x N'*! x K} x K., where W}
represents the K| x K| kernel convolved with the i** input feature map as part of
the computation of the j** output feature map.

2.4 Machine Learning

67



68

2.4.3 Discussion

Machine learning offers us a way to develop strategies for training systems to
perform complex tasks and to extract meaningful information directly from the raw
data of the problem domain. Early work on ANN led to the development of MLP
[Ros57; Rum+85] models and the algorithms needed to fit them to training data
such as stochastic gradient descent [Bot10] via back-propagation of error gradients
[Rum+95] (section 2.4.1.3). These models were shown to be effective for both
continuous domain prediction through regression (section 2.4.1.2) and in discrete
predictions tasks such as classification (section 2.4.1.2).

Models such as MLP, which operate on scalar valued features suffer from scalability
issues which make them infeasible for application on tasks with large numbers
of input or output features. The extension and generalization of these models to
Convolutional Neural Network (CNN), which replace scalar features with multi-
dimensional feature maps and weight multiplications with kernel convolutions, has
had a paradigm shifting impact on the focus of deep learning research. When
provided with enough data from the task domain, these models have sufficient
capacity to learn strategies for extracting meaningful features directly from the
raw data. With the recent prevalence of high performance compute devices such
as GPU this has allowed for the development of increasingly large and expressive
models [Kri+12; SZ14; Sze+14; He+15a; Hua+16] that perform well on a variety
of complex tasks.

2.5 Image Quality Assessment

When working with image data we often need to compare and contrast the dif-
ferences between images, or to assign them with a measure of quality w.r.t. their
intended values. Such measures of quality should ideally reflect the sensitivities of
the Human Visual System (HVS) and the perceptibility of distortions, making them
an inherently subjective measure.

Over the years, IQA measures have been proposed which approach this task from a
number of different perspectives. Early work focused on the development of simple
numerical divergences that compare values at each pixel within the input images
and pool these divergences to give a single scalar value representing the average
divergence. Recently, much work has been targeted at understanding and modelling
the relationship between image distortions and the perceived changes in quality that
are seen by human observers. These methods often approximate our sensitivities to
effects such as contrast masking were colour intensities appear distorted by their

Chapter 2 Related Work



surroundings, and effects where interference patterns in spatial frequency cause us
to perceive structures that are not actually present with images.

IQA measures can be roughly classified into three categories, commonly referred to
as FR-IQA, Reduced Reference Image Quality Assessment (RR-IQA), and NR-IQA.

2.5.1 Full-Reference Image Quality Assessment

In FR-IQA, distorted test images are compared to GT reference images which are
known to be correct and distortion free. Formally a quality score of the form shown
in equation 2.74 is computed where I is the image we wish to evaluated and R is
the GT reference image. £ is a function designed to measure the differences between
the pixels of the test and reference images, or more generally between the local
neighbourhoods around each pixel.

Q=¢(IR) (2.74)

In many cases, simple numerical divergences such as Mean Squared Error do not
accurately reflect the sensitivities of the HVS to image distortions, causing the
reported error values to be a poor indicator of visual quality and fidelity. To resolve
this issue, many methods have been proposed [CHO7; DV+00; SB06; She+05a;
WB02; Wan+04a; Wan+03; WL11; Zha+11c; BK16; BK16; Man+11] that use
advanced techniques such as approximations of the HVS to identify image regions
that human observers are more sensitive to. These methods are commonly applied
at multiple spatial resolutions by decomposing input images through Multi-scale
Geometric Analysis (MGA) methods. An in-depth review of prior FR-IQA methods
and their design principles is given in section 4.2.

FR-IQA measures are most commonly used in the physically based rendering lit-
erature as a means of comparing the quality of images produced with competing
rendering algorithms to GT reference images that are rendered to a significantly
higher visual quality than test images. This is most commonly performed in ei-
ther equal time or equal sample count comparisons to display the efficiency of
computation and rate of convergence for the proposed methods.

An issue with this experimental design is that it assumes the availability of the GT to
use as reference image in FR-IQA. When the reference image is the product of Monte
Carlo rendering process we are faced with the scenario that our reference will only
converge to the GT in the limit, as an infinite amount of computation is used in its
creation. For any reference image computed using a finite amount of computation
some magnitude of distortion will present. In chapter 4 we investigate the robustness

2.5 Image Quality Assessment

69



70

of existing FR-IQA measures when we consider the scenario where the reference
image is not a perfect representation of the GT. To this end we provide an in-depth
study using an array of FR-IQA measures sampled from the literature together with a
large dataset of images rendered with Monte Carlo rendering algorithms to varying
degrees of quality.

2.5.2 Reduced-Reference Image Quality Assessment

In some circumstances we may not have access to the full GT reference image,
instead only having an approximation of the GT. In these cases we can apply RR-IQA
measures which work on the assumption that while the reference image does contain
some magnitude of distortion, it is in general a good enough approximation of the GT
to be used to evaluate the quality of a test image. Formally, an approximate quality
score of the form shown in equation 2.75 is computed where R is an approximate
reference image that is representative of the unknown GT R.

O~ E (I, R) (2.75)

In this configuration, £ is a function which does not explicitly compare the values at
each pixel or pixel neighbourhood, but rather compares the distribution of features
extracted from the test image to the distribution of those features in the reference
image [Tao+09; ER04]. This distinction allows for subtle distortions in the reference
image to be accommodated as their effect on the overall distribution of extracted
features should be small when the chosen features are sufficiently robust to the
intended distortion domain. A review of RR-IQA methods and their design principles
is given in section 4.2.

2.5.3 No-Reference Image Quality Assessment

Lastly, we consider the scenario where we would like to evaluate the quality of a
potentially distorted image without knowing its true value. In NR-IQA test images
are compared to a distribution just as with RR-IQA measures, however for NR-
IQA compared distribution is not extracted from a reference image, but is instead a
distribution learned from a corpus of distorted and clean images containing a specific
class of distortions [Saa+10; MB10; Mit+12a; Kun+16a; She+05b; Mit+13a;
Liu+16]. Formally, a predicted quality score of the form shown in equation 2.76
is computed where the function £ contains parameters which are fit to a specific

Chapter 2 Related Work



distortion profile extracted from representative image data. An in-depth review of
prior methods in NR-IQA is given in section 5.2.

Q~ & (I (2.76)

In the context of physically based rendering, NR-IQA measures give us a way of
predicting the visual fidelity of rendered images before they have converged, without
needing to know their true values. In chapter 5 we investigate the use of machine
learning techniques such as CNN to develop NR-IQA measures trained directly on
domain distortions using a large dataset of Monte Carlo rendered images. We
develop novel objective functions and data augmentation schemes to enable the
stable and robust training of such models and show that they can approximate, to
within a high degree of accuracy, the quality assessment given by FR-IQA measures
without having access to the GT reference image.

2.6 Summary

In this chapter we have reviewed the classical and recent works which lay the
foundation for the contributions made in this thesis. The use of Bayesian methods to
construct unbiased estimators of complex and high-dimensional integral equations is
leveraged heavily in the fields of physically based rendering and machine learning.

Path tracing as a convergent solution to the rendering equation [Kaj86] (section
2.3.4) opened the door for the application of Monte Carlo sampling techniques
throughout all aspects of the rendering process. From the use of simple Monte
Carlo estimators (section 2.2) for the primary pixel estimates, to the construction
of path-space samples using Markovian random walks (section 2.2.2), and the use
of importance sampling (section 2.2.3) techniques to accurately draw reflected
directions from the interactions of rays with physically based material models.

This was later extended upon through the development of bidirectional path trac-
ing [LW93; Vea97] (section 2.3.6) which developed multiple-importance sampling
(section 2.2.4) as a means of combining multiple, potentially biased, estimators to
create a unified unbiased estimator with lower variance and well stratified sampling
properties. From this work, several advanced rendering algorithms were developed
which applied increasingly sophisticated sampling strategies in order to make ef-
fective use of information that was being discarded during the rendering process.
Algorithms such as MLT [VG97], PSSMLT [Kel+02], MMLT [Hac+14], and ERPT
[Cli+05; BatO5] (section 2.3.7) apply a variety of techniques based on MHMC
(section 2.2.2.1) and HMC [Li+15] (section 2.2.2.2) to mutate path samples drawn

2.6 Summary

71



72

through BDPT. This allows them to explore locally within hard to sample regions of
the path-space, greatly improving rendering convergence.

A key stage in the rendering process is the evaluation of differences in perceived
quality between images generated with different rendering algorithms. IQA (section
2.5) is an inherently subjective task which requires the development of systems that
accurately model the sensitivities of the HVS to the types of distortions we expect
to see in rendered images. When evaluating the relative performance of competing
rendering techniques FR-IQA (section 2.5.1) is commonly employed, to compare
images rendered with competing methods to GT reference images that are rendered
to a significantly higher visual quality. In chapter 4 we provide a large ensemble
study on the effects that distortions from Monte Carlo rendering processes have
on the quality scores given by existing FR-IQA measures. Specifically, we study
their robustness when we consider that the GT reference image is also the result
of a Monte Carlo rendering process and may contain some magnitude of natural
distortion, and we give recommendations on FR-IQA measures which are appropriate
to use in this setting.

Before the rendering process has converged, and when the GT is not available,
NR-IQA (section 2.5.3) methods can be used to predict the visual quality of images
by comparing them to a known distribution of distortions extracted from a corpus of
labelled images. In chapter 5 we investigate the use of deep learning applied to the
NR-IQA. With this work we aim to faithfully predict a quality map for each pixel in
a distorted image produced by Monte Carlo rendering methods without access to
the unknown GT reference image. We develop CNN (section 2.4.2) architectures,
objective functions, and data augmentation schemes that allow us to train our
proposed models directly from a large dataset of images rendered with Monte Carlo
rendering algorithms to varying levels of visual quality. We show that such models
are capable of approximating robust FR-IQA measures to within a high degree of
accuracy.

Chapter 2 Related Work



A modern C++ approach to High
Performance Computing with MPI

In order to study the robustness of IQA measures when evaluating images from
Monte Carlo rendering processes we required a large dataset of images containing
varying degrees of distortion with which to perform our analysis. To generate this
data we looked to HPC methods as a means of parallelizing our implementations of
Monte Carlo rendering algorithms across distributed computing environments such
as HPC Wales.

The development of these implementations, which used a combination of modern
C++ and the C MPI framework, exposed a number of limitations and vulnerabilities
of MPI with regards to type-safety and code complexity. This led to the development
of a modern C+ + wrapper framework around MPI, which aims to protect against
these vulnerabilities and add higher level functionality not provided by the MPI
framework.

3.1 MEL - The MPI Extension Library

MEL is a C++11, header-only library, being developed with the goal of creating a

lightweight and robust framework for building parallel applications on top of MPI.

MEL is designed to introduce no (or minimal) overheads while drastically reducing
code complexity. It allows for a greater range of common MPI errors to be caught at
compile-time rather than during program execution when it can be far more difficult
to debug.

A good example of this is type safety in the MPI standard. The standard does not
dictate how many of the object types should be implemented leaving these details to
the implementation vendor. For instance, in Intel MPI 5.1 wp1_comn objects and many
other types are implemented as integer handles, typedef int MPT_comm, to opaque
data that are managed by the MPI run-time. A drawback with this approach is it
causes compile time type-checking of function parameters to not flag erroneous
combinations of variables. The common signature MP1_send(void*, int, MPI_Datatype
, int, int, MPI_comm) is actually seen by the compiler as vr1_send(void*, int, int,

int, int, int), allowing any ordering of the last five variables to be compiled as

73



74

valid MPI code, while potentially causing catastrophic failure at run-time. In contrast,
Open MPI 1.10.2 implements these types as structs which are inherently type-safe.

With MEL we aim to:

Remain true to the underlying design of MPI, by keeping to an imperative
function interface that does not fundamentally change the way in which the
programmer interacts with the MPI run-time.

To provide a type-safe, consistent, and unified function syntax that allows
distributions of MPI from all vendors to behave in a common and predictable
way at both compile-time and run-time.

To be soluble, allowing the compiler to remove the abstractions MEL provides
to achieve the same performance as native MPI code.

To be memory efficient by minimizing the use of intermediate buffers whenever
possible.

To make use of modern C++ language features and advanced template meta-
programming to both ensure correctness at compile-time and to generate boiler-
plate values that programmers would otherwise have to provide themselves
with native MPI code.

To give higher-level functionality that is not available from the MPI standard
such as deep-copy Semantics.

Work on MEL’s deep-copy module was originally published in the journal PeerJ-CS
[Whi+16] in November of 2016, by the thesis author alongside Prof Mark Jones and
Dr Rita Borgo.

3.2 Static Safety and Implicit Parameter

Deduction

As described above, in certain MPI distributions vp1_comm objects and many other
types are implemented as integer handles, typedef int MPI_comm, to opaque data that
are managed by the MPI run-time. MEL solves this issue by providing lightweight
wrappers around all MPI handle types which provide the missing type safety and
compile time parameter checking. These wrappers are stripped away by the compiler

Chapter 3 A modern C++ approach to High Performance Computing with MPI



after type checking and have no impact on performance regardless of whether
the underlying MPI distribution uses opaque integer handles or well defined C
structures.

Minimal wrappers for all MPI defined handle types such as vp1_comm, MPT_Group,
MPT_Request, and MPT_batatype are provided by MEL to give a consistent and robust
programming interface.

Template meta-programming is used heavily throughout MEL to apply static type
checking to ensure code correctness and in order to infer function parameters which
normally have to be stated explicitly by the programmer. These checks and inferences
are made at compile time and do not impact the efficiency of the compiled code.
Rather, they simply remove possible sources of error that come from the programmer
being tasked to manage the many interdependencies within their code.

A demonstrative example of this can be seen in the memory allocation routines
of MPI and MEL. In MPI, the programmer is responsible for allocating the correct
number of bytes for allocated memory, this requires scaling the number of elements
desired by the size of the type being allocated. This is a simple but easy to miss
detail in the code that the compiler has no means of distinguishing the correctness
of; the result of which yields invalid memory access, but may not cause the program
to outright halt, instead allowing the program to continue trying to execute in an
undefined and unstable state. In MEL, template meta-programming is used to specify
the type being allocated, and the conversion from element count to byte count is
done implicitly using this information, removing the chance of programmer error.

These design patterns and parameter inferences are used throughout MEL and
cover the entire MPI standard. MEL also provides helper functions which greatly
simplify the creation of Derived Datatypes, the configuration of Process Topology
communicators, and the addition of User Defined Operations for reduction style
operations.

3.3 MEL - Deep-Copy

Message passing is an established communication paradigm for both synchronous
and asynchronous communication in distributed or parallel systems. Using MPI
with Object Orientated (OO) languages is not always an easy task — while control
on memory locality and data distribution represent extremely valuable features,
dealing with the ever growing and sophisticated features of OO languages can be
cumbersome.

3.3 MEL - Deep-Copy

75



76

This problem is particularly challenging for data structures employing abstractions
(e.g, inheritance and polymorphism) and pointer indirection, since transferring these
data structures between disjoint hosts requires deep-copy semantics. For user defined
objects MPI adopts shallow copy semantics, whereby default copy constructors
and assignment operators perform shallow copies of the object leaving memory
allocation, copy, and de-allocation to be the responsibility of the programmer, not
the implementation. A similar policy is applied to MPI objects, represented as
handles to opaque data that cannot be directly copied. Copy constructors and
assignment operators in user defined objects that contain an MPI handle must either
ensure to invoke the appropriate MPI function to copy the opaque data (deep-
copy) or use a reference counting scheme that will provide references to the handle
(reference counted shallow copy). Shallow copy is acceptable for shared-memory
programming models where it is always legal to dereference a pointer with the
underlying assumption that the target of member pointers will be shared among
all copies. Users often require deep-copy semantics, as illustrated in Fig. 3.1,
where every object in a data structure is transferred. Deep-copy requires recursively
traversing pointer members in a data structure, transferring all disjoint memory
locations, and translating the pointers to refer to the appropriate device location
(also referred to as object serialization or marshalling), commonly used for sending
complex data structures across networks or writing to disk. MPI has basic support
for describing the layout of user defined data types and sending user-defined objects
between processes [Mes14].

Scene Triangle*
— —

std::vector<Triangle>

— —

std::vector<Material>

TreeNode*
Camera || — —
— —— TreeNode* _> TreeNode
e ey e
TreeNode*||TreeNode* m m
TreeNode* TreeNode*

TreeNode TreeNode

—_— A A ——A — S ————— < I <— Y <—Y _—_—

Fig. 3.1.: An example of a structure that requires deep-copy semantics. Arrows represent
pointer traversals to disjoint regions of memory.

Chapter 3 A modern C++ approach to High Performance Computing with MPI



The directives we propose provide a mechanism to shape and abstract deep-copy
semantics for MPI programs written in C++. Along with elegantly solving the deep-
copy problem, this mechanism also reduces the level of difficulty for the programmer
who only needs to express the dependencies of an object type, rather than explicitly
programming how and when to move the memory behind pointers.

As a motivating example, we show that comparable performance can be achieved
when using a simple and generic algorithm to implement deep-copy compared to
hand coded native MPI implementations. We provide generic implementations of
deep-copy semantics that can be easily applied to existing code to enable complex
structured data to be deep copied transparently as either a send, receive, broadcast,
or file access operation with minimal programmer intervention. The latter can also
be used for the purpose of check-pointing when writing fault tolerant MPI code.

3.3.1 Related Work

Message passing as a style of parallel programming enables easy abstraction and
code composition of complex inter-process communications. Existing MPI interfacing
libraries [McC+96; Hua+06; BC15b] by default rely on the underlying standard
shallow copy principle, where data contains no dependencies on memory outside
the region directly being copied; and that where dependencies do exist that they are
explicitly resolved by the programmer using subsequent shallow copies. However,
this simplified model of communication comes at the cost of having to structure
computations that require inter-process communication using low-level building
blocks, which often leads to complex and verbose implementations [Fri+13]. Similar
systems, such as the generic message passing framework [LL03] resolve pointers
to objects, but do not follow dynamic pointers (data structure traversal) to copy
complete complex dynamic structures possibly containing cycles.

MPI works on the principle that nothing is shared between processes unless it is
explicitly transported by the programmer. These semantics simplify reasoning about
the program’s state [HS11] and avoid complex problems that are often encoun-
tered in shared-memory programming models [Lee06] where automatic memory
synchronization becomes a significant bottleneck.

Autolink and Automap [Gou+98] work together to provide similar functionality.
Automap creates objects at the receiver. Autolink tags pointers to determine whether
they have been visited or not during traversal. The user must place directives in
their code and carry out an additional compilation step to create intermediate files
for further compilation. Extended MPICC [Ren07] is a C library that converts user-
defined data types to MPI data types, and also requires an additional compilation. It

3.3 MEL - Deep-Copy

77



78

can automate the process, but also in some cases requires user input to direct the
process. Tansey and Tilevich [TTO8] also demonstrate a method to derive MPI data
types and capture user interaction via a GUI to direct the marshalling process.

Autoserial Library [GNAO8] gives a C++ interface for performing serialization to
file as binary or XML, or to a raw network socket as binary data. Their library
also offers a set of convenience functions for buffering data to a contiguous array
with MPI communications to move the data. Their method makes extensive use
of pre-processor macros to generate boilerplate code needed for deep traversal of
objects. For MPI, this library only handles the use case of fully buffered deep-copy in
the context of MPT_send and MPT_Recv communications.

OpenACC [Bey+14] tackles the deep-copy problem in the context of transferring
structured data from host machines to on node hardware such as GPUs and Acceler-
ators. Their approach is based on a compiler-implemented #pragna notation similar
to OpenMP while our method is implemented as a header-only template library.

TPO++ [Gru+00] requires serialize and deserialize functions to be defined. The
paper highlights good design goals which we also follow in this work.

Compared to the above approaches, we place much lighter requirements on the user
and do not require additional signposting (usually implemented as preprocessor
macros wrapped around variable declarations) that other methods require. We
do not require an additional compilation step or GUI compared to the above as
will be demonstrated in the following sections. We also provide an analysis of our
approach. We explicitly demonstrate and analyze our approach on a wide variety
of complex dynamic data structures. Our analysis shows that our approach has
low time and memory overhead and also requires less user direction to achieve
deep-copy. It provides this extra functionality at no loss of performance over hand
coded approaches. We avoid the in-place serialize that some approaches utilize,
resulting in our approach having a low memory overhead. We also evaluate our
methods in comparison to Boost Serialization Library [Cog05] and demonstrate
that Boost introduces a performance penalty which our method avoids. Boost
also requires more intervention from the user / programmer to achieve the same
capability. Therefore the main benefit of our approach over others is that it is a true
deep-copy approach where the user only has to pass in the root object / node of the
data structure.

In CHARM+ + [KK93; Mil15] messages are by default passed by value, however
CHARM + + provides support for deep-copy via definition of serialization methods
for non contiguous data structures. It is a user task to define the proper serialization
methods including the explicit definition of memory movement and copy operations.

Chapter 3 A modern C++ approach to High Performance Computing with MPI



If the serialization methods are implemented correctly for a user-defined type, a
deep-copy will be made of the data being serialized. CHARM+ + distinguishes
between shared-memory and distributed-memory scenarios, where shared-memory
data within a node can be directly passed by pointer. The programmer must explicitly
specify the policy to be adopted by indicating if the data should be conditionally
packed or not. Conditionally packed data are put into a message only when the data
leaves the node. In an MPI environment processes within the same node do not
share a common address space making such an optimization unavailable.

Generally the more desirable solution is to avoid deep-copy operations to maintain
efficiency in message transmission. This is straightforward to achieve by converting
user-defined types with pointer members to equivalent user-defined types with
statically-sized arrays. This approach of restructuring and packing a data structure
is often used by shared-memory programming paradigms where structures with
pointers are manually packed and unpacked across the device boundary to reduce
transfer costs for data structures used on the device.

When memory isolation (e.g., avoiding cross boundary references) is not a require-
ment other approaches might be possible. For operations executed within sequential
or shared memory multi-core processors, hardware can be used more efficiently
by avoiding deep-copy operations and relying instead on pointer exchange. This
requires messages to have ownership transfer semantics with calls to send (pass)
ownership of memory regions, instead of their contents, between processes [Fri+13].
In the context of the present work we do not focus on ownership passing but on the
traditional approach of refactoring code. MEL provides an efficient and intuitive
alternative to implementing object packing by hand. Porting an object type to use
MEL deep-copy only requires adding a member function to the type containing
directives that describe the dependencies of the type. In this case, the additional
effort to rewrite data structures to allow communication using the standard MPI
shallow copy principles is much larger, making refactoring an application to avoid
deep-copy an undesirable solution.

Deep-copy semantics are not only relevant when dealing with inter-process com-
munication. When recovering from process or node failure in fault tolerant MPI,
applications often incur problems very similar to the ones dealt with by deep-copy
operations. Fault tolerance plays an important role in high performance comput-
ing applications [HR15] and significant research has focused on its development
in MPI [GL0O4; Vis+10; Boul5]. While the library itself does not provide explicit
fault tolerance support, MPI can provide a standard and well structured context
for writing programs that exhibit significant degrees of fault tolerant behaviour.
Several approaches have been investigated in literature to achieve fault tolerance in
MPI [GLO4; Lag+14], with check-pointing being one of the most commonly used

3.3 MEL - Deep-Copy

79



80

compared to more sophisticated approaches involving direct manipulation of the
MPI standard to support fault tolerance [Fag+01; FD04], or modifying semantics of
standard MPI functions to provide resilience to program faults.

In check-pointing, a process will periodically cache its work to disk so that in the
event of a crash or node failure, a newly spawned process can load back the last
saved state of the failed process and continue the work from there. When the
data a process is dependent on is deep in structure, the implementation challenges
associated with reading and writing the data to disk are the same ones encountered
when handling the communication of such types. MEL provides support for fault
tolerance by leveraging deep-copy semantics to transparently target file reads and
writes in the same manner it handles the sending and receiving of inter-process
communications.

3.3.2 When to use Deep-Copy

It is important that programmers be aware of the dangers of shallow-copying deep
types without also resolving any dependencies of that type. For example, if an object
contains a pointer and is copied by its memory footprint to another MPI process the
value of the contained pointer on the receiver is now dangling and accessing the
pointed to memory erroneous. Listing 3.1 shows an example of performing such
an MPI shallow-copy when a deep-copy was needed. Throughout the rest of this
chapter code listings with a shaded background will denote example use cases and
usage of our algorithm while listings without shading denote the implementation
details of the algorithm.

1 | struct SomeStruct {

2 int *ptr = nullptr, len = 0;

303}

4

s /]

6 | // On sending process
SomeStruct myVar;

9| // Allocate sub array
10 | myVar.len = 10;
11 | MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.ptr));

13 | // Populate sub array with values...
14 | for (int i = 0; i < myVar.len; ++i) myVar.ptr[i] = 1;

16 | MPI_Send(&myVar, sizeof(SomeStruct), MPI_BYTE, dst_rank, tag, comm);
19 | // On receiving process

20 | SomeStruct myVar;
21 | MPI_Recv(&myVar, sizeof(SomeStruct), MPI_BYTE, src_rank, tag, comm);

Chapter 3 A modern C++ approach to High Performance Computing with MPI




23 | // Error! myVar.ptr is a dangling reference to memory of the sending
24 | // process!

Listing 3.1: User Example - Error from not resolving the data dependencies of an object
when copying with MPI.

While accessing the pointed to memory is invalid, if we declare as a rule that if a
pointer is not allocated it will be assigned to nul1ptr (and we strictly adhere to this
rule), we can use the value of the dangling pointer to determine if an allocation
needs to be made and data received on the receiving process. Listing 3.2 gives a
corrected example of Listing 3.1, by deep-copying a struct containing a pointer safely

using native MPI commands.

VO ® N o U AW N

WoW W W W W W W W NN NN NN NNNN R = R e e e e e e
® N O R @O N B O OV ® N O U R WN = O 0V ® N O U A WN = O

Listing 3.2: User Example - Hand coded deep-copy using a dangling pointer from the

struct SomeStruct {
int *ptr = nullptr, len = 0;
}s

// On sending process
SomeStruct myVar;

// Allocate sub array
myVar.len = 10;
MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.ptr));

// Populate sub array with values...
for (int i = 0; i < myVar.len; ++i) myVar.ptr[i] = 1;

// Send the footprint of the struct, allowing the receiver to check
// if ptr == nullptr or len ==
MPI_Send(&myVar, sizeof(SomeStruct), MPI_BYTE, dst_rank, tag, comm);

// Resolve the dependency of the struct
if (myVar.ptr != nullptr && myVar.len > 0) {
MPI_Send(myVar.ptr, myVar.len, MPI_INT, dst_rank, tag, comm);

// On receiving process
SomeStruct myVar;

// Receive the footprint of the struct so we can check if the array
// needs receiving
MPI_Recv(&myVar, sizeof(SomeStruct), MPI_BYTE, src_rank, tag, comm);

// Resolve the dependency of the struct
if (myVar.ptr != nullptr && myVar.len > 0) {

MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.ptr));

MPI_Recv(myVar.ptr, myVar.len, MPI_INT, src_rank, tag, comm);
}

sending process to determine if data needs to be received.

3.3 MEL - Deep-Copy

81



82

If an object which implements its own memory management through copy / move
constructors and assignment operators, such as std::vector, is used, heap corruption
can occur in a manner that can be difficult to debug. An example of this is shown in
Listing 3.3. If a std::vector is copied by footprint its internal pointer, just like the
raw pointer previously, is no longer valid. The vector class works on the assumption
that its internal pointer is always valid, and that it needs to be de-allocated or
re-allocated if any of the assignment, resize, or destructor functions are called. If
the vector goes out of scope and its destructor is called the incurring segfault will
often not be caught correctly by a debugger and the error will be reported “nearby”,
leaving the programmer to hunt down the true source of the error. Short of using
the C++ placement-new operator to force the vector to be recreated without calling
its destructor there is no way of “safely” recovering in this situation.

-

struct SomeStruct {

2 std::vector<int> someVec;

3 (3

4

I 1/
6 | // On sending process

7 | SomeStruct myVar;

8

9 | // push_back into myVar.someVec a few times...

10 | for (int i = @; i < 5; ++i) myVar.someVec.push_back(i);

11

12 | MPI_Send(&myVar, sizeof(SomeStruct), MPI_BYTE, dst_rank, tag, comm);
13

14 | // Resolve the dependency of the struct

15 | if (myVar.someVec.size() > 0) {

16 MPI_Send(&(myVar.someVec[0]), myVar.someVec.size(), MPI_INT,

17 dst_rank, tag, comm);

18 |}

-
e

»
~
~

|
|
!
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
!
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
~
~

[
=

// On receiving process
SomeStruct myVar;
MPI_Recv(&myVar, sizeof(SomeStruct), MPI_BYTE, src_rank, tag, comm);

NONNN
|32 N VTR ]

// If myVar goes out of scope we segfault!

26 | //myVar.someVec.clear(); // Segfault!
27 | //myVar.someVec.resize(10); // Segfault!
28 | //myVar.someVec.reserve(10); // Segfault!
29 | //myVar.someVec = std::vector<int>(); // Segfault!
30 | // ect...

W w
-

// It is safe to access .size() of the vector even if 1dits -internal

w
@

// pointer is dinvalid, we can use this to create a new vector in place,

w
b

// and to determine if we need to receive data.

w W
N G

// Force a new vector to be constructed at the memory address of the

w
N

// existing one without calling the existing vector's destructor.

%)
®

new (&(myVar.someVec)) std::vector<int>(myVar.someVec.size());

How
S o

// Resolve the dependency of the struct
if (myVar.someVec.size() > 0) {
MPI_Recv(&(myVar.someVec[0]), myVar.someVec.size(), MPI_INT,

IS
N =

Chapter 3 A modern C++ approach to High Performance Computing with MPI




43 src_rank, tag, comm);
44 | }

Listing 3.3: User Example - The dangers of copying deep types by their footprint in
memory without fixing them properly on the receiving processes.

3.3.2.1. Buffered vs. Non-Buffered

So far we have discussed methods for deep-copying object types by recursively
traversing the data-structure and performing discrete message operations to resolve
each dependency. While often small there is a performance cost associated with
beginning and ending a communication between processes, and this cost is exacer-
bated when communication occurs between processes on different physical nodes
connected by a network interface. In many cases it is beneficial to pack a deep
structure into a contiguous buffer on the sending process and to transport it as a
single communication, the buffer can then be received and unpacked to reconstruct
the target data structure. Listing 3.4 demonstrates a variant on Listing 3.2 where
data is packed into a buffer before being transported and unpacked on the receiving
process.

While buffered deep-copy enables greater performance when communicating large
structures made up of many small objects between processes, this speed comes at
the cost of increased code complexity and limitations on the size of data that can
be transferred. In the scenario where the data to be deep copied occupies more
than half of the available system memory buffering into a contiguous buffer is no
longer applicable as there is no remaining space in memory to allocate the buffer.
Additionally, for programs that make many small allocations and deallocations during
normal execution system memory can become fragmented, leading to a situation
where there is more than enough available memory to allocate the buffer but it is
split up in many small pieces meaning no one contiguous allocation can be made. In
these scenarios there is no alternative but to perform a non-buffered deep-copy to
move the data.

1 | struct SomeStruct {

2 int *ptr = nullptr, len = 0;

3}

4

s [ /]

6 | // On sending process
7 | SomeStruct myVar;

9| // Allocate sub array
10 | myVar.len = 10;
11 | MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.ptr));

3.3 MEL - Deep-Copy

83



84

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

// Populate sub array with values...
for (int i = 0; i1 < myVar.len; ++i) myVar.ptr[i] = 1i;

// Calculate buffer size and allocate space

int buffer_size = sizeof(SomeStruct);

if (myVar.ptr != nullptr && myVar.len > 0) {
buffer_size += (sizeof(int) * myVar.len);

char xbuffer, xpos;
MPI_Alloc_mem(buffer_size, MPI_INFO_NULL, &buffer);
pos = buffer;

// Pack the struct itself to move non-deep members
memcpy (pos, &myVar, sizeof(SomeStruct));
pos += sizeof(SomeStruct);

// Pack the array of the struct

if (myVar.ptr != nullptr && myVar.len > 0) {
memcpy (pos, myVar.ptr, sizeof(int) * myVar.len);
pos += sizeof(int) * myVar.len;

// Send the buffer

MPI_Send(buffer, buffer_size, MPI_BYTE, dst_rank, tag, comm);

// Free the buffer
MPI_Free_mem(buffer);

// On receiving process
SomeStruct myVar;

// Calculate buffer size and allocate space
MPI_Status status;
MPI_Probe(src_rank, tag, comm, &status);

int buffer_size;
MPI_Get_count(&status, MPI_BYTE, &buffer_size);

char xbuffer, xpos;
MPI_Alloc_mem(buffer_size, MPI_INFO_NULL, &buffer);

pos = buffer;

// Receive the buffer

MPI_Recv(buffer, buffer_size, MPI_BYTE, src_rank, tag, comm);

// Unpack the struct itself to move non-deep members
memcpy (&myVar, pos, sizeof(SomeStruct));
pos += sizeof(SomeStruct);

// Unpack the array of the struct
if (myVar.ptr != nullptr && myVar.len > 0) {

MPI_Alloc_mem(myVar.len * sizeof(int), MPI_INFO_NULL, &(myVar.ptr));

memcpy (myVar.ptr, pos, sizeof(int) * myVar.len);
pos += sizeof(int) * myVar.len;

Chapter 3 A modern C++ approach to High Performance Computing with MPI




72
73 | // Free the buffer
74 | MPI_Free_mem(buffer);

Listing 3.4: User Example - Hand coded buffered deep-copy using a dangling pointer
from the sending process to determine if data needs to be unpacked.

Buffering may also perform worse than non-buffered methods when the data to be
deep copied consists of a small number of large objects, such as a struct containing
several pointers to large buffers. In this case it may be detrimental to force the local
copying of the large buffers into a single message only to unpack them on the receiv-
ing process when it would have been faster to transport them separately while taking
the hit on the overheads associated with setting up multiple communications.

3.3.3 MEL - Deep-Copy Algorithm Design

Our algorithm is implemented in four parts: a top-level interface of functions for
initiating deep-copy as send/receive, broadcast, or file-IO operation; a Transport-API
of functions that describe how data is to be moved within a deep-copy operation; a
set of transport methods that describe generically how to move a region of memory;
and a hash-map interface for tracking which parts of the data structure have already
been traversed. Figure 3.2 shows the architecture of our algorithm.

MEL::
Deep::

[ Top-Level Interface ]

[ Transport API ]:>[ Transport Methods ]

[ Pointer Hash-Map ]

Fig. 3.2.: MEL Deep-Copy Architecture

In order to ensure correct memory management for deep structures the user must
adhere to the following rules:

* Unallocated pointers are initialized to nuliptr.

* Dynamic Memory must be allocated using vp1_Alloc_mem and freed using
MPI_Free_men, Oor the equivalent MEL calls:

1| T* MEL: :MemAlloc<T>(int len)
2 | T* MEL::MemAlloc(int len, T &value)
3 | void MEL::MemFree(T x*ptr)

3.3 MEL - Deep-Copy

85



86

4 | T* MEL::MemConstruct<T>(Args &&...args)
5 | void MEL::MemDestruct(T *ptr, int len = 1)

* Pointers refer to distinct allocations. E.g. It is erroneous to have an allocation
of the form char *ptr = new char[100] in one object, and to then have a weak-
pointer into the array in subsequent objects: char xmysubPtr = &ptr[50] . In
these situations it is best to store integer offsets into the array, rather than the
pointer address itself.

3.3.3.1. Top-Level Interface

The top-level interface for our algorithm (Listing ??) consists of functions for initiat-
ing a deep-copy as a send, receive, broadcast, or file access operation on a templated
pointer (7x), a pointer-length pair (7, len), an object reference (7&), or an STL
container (std::vector<T>&, std::list<T>&). In the case of receiving methods (recv,
Bcast, and Fileread) the len parameter can either be passed by reference so that it
can be modified to reflect the number of elements that were actually received, or
captured from an integer literal or constant variable to provide a run-time assertion
whether the correct number of elements were received. All methods are blocking
and do not return until the entire data-structure has been transferred.

Buffered variants of the top-level interface initiate a local deep-copy to a contiguous
buffer on the sender, this buffer is then sent as a single transport to the receiving
processes where it can be unpacked. By decreasing the number of MPI communi-
cations or file accesses needed to transfer a deep structure significant reductions
in latency can be achieved, at the cost of added memory overhead from packing
and unpacking data before and after transport. In general, large structures of small
objects (i.e. a tree with many nodes that are small in memory) benefit most from
buffering while smaller structures of large objects (i.e. a struct containing large
arrays) tend to benefit from non-buffered transport.

Another motivating reason for providing a non-buffered mechanism for deep-copy
is the scenario where the deep structure occupies more than half of the available
system memory. In such cases it is not possible to make a single contiguous allocation
large enough to pack the structured data. An example of where this can happen is
the use of MPI to distribute work to banks of Intel Xeon Phi Coprocessors which are
exposed to the host system via a virtual network interface. While such hardware
provides a large number of physical processor cores (60) on card memory is reduced
(8-16GB). On larger systems with more available memory this is less likely to occur

Chapter 3 A modern C++ approach to High Performance Computing with MPI



although the use of non-buffered methods may still be desirable for the reasons
outlined above; and in any case, achieving low memory overhead is good practice.

3.3.3.2. Detecting objects that require Deep-Copy

Determining whether a given object is “deep” or not is performed at compile time
using C+ + template meta-programming to detect the presence of a member function
of the form

template<typename MSG> void DeepCopy(MSG &msg)

that describes how to resolve the dependencies of a given object type. The tem-
plate parameter vsc is a shorthand for MEL: :Deep: :Message<TRANSPORT _METHOD, HASH_MAP
> where TrANSPORT _METHOD and HASH_MAP are types satisfying the constraints described
in sections 3.3.3.5 and 3.3.3.6, respectively. A detailed example of the method used
to detect the presence of a matching member function is given in Section 3.3.4.1.

The use of template meta-programming in C++ allows for the complete set of
possible copy operations needed to transport a structure to be known at compile
time, allowing the compiler to make optimizations that might otherwise not be
possible if inheritance and virtual function calls were used. Template programming
also opens up the future possibility of using more advanced C+ + type_traits such as
std::is_pod<T> (is-plain-old-data) and other similar type traits to help make informed
decisions about how best to move types automatically at compile time.

Because we use the same function for sending / receiving, buffered / non-buffered,
and for point-to-point / collective / file access communications we make use of a
utility type, vessage, that tracks which operation is being performed and where data
is coming from or going to. The message object is created internally when one of the
top-level functions is called and remains unmodified throughout the deep-copy.

3.3.3.3. Message Transport-API

The deep-copy function declares to our algorithm how data dependencies of a type
need to be resolved in order to correctly rebuild a data structure on the receiving
process. To keep the definition of this function simple the vessage object exposes a
small API of functions (Listing 3.5) that abstract the details of how data is sent and
received between processes.

3.3 MEL - Deep-Copy

87



-

// Transfer a deep object. Only needed for deep types!
// Non-deep members are transported automatically
void Message::packVar (T &obj)

// Transfer a deep/non-deep pointer to len objects
void Message::packPtr (T *&ptr, int len = 1)

// Transfer a deep/non-deep pointer to len objects where the pointer
// may also be referenced in other parts of the deep structure. (i.e.

O N o U AW N

-
[S)

// A graph structure where multiple nodes point to a shared neighbour)
void Message::packSharedPtr (T *&ptr, int len = 1)

e e
w N =

// Transfer a std::vector of deep/non-deep objects.
void Message::packSTL(std::vector<T> &vec)

// Or a std::list (doubly linked list).

void Message::packSTL(std::list<T> &lst)

e
® N o oA

// Or use the shorthand operators

-
e

Message& Message::operator&(T &obj)
// » Calls packVar which is only defined for deep types
Message& Message::operator&(std::vector<T> &vec)

NN N
N = o

Message& Message::operator&(std::list<T> &lst)

NN
X &

// Only used 1in Top Level interface functions, these variants differ

N
[

// only from their standard counterparts (above) in that they do not
// assume the parent object has been transported as for the root

// object there s no parent.

void Message: :packRootVar(T &obj)

NONONN
O © N O

void Message::packRootPtr (T *&ptr, int len = 1)

w
o

void Message::packRootSTL(std::vector<T> &vec)
void Message::packRootSTL(std::list<T> &lst)

w
—

Listing 3.5: MEL Implementation - Message Transport-API

Listing 3.6 gives an example usage of the message Transport-API to move a complex

data-structure. All of the functions provided work transparently with both deep

and non-deep types, with the exception of vessage: :packvar which is intended only

for the transport of deep types as non-deep member variables will be transported

automatically. By comparison, Boost Serialization Library requires that all types

except for language defined base types (e.g. int, bool, double) provide serialization

functions regardless of whether they contain deep members, and that all member

variables within the type (including non-deep members) are explicitly registered

with the archive object.

—

struct SomeDeepStruct {
// Non-deep members will be copied automatically.
int a, b, c, len;
SomeFlatStruct d;

// Deep members must be declared in the Deep-copy function
AnotherDeepStruct e, f, g;

char x*myArray = nullptr;

GraphNode *mySharedPointer = nullptr;

O N o U AW N

-
o

std::vector<int> v;

88 Chapter 3 A modern C++ approach to High Performance Computing with MPI




11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

std: :vector<AnotherDeepStruct> w;

template<typename MSG>
void DeepCopy(MSG &msg) {

}s

// Pack a deep object by reference.
msg.packVar(e);

// A lighter syntax for non-pointer members.
msg & f & g;

// Transfer a char array of len elements.

msg.packPtr(myArray, len);

// Transfer a shared pointer that may also be pointed to elsewhere.
msg.packSharedPtr (mySharedPointer) ;

// Transfer a std::vector.

msg.packSTL(V);

// We can also transfer a std::vector or std::list using & syntax.
msg & w;

// In fact, we can simply replace all of the above code with:
msg & e & T & g & v & w;

msg.packPtr(myArray, len);

msg.packSharedPtr (mySharedPointer) ;

Listing 3.6: MEL Implementation - Registering dependencies using the Transport-API

3.3.3.4. An example copy

In essence, the deep-copy algorithm works by both sending and receiving processes
entering a message loop or handshake with one another where they both expect
to keep sending and receiving data until the entire structure has been transferred.
The sending process determines how much data is to be sent, and this information
is conveyed to the receiving processes transparently in such a way that when a
receiving process determines there is nothing left to receive the sending process has
returned.

-

O N o U AW N

// On sending process
int len = 10;
int *ptr = MEL::MemAlloc<int>(len);

// Fill ptr with some values... ptr = [0..len)
for (int i = 0; i < len; ++i) ptr[i] = 1i;

MEL: :Deep::Send(ptr, len, dst_rank, tag, comm);

// On receiving process

int len;

int *ptr = nullptr;

MEL: :Deep::Recv(ptr, len, src_rank, tag, comm);

// len

= 10 and ptr now equals an address to len integers

3.3 MEL - Deep-Copy

89



90

16 | // ptr = [0..1len)

Listing 3.7: User Example - MEL deep-copy of non-deep type.

Listing 3.7 shows an example of using the deep-copy function to move an array of
non-deep objects. Because the type, int, does not provide a member function for
deep-copy the footprint of the array is sent in a single MPI message. On the receiving
process memory is allocated into the pointer provided and the data is received.

-

struct SomeStruct {
int len;
int *array = nullptr;

template<typename MSG> void DeepCopy(MSG &msg) {
msg.packPtr(array, len);

O N o U AW N

-
S
~
~
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
~
~

11 | // On sending process allocate array and subarrays
12 | int len = 5;
13 | SomeStruct *ptr = MEL::MemAlloc<SomeStruct>(len);

15 [ for (int i = 0; i < len; ++i) {

16 // Allocate sub array

17 ptr[i]l.len = i + 1;

18 ptr[i].array = MEL::MemAlloc<int>(ptr[i].len);

19

20 // Fill ptr[i].array with some values... ptr_i = [0..1len)
21 for (int j = 0; j < ptr[i].len; ++j) ptr[i]l.array[j] = J;
22 | }

24 | MEL: :Deep::Send(ptr, len, dst_rank, tag, comm);

27 | // On receiving process

28 | int len;

29 | SomeStruct *ptr = nullptr;

30 | MEL: :Deep::Recv(ptr, len, src_rank, tag, comm);

31 | // len = 5 and ptr equals an address to an array of 5 structures
32 | // each having their respective lengths and subarrays

33| // ptr = [0..5) : { [0..1), [0..2), [0..3), [0..4), [0..5) }

Listing 3.8: User Example - MEL Deep-Copy of deep type.

An example of moving an array of structs containing pointers to dynamically al-
located memory is given in Listing 3.8. In order to correctly reconstruct the data
on receiving processes a deep-copy function has been implemented which tells the
algorithm to copy a char array containing 1en elements. Because the type has a
deep-copy function the receiving processes will allocate the memory for the array of
structs and copy the footprint of the array as a single contiguous chunk resulting in
non-deep member variables being transferred automatically. The receiving process
makes the necessary allocations to receive its dependencies. Both sending and

Chapter 3 A modern C++ approach to High Performance Computing with MPI



receiving processes will then loop over each element in their array and call the
objects deep-copy function to resolve its data dependencies. If the struct contained
variables which themselves required a deep-copy the algorithm would recurse on
them until all dependencies are resolved. In this simple case, however, the struct
contains a char array which does not require a deep-copy and as such the sub-array
is transferred by allocating the needed memory and copying the entire sub-array as
one contiguous chunk, as in Listing 3.7.

3.3.3.5. Transport Method

The vessage object represents how our algorithm traverses the deep structure and
ensures that both sending and receiving processes independently come to the same
conclusion on what order objects are to be traversed with minimal communication.
This traversal order is independent of, and identical for, all deep-copy operations.
Because of this we template the vessage object on a type that represents the specific
nature of the data transportation we want to perform (i.e. Message<TransportSend>
to perform deep-copy as an MPT_send communication), allowing the same traversal
scheme to be reused.

As a part of our implementation we provide transport methods for a wide variety of
data movement scenarios:

TransportSend Performs each transport call as a discrete uPT_send commu-
nication.

TransportRecv Performs each transport call as a discrete mp1_recv commu-
nication.

TransportBcastRoot Performs each transport call as a discrete vp1_Bcast commu-
nication, as a sender.

TransportBcast Performs each transport call as a discrete vp1_Bcast commu-
nication, as a receiver.

TransportFileWrite Performs each transport call as a discrete vpr_Filewrite
operation.

TransportFileRead Performs each transport call as a discrete vp1_rileread Op-
eration.

TransportSTLFileWrite Performs each transport call as a discrete std::ofstream::
write.

TransportSTLFileRead Performs each transport call as a discrete std::ifstream::
read.

TransportBufferWrite Performs each transport call as a discrete std: :memcpy to a
contiguous memory buffer.

3.3 MEL - Deep-Copy

91



92

TransportBufferRead Performs each transport call as a discrete std: :memcpy from
a contiguous memory buffer.

NoTransport This transport method acts as a sender but does not move
any data. This method is used to implement the top-level
interface functions for MEL: :Deep: :BufferSize which counts
how many bytes need to be moved without performing any
transportation.

Adding additional transport methods is as simple as implementing a class with a
public-member function of the form

template<typename T> inline void transport(T *&ptr, const int len)

that describes how to move a region of memory, and a public-static-member variable
static constexpr bool SOURCE which tells the compiler whether or not this is a sending
or a receiving transport method. This boolean is important as it tells the message
object whether or not it needs to make allocations as it traverses the deep structure.
The transport method should also store any state variables need to maintain the
transport over the duration of the deep-copy. Such state variables may be but are
not limited to an MPI communicator and process rank, a file handle, or a pointer to
an array used for buffering.

3.3.3.6. Hashing shared pointers

When considering large structured data containing duplicate pointers the method
used to track which parts of the structure have already been transported can have
a significant impact on the traversal time. A hash-map is a natural choice for
representing an unordered map between two pointers as it is efficient for random
access lookups and insertions.

As with the transport method, the message object is also templated on the hash-map
to use for pointer tracking, namely Message<TRANSPORT_METHOD, HASH_MAP = MEL: :Deep
::PointerHashMap>. This allows for the user to provide an adapter to their own
implementation of a hash-map specifically optimized for pointers or to provide an
adapter type to a third-party hash-map implementation.

To use a custom hash-map with any of the top-level functions simply override the
default template parameter when initiating a deep-copy operation. E.g. MeL::
Deep::Send<int, MyCustomHashMap>(ptr, len, dst, tag, comm); where MyCustomHashMap
exposes public-member functions of the form:

Chapter 3 A modern C++ approach to High Performance Computing with MPI



template<typename T> inline bool find(T* oldPtr, T* &ptr)

template<typename T> inline void insert(T* oldPtr, Tx ptr)

These functions are templated on the pointer type, 7*, so that user provided hash-
map adapters are able to use this extra type information to optimize hashing if
needed.

3.3.3.7. External Deep-Copy Functions

So far we have discussed the use of deep-copy functions and the Transport-API in
cases where the deep-copy function was a local member function of the type being
considered. In some use cases a structure may be defined in headers or libraries
that cannot be modified easily (or at all). In such cases we still would like to be
able to define the deep-copy semantics for the type without directly modifying its
implementation. To enable this we provide an overload of all the functions in the
Transport-API and top-level interface that take an additional template parameter
that is a handle to a global-free-function of the form

template<typename MSG> inline void MyTypeDeepCopy(MyType &obj, MSG &msg)

that takes by reference an instance of the object to transport and a vessage object to
perform the deep-copy.

Listing 3.9, shows the usage of external free deep-copy functions with types needing
deep-copy. structs contains an internal member function for performing deep-copy,
while structa does not. Passing an instance of structa to the top-level interface will
result in incorrect results as its dependencies will not be resolved. By implementing
a global-free-function that defines the deep-copy requirements of structA we can
then tell the top-level interface to explicitly use that function to resolve external
dependencies of the type. If we provide an external free function for structe which
already has an internal deep-copy function, the internal function is ignored and the
free function explicitly given is used.

struct StructA {
std::vector<int> arr;

};

struct StructB {
std::list<int> 1st;

// Internal - Local member deep-copy function
template<typename MSG> void DeepCopy(MSG &msg) {

O 0 N U AW N e

3.3 MEL - Deep-Copy

93



10 msg & lst;
11 }

12 [}

13
14 | // External - Global free deep-copy function

15 | template<typename MSG> void StructA_DeepCopy(StructA &obj, MSG &msg) {
16 msg & obj.arr;

17 |}

18
19 | // External - Global free deep-copy function

20 | template<typename MSG> void StructB_DeepCopy(StructB &obj, MSG &msg) {
21 msg & obj.lst;

22 | }

23
24 | // Example usage:
25 | StructA sA;

26
27 | MEL::Deep::Send(sA, dst, tag, comm);

28 | // ™ Error! StructA does not have a deep-copy function
29
30 | MEL::Deep::Send<StructA,

31 MEL: :Deep: :PointerHashMap,

32 StructA_DeepCopy> (sA, dst, tag, comm);

33 | // N Correct. Uses external free function to perform the deep-copy
34
35 | StructB sB;
36
37 | MEL::Deep::Send(sB, dst, tag, comm);

38 | // M Correct. Uses internal member function to perform the deep-copy
39
40 | MEL: :Deep: :Send<StructB,

41 MEL: :Deep: :PointerHashMap,

42 StructB_DeepCopy>(sB, dst, tag, comm);

43 | // N Correct. Uses external free function (overrides internal function)
44 | // to perform the deep-copy

Listing 3.9: User Example - Using external global-free-functions for deep-copy

The same rules apply for providing external free functions to the Transport-API.
Listing 3.10, shows an example of this, where once again structa is a deep type that
does not provide an internal deep-copy function. structc is also deep and contains a
std::list of structa. If the deep-copy function of structc simply calls the ampersand
operator or Message::packsTL function (Listing 3.10, lines 15,16) to transport the
std::list then the instances of structa will be transported incorrectly as a non-deep
type. In the same manner as with the top-level interface the free function to use
to deep-copy structa is given explicitly to message::packsTL so that it can correctly
resolve the dependencies of the deep structure.

1 | struct StructA {
std::vector<int> arr;

}s

// External - Global free deep-copy function
template<typename MSG> void StructA_DeepCopy(StructA &obj, MSG &msg) {
msg & obj.arr;

N v AW N

94 Chapter 3 A modern C++ approach to High Performance Computing with MPI




10 | struct StructC {

11 std::list<StructA> 1st;

12

13 // Internal - Local member deep-copy function

14 template<typename MSG> void DeepCopy(MSG &msg) {

15 //msg & lst; // <= Error - StructA has no deep-copy function
16 //msg.packSTL(lst); // <= Error - ...

17 msg.packSTL<StructA, StructA_DeepCopy>(lst); // <- Correct

18 }

19 [}

21 | // Example usage:

22 | StructC sCj;

23 | MEL::Deep::Send(sC, dst, tag, comm);

24 | // ™ Correct. Uses internal member function of StructC and the external free
25 | // function StructA_DeepCopy for StructA.

Listing 3.10: User Example - Using external global-free-functions for deep-copy with the
Transport-API

The option to use external deep-copy functions gives our method flexibility when we

need to add deep-copy semantics to code that cannot be directly, or easily modified.

However, this does not mean it will always be applicable as it requires intimate
and low-level knowledge of the object’s internal implementation and methods of
allocation.

3.3.4 MEL - Deep-Copy Implementation Details

In the following section we provide a detailed discussion of the implementation of
the MEL deep-copy algorithm.

3.3.4.1. Detecting the Deep-Copy Function

To detect whether the type under consideration contains a deep-copy function at
compile time we make use of SFINAE (Substitution Failure Is Not An Error) to create
a compile-time boolean test for the existence of a member function with the desired
signature. We encapsulate the usage of this method into a templated shorthand that
uses std::enable_if to give us a clean and concise method for providing function
overloads for deep and non-deep types.

1 | template<typename T>

2 | struct HasDeepCopyMethod {

3 // This pseudo-type does not exist unless type U has a member function of
4 // the desired form: template<typename MSG> void DeepCopy(MSG &msg)

5 template<typename U, void(U::*)(MEL::Deep::Message<NoTransport>&)>

3.3 MEL - Deep-Copy

95



96

6 struct SFINAE {};

7

8 // If this succeeds Test<T> will be a function that returns char
9 template<typename U> static char Test(SFINAE<U, &U::DeepCopy>*);
10 // Otherwise Test<T> will return an 1int

11 template<typename U> static int Test(...);

12

13 // We can now test if type T has the desired member function by seeing if
14 // the result is the size of a char or an int.

15 static const bool value = sizeof(Test<T>(0)) == sizeof(char);

16 |}

18 | // Shorthands for when +implementing functions

19 | template<typename T, typename R = void>

20 | using enable_if_deep = typename

21 std::enable_if<HasDeepCopyMethod<T>::value, R>::type;

22 | template<typename T, typename R = void>

23 | using enable_if_not_deep = typename

24 std::enable_if<! (HasDeepCopyMethod<T>::value), R>::type;

26 | // Example usage in function definitions
27 | template<typename T> enable_if_deep<T> someFunc(T &obj) {
28 std::icout << "Called with deep type!" << std::endl;

31 | template<typename T> enable_if_not_deep<T> someFunc(T &obj) {
32 std::cout << "Called with non-deep type!" << std::endl;

35 | // A deep type

36 | struct StructA {

37 template<typename MSG> void DeepCopy(MSG &msg) {}
38 | };

40 | StructA sA;
41 | someFunc(sA); // Called with deep type!

43 | int 13
44 | someFunc(i); // Called with non-deep type!

Listing 3.11: MEL Implementation - Detecting the deep-copy function

Listing 3.11, shows an implementation of the technique used to conditionally detect
member functions of template types at compile time. The overloads of void someFunc
(T &obj) for when T is or is not a type with a deep-copy function allows us specialize
our implementation for deep types while allowing them to share identical function

signatures.

3.3.4.2. Transport-API Implementation

Next we describe the implementation of the Transport-API which specifies the

traversal order our algorithm uses when performing deep-copy.

Chapter 3 A modern C++ approach to High Performance Computing with MPI



Message::packVar The vessage: :packvar function will call the deep-copy function of
the given variable to resolve its dependencies. This function works on the assumption
that local member variables of the object have already been transported when the
parent object was traversed. It is for this reason that vessage: :packvar is only defined
for deep types, as a non-deep type will have been transported automatically with the
parent. In all of the following listings for the implementations of the Transport-API
the overloads for non-deep types have been omitted for space.

// Transport a deep object

template<typename D>

inline enable_if_deep<D> Message::packVar(D &obj) {
// Assumes that the footprint of obj has already been transported
obj.DeepCopy(*this); // *this == the Message object

[N B N O N

}

Listing 3.12: MEL Implementation - Message: :packVar

Message::packPtr When transporting dynamically allocated memory special care
must be taken to correctly allocate memory on the receiving processes. Listing
3.13 shows the implementation of vessage::packptr for deep types. This function
offloads its work to the transportalloc helper function of the vessage object. On the
receiving process, transportAlloc will make an allocation of 1en elements of the given
type before receiving the data. On the sending process transportalloc is identical to
transport and simply moves the requested data. For a deep type, Message: :packptr
will then loop over all the received elements and call their deep-copy functions to
resolve any dependencies.

1| // Transport a deep pointer to len objects

2 | template<typename D>

3 [ inline enable_if_deep<D> Message::packPtr(D *&ptr, int len = 1) {

4 // On sender - If (len > 0) and (ptr != nullptr) send the memory
5 // On receiver - If (len > 0) and (ptr != nullptr) then overwrite the
6 // dangling ptr with a new allocation of len elements
7 // and receive the memory

8 transportAlloc(ptr, len);

9

10 // Followed by the recursion for deep types

11 if (ptr != nullptr) {

12 for (int i = 0; 1 < len; ++1i) ptr[i].DeepCopy(*xthis);

13 }

14 |}

Listing 3.13: MEL Implementation - Message: :packPtr

Message::packSharedPtr In complex structured data there is often a requirement
for data to be self referencing. That is, one part of the deep structure may be
pointed to from multiple other points within the structure. In these situations a
naive deep-copy algorithm would traverse the shared object within the structure
multiple times allocating a unique copy of it with each visit. If the shared object is

3.3 MEL - Deep-Copy

97



98

deep itself and points to one of its ancestors within the structure then the deep-copy
algorithm will become stuck in an infinite cycle within the data, allocating new
memory with each loop. To avoid this and to allow complex self-referential data to
be transported, we provide the Message: :packsharedptr function shown in Listing 3.14.
This method checks the given pointer against a hash-map of type (pointer — pointer)
to determine if the pointed to memory has already been transported.

1| // Transport a deep shared pointer to len objects

2 | template<typename D>

3 [ inline enable_if_deep<D> Message::packSharedPtr(D *&ptr, int len = 1) {
4 // Save the original pointer in case we modify it

5 D *xoldPtr = ptr;

6

7 // Is the given pointer already in the hash-map?

8 // If so, set ptr equal to the pointer stored in the hash-map and return
9 if (pointerMap.find(oldPtr, ptr)) return;

10

11 // Same as for packPtr

12 transportAlloc(ptr, len);

13

14 // Insert the (newly allocated, on receiver) ptr into the hashmap with
15 // the original dangling pointer (from the sender) as the key

16 pointerMap.insert(oldPtr, ptr);

17

18 // Followed by the recursion for deep types

19 if (ptr !'= nullptr) {

20 for (int i = 03 i < len; ++1i) ptr[i].DeepCopy(*xthis);

21 }

22 | }

Listing 3.14: MEL Implementation - Message: :packSharedpPtr

During deep-copy the first time a shared pointer is passed to Message: :packSharedPtr
on both the sending and receiving processes, it is transported in the same manner
as in Message: :packPtr by calling transportAlloc. On the sending process the pointer
is then inserted into the hash-map so it can be ignored if it is visited again. On the
receiving processes the call to transportalloc will have caused the dangling pointer
from the sender to have been overwritten with the newly allocated pointer. This new
pointer is inserted into the hash-map with the original (dangling) pointer as the key,
so that next time the receiver is asked to transport the same dangling pointer it can
simply look up and return the existing allocation.

When a shared pointer that has already been visited is passed to Message: :packSharedptr
and it is found within the hash-map then the sending process can simply return
as no memory needs to be transported; the receiving process uses the dangling
pointer passed to it to retrieve the valid pointer that was previously allocated and
transported the last time the shared pointer was visited. All interaction with the
hash-map is performed through the pointermap.find and pointermMap.insert functions
of the vessage object. These functions are further discussed in Section 3.3.4.4.

Chapter 3 A modern C++ approach to High Performance Computing with MPI



A nice property of this scheme is that the hash-map is never communicated and is
constructed independently on both the sending and receiving processes. This means
that for non-buffered communications the sender and receiver can traverse the
structure in parallel (lock-step), and for buffered communications or buffered/non-
buffered file-access the processes can traverse the structure independently.

Message::packSTL As part of the Transport-API we provide helper functions for
moving common C++ STL containers. Listing 3.15 shows the implementation of
Message: :packsSTL for C++ std::vectors of both deep and non-deep types. This is
very similar to the implementation of Message: :packptr discussed previously with the
slight difference that instead of making a new allocation on the receiving processes
via transportAlloc we instead repair the internal pointer of the given std::vector by
calling the placement-new operator to recreate the vector in place (as discussed
in Listing 3.3). The implementation of Message: :packsTL for other STL containers is
conducted in the same way and is omitted here.

1| // Transport a std::vector of deep types

2 | template<typename D>

3 [ inline enable_if_deep<D> packSTL(std::vector<D> &obj) {

4 // .size() is safe to access even if the internal pointer is invalid

5 int len = obj.size();

6 // If this is a recieving process, repair the dangling internal pointer
7 if (!TRANSPORT_METHOD: : SOURCE) {

8 // std::vector forces construction of elements

9 new (&obj) std::vector<D>(len, D());

0

11 // we need to call the destructor explicitly in case any resources
12 // were acquired upon default construction of each element
13 for (int i = 0; i < len; ++i) (&obj[i])->~D();

14 }

15

16 // Transport the data within the vector

17 D xp = &obj[0];

18 if (len > 0) transport(p, len);

19

20 // Followed by the recursion for deep types

21 for (int 1 = 0; i < len; ++1i) {

22 obj[i].DeepCopy(*this);

23 }

24 | }

Listing 3.15: MEL Implementation - Message: : packSTL for std::vector

Message::packRootVar, Message::packRootPtr, & Message::packRootSTL Finally,
we provide a set of functions to simplify the implementation of the top-level interface.
Recall that Message::packvar is only defined for deep types and assumes that the
object’s footprint is always transported with the parent object. This is not the case
for the top-level functions as no parent has been transported; in this case we must
explicitly transport the object footprint regardless of whether it is deep or not.

3.3 MEL - Deep-Copy

99



100

A similar scenario occurs for pointers passed to the top-level interface. In order
to avoid duplicating all of the top-level functions to account for whether the root
pointer is shared we always insert it into the hash-map as this is a small constant
overhead that does not affect performance. Recall from the implementation of
Message::packsharedPtr that on the receiving processes the dangling pointer from the
sender is used as the key into the hash-map. Because of this, for the root pointer
we must explicitly transport the address-value of the pointer from the sender to the
receiving processes so they can insert it into their hash-maps.

Finally, when considering STL containers passed to the top-level interface, receiving
processes cannot query .size() of the container as its footprint was not previously
transported. Instead, we explicitly transport the size of the container and call
.resize() on the receiving processes.

// Transport the footprint of a non-deep object
template<typename T>

inline enable_if_not_deep<T> Message::packRootVar (T &obj) {
transport(obj); // Transport the footprint

// Transport the footprint of a deep object and call -its DeepCopy function
template<typename D>

O 0 N 1AW N
(-}

inline enable_if_deep<D> Message::packRootVar(D &obj) {

_
[S)

transport(obj); // Transport the footprint
obj.DeepCopy(*this); // Recurse on the deep structure

— e e e
AW N =
[

// Transport a root pointer to len deep objects
template<typename D>

[
o w

inline enable_if_deep<D> Message::packRootPtr(D *&ptr, int len = 1) {
// Explicitly transport the pointer value for the root node
// so the it can be hashed correctly on recieving processes

= e
o o N

size_t addr = (size_t) ptr;
transport(addr);
ptr = (Dx) addr;

NONNN
w N = O

// Same as packSharedPtr, except we don't need to check the pointer
D xoldPtr = ptr;
transportAlloc(ptr, len);

NONN
o B~

pointerMap.insert(oldPtr, ptr);

NN
® 3

// Followed by the recursion for deep types
if (ptr != nullptr) {
for (int i = 0; 1 < len; ++1i) ptr[i].DeepCopy(*this);

W W W W W N
A W N = O O
-
-

// Transport a root stl container to len deep objects

w
@

template<typename D>
inline enable_if_deep<D> packRootSTL(std::vector<D> &obj) {
// Explicitly transport the length of the container

W W W
® N O

int len;
if (TRANSPORT_METHOD: :SOURCE) {
len = obj.size(); transport(len);

2w
(=]

H
i
-

Chapter 3 A modern C++ approach to High Performance Computing with MPI




42 else {

43 transport(len); obj.resize(len, D());
44 for (int i = 0; 1 < len; ++i) (&obj[i])->~D();
45 1

46

47 D xp = &obj[0];

48 if (len > 0) transport(p, len);

49

50 // Followed by the recursion for deep types
51 for (int 1 = 0; i < len; ++1i) {

52 obj[i].DeepCopy(*this);

53 }

54 |}

Listing 3.16: MEL Implementation - Message: :packRootVar, Message::packRootPtr, &
Message: :packRootSTL

3.3.4.3. Transport Method Implementation & Usage

A transport method is a class which provides a single public-member function of the
form

template<typename T> inline void transport(T *&ptr, const int len)

which defines how to move 1en objects of type T from a given pointer ptr. Listing 3.17
shows the implementation of the Transportsend transport method, which defines how
move data using a discrete vp1_send for each transport. An instance of a transport
method carries any state needed to represent the data movement over the duration of
the deep-copy. In the case of Transportsend the state needed to represent the transfer
are the MPI rank of the destination process, a tag to use for the communication, and
the MPI communicator over which the data will be transferred. For other transport
methods the state may be a file handle, or a pointer to an array used for buffering.

1 | class TransportSend {
2 | private:

3 // Store any state or resources needed to maintain this transport method
4 const int pid, tag;

5 const MEL::Comm comm;

6

7 | public:

8 // A transport method is either a source or a destination

9 // This is known at compile time

10 static constexpr bool SOURCE = true;

11

12 TransportSend(const int _pid, const int _tag, const MEL::Comm &_comm)
13 : pid(_pid), tag(_tag), comm(_comm) {}

14

15 // Transport function describes how to move data, in this case by

16 // performing an MPI_Send

3.3 MEL - Deep-Copy

101



102

17 template<typename T>

18 inline void transport(T *&ptr, const int len) {
19 MEL::Send(ptr, len, pid, tag, comm);

20 }

21 | };

Listing 3.17: MEL Implementation - Transport method for Message

Listing 3.18 shows the implementation of one of the top-level interface functions for
performing deep-copy as an vpI_send operation. A Message<TransportSend> Object is
instantiated, and the parameters from the function are transparently forwarded to
the instance of the transport method within the vessage object using std: : forward<
Args>(args). After creating the message object the pointer to the deep structure can
be transported by calling message: :packrootPtr from the Transport-APL.

template<typename P, typename HASH_MAP = MEL::Deep::PointerHashMap>
inline enable_if_pointer<P> Send(P &ptr,
const int dst,
const int tag,
const Comm &comm) {
// Arguments to the Message constructor are std::forward'd to the
// TransportSend constructor
Message<TransportSend, HASH_MAP> msg(dst, tag, comm);

O N U AW N

-
o

// Transport the deep-structure
msg.packRootPtr(ptr);

-
-

12 |}

Listing 3.18: MEL Implementation - Usage of a transport method in the top-level
interface.

When performing a buffered deep-copy the data is first packed into a contiguous
buffer on the sending process before being transported as a single operation to the
receiving processes where the data can then be expanded back into the deep structure.
Listing 3.19 shows the implementation of Bufferedsend and Bufferedrecv which make
use of the TransportBufferwrite and TransportBufferRead transport methods.

1 | template<typename P, typename HASH_MAP = MEL: :Deep::PointerHashMap>
2 [ inline enable_if_pointer<P> BufferedSend(P &ptr,

3 const int dst,

4 const int tag,

5 const Comm &comm) {

6 // Compute the buffer size for the deep structure and transport it

7 MEL: :Deep::BufferedSend(ptr, dst, tag, comm, MEL::Deep::BufferSize(ptr));
8 (3

9

10 | template<typename P, typename HASH_MAP = MEL::Deep::PointerHashMap>
11 | inline enable_if_pointer<P> BufferedSend(P &ptr,

12 const int dst,

13 const int tag,

14 const Comm &comm,

15 const int bufferSize) {
16 // Allocate the buffer for packing

Chapter 3 A modern C++ approach to High Performance Computing with MPI




17 char xbuffer = MEL::MemAlloc<char>(bufferSize);
18

19 // Deep-copy 1into the buffer

20 Message<TransportBufferWrite, HASH_MAP> msg(buffer, bufferSize);
21 msg.packRootPtr (ptr);

22

23 // Send the buffer in one message. Uses Message<TransportSend>

24 // bufferSize represents an upper bound on how much data there 1is to
25 // transport, msg.getOffset() gives us how much data was actually
26 // packed dinto the buffer

27 MEL: :Deep::Send(buffer, msg.getOffset(), dst, tag, comm);

28

29 // Clean up the buffer

30 MEL: :MemFree (buffer);

31 | }

32
33 | template<typename P, typename HASH_MAP = MEL::Deep::PointerHashMap>
34 | inline enable_if_pointer<P> BufferedRecv(P &ptr,

35 const int src,

36 const int tag,

37 const Comm &comm) {

38 // Recieve the packed buffer in one message. Uses Message<TransportRecv>
39 int bufferSize;

40 char xbuffer = nullptr;

41 MEL::Deep::Recv(buffer, bufferSize, src, tag, comm);

42 // bufferSize on the receiving processes is equal to msg.getOffset()
43 // on the sending process

44

45 // Deep-copy out of the buffer

46 Message<TransportBufferRead, HASH_MAP> msg(buffer, bufferSize);

47 msg.packRootPtr(ptr);

48

49 // Clean up the buffer

50 MEL: :MemFree (buffer);

51 | }

Listing 3.19: MEL Implementation - Usage of a buffered transport method in the top-
level interface

The last parameter to buffered transport methods on sending processes is an integer
value representing the byte size of the contiguous buffer to use for packing the deep
structure. If this value is omitted an overloaded version of the function computes
the upper-bound of the buffer size needed by calling weL: :peep: :Buffersize before
forwarding its parameters to the main function overload.

Note on the sending process for a buffered transport that msg.getoffset() is used
as the length parameter when transporting the buffer (Listing 3.19, line 21) and
not the buffersize parameter. This means that if the sender blindly requests a large
buffer because it does not know the size of the deep structure exactly, but only a
part of the buffer is filled, only the used part of the buffer will be transported to
the receiving processes. In the scenario where the buffer size given was not large
enough to complete the deep-copy a run-time assertion occurs.

3.3 MEL - Deep-Copy

103



104

3.3.4.4. Hash-Map Implementation

The nvessage object is templated on a hash-map type that exposes public-member
functions of the form:

template<typename T> inline bool find(T* oldPtr, Tx &ptr)

template<typename T> qinline void insert(T* oldPtr, Tx ptr)

This allows the user to provide an implementation of a hashing scheme optimized
for pointers or to provide an adapter to a third-party hash-map implementation. One
of the goals of MEL is to be portable and to not introduce external dependencies
in the user’s code; because of this our default hash-map implementation (Listing
3.20) is simply a wrapper around a std: :unordered_map container between two void
pointers.

-

class PointerHashMap {

private:
// Hashmaps for storing pointers to types of any size
std::unordered_map<void*, void*> pointerMap;

public:
// Pointer hashmap public interface

© N o A W N

// Returns true if oldPtr 1is found in the hash-map and sets ptr equal to
// the stored value. Otherwise returns false and ptr is un-altered
template<typename T>
inline bool find(T* oldPtr, T* &ptr) {

// Is oldPtr already 1in the hashmap?

const auto it = pointerMap.find((void*) oldPtr);

e e e e e
o U A W N = O

if (it != pointerMap.end()) {
// If so set ptr equal to the value stored in the hashmap
ptr = (T%) it->second;
return true;

[ RSO
S v ® 3

}

return false;

N NODNDN
AOWON =
-

// Insert ptr into the hashmap using oldptr as the key
template<typename T>
inline void dinsert(Tx oldPtr, Tx ptr) {

pointerMap.insert(std: :make_pair((voidx) oldPtr, (voidx) ptr));

NN
o N o »u
-

N
N

}s

Listing 3.20: MEL Implementation - Default hash-map interface for MEL: :Deep: :Message

Chapter 3 A modern C++ approach to High Performance Computing with MPI



3.3.5 MEL - Deep-Copy Performance Benchmarks

For benchmarking we used the Swansea branch of the HPC Wales compute cluster.
Nodes contain two Intel Xeon E5-2670 processors for a total of 16 physical cores
with 64GBs of RAM per-node, connected with Infiniband 40 Gbps networking.
Benchmarks were run using Intel MPI 4.1 and compiling under Intel ICPC 13.0.1

3.3.5.1. Case Study: Ray-Tracing Scene Structure

To evaluate the performance of our algorithms relative to the equivalent hand coded
MPI implementations and to other libraries that offer deep-copy semantics such as
Boost Serialization Library [Cog05], we used the example of deep-copying a large
binary-tree structure between processes in the context of a distributed ray-tracer.
A 3D scene (Fig. 3.3) is loaded on one process, consisting of triangular meshes,
cameras, materials, and a bounding volume hierarchy to help accelerate ray-triangle
intersection tests.

A.A
Fig. 3.3.: Utah Teapot mesh used for Benchmarks

For each experiment a scene was loaded containing increasing numbers of the classic
Utah Teapot mesh. The scene structure was then communicated using the various
algorithms and the performance measured by comparing the times spent between
wp1_Barriers before and after the communication.

3.3 MEL - Deep-Copy

105



106

Broadcast - MPl vs. MEL For this example just 4 lines of code calling the Transport-
API were added to the BVH TreeNode and Scene structs (appendix A.1.1) to enable
both buffered and non-buffered deep-copy using our algorithm.

By comparison, the hand coded MPI non-buffered method (appendix A.1.2) took
34 lines of code, and 70 lines of code for the MPI buffered algorithm (appendix
A.1.3), (not including comments, formatting, or trailing brackets), where pointers,
allocations, and object construction had to be managed manually by the programmer.
Also these implementations only handled the case of Bcast operations, while the
MEL version works transparently with all operations.

Despite its generic interface and minimal syntax, our algorithm performs almost
identically with hand coded MPI implementations in fewer lines of code and a
fraction of the code complexity. Relevant code for this example is given in appendix
Al

A Ray Tracing Scene Object B Ray Tracing Scene Object
2 Buffered Bcast vs Non-Buffered between 256 Nodes on HPC Wales Buffered Bcast vs Non-Buffered for 4096 Graph Nodes
- 25 -
MEL Beast MEL Beast
MEL Buffered Beast A 4 Y EEEEELEL H--------1 MEL Buffered Boastf
2ol [JMPI Beast P . ST [JMPI Beast
IO MPI Buffered Beast s 123 \OMPI Buffered Beast
. ng
) - |
g 15 215t/
3 8 |4
8 3
e o
210t 210
[S - .- E B [ e ©
o PSSRy R
51 el Q- = 5,
e e--
p O
0 & - | . . . . . . | . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 % 50 100 150 200 250
A. Number of Teapots (994 triangles each) B. Number of Processes

Fig. 3.4.: Time comparison of algorithms broadcasting large tree structures between pro-

cesses within node and on separate nodes. MEL requires the addition of four
simple lines of code which greatly accelerates programming time and vastly
reduces the chance of user induced bugs.

Figure 3.4 (A) shows the resulting times from broadcasting increasingly larger scenes
with each algorithm between 256 nodes on HPC Wales. We can see that the buffered
methods that only send a small constant number of messages between processes are
faster than non-buffered methods despite the added overheads from packing and
unpacking the data. The scalability of our algorithm with respect to the number of
MPI processes involved in the communication is only bounded by the scalability of
the transport method itself. In the case of a broadcast operation, Fig. 3.4 (B) shows
that varying the number of processes is of the same complexity as the underlying
MPI_Bcast communication (logarithmic).

File Write / Read - MEL vs. Boost When fault tolerance is a concern one method for
recovering from a failed process is to periodically cache the current state of the data

being worked on to disk so that in the event of a failure the data can be reloaded on a

Chapter 3 A modern C++ approach to High Performance Computing with MPI



new process (potentially on a different node) and the work continued from the point
at which it was last saved. When the data needed to store the state of a process is
deep we incur the same problems that arise during deep-copy. MEL implements file
read and write operations for both buffered and non-buffered file access, utilizing
the same user-defined deep-copy functions needed for the broadcast, send, and
receive methods. For this experiment we also compared our performance to the
Boost Serialization Library which is designed for saving and restoring structured
data from file.

Ray Tracing Scene Object
Single Node File-10 to Local SSD

8,
MEL Write B
7 1|/ MEL Buffered Write ,/’
[ >MEL Read P
6 ' <| MEL Buffered Read e
[] Boost Write ,,’
m OBoostRead e
T 5+ ’/
rd
B4l -7 _-©
}—JI /// ””
E3r B .-
- e a”’
2 /’/ —”@”
e . —%
=S -"%'——_\_____\ - I

0 = 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Number of Teapots (994 triangles each)

Fig. 3.5.: Time comparison of MEL to Boost Serialization Library for File Read/Write on a
single node, to a within node Solid State Drive.

Figure 3.5 shows the results of using MEL to write/read a large tree structure
to or from file. Unlike with MPI communications where MEL’s buffered methods
performed considerably faster than non-buffered variants due to the overheads from
starting and ending network communications, with file access non-buffered reads
perform almost identically to buffered methods. This is due to std:: fstrean’s use of
an internal buffer to optimize file access, meaning that cost of starting and ending
write/read operations is negligible compared to the cost of traversing the deep
structure. While Boost Serialize also uses C+ + streams its method of traversing the
deep structure incurs significant overheads leading to poor and differing performance
when reading and writing data. Finally, non-buffered writes perform slightly poorer
then buffered writes due to file system having to allocate additional blocks as the
file grows.

3.3 MEL - Deep-Copy

107



108

3.3.5.2. Case Study: Graphs with Cycles

In the previous example the implementation of TreeNode was simplified by the
observation that tree nodes were only pointed to from a single parent. However,
in many applications multiple objects may share a common child. To show how
MEL copes with structures containing pointers to shared dependencies we use the
example of communicating generic directed graph structures constructed in various
connectivities (see Fig.3.6). Relevant code for this example can be found in appendix
A2

,_/; “{\X 4

Fully Connected Graphs Random Graphs

O3
TR
AN
- -g‘

CE e
Ny
[

oy

2
&
& Io

S Nt ©) J

DENG! D SO E )
Binary Tree Graphs

W/

Ring Graphs

Fig. 3.6.: Graph Connectivities for {2°,2!,22 23 24 .} nodes.

Fully Connected Graphs Figure 3.7 shows the results for communicating fully con-
nected graph structures of increasing size. In this example, n independent graph
nodes will be traversed, each containing a list of pointers to all n nodes; during
deep-copy the hash-map will be queried n? times and will grow to contain n en-
tries. Compared to the previous broadcast example for the ray tracing case study
(Section 3.3.5.1) where buffered communication showed better performance, with
fully connected graphs we see the opposite effect. Non-buffered communication
is consistently faster when the number of shared dependencies is high. Internally,
shared pointers are tracked using a hash table to ensure that only distinct pointers
are transported and duplicates linked correctly. Because of the overheads attached
to insert and find operations on the hash table, when the number of shared depen-
dencies is high the overhead from sending separate communications for each object
in the structure is small compared to that of accessing the hash table. This has the
effect of making the overhead from buffering the structure into a contiguous array
for transport a bottleneck for deep-copy.

Chapter 3 A modern C++ approach to High Performance Computing with MPI



A Fully Connected Graph B Fully Connected Graph
3- Buffered Bcast vs Non-Buffered between 256 Nodes on HPC Wales 35- Single Node File-D to Local SSD
MEL Beast MEL Write
MEL Buffered Beast MEL Buffered Write a
25¢ 31 [>MEL Read e
| MEL Buffered Read L, 0O
2.5 H L] Boost Write L
B 2r % ||OBoost Read PPt
2 2 e
<] S 2r At
3 3 gy
S15r 3 PSP
© 15 Srad
E £ .7
(=R = Potd
10 .
1
L _-2 0
05 05f i A
o —2F ‘ ‘ ‘ ‘ ‘ ‘ ‘ ol-gr@- Eifg. --------- — . ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000

Number of Graph Nodes Number of Graph Nodes

Fig. 3.7.: Time comparison for broadcast and file-IO operations on fully connected graph
structures.

A similar trend is observed for file access, where non-buffered access is more efficient
than buffered. In this example we also compare MEL to Boost Serialization library.
Here shared pointer usage introduces significant overheads for Boost that our method
avoids leading to significantly improved performance.

Random Graph Next we look at graphs with random connectivities. Figure 3.8
shows the results of communicating randomly generated graphs of different sizes.
With this example, » independent graph nodes will be traversed, each containing
a list of pointers to a random number of nodes (at least one); during deep-copy
the hash-map will be queried between n and n? times and will grow to contain n
entries. Again, we see that when the number of shared dependencies within the
structure is large non-buffered communication performs consistently better than
for buffered. We also see slightly better performance than with the fully connected
graphs, showing that time complexity scales linearly with the number of graph edges.
For file access the same trends emerge, where our method performs considerably
faster than Boost Serialization.

Random Graph
Buffered Bcast vs Non-Buffered between 256 Nodes on HPC Wales

Random Graph
Single Node File-D to Local SSD

Time (Seconds)
e o o © =
N S o o - N

o

MEL Bcast
./ MEL Buffered Bcast

L L L
1500 2000 2500 3000

Number of Graph Nodes

L L
0 500 1000 3500

L
4000

25

N

Time (Seconds)

0.5

MEL Write

MEL Buffered Write
[>MEL Read
[<| MEL Buffered Read
[ Boost Write
OBoost Read

i L L
1500 2000 2500 3000 3500

Number of Graph Nodes

4000

Fig. 3.8.: Time comparison for broadcast and file-IO operations on randomly connected

graph structures.

3.3 MEL - Deep-Copy

109



110

Ring Graph A ring graph can be modelled as a doubly-linked list where the last
element is connected back to the first element in the structure. For this example, n
independent graph nodes will be traversed, each containing a list of two pointers to
previous and next nodes; during deep-copy the hash-map will be queried 2n times
and will grow to contain n entries. Figure 3.9 shows the results of communicating
large ring structures. Because the number of shared edges is small we initially see
that buffered communication is faster than non-buffered as with Section 3.3.5.1. As
the number of graph nodes in the structure passes 2400 the amount of time needed
to buffer the structure becomes larger then the overhead associated with starting
and stopping separate MPI communications making the non-buffered method more
efficient for larger structures. For file access we still see that our methods perform
consistently faster than Boost’s even when the number of shared dependencies is

low.
A Ring Graph B Ring Graph
012+ Buffered Bcast vs Non-Buffered between 256 Nodes on HPC Wales 35 x1 03 Single Node File-ID to Local SSD
) MEL Bcast MEL Write
MEL Buffered Bcast MEL Buffered Write . a
01F 3T/ [>MEL Read e
| MEL Buffered Read e [s)
2.5 || L] Boost Write -7 =
$0.08 % | |OBoost Read Il Pt
o 3 . -
c c | - _-
g g 2 PEPT
$0.06 & e
2 g &
F0.04r = e
1 e >
0021 LB e
05F 2z ooi-
87 g &
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ L ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of Graph Nodes Number of Graph Nodes

Fig. 3.9.: Time comparison for broadcast and file-IO operations on ring graph structures.

Binary Tree Finally, we look at the example of constructing a binary-tree-shaped
graph where there are no shared dependencies. The generic container does not know
this, and still must use Message::packsharedptr to transport child nodes, meaning it
still incurs the overheads of pointer lookup. In this example, n independent graph
nodes will be traversed, each containing a list of one or two pointers to descending
child nodes; during deep-copy the hash-map will be queried n times and will grow
to contain n entries. Figure 3.10 shows the results of communicating binary trees of
different sizes. Similarly to communicating ring graphs, buffered network communi-
cation is significantly faster non-buffered methods until the structure becomes large
enough that buffering becomes the main bottleneck.

For file access the opposite is true, with non-buffered file access being slightly faster
than buffered. We attribute this to std:: fstrean’s use of internal buffering, which
renders the overheads from our fully buffered method unnecessary in this use case.

Chapter 3 A modern C++ approach to High Performance Computing with MPI



0.05

o o o
S = S
[§ 2 R

;

Time (Seconds)

I3
<

Binary Tree Graph B Binary Tree Graph
Buffered Bcast vs Non-Buffered between 256 Nodes on HPC Wales 25 x1 03 Single Node File-ID to Local SSD
MEL Bcast ) MEL Write
MEL Buffered Bcast MEL Buffered Write - O
MEL Read -7
2 "] MEL Buffered Read -
[ Boost Write s
> IO Boost Read -
2 -
5151
o .
3 B
I
= <
05 B B % —==IT--" -
oF B=

L L
500 1000

I I I
1500 2000 2500
Number of Graph Nodes

L
3000

L
3500

L
4000

0 500

1000

L L L L
1500 2000 2500 3000

Number of Graph Nodes

L L
3500 4000

Fig. 3.10.: Time comparison for broadcast and file-IO operations on binary tree graph
structures.

3.4 Conclusions

In this chapter we have presented MEL, our implementation of a C++ wrapper
library for MPI being developed with the goal of creating a light weight, header-only
C+ + interface around the C-style functions exposed by the MPI-3 standard, with
backwards compatibility for systems where only MPI-2 is available. MEL leverage’s
the power of modern C++ compilers through template meta-programming to add
compile-time type checking and error detection, greatly improving the programmer’s
ability to write correct and bug free code.

As a part of MEL, we provide an implementation of deep-copy semantics that
encapsulates both buffered and non-buffered methods for dealing with complex
structured data in the context of MPI inter-process communication and file access.
Users may choose shared versions for data structures containing cycles, or faster non-
shared variants when the programmer knows that cycles will not be present in the
data. We have shown that a generic implementation of such semantics can achieve
like-for-like performance with hand-crafted implementations while dramatically
reducing code complexity and decreasing the chance for programmer error. We also
demonstrate our method is faster than utilizing Boost Serialization Library for the
task of file-IO without requiring any changes to the user’s code. MEL non-buffered
methods provide a generic, low memory overhead, high performance (equal to hand
crafted) solution to the deep-copy problem.

3.4.1 Further Work

As we continue the development of MEL there are several areas which present them-
selves for future work. MEL makes heavy usage of C++ template meta-programming
to compute boiler-plate values, provide static analysis for error handling, and embed

3.4 Conclusions

111



112

type-safety constraints on the underlying C MPI API at compilation-time. Due to
the complexity of template meta-programming within modern C+ + there are often
multiple ways encode the same behaviour and type-safety at compilation-time. Be-
cause of this complexity, one direction of future work for MEL deep-copy is to further
simplify the rules used to test if a structure needs deep-copying and to make the
interface with STL containers more transparent. Additional transport methods can
be added to MEL deep-copy allowing for deep structured data to be moved to/from
accelerators such as GPU and co-processor devices through Compute Unified Device
Architecture (CUDA) and Open Computing Language (OpenCL).

Currently, MEL deep-copy only supports blocking communications and transport
methods as the order of message passing is used to encode the traversal ordering
and whether data-types within the structure require recursion to apply further deep-
copy semantics. Applying non-blocking and asynchronous communications to this
algorithm while maintaining the information ordering used throughout a deep-copy
operation must be done carefully. Combining multi-threading with MEL deep-copy
presents a strategy for further optimization. In hybrid MPI programs a single MPI
process is instanced on each physical compute-node in the distributed environment,
while threading within the node is performed using a secondary shared-memory
threading model such as C++ std:: thread, Open Multi-Processing (OpenMP), POSIX
Threads (Pthreads), or another analogous framework. Deep-copy is not necessary
between processes on the same compute-node as they share a common address space
and can directly read from or write to one another’s variables. When communicating
off-node we can perform non-blocking asynchronous deep-copy by spawning an
auxiliary thread within the same address space with which to perform the deep-
copy. Within the auxiliary thread, deep-copy can be performed using the default
synchronous algorithm as described in this chapter. Finally, synchronization of
the distributed program to ensure that the deep-copy has completed can then
be performed using a combination of MPI and the chosen threading framework’s
synchronization functions such as join, barrier, wait, and test.

MEL is open source and available on Github under the MIT license at:
https://github.com/CS-Swansea/MEL

Chapter 3 A modern C++ approach to High Performance Computing with MPI



Analysis of Error in Monte Carlo
Rendered Images

Fig. 4.1.: Scenes used for error analysis. From left to right: Cornell Box, Torus, Veach Bidir,
Veach Door, Sponza.

Evaluating image quality in Monte Carlo rendered images is an important aspect of
the rendering process as we often need to determine the relative quality between im-
ages computed using different algorithms and with varying amounts of computation.
The use of a gold-standard, reference image, or ground truth (GT) is a common
method to provide a baseline with which to compare experimental results. We show
that if not chosen carefully the quality of reference images used for IQA can skew
results leading to significant misreporting of error. We present an analysis of error in
Monte Carlo rendered images and discuss practices to avoid or be aware of when
designing an experiment.

In this chapter we leverage the MEL framework introduced in chapter 3 to implement
Monte Carlo rendering algorithms in HPC environments, and use this to generate a
dataset of rendered images containing varying amounts of natural distortion. Using
this dataset we provide an ensemble study on the effectiveness of modern and
classical IQA measures used in comparing digital images, and their robustness when
evaluating images generated through stochastic rendering processes.

This work was originally published in the journal The Visual Computer and presented
at the conference Computer Graphics International 2017 [Whi+17], by the thesis
author alongside Prof Mark Jones and Dr Rafal Mantiuk.

113



114

4.1 Introduction

Monte Carlo rendering algorithms [Kaj86] allow for a plethora of photo-realistic and
physically based lighting phenomena to be simulated; such as Indirect Illumination,
Depth of Field, Participating Media, Caustics, and Physically Based Materials. A
major problem is slow convergence — early termination of rendering can leave a
large amount of undesirable noise in the images. Many methods have been proposed
over the last three decades that attempt to minimize noise using as few samples as
possible. These can be roughly classified into Path Space methods [LW93; VG97;
Kel+02; JM12; Cli+05; Hac+14; Jen01; Hac+08b; Li+15; Doi+12] that use extra
information available within the renderer to guide sampling in path space, and
Image Filtering methods [RW94; JC95; TJ97; SW00; Kon+04; Hac+08a; PH10;
Rou+12a; KS13; Bau+15; Kal+15; DJ13] that attempt to reconstruct the GT from a
coarse un-converged image.

New methods need to be evaluated relative to existing ones. Often the increase in
quality is not clear cut and is dependent on the test scenes used; while a strong
improvement can be observed for suitable scenes it may be that others are ill-suited.
This can cause the relative improvement in image quality to be small, though
important nonetheless. In these cases where small improvements in quality are
used to justify a method’s performance, the accuracy of these measurements is
important.

A commonly accepted methodology for evaluating images is I: to use a known GT
which is noise free; II: that comparisons between the GT and test images use a metric
such as Mean Absolute Error (MAE), Mean Square Error (MSE), Peak Signal to Noise
Ratio (PSNR), or more recently Structural Similarity Index (SSIM) [Wan+04a]; and
III: usually equal time and/or equal quality comparisons are reported as results. For
these types of metrics to be effective it is a requirement that the reference image is
correct and noise free.

In this chapter we present analysis of error reported when evaluating Monte Carlo

rendered images. We look at the impact of reference image quality on results
reported by IQA and highlight practices surrounding sample sets.

4.2 Image Quality Assessment (IQA)

Thorough analysis of 26 distance metrics applied to image data under varying
distortions, spanning from pixel divergence methods such as MSE to those based on
pixel correlation, structural features, and spectral measures [Avc+02], concluded

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



that MSE most accurately described the level of distortion in images containing
additive white noise. While for structural distortions such as blurring or block-
artefacts measures based on edge similarity or weighted by models of the HVS were
more robust. A similar study based on how closely different IQA compare to scores
given by human test subjects was conducted [She+06]; with results indicating
that the MSE based metrics can achieve comparable performance to more complex
algorithms when images are distorted by additive white noise. From the literature,
while there are differing opinions on its effectiveness, image quality metrics based
on MSE appear to be most common and trusted when evaluating images corrupted
predominantly by additive noise.

Relative quality in error assessment of the MSE and MAE metrics was investigated
[WMO5], showing that MSE’s non-linear weighting with divergence can potentially
lead to an exaggerated interpretation of error. Recent work, [CD14] has argued that
MSE is in fact preferable over MAE when the error distribution is expected to fit a
Gaussian model.

MGA works by decomposing image signals into sub-bands of spatial frequency
[Gao+09]. In the IQA literature many MGA methods are used to extract structural
information from input images. For the IQA considered in this work MGA appeared
repeatedly in the form of Gaussian and Laplacian pyramids [BA83], Steerable pyra-
mids [SP94], Contrast pyramids [Toe+89], Wavelet Transformations [Chu92], the
Contourlet Transformation [DV05a], and the Wavelet Based Contourlet Transforma-
tion [VSO5].

Study of the HVS has led to the creation of models that attempt to describe the
likelihood that numerical distortions are actually perceivable by human observers
under generalized viewing conditions. These models vary from a simple linear
weighting of features in a multi-component error measure [Wan+04a; Wan+03],
to models based on a non-linear Contrast Sensitivity Function [MV93] applied at
multiple scales in an MGA decomposition.

Universal Quality Index (UQI) [WBO02] splits image comparison into luminance,
contrast, and structural components using statistics over the local neighbourhoods
of each pixel. SSIM [Wan+04a] extends this idea by applying a linear weighting
to each component using values derived from the HVS. The size of neighbourhood
used in SSIM can alter its effectiveness at evaluating image quality; Multi Scale
Structural Similarity Index (MS-SSIM) [Wan+03] addresses this by applying SSIM
to each level of a Gaussian pyramid decomposition of images. Further discussion of
the drawbacks of MSE based approaches compared to structural measures such as
SSIM [WBO09], shows that in many cases the same MSE score can be achieved for
distorted images that are given vastly different quality assessments when viewed by

4.2 |mage Quality Assessment (IQA)

115



116

human observers. In such cases, measures that consider structural features were
significantly more robust and closely matched the assessments of human observers.
More recently, an analysis of the mathematical properties of SSIM (and IQA based
on it) compared to MSE derivative metrics showed they share several desirable
qualities which make them well suited in the areas of parameter optimization and
transform-domain noise reduction [Bru+12].

Information Weighting provides an interesting extension on several existing image
metrics by applying a non-uniform weighting scheme to the pooling stage of IQA
[WL11]. An information map is computed at each pixel that represents its relative
importance with respect to visually perceivable distortions in the input. This is
performed at multiple scales in a Laplacian pyramid decomposition of the input
image. The resulting IW-MSE and IW-PSNR metrics perform comparably with several
advanced IQA algorithms that take properties of the HVS into account. A third metric
that benefits from information content weighting is IW-SSIM which extends the MS-
SSIM algorithm making it an IQA that takes multi-scale and HVS information into
account during both the distortion and pooling stages.

Visual Signal to Noise Ratio (VSNR) applies knowledge of the HVS to determine
if image distortions would be noticeable to a human observer [CHO7]. A spatially
varying threshold on visible distortion is used to quickly determine if the comparison
needs additional analysis which is performed by measuring perceived contrast and
global precedence of structures within the images.

Noise Quality Measure [DV+00] fits input images to a HVS noise model using a
contrast pyramid decomposition which has the effect of filtering out distortions the
model is not sensitive to. Conventional SNR can then be applied to the model fitted
images to provide a quality assessment.

Information Fidelity Criterion (IFC) [She+05a] and Visual Information Fidelity (VIF)
[SB06] apply MGA by decomposing input images via the wavelet transformation.
Statistics applied to the wavelet coefficients attempt to capture the mutual structural
information between the inputs. By decomposing the images at multiple spatial
sub-bands the effects of high frequency impulse noise can be directly measured. VIF
can be considered a normalized variant on IFC [Bov09].

Recent work has been targeted at quantifying multi channel image distortions that do
not present themselves when images are reduced to a single channel. FSIMc which is
an extension of Feature Similarity Index (FSIM) [Zha+11c], considers images in the
YIQ colour space [YKO3]. This representation allows for luminance and chrominance
features to be extracted and compared independently. Structural Contrast Quality
Index (SC-QI) and Structural Contrast Distortion Metric (SC-DM) [BK16] perform

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



feature extraction in the LMN colour space which has similar properties to YIQ. HDR-
VDP-2 (Visual Difference Predictor) [Man+11] takes a different approach to multi
channel image analysis by looking at the effects of inter-channel contrast masking in
the sRGB colour space. The measure makes a per-pixel prediction on the likelihood
a human observer would be able to detect the difference between reference and
distorted images and is robust to a wide range of illumination conditions seen in
natural images.

In Full Reference (FR) [She+06] IQA input images are compared against a GT
image that is known to be correct. We also include two methods categorized as
Reduced Reference (RR) IQA in our analysis. These methods are designed with the
assumption that the reference image may contain some distortions but overall is
still representative of the GT. Rather than directly measuring per-pixel deviation
these methods measure the structural similarity of images by using the distribution
of features extracted by MGA decomposition. The algorithms considered are based
on the Contourlet transform [Tao+09] and Wavelet Based Contourlet Transform
[ERO4] respectively.

New IQA methods are often tested against image datasets such as Live [She+14],
TID2008 [Pon+09], TID2013 [Pon+13], Kodak Lossless True Colour [Fra99], MICT
[Hor+11], and IRCCyN/IVC [AB09] which couple distorted images with Mean
Opinion Score (MOS) or Differential Mean Opinion Score (DMOS) on image quality
given by human observers. In our exploration of the literature we have not found an
analysis of how these algorithms (both FR and RR) perform when the reference image
being used is the product of an un-converged rendering process, still containing
impulse noise. We provide an extensive analysis here.

4.3 Computing Error

To compute an error value for a given image, it is compared to a GT that is known to
be completely noise free. In computer graphics, error metrics that operate on single
channel (gray-scale) images are most widely used in the literature with more recent
research working to create IQA measures that operate on multi channel images. To
extend single channel IQA metrics to multi channel (RGB) images the luminosity
[And+96] of the RGB values is often used for error evaluation (equation 4.1). In this
chapter all single channel IQA are performed on the luminosity channel of images.

£ =(0.2989 - ) + (0.587 - g) + (0.114 - b) (4.1)

In Monte Carlo rendering processes, images are rendered in High Dynamic Range
(HDR) using physical units from the light transport simulation. This means the
maximum value for a pixel is a physical upper-bound dependent on the composition

4.3 Computing Error

117



118

of the scene being rendered. In order to present the image to a user it must be
converted to a Low Dynamic Range (LDR) representation which accurately captures
the distribution luminance within the original HDR image.

This raises the question of whether to perform IQA measures on images in the HDR
or LDR representation. Most consumer displays have a colour-depth limited to 23
values per colour channel which suggests the application of IQA in LDR. Recently,
high-end displays in the consumer domain and those used for viewing medical
imagery have become available which have extended colour-depths in the range
of 2'2 values per colour channel. However, these devices are still displaying a LDR
representation of the images as there is still a fixed upper-bound on colour intensity.
As the colour-depth of display devices increases there is a growing need to be able
to evaluate the quality of images that will be displayed with an arbitrary colour-
depth, and additionally to be able to evaluate the quality of images directly in their
physically based HDR representations. The application of IQA on HDR images is non-
trivial as the lack of an upper-bound on pixel intensity makes it extremely difficult
to design measures which are robust to a wide range of plausible natural inputs. In
this chapter, due to dataset constraints and because the majority of IQA measures
under test operate on LDR images, all IQA considered are computed on LDR images
using their default hyper-parameters for an LDR configuration. In sections 4.6.1
and 5.5.1 we discuss how in the future we would like to revisit this to generate an
expanded dataset of HDR images which can be used in a wider range of research
applications.

While IQA measures can use a large variety of methods to compare image similarity
they generally follow a two stage design pattern. In the first stage a distortion map
is computed by comparing images at each pixel, or more generally at a local region
around each pixel. Methods can use pixel divergence, structural similarity, statistical
models for perceivable difference, or combinations of these and other measures. A
secondary pooling stage then consolidates this information to a single representative
value which most often takes the form of an average across image space, sometimes
weighted further by additional perceptual information based on the HVS.

Other IQA based on natural image statistics leveraging decompositions such as the
Wavelet transformation are more abstract in that image similarity is not compared on
a per-pixel basis, but rather on an overall statistical measure of mutual information
encoded by the decomposition coefficients.

In our experiment we chose IQA based on both of the above methodologies and
those utilizing a variety of measures on per-pixel distortion to see how these various
methods cope under the condition of a degraded and possibly non-representative
reference image.

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



These metrics were chosen as they represent a wide range of techniques and design
principles observed in the IQA literature. In multiple cases the chosen measures
include the same or similar features in their algorithmic design but use them in
different combinations. By analyzing the robustness of these similar measures we
can drawn conclusions as to the effect of certain features or design principles on the
quality of IQA. Table 4.1 shows a comparison of the techniques used by each of the

considered IQA measures.

Full Reference
(FR-IQA)
Reduced Reference
(RR-IQA)
Low Dynamic
Range (LDR)
High Dynamic
Range (HDR)
Single Channel
Multiple Channels
Multi-scale Geometric
Analysis (MGA)
Human Visual System
(HVS) Model

MSE

RMSE

MAE

PSNR

VSNR [CHO7]

NQM [DV+00]

VIF [SB06]

IFC [She+05a]

UQI [WB02]

SSIM [Wan+04a]
MS-SSIM [Wan+03]
IW-MSE [WL11]
IW-PSNR [WL11]
IW-SSIM [WL11]
Contourlet [Tao+09] v
WBCT [ER04] v

FSIM [Zha+11c]
FSIMc [Zha+11c]
SC-QI [BK16]
SC-DM [BK16]
HDR-VDP-2 [Man+11] v v

Tab. 4.1.: A feature comparison of the 21 IQA measures sampled from the literature.

NN N N N N N NN N NN
AN N N N N N N N N N NENENEN
NENENEN

AN N N N N N N N NN N NENEN

SNENENRY
AN N N N N NENENEN
NN N N N N N N NENEN

ANENIENEN
<

The metrics considered are:

* Single channel IQA: MSE, RMSE, MAE, PSNR, VSNR [CHO7], NQM[DV+00],
VIF [SB06], IFC [She+05a], UQI [WB02], SSIM [Wan+04a], MS-SSIM [Wan+03],
IW-MSE, IW-PSNR, IW-SSIM [WL11], Contourlet [Tao+09] and WBCT [ER04]
IQA, FSIM [Zha+11c];

e Multi channel IQA: FSIMc [Zha+11c], SC-QI [BK16], SC-DM [BK16], and
HDR-VDP-2 [Man+11].

4.3 Computing Error 119



120

4.4 Our Experiment

Our experiment is motivated by practices we review in the literature. When exam-
ining reference images in some literature, we still see impulse noise, and we wish
to explore the effect that reference image quality has on the results reported by
IQA. Initially we performed our analysis using an image dataset rendered with a
bespoke path tracing software developed for our research using the MEL framework
introduced in chapter 3. We then validated our experiment by creating a new dataset
of Monte Carlo rendered images using the widely trusted Mitsuba Renderer [Jak10]
to give researchers confidence in the validity of our results. The analysis of this new
dataset are the data we show in this chapter.

4.4.1 Monte Carlo Image Dataset Generation

We constructed an experiment where test scenes were rendered to increasing num-
bers of independent samples using each of the rendering algorithms considered.
Images were generated on a 2" samples per pixel (s.p.p.) sequence N, for each of
the test algorithms A, and for each scene $ (equation 4.2). Images were rendered
in HDR using Mitsuba renderer, they were then tone-mapped to LDR using Mitsuba’s
Reinhard Tone-Mapping operator [Rei+02] which applies LLH to the luminosity
channel of the image in the LUV colour-space, and then gamma-corrected in the
RGB colour-space using an exponent of 1/2.2. The resulting LDR images stored as 24
bits-per-pixel RGB images are the ones used in this experiment.

NeN:{2"2<n<...}
A € A : {PT, BDPT, PSSMLT, MLT, Manifold-MLT, ERPT, Manifold-ERPT} (4.2)
S € $ : {Cornell Box, Torus, Veach Bidir, Veach Door, Sponza}

This defines a set of images Zs 4ns where (SAN) € (3 x A x N) parameterized by
scene, rendering algorithm, and sample count with which to perform our analysis.
For each scene we chose a rendering algorithm A to be the reference algorithm
based upon its rate of convergence and the lack of structural artefacts at low sample
counts. Path Tracing was chosen as the reference algorithm for the Cornell Box and
Sponza scenes, while the caustic illumination in the Torus, Veach Bidir, and Veach
Door scenes were better sampled using Bidirectional Path Tracing. Figure 4.2 shows
exemplar image sequences from the dataset.

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



Fig. 4.2.:

Image sequences from each scene, rendered with each algorithm. The left panels show the reference
images used for IQA for each scene, where the superimposed red squares denote the crop window used
in the right panels. Panels for each rendering algorithm for each scene are organized left-to-right on an
ascending 2" s.p.p. scale. For each sequence the first 14 images are shown.

4.4 Our Experiment 121



122

For each error metric we compute the true error values to the GT reference image,
and we wish to see how degrading the quality of the reference image affects these
true error scores, (equation 4.3).

€ € E : {MSE, MAE, PSNR, UQI, SSIM, MS-SSIM, IW-SSIM, IW-MSE,
IW-PSNR, VSNR, Contourlet, WBCT, NQM, VIF, IFC, FSIM,  (4.3)
FSIMc, HDR-VDP-2, SC-QI, SC-DM}

4.4.2 Computing IQA Robustness

To do this we select the next highest sampled image as the reference image and
recompute the error values. Only images with lower sample counts than the currently
selected reference image are computed. By repeating this for all images in the
sequence of the reference algorithm we end up with a triangular matrix for each
error metric, algorithm, and scene; where one row represents the true error values,
and the remaining rows represent the error values as the reference image is degraded.
Formally, for all configurations C of an error metric, scene, and rendering algorithm
we have a lower triangular matrix MC with elements indexed by the number of
samples in the test image N}, and in the reference image N;, where each element is
the error calculated between the reference image Zs 4c 5, and the test image Zs 4
using an error metric £ (equation 4.4).

MZC:J - g (ISAGMv:ZSAJ\/j)
where i > jand C = (ESA) VC € (E x 3 x A)

(4.4)

4.4.2.1. Log Accuracy Ratio

To compare the degraded error values to the true values we use Log Accuracy Ratio,
In Q [Tof15], which measures the difference between an observed and expected
value. Because the IQA measures considered report their quality results on different
output scales we need a measure of relative change. Several such measures a widely
used, most notably Percent Error. However, an issue with many of these measures is
that the reported relative changes are asymmetric between positive and negative
change. That is to say, if an predicted value P is 25% greater than the actual value
A, then the actual value A is 20% less than the predicted value P, it is not 25% less
(equation 4.5). This asymmetry makes it difficult to accurately compare and contrast
relative performance when both under- and over-estimation are equally undesirable.

P—A A—P
A#_P

where P # A (4.5)

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



The value Q is defined as the relative accuracy between the predicted value P and
actual value A, %. This value on its own is still asymmetric, however it can be made
symmetric by simply taking a logarithm of the ratio. Logarithms of ratios can be
rewritten as the subtraction of two logarithms, through this transformation we can
show that symmetry is preserved through the equality shown in equation 4.6.

P
In (A) =In(P) —In(A)

= —[In(A) —In(P)] (4.6)

()

Because both positive and negative values occur frequently within our data, we
chose to use In Q to show the relative change in reported error between different
IQA measures. Figure 4.3 shows a visual depiction of the asymmetry present in
Percent Error, and how this is avoided by using In Q.

Comparison of symmetry between Log Accuracy Ratio
and Percent Error when computing relative accuracy

05r
0 [
051
>
_1 -
157 Log Accuracy Ratio In (%)
Log Accuracy Ratio —In (%)
Percent Error %
2r Percent Error — L
0.4 0.6 0.8 1 1.2 1.4 1.6
X

Fig. 4.3.: A visual comparison of the difference in symmetry between Log Accuracy Ratio
and Percent Error. Both measures compute relative change between and observed
and expected value. For both methods we fix the expected value to be 1 and sweep
the observed value from —0.25 to 1.75, plotting the response from each function
(solid blue and orange lines). We then swap the inputs, fixing the observed value
to be 1 and sweeping the expected value across the same range and negate the
result (dotted lines with orange and blue markers). We can see that Percent
error is not symmetric as the flipped and negated inputs yield a different result.
Log Accuracy Ratio does maintain symmetry, and both curves lie on top of one
another.

4.4 Our Experiment

123



124

This is applied to our triangular matrices by taking the natural logarithm of the
values in each column divided by the true value in the UN|th (bottom) row. This gives
a matrix where the bottom row are zeros (referring to the In Q of true values versus
themselves) and subsequent rows represent the quality of error evaluations as the
reference image is degraded. Formally from the matrix MC for each configuration
in the ensemble we define an equally sized matrix P¢ with elements defined by

ME .
Prj=In| o
’ M|]N|,j “4.7)

where i > jand C = (ESA) VC € (E x 3 x A)

equation 4.7.

Where PC has positive values this shows the IQA under test has overestimated the
amount of error while negative values show the error was underestimated.

4.5 Discussion

For all scenes, rendering algorithms, and error metrics there are 735 separate P
matrices in the dataset. We present the full results in the supplementary material.
Tables 4.2a-4.2e show P¢ for the Cornell Box scene rendered with Bidirectional
Path Tracing, and tables 4.3a-4.3e show P for the Veach Door scene rendered with
Energy Redistribution Path Tracing, using error metrics VIF (top), MS-SSIM, SC-QI,
HDR-VDP-2, and MSE (bottom) for both sets. A strong increase in values is visible
for MSE showing that overestimation increases as the number of samples in the
reference image decreases to the number of samples in the test image. The increase
in misreporting also appears for VIF as a strong underestimation. MS-SSIM and
SC-QI also exhibit underestimation but at a significantly lower magnitude. HDR-VDP-
2 shows both under and overestimation at magnitudes comparable to VIF. Tables
4.4a-4.4e show PC for the Torus scene rendered with Metropolis Light Transport,
using error metrics PSNR (top), NQM, VSNR, MAE, and Contourlet IQA (bottom).

To condense this to a manageable set of results table 4.5 displays the maximum
magnitude of misreporting within a defined region of each matrix where the columns
have been ordered left to right according to the average magnitude of under or
overestimation for each error metric. The maximum magnitude is underlined in each
table of results (tables 4.2a-4.2e, 4.3a-4.3e, 4.4a-4.4e, and supplementary material).
The region is defined for reference images having sufficient samples that they exhibit
good visual convergence as considered by a human observer. Reference images
outside this region have lower sample counts and consequently an unacceptable
amount of visible noise. The higher sample reference images are of sufficient visual

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



quality that they are representative of image comparisons that are typically seen
in the literature when evaluating rendering algorithms. We signify the start of this
region in each table by a horizontal rule. Figure 4.4 shows the construction of table
4.5 w.r.t. a selection of P¢ configurations.

ne: [Cornell Box] Alg: [BDPT] IQA: [VIF] True GT: [PT @ 32768 spp].

Fig. 4.4.: A visual depiction of how table 4.5 is formed. For each configuration P¢ the
value with maximum magnitude of misreported error using a visually acceptable
reference image becomes the value carried over to the corresponding cell in table
4.5 for that configuration.

For an example configuration (Cornell Box, BDPT), the maximum magnitude of
misreporting in MSE (table 4.2e) was In Q of 0.54666, in MS-SSIM (table 4.2b)
—0.00037, and in SC-QI (table 4.2c) just —0.00003. The same trends and behaviour
can also be seen for across other configurations, such as (Veach Door, ERPT) shown
in tables 4.3a-4.3e.

For another representative configuration (Torus, MLT) we will look at some of the
metrics which consistently performed poorly in our experiment — the maximum
magnitude of misreporting in PSNR (table 4.4a) was In Q of —0.01372, in NQM
(table 4.4b) 0.09016, in VSNR (table 4.4c) —0.07703, in MAE (table 4.4d) 0.07799,
and in Contourlet IQA (table 4.4e) an In Q of 0.38458.

4.5.1 Critical Analysis of IQA Measures

For a large majority of configurations from all scenes IFC, NQM, HDR-VDP-2, FSIMc,
FSIM, VSNR, SC-DM, IW-MSE, Contourlet IQA, and WBCT IQA all show multiple
occurrences of severe under- and over-estimation of error within the same configu-
ration and between configurations. This indicates they are highly sensitive to the
presence of impulse noise in the reference image and are not able to accurately
capture the distribution of distortions that are present under these circumstances.
This is a surprising result for Contourlet IQA and WBCT IQA which are RR-IQA
methods intended for use with partially corrupted reference images.

4.5 Discussion

125



(a) PC for Scene: [Cornell Box] Alg: [BDPT] IQA: [VIF] True GT: [PT @ 32768 sppl.

BDPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
GT (PT)
16384 -0.00220 -0.00245 -0.00226 -0.00297 -0.00345 -0.00391 -0.00436 -0.00465 -0.00547 -0.00540 -0.00597 -0.00623 -0.00681
8192 -0.00615 -0.00624 -0.00723 -0.00845 -0.00899 -0.01050 -0.01224 -0.01361 -0.01478 -0.01565 -0.01678 -0.01760
4096 -0.01403 -0.01611 -0.01684 -0.01841 -0.02120 -0.02472 -0.02762 -0.03124 -0.03331 -0.03580 -0.03766
2048 -0.02817 -0.02970 -0.03269 -0.03682 -0.04304 -0.04905 -0.05489 -0.06046 -0.06549 -0.06902
1024 -0.05707 -0.06009 -0.06457
512
256
128
64
32
16
8
4
(b) PC for Scene: [Cornell Box] Alg: [BDPT] IQA: [MS-SSIM] True GT: [PT @ 32768 sppl.
BDPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
GT (PT)
16384 -0.00010 -0.00000 -0.00003 -0.00006 -0.00003 -0.00008 -0.00005 -0.00005 -0.00006 -0.00005 -0.00005 -0.00005 -0.00006
8192 -0.00012 -0.00004 -0.00015 -0.00014 -0.00013 -0.00012 -0.00015 -0.00016 -0.00015 -0.00015 -0.00016 -0.00016
4096 -0.00007 -0.00025 -0.00025 -0.00027 -0.00026 -0.00035 -0.00034 -0.00036 -0.00035 -0.00037 -0.00037
2048 -0.00010 -0.00033 -0.00059 -0.00063 -0.00069 -0.00076 -0.00073 -0.00076 -0.00075 -0.00076
1024 -0.00104 -0.00105 -0.00119 -0.00120 -0.00141 -0.00133 -0.00148 -0.00155 -0.00152
512 -0.00179 -0.00159 -0.00252 -0.00266 -0.00279 -0.00294 -0.00305 -0.00310
256 -0.00306 -0.00351 -0.00468 -0.00539 -0.00561 -0.00583 -0.00620
128 -0.00628 -0.00800 -0.00909 -0.01011 -0.01146 -0.01181
64 -0.01118 -0.01467 -0.01825 -0.02007 -0.02134
32 -0.02859 -0.03358 -0.03739
16 -0.05122 -0.05902
8
4
(c) PC for Scene: [Cornell Box] Alg: [BDPT] IQA: [SC-QI] True GT: [PT @ 32768 spp].
BDPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
GT (PT)
16384 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000 -0.00000
8192 0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000
4096 0.00003 0.00002 0.00002 0.00001 0.00001 0.00001 0.00000 0.00000 -0.00000 -0.00000 -0.00000
2048 0.00005 0.00004 0.00003 0.00002 0.00001 0.00001 0.00000 0.00000 -0.00000 -0.00000
1024 0.00008 0.00006 0.00004 0.00003 0.00002 0.00001 0.00000 -0.00000 -0.00001
512 0.00011 0.00009 0.00006 0.00004 0.00002 0.00001 -0.00000 -0.00001
256 0.00016 0.00012 0.00008 0.00005 0.00002 0.00000 -0.00001
128 0.00022 0.00015 0.00009 0.00005 0.00001 -0.00002
64 0.00027 0.00017 0.00009 0.00003 -0.00003
32 0.00032 0.00017 0.00006 -0.00003
16 0.00032 0.00013 -0.00004
8 0.00024 -0.00003
4 0.00002
(d) PC for Scene: [Cornell Box] Alg: [BDPT] IQA: [HDR-VDP-2] True GT: [PT @ 32768 sppl.
BDPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
GT (PT)
16384 0.00069 0.00061 0.00023 0.00017 0.00070 -0.00122 -0.00049 -0.00019 -0.00438 -0.00663 -0.00472 -0.01012 -0.01582
8192 0.00135 0.00077 0.00099 0.00059 0.00003 -0.00055 -0.00104 -0.00320 -0.00575 -0.00867 -0.01418 -0.02252
4096 0.00301 0.00112 0.00253 0.00150 0.00180 -0.00101 -0.00394 -0.00516 -0.01265 -0.02330 -0.03381
2048 0.00523 0.00486 0.00434 0.00206 0.00025 -0.00148 -0.00711 -0.01443 -0.02351 -0.03825
1024 0.00934 0.01054 0.00967 0.00628 0.00390 -0.00147 -0.01202 -0.02456 -0.04561
512 0.02234 0.01974 0.01844 0.01213 0.00482 -0.00383 -0.02187 -0.04315
256 0.03743 0.03500 0.02745 0.02212 0.00886 -0.01341 -0.04229
128 0.06009 0.05272 0.04354 0.02893 0.00325 -0.02340
64 0.08230 0.06972 0.05534 0.03304 -0.00370
32 0.08631 0.06176 0.02416
16 0.05239
8 0.08409
4
(e) PC€ for Scene: [Cornell Box] Alg: [BDPT] IQA: [MSE] True GT: [PT @ 32768 sppl.
BDPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
GT (PT)
16384 0.00021 0.00044 0.00035 0.00146 0.00250 0.00604 0.01123 0.01857 0.03963 0.06006
8192 0.00082 0.00089 0.00228 0.00439 0.00790 0.01515 0.03214 0.05903
4096 0.00067 0.00301 0.00481 0.00984 0.01821 0.03760 0.07164
2048 0.00206 0.00420 0.01003 0.01965 0.04178 0.08150
1024 0.00577 0.01141 0.02103 0.04097 0.08008
512 0.01046 0.02234 0.04352 0.08472
256 0.02121 0.04110 0.08476
128 0.04228 0.08528
64 0.08224
32
16

126

In Q of various IQA measures as reference and test image quality are varied for the Cornell Box

scene, rendered with Bidirectional Path Tracing. The vertical axis represents the number of s.p.p.
in reference images while the horizontal axis denotes the number of s.p.p. in test images. Cells
are highlighted from underestimation (blue) to overestimation (orange).
tween 2048 and 4096 s.p.p. separates ground truths that exhibit good visual convergence (above)

from sample counts that result in ground truths with visible noise (below).

The horizontal rule be-

Maximum magni-

tude for reference images with good visual convergence shown with a black underline. The ma-
trix has been flipped vertically and the zero row of reference values versus themselves has been

omitted to aid in visualization.

Full results for this experiment are available in a supplementary

document: https://static-content.springer.com/esm/art%3A10.1007%2Fs00371-017-
1384-7/MediaObjects/371_2017_1384_MOESM1_ESM.pdf

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



(a) PC for Scene: [Veach Door] Algorithm: [ERPT] Metric: [VIF] True GT

ERPT 2 4 8 16 32 64 128 256 512 1024 2048

[BDPT @ 524288 sppl].

4096 8192 16384 32768 65536 131072
GT (BDPT)
262144  -0.00238  -0.00224  -0.00245  -0.00244  -0.00266  -0.00217  -0.00278  -0.00259  -0.00260  -0.00256  -0.00239  -0.00210  -0.00266  -0.00257  -0.00250  -0.00262  -0.00252
131072 -0.00681  -0.00676  -0.00692  -0.00682  -0.00713  -0.00686  -0.00672  -0.00695  -0.00715  -0.00701  -0.00662  -0.00679  -0.00705  -0.00666  -0.00671  -0.00700
65536 -0.01588  -0.01512  -0.01554  -0.01536  -0.01514  -0.01534 -0.01499 -0.01568 _.0.01619 -0.01516 -0.01463 -0.01558 -0.01555 -0.01514  -0.01539
32768  -0.03253  -0.03172  -0.03207  -0.03205  -0.03201  -0.03135  -0.03127  -0.03144  -0.03201  -0.03128  -0.03074  -0.03207  -0.03182  -0.03144.
16384 005770 -0.05838 -0.05768  -0.05805 -0.05797 -0.05830 -0.05782 -0.05868  -0.05744  -0.05886  -0.05767 -0.05874  -0.05837

8192
4096
2048
1024

512

(b) PC for Scene: [Veach Door] Algorithm: [ERPT] Metric: [MS-SSIM] True GT:

ERPT 2 4 8 16 32 64 128 256 512 1024 2048

[BDPT @ 524288 spp].

4096 8192 16384 32768 65536 131072
GT (BDPT)

262144  -0.00003  -0.00012  -0.00011  -0.00005  -0.00013  -0.00002  -0.00008  -0.00010  -0.00013  0.00002  -0.00010  -0.00002  -0.00005  -0.00009  -0.00006  -0.00011  -0.00005
131072 -0.00020  -0.00025  -0.00015  -0.00023  -0.00020  -0.00020  -0.00014  -0.00025  -0.00016  -0.00019  -0.00016  -0.00019  -0.00016  -0.00016  -0.00019

65536 -0.00041  -0.00042  -0.00050  -0.00055  -0.00053  -0.00041  -0.00050  -0.00045  -0.00043  -0.00048  -0.00048  -0.00046  -0.00048  -0.00047

32768  -0.00111  -0.00101  -0.00087 -0.00105 -0.00110  -0.00086 -0.00096  -0.00087 ~ -0.00103  -0.00089  -0.00088  -0.00087  -0.00096  -0.00098

16384 000179  -0.00213  -0.00192  -0.00221  -0.00196  -0.00203  -0.00197  -0.00210  -0.00201  -0.00219  -0.00197  -0.00206  -0.00194

8192 -0.00352  -0.00350  -0.00392  -0.00388  -0.00369  -0.00397  -0.00393  -0.00360  -0.00357  -0.00436  -0.00397  -0.00376

4096  -0.00781  -0.00827 -0.00792  -0.00815  -0.00755  -0.00799  -0.00821  -0.00803  -0.00803  -0.00758  -0.00796
2048 -0.01504 -0.01486  -0.01497 -0.01573 -0.01501  -0.01500 -0.01433  -0.01463 -0.01467  -0.01438

1024 -0.02898  -0.02914  -0.02964  -0.02991  -0.02976  -0.02970  -0.02921  -0.02955  -0.02938

512 -0.05454  -0.05395 -0.05427  -0.05407  -0.05587  -0.05409  -0.05478

(c) PC for Scene: [Veach Door] Algorithm: [ERPT] Metric: [SC-QI] True GT: [BDPT @

524288 spp].

ERPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
GT (BDPT)

262144 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
131072 0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001  0.00001

65536 0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002  0.00002 _0.00002  0.00002  0.00002  0.00002  0.00002  0.00002

32768  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003  0.00003

16384  0.00004  0.00005  0.00005  0.00005  0.00005  0.00005  0.00005  0.00005  0.00005  0.00005  0.00005  0.00005  0.00005

8192 0.00006  0.00006  0.00006  0.00006  0.00007  0.00007  0.00007  0.00007  0.00007  0.00007  0.00007  0.00007

4096  0.00007  0.00007  0.00007  0.00008  0.00008  0.00008  0.00008  0.00008  0.00007  0.00008  0.00008
2048 0.00005  0.00006  0.00006  0.00007  0.00007  0.00007  0.00007  0.00007  0.00006  0.00007
1024 -0.00000  -0.00000  0.00000  0.00000  0.00002  0.00001  0.00002  0.00001  0.00001

512 -0.00017  -0.00018  -0.00016  -0.00015  -0.00015  -0.00017  -0.00016  -0.00016

256  -0.00050  -0.00048  -0.00049  -0.00046  -0.00047  -0.00047  -0.00048

128 -0.00110  -0.00111  -0.00110  -0.00109  -0.00108  -0.00110

64 0.00206 -0.00203  -0.00205  -0.00206  -0.00204

32 000353 -0.00352 -0.00354  -0.00353

16 -0.00550  -0.00555  -0.00556

8 -0.00822  -0.00825

4 -0.01160

(d) PC for Scene: [Veach Door] Algorithm: [ERPT] Metric: [HDR-VDP-2] True GT: [BDPT @ 524288 spp].

ERPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
GT (BDPT)

262144 000104  0.00076  0.00101  0.00091  0.00058  0.00150  0.00126  0.00037  0.00043  0.00021  0.00040  0.00125  0.00119  0.00132  0.00084  0.00054  0.00087

131072 0.00210  0.00246  0.00313  0.00191  0.00268  0.00188  0.00188  0.00182  0.00211  0.00184 000062  0.00202  0.00203  0.00225  0.00227  0.00216

65536 0.00485 _0.00753  0.00487  0.00473  0.00474  0.00566  0.00459  0.00395  0.00400  0.00555  0.00380  0.00570  0.00592  0.00461  0.00676

32768  0.00872  0.01269  0.01092  0.00967  0.00982  0.01143 001023  0.00918  0.00927  0.00921  0.00959  0.00971  0.00809  0.00792

16384 001616 001935 001873 001791 001757 001850 001791 001697 001818 001527 001927 001862  0.01834

8192 0.02698  0.03472  0.02895  0.02900  0.02830  0.02933  0.02789  0.02902  0.03031  0.02950  0.03066  0.03103

4096 003780 004606  0.04178  0.04590  0.04130  0.04512  0.04118  0.03976  0.04356  0.04259  0.04861
2048 005309  0.06222  0.05854  0.05411  0.05321  0.05841  0.05441  0.05438  0.05320  0.05707

1024 006345 007037  0.06696  0.06154  0.05364  0.06256  0.05465  0.06088  0.05849

512 0.06485  0.07400  0.06212  0.06141  0.05954  0.06078  0.05634  0.05539

256 0.05187  0.06481  0.04861  0.04539  0.04125  0.04402  0.03603

128 002076  0.02833  0.00992  0.00804  0.00404  0.00353

64 001823 -0.00739  -0.02678  -0.03170  -0.03489

32 0.06405  -0.05702

(e) PC for Scene: [Veach Door] Algorithm: [ERPT] Metric: [MSE] True GT: [BDPT @ 524288 spp].

ERPT 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072
GT (BDPT)

262144 000056  0.00106  0.00123  0.00060  0.00146  0.00100  0.00196  0.00135  0.00166  0.00113  0.00145  0.00130  0.00194  0.00124  0.00203  0.00154  0.00110

131072 000321  0.00315  0.00391  0.00362  0.00432  0.00403  0.00485  0.00425  0.00460  0.00419  0.00359  0.00425  0.00484  0.00291  0.00324  0.00432

65536 0.00610  0.00636  0.00863  0.00760  0.00758  0.00859  0.00820  0.00861  0.00839  0.00790  0.00676 _0.00882  0.00798  0.00747 _ 0.00790

32768 001303  0.01300  0.01642  0.01591 001772 001581 001618 001542  0.01662  0.01661  0.01453  0.01627  0.01698  0.01546

16384 002062 002444 002647 002935  0.03073 003080  0.02914  0.03058  0.02729  0.03193  0.02999  0.03126  0.02944

8192 004174  0.04153  0.05472  0.05858  0.05706  0.06126  0.05993  0.06235  0.05539  0.06209  0.05971  0.05906

4096 | 0.08841
2048
1024

512

Tab. 4.3.: In Q of various IQA measures as reference and test image quality are varied for the Veach Door

scene, rendered with Energy Redistribution Path Tracing. The vertical axis represents the number
of s.p.p. in reference images while the horizontal axis denotes the number of s.p.p. in test im-
ages. Cells are highlighted from underestimation (blue) to overestimation (orange). The horizon-
tal rule between 32768 and 65536 s.p.p. separates ground truths that exhibit good visual conver-
gence (above) from sample counts that result in ground truths with visible noise (below). Maximum
magnitude for reference images with good visual convergence shown with a black underline. The
matrix has been flipped vertically and the zero row of reference values versus themselves has been
omitted to aid in visualization. Full results for this experiment are available in a supplementary
document: https://static-content.springer.com/esm/art%3A10.1007%2Fs00371-017-
1384-7/MediaObjects/371_2017_1384_MOESM1_ESM.pdf

4.5 Discussion

127



(a) PC for Scene: [Torus] Algorithm: [MLT] Metric: [PSNR] True GT: [BDPT @ 524288 spp].

MLT 2 4 8 16 32 64 128 256 512

1024 2048 4096 8192 16384
GT (BDPT)
262144  0.00028  0.00034  0.00013 0.00011  -0.00004  0.00001  -0.00020  -0.00041  -0.00017  -0.00042  -0.00040  -0.00044  -0.00051  0.00005
131072 0.00045 0.00007  -0.00051  -0.00071  -0.00101  -0.00121  -0.00136  -0.00174  -0.00170  -0.00194  -0.00221  -0.00216  -0.00245
65536 0.00087  0.00029  -0.00061  -0.00112  -0.00208  -0.00231  -0.00288  -0.00396  -0.00401  -0.00461  -0.00485  -0.00506  -0.00563
32768 0.00055 0.00002  -0.00204  -0.00304  -0.00491  -0.00504  -0.00619  -0.00906  -0.00869  -0.00983  -0.01034 _ -0.01054  -0.01205
16384  0.00065  -0.00037  -0.00347  -0.00501  -0.00948  -0.00930  -0.01137 -0.01508 -0.01549  -0.01777 -0.01834  -0.01926  -0.02151
8192 0.00018  -0.00234  -0.00934  -0.01083  -0.01822  -0.01968  -0.02441  -0.03111  -0.03189  -0.03567  -0.03706  -0.03826
4096  0.00012  -0.00450  -0.01589  -0.02077  -0.03267  -0.03441  -0.04246  -0.05295  -0.05382

-0.05972  -0.06197
2048  -0.00033  -0.00904  -0.02765  -0.03452  -0.05442  -0.05749

1024  -0.00259  -0.01640  -0.04141  -0.05264

512 -0.00190  -0.02011  -0.05514
256  0.00121  -0.02433
128 0.00909  -0.02033
64  0.01244  -0.02168
32 0.01959  -0.01578  -0.05870
16 0.02738  -0.01097  -0.05235

8 002439  -0.01286
4 0.02610

(b) PC for Scene: [Torus] Algorithm: [MLT] Metric: [NQM] True GT: [BDPT @ 524288 spp].

M o 4 N 16 a2 o4 126 256 sz 1024 2048 4096 a1z 1e3m4
ot @orn
P D | o QIO G Gmm | Oy Gomme | oeown | Goomm | oo oo GEoen | oo
131072 -0.00403 -0.00434 0.03315 -0.00335 0.00290 0.00051 0.00149 0.00199 0.00172 0.00195 -0.00000 0.00069 0.00091 -0.00032
65536 -0.00748 -0.00755 -0.00017 0.00836 0.00317 0.00278 0.00217 0.00091 0.00027 -0.00108 -0.00132 -0.00121 -0.00293
32768 -0.00989 -0.01295 -0.01833 0.01123 -0.00260 -0.00361 -0.00548 -0.00806 -0.00895 -0.00706 -0.00588 -0.00798 -0.01346
16384 -0.01580 -0.02173 0.02603 0.00728 0.00353 0.00017 0.00007 -0.00077 -0.00577 -0.00631 -0.00656 -0.00953
s152 [EEOIosEEONEOIEE04E Loznrr| -0.0000¢ [EC0TSTZ RO ST TR Y S e
4096 -0.04940 -0.05783 -0.02488 -0.01392 -0.02828 -0.04340 -0.05169 -0.06037
2048 -0.05651 -0.04465
To24
s12
256
128
64
2
1o
s
5
(c) PC for Scene: [Torus] Algorithm: [MLT] Metric: [VSNR] True GT: [BDPT @ 524288 spp].
M o 4 N 16 a2 " 126 256 1z 1024 2048 4095 s192 16384
ot @orn
262144 ORI W o 7= PR RO A e o A e G oS E e Cae o G 575 R s S e oS
131072 0.00910 0.05997 -0.02363 -0.02290 -0.00019 0.00917 0.00503 0.00047 0.00267 0.00148 0.00228 0.00225 0.01964 -0.00303
65536  0.00862 0.03377  -0.01203 [ [l0W6#708 -0.01074  0.00460  -0.00369  -0.00800  -0.00604  -0.00758  0.01497  -0.00505  0.01167 0.00048
32768 0.02104 0.05160 -0.04994 -0.02945 -0.02209 0.00076 0.01483 0.00254 0.00921 0.00590 0.00987 0.01053 0.02348 0.00370
16384 -0.00793 0.05844 -0.03425 0.00056 -0.01605 0.02262 0.02999 0.01588 0.02471 0.01859 0.04292 0.04225 0.03540
8192 -0.04709 -0.06102 -0.02022 0.03856 -0.00305 0.02255 0.02599 0.02586 0.01995 0.01498 0.03797 0.03887
4096 0.05772 0.02768 0.05933 0.04579 0.02532 0.03951 0.03027 0.05459
2048 0.05094 0.05474 0.04633 0.04697 0.03725
Y024 Glosear B oo Moicia0y
s12 0.04298
b
128
64 0.05063
2
1o
s
5
(d) PC€ for Scene: [Torus] Algorithm: [MLT] Metric: [MAE] True GT: [BDPT @ 524288 spp].
M o 4 N 16 a2 ” 126 256 1z 1024 2048 4096 s192  1638e
GT (BDPT)
262144 PEOECCTS RS T R  RE A R R R R TE
131072 -0.00149 -0.00174 -0.00082 -0.00071 0.00386 0.00367 0.00475 0.00845 0.01044 0.01036 0.01473 0.01349 0.01434 0.01773
65536 -0.00334 -0.00404 -0.00395 -0.00301 0.00606 0.00719 0.01009 0.01846 0.02241 0.02191 0.02944 0.02827 0.03093 0.03802
32768  -0.00410  -0.00534  -0.00320  0.00059  0.01699  0.01755 0.02555 0.04203  0.04705  0.04792  0.06110 _ 0.05797  0.06559 _0.07799
16384 -0.00584 -0.00737 -0.00201 0.00285 0.03679 0.03777 0.05131 0.07432
8192 -0.00917 -0.00982 0.00545 0.01246 0.06389 0.06918
4096 -0.01297 -0.01205 0.01541 0.03197
2048 -0.01786 -0.01226 0.02971 0.05442
1024 -0.02523 -0.01524 0.03319 0.07096
s12 | 003762 002872  o0.02916 | 0.07632
256 -0.05574 X 0.01761
128 “0.00513
64 -0.00263
32 0.01147
1o IR
s
5

(e) PC for Scene: [Torus] Algorithm: [MLT] Metric: [Contourlet] True GT: [BDPT @ 524288 spp].

MLT 2 4 8 16 32 64 128
GT (BDPT)
262144  0.00551 Y T X X X 0.00548  0.03538  0.02266  0.00837
131072 0.01670 X Y 0.06450
65536 0.03557
32768 | 0.06479

256 512 1024 2048 4096 8192 16384

Tab. 4.4.: In Q of various IQA measures as reference and test image quality are varied for the Torus scene,
rendered with Metropolis Light Transport. The vertical axis represents the number of s.p.p. in
reference images while the horizontal axis denotes the number of s.p.p. in test images. Cells
are highlighted from underestimation (blue) to overestimation (orange). The horizontal rule be-
tween 16384 and 32768 s.p.p. separates ground truths that exhibit good visual convergence (above)
from sample counts that result in ground truths with visible noise (below). Maximum magni-
tude for reference images with good visual convergence shown with a black underline. The ma-
trix has been flipped vertically and the zero row of reference values versus themselves has been
omitted to aid in visualization. Full results for this experiment are available in a supplementary
document: https://static-content.springer.com/esm/art%3A10.1007%2Fs00371-017-
1384-7/MediaObjects/371_2017_1384_MOESM1_ESM.pdf

128 Chapter 4 Analysis of Error in Monte Carlo Rendered Images



Overall, two of the worst performing metrics were the WBCT and Contourlet IQA
methods which consistently overestimated error, with an average maximum overesti-
mation across all scenes and rendering algorithms of 0.19697 and 0.19058 respectively.
These methods are the same measure performed on the different decompositions of
the input images which is simply a distance between two coarse histograms over the
proportion of visually important coefficients in a multi-scale image decomposition.
These are classified as RR IQA methods, meaning they are designed to work with
the assumption that the reference image may contain errors but is still representa-
tive. However these results show that the measures are highly sensitive to image
distortions such as high frequency impulse noise that are prevalent in Monte Carlo
rendered images, even at high sample counts. The commonly used MSE measure
performs just as poorly, consistently overestimating error with an average maximum
of 0.1762 overestimation. MAE performs slightly better with an average overesti-
mation of 0.10273 which is to be expected as MSE weights deviations quadratically
while MAE weights deviations linearly.

At the other end of the scale, VIF and IFC consistently underestimate error between
images with an average maximum of —0.09731 and —0.07349 respectively. Both
methods are based on approximating the two random fields of a GSM noise model.
This model assumes that the reference image is correct and does not account of
distortions within the reference. Other IQA methods that build off of the GSM model
are the Information Content Weighting methods. IW-MSE on average performs
slightly better than the standard MSE with an average maximum overestimation of
0.13344; however due to the poor ability of the GSM to handle noise in the ground
truth, this performance is likely due to the addition of multi-scale image analysis
rather than because of the GSM noise model. The performance of IW-SSIM which
had an average maximum underestimation of —0.00532 supports this theory as
it is marginally worse than that of MS-SSIM which scored an average maximum
underestimation of —0.00248. These methods only differ in the use of the GSM noise
model. UQI and SSIM which don’t perform multi-scale image analysis also support
this as they perform worse than MS-SSIM with average maximum underestimations
by —0.05772 and —0.01127 respectively.

Out of the five scenes the Torus scene showed the largest magnitudes of misreported
results, likely due to the slow convergence of caustic illumination. The Veach Bidir
and Veach Door scenes also feature caustic illumination however these converge
comparatively quickly compared to the Torus scene and this can be seen in reduced
comparative misreporting between the scenes.

4.5 Discussion

129



I

0€

sebeLw| paispusy ojieD 8lUO\ Ul Jo1iT Jo sishleuy ¢ Jeideyn

VIF

IFC

ot

PSNR

IWPSNR

ssIM

NoM

W-ssIM

MS-SSIM

scQl

HDRVDP2

FSIMe

FSIM VSNR. scr

Cornell Box PT -0.03370 -0.08914 -0.03688 -0.02483 -0.02508 -0.00175 -0.02421 -0.00299 -0.00038 0.00004 -0.02242 0.00829 0.00830 -0.02707 = -0.0S
GT (PT) BDPT -0.03766 -0.05302 -0.04385 -0.05098 -0.00187 -0.03961 -0.00198 -0.00037 0.00003 -0.03381 0.00747 0.00747 -0.02998 | 0.45
PSSMLT  -0.03556 -0.08665 -0.04487 -0.01529 -0.01522 -0.00181 -0.01222 -0.00250 -0.00037 0.00002 -0.01098 0.00694 0.00694 -0.02383  0.07
MLT -0.03221 -0.06861 -0.03109 -0.01000 -0.00561 -0.00176 -0.00550 -0.00266 -0.00038 0.00003 -0.00911 0.00835 0.00837 -0.01501 -0.0¢
Manifold-MLT = -0.03270 = -0.08660 -0.03258 -0.01017 -0.00606 -0.00177 -0.00814 -0.00255 -0.00036 0.00003 -0.00505 0.00838 0.00840 -0.01564 -0.0¢
ERPT -0.02270 -0.02777 -0.01161 -0.00209 -0.00177 -0.00164 -0.00217 -0.00093 -0.00035 0.00001 0.00135 0.00307 0.00306 -0.00459 -0.0%
Manifold-ERPT = -0.02187 -0.02349 -0.01002 -0.00181 -0.00157 -0.00156 -0.00200 -0.00094 -0.00034 0.00001 0.00162 0.00305 0.00305 -0.00511 -0.0%
Torus PT -0.11270  -0.09195 -0.04573 -0.03921 -0.02489 -0.06889 -0.01844 -0.00672 0.00020 0.05888 0.05853 0.05892 ' -0.11038 .
GT (BDPT) BDPT -0.10768 -0.09545 -0.04234 -0.03724 -0.02300 -0.05962 -0.01684 -0.00625 0.00021 0.06461 0.05934 0.05977 @ -0.10721
PSSMLT -0.04048 -0.01267 -0.03565 -0.04632 -0.01518 -0.00748 0.00018 0.06946 0.01822 0.01833 = -0.09096  0.29
MLT -0.01372  0.00515 -0.03606 0.09016 -0.01120 -0.00756 0.00020 0.05198 0.01144 0.01169 -0.07703  0.08
Manifold-MLT -0.02246  0.00560 -0.03818 = 0.11864 -0.01310 -0.00847 0.00015 0.03651 0.01484 0.01525 0.16
ERPT -0.10343  -0.12235 -0.03366 -0.01447 -0.03133 -0.04850 -0.01580 -0.00740 0.00003 0.06267 0.01360 0.01367 = -0.08538 -0.0%
Manifold-ERPT -0.10264 -0.03137 -0.01457 -0.03111 -0.04444 -0.01593 -0.00755 0.00002 0.02725 0.01280 0.01289 = -0.08659 -0.0:
Veach Bidir PT -0.01659 -0.04894 -0.00333 -0.00107 0.00227 -0.00148 | 0.16618  0.00274  0.00089  0.00009 0.00748 0.01231 0.01231 0.01058 -0.0:
GT (BDPT) BDPT -0.03412 -0.08898 -0.04388 -0.04562 -0.07197 -0.00234 -0.04159 0.00196 -0.00063 0.00006 -0.08495 0.00817 0.00817 | -0.09721  0.37
PSSMLT -0.03463 -0.06634 -0.04196 -0.02015 -0.02454 -0.00242 -0.01531 0.00176 -0.00060 0.00005 -0.05244 0.00832 0.00832 -0.04186 -0.07
MLT -0.02697 0.03898 -0.01720 -0.00637 0.00964 -0.00211 0.01242  0.00212  0.00064 0.00006 0.07547 0.01050 0.01049 0.01921  -0.0¢
Manifold-MLT = -0.02796  0.05100 -0.02065 -0.00642 0.00935 -0.00226 0.01560  0.00233  0.00109  0.00006 -0.02304 0.01030 0.01030 -0.02151 -0.0%
ERPT -0.02107 -0.03051 -0.00509 -0.00366 0.00636 -0.00216 0.00674  0.00090 -0.00061 0.00002 0.00834 0.00438 0.00438 -0.00904 -0.02
Manifold-ERPT ~ -0.02088 -0.03062 -0.00466 -0.00298 0.00571 -0.00202 0.00641 -0.00098 -0.00062 0.00002 -0.00631 0.00440 0.00441 -0.00922
Veach Door PT -0.02103 -0.05344 -0.00593 -0.00573 -0.00518 -0.00263 -0.00632 -0.00454 -0.00053 0.00011 -0.04776 0.00492 0.00491 | 0.18706 -0.07
GT (BDPT) BDPT -0.03288 -0.05916 -0.03910 -0.02856 -0.02913 -0.00301 -0.02221 -0.00458 -0.00058 0.00011 = -0.08349 0.00473 0.00473 | 2.02713  0.12
PSSMLT -0.03248 -0.05987 -0.04727 -0.02185 -0.01861 -0.00295 -0.01608 -0.00409 -0.00056 0.00008 -0.05149 0.00392 0.00392 0.02342 & 0.14
MLT -0.03410 -0.07112 -0.06547 -0.02261 -0.00967 -0.00298 -0.01709 -0.00404 -0.00056 0.00009 -0.08106 0.00401 0.00401 -0.02349 = 0.21
Manifold-MLT = -0.03438 -0.07323 -0.06571 -0.02045 -0.00787 -0.00301 -0.01439 -0.00424 -0.00057 0.00009 -0.02645 0.00395 0.00395 -0.03055 | 0.21
ERPT -0.01619 -0.00649 -0.00410 -0.00122 0.00049 -0.00227 -0.00140 -0.00176 -0.00056 0.00002 0.00753 0.00303 0.00303 -0.00389 -0.0:
Manifold-ERPT ~ -0.01563 -0.00862 -0.00327 -0.00121 -0.00047 -0.00218 -0.00172 -0.00203 -0.00058 0.00002 0.00702 0.00314 0.00314 -0.00388 -0.0:
Sponza PT | -0.11977 -0.08352 -0.05734 -0.03651 -0.03375 -0.01970 -0.03707 -0.00850 -0.00427 0.00021 0.05730 0.02183 0.02187 -0.05280 | 0.16
GT (PT) BDPT | -0.11455 -0.07631 -0.05407 -0.03133 -0.02826 -0.01951 -0.03274 -0.00838 -0.00444 0.00022 0.05653 0.02157 0.02160 -0.04809 = 0.13
PSSMLT | -0.10372 -0.04370 -0.04225 -0.01021 -0.00640 -0.01793 -0.01145 -0.00762 -0.00397 0.00016 0.06167 0.02050 0.02054 -0.01744 -0.0
MLT -0.09366 -0.07845 -0.01209 -0.00628 -0.01992 -0.01219 -0.00856 -0.00431 0.00016 0.04427 0.02080 0.02075 -0.01973 -0.0Z
Manifold-MLT -0.09648 -0.08093 -0.01190 -0.00723 -0.01953 -0.01410 -0.00716 -0.00435 0.00016 0.04745 0.02090 0.02094 -0.01777 -0.02
ERPT = -0.08035 -0.01056 -0.02362 -0.00702 -0.00439 -0.01611 -0.00797 -0.00516 -0.00391 0.00003 0.01427 0.00583 0.00583 -0.01411 -0.0:
Manifold-ERPT | -0.07951 -0.01462 -0.02092 -0.00671 -0.00428 -0.01557 -0.00713 -0.00545 -0.00388 0.00003 0.01591 0.00569 0.00570 -0.01438 -0.0Z
Average = -0.09731 -0.07349 -0.05772 -0.01833 -0.01251 -0.01127 -0.00584 -0.00532 -0.00248 0.00009 0.00683 0.01250 0.01255 0.02372  0.02
Average Absolute Magnitude =~ 0.09731  0.07863  0.05772  0.01833  0.01506  0.01127  0.02962  0.00600  0.00263  0.00009  0.03760 0.01250 0.01255 0.10585  0.11
Maximum Magnitude -0.04573  -0.07197 -0.03818 | 0.16618 -0.01844 -0.00847 0.00022 -0.08495 0.05934 0.05977 | 2.02713  0.45

Tab. 4.5.: A condensed table showing all 735 result tables, showing max P¢ for all Algorithms,

Scenes, and Me

estimation in each configuration for IQA. These worst cases are from the high sample count ground tr
in the supplementary materials. A value of zero represents an ideal result showing error has not bee
column Average. Cells are highlighted from underestimation (blue) to overestimation (orange). Full re
supplementary document: https://static-content.springer.com/esm/art%3A10.1007%2F:
371_2017_1384_MOESM1_ESM.pdf



4.6 Recommendations and Conclusions

It is difficult to find a balance between the desire for a purely numerical distance
metric as we are evaluating the quality of a numerical simulation, and the desire
to measure only the perceivable noise as observed by the HVS. We argue that a
good balance of these features is for a proposed error metric to be monotonic with
respect to a simple numerical divergence like MSE such that a reduction in numerical
distance always corresponds to a reduction of reported error. Of the IQA considered
in this work that were more advanced than a numerical distance MS-SSIM, SC-QI,
SC-DM, and NQM were all monotonic with respect to MSE for the types of distortion
that are prevalent in Monte Carlo rendered images. The other IQA tested all showed
non-monotonicity in the presence of strong impulse noise, primarily from caustic
illumination.

IQA which measured per-pixel structural information seemed to be more robust to
the effects of impulse noise in the reference image; however, a stronger divide was
seen between methods that applied multi-scale geometric analysis and those that did
not. By isolating high frequency noise in one level of a multi-scale decomposition its
effects on image assessment can be bounded or minimized effectively.

Metrics which used perceptual models of the HVS were highly sensitive to the noise
in reference images and quickly became unreliable as the quality of the reference
was degraded.

Rendering algorithms such as Path Tracing and Bidirectional Path Tracing, which
uniformly sample path space, are better suited to the task of producing reference
images than rendering algorithms which use a Markov based random walk such as
Metropolis Light Transport or Energy Redistribution Path Tracing. While in certain
situations Markov based algorithms exhibit faster convergence than uniform sam-
pling methods, before the simulation has fully converged a uniform method will
have independently distributed error while a Markov algorithm will exhibit noise
distributed deterministically with respect to the trajectory the random walk has fol-
lowed. The result of this is that when we consider the possibility of noise in reference
images, noise from Markov processes are more likely to form structural artefacts in
the reference, exacerbating misreported error when IQA consider structural features
and similarity.

Our recommendations are that MS-SSIM or SC-QI be used for image quality assess-
ments when evaluating images produced by Monte Carlo rendering algorithms as
these methods were the most robust when we consider noise in reference images.
Reference images should ideally be rendered with uniform sampling methods to

4.6 Recommendations and Conclusions

131



132

avoid the introduction of structural artefacts in IQA. It is important that the reference
used is not only visually noise free, but also that it is of sufficiently higher numerical
quality than images tested against it. Reference images should therefore be rendered
to at least an order of magnitude higher sample count than test images to minimize
the possibility of noise in the reference causing a significant deviation in reported
error. Finally, we recommend that the sample count and method of production of
the reference image should be stated clearly to give researchers every confidence in
reported results.

4.6.1 Further Work

As the research continues with the aim of creating more robust IQA measures
targeting Monte Carlo rendered images there is an increasing need for standardized
and trusted datasets for comparing and contrasting measures on domain relevant
data. In this work we have shown how natural image datasets coupled with synthetic
distortions such as those used by Live [She+14], TID2008 [Pon+09], TID2013
[Pon+13], Kodak Lossless True Colour [Fra99], MICT [Hor+11], and IRCCyN/IVC
[AB09] are not representative of the naturally occurring distortions from stochastic
rendering processes.

We propose to expand the Monte Carlo image dataset presented in this work by
adding additional scenes, both including scenes which aim to model photo-realistic
image compositions, and those which aim to model more synthetic based images
of single material models under controlled lighting and viewing conditions. The
addition of these scenes both increases the visual fidelity of the dataset by including
a larger range of natural distortions, but also allows for controlled experimentation
with how specific material, lighting, and viewing conditions effect the perception
of visible distortions. The expanded dataset should be computed in high-dynamic
range so that both HDR and LDR quality measures can be trained and evaluated.

Finally, the dataset should be coupled with a user study to produce MOS or DMOS
scores for images. Subjective DMOS would allow for the magnitude of quality
misreporting of each IQA measure to be correlated against the change in differential
quality that was perceived by human observers. Further, having subjective quality
scores for the rendered images will allow for the development of novel IQA measures
that are able to accurately model human perception to noise from Monte Carlo
rendering processes. It would also allow existing IQA measures to be re-trained on
the Monte Carlo image dataset to produce a comparison of their performance when
considering this type of distortion.

Chapter 4 Analysis of Error in Monte Carlo Rendered Images



Full results for our experiment are available in a supplementary document:
https://static-content.springer.com/esm/art%3A10.1007%2Fs00371-
017-1384-7/MedialObjects/371_2017_1384_MOESM1_ESM.pdf

4.6 Recommendations and Conclusions 133






A Deep Learning Approach to
No-Reference Image Quality
Assessment using Convolutional
Neural Networks

In FR-IQA, images are compared with ground truth images that are known to be
of high visual quality. These metrics are utilized in order to rank algorithms under
test on their image quality performance. During Monte Carlo rendering processes
we wish to determine whether enough samples have been produced such that
the rendered image is sufficiently noise free, or to determine where in the image
computational resources should be focused to maximize work throughput. Without
the availability of a ground truth image FR-IQA metrics are not applicable and we
need to utilise NR-IQA.

In this chapter we propose a deep learning approach to NR-IQA trained specifically on
noise from Monte Carlo rendering processes, which significantly outperforms existing
NR-IQA methods, and produces performance close to the approximated FR-IQA
measure. These experiments make use of the Monte Carlo image dataset described
in chapter 4 to learn a noise profile for the spatially varying image distortions which
occur due to under-sampling within the light transport simulation before it has
converged.

5.1 Introduction

Over the last three decades much work has been conducted in the area of Monte
Carlo physically based light transport simulations for scientific and rendering ap-
plications. Such simulations are capable of modelling the complex interactions
of light with a wide range of physically based materials, participating media, and
camera models which can be used to synthesize images that are indistinguishable
from photographs. The trade-off for producing images with high visual quality
is slow computation time as the algorithms are only guaranteed to converge in
the limit as the number of samples approaches infinity. Early termination of the
rendering process can leave an undesirable amount of visual distortions in the form

135



136

of impulse noise, and missing illumination from complex interactions such as caustic
and indirect illumination. When comparing the performance and visual quality
of images produced by Monte Carlo rendering processes, a commonly accepted
methodology is to render a reference image to a large number of samples to ensure
that the reference has high visual quality. This reference image is then assumed to be
representative of the Ground Truth (GT) image and can be used experimentally to
compare images rendered by algorithms under test, either in an equal time or equal
quality benchmark. To compare images to the assumed GT, FR-IQA methods such as
MAE, MSE, SSIM [Wan+04a], or more recently MS-SSIM [Wan+03], HDR-VDP-2
[Man+11], or SC-QI [BK16] can be used to evaluate the relative quality of test
images. Outside of algorithm benchmarking, the GT image is often not available.
In such cases NR-IQA measures provide a way to infer the approximate quality of
images or image regions for the purpose of terminating the rendering process once
the image is of sufficient quality, or to direct additional computational resources to
specific image regions.

In this chapter we present a deep learning approach to NR-IQA, specifically aimed at
evaluating the noise that is found in un-converged Monte Carlo rendered images. We
show that a convolutional neural network architecture is capable of modelling the
spatially varying nature of natural image distortions that arise from under-sampling
of complex light transport simulations; and that predictions made by the model can
approach, within a high degree of accuracy, to FR-IQA methods.

These models are designed to estimate image quality “blindly” by comparing features
extracted from the local regions around each pixel in an un-converged input image
to the distribution of those features which occur naturally in clean images from the
target domain. This representation is learned by regression from a corpus of images
corrupted with varying magnitudes of distortion. The regression target for a given
noisy image is defined as the result of computing an FR-IQA measure between the
un-converged image and its associated GT image.

5.2 Related Work

In image processing tasks IQA algorithms aim to measure the quality or similarity of
images. In FR-IQA algorithms have access to a potentially corrupted image and a
GT image which is known to be correct and distortion free; the algorithm is tasked
with evaluating the similarity between the corrupt and GT images. The meaning
of “similarity” can vary between algorithms; ranging from simple definitions of
geometric distance, to complex models of the Human Visual System (HVS) and
perceived distortion. In contrast, NR-IQA algorithms are tasked with approximating

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



the quality of a test image without outside input on what the image should look
like. In this formulation, “quality” can also take on different meanings based on the
context and intent of the NR-IQA algorithm; most often the problem is formulated
as approximating the similarity between the test image and a predicted ground truth
image. The method of prediction tends to be based on the statistics of natural scenes
that can be modelled explicitly or extracted from representative labelled image data
through machine learning.

A recent survey of 38 NR-IQA measures [KB15] exploring the current state of the
art in NR-IQA has been conducted. The metrics considered were clustered into
(overlapping) groups signifying the types of distortions the measures were designed
to be applied to. The distortion types are:

Additive Gaussian Noise [CY10; Lu+10; MB10; Saa+10; MB11; Mit+12b;
YD12; Saa+12; Mit+12c; Mit+13b; Hua+14; Jia+13]

Gaussian Blur [Mar+04; ZMS07; FK09; Wu+09; Lu+10; MB10;
Saa+10; CY10; Cia+11; NK11; MB11; Ser+13;

Mit+12b; YD12; Saa+12; Mit+12c; Mit+13b; Jia+13]

JPEG-2000 Compression  [Mar+04; She+05c; Saz+08; Lu+10; MB10; Saa+10;
Z110; Lia+10; MB11; Mit+12b; YD12; Saa+12;
Mit+12c; Mit+13b; Jia+13]

JPEG Compression [Bab+07; BQO8; Zha+08; Sur+09; Lu+10; MB10;
Saa+10; MB11; Mit+12b; YD12; Saa+12; Mit+12c;
Mit+13b; Jia+13]

Blockiness [Sut09; LP12]

Fast Fading [Lu+10; MB10; Saa+10; MB11; Mit+12b; YD12;
Saa+12; Mit+12c; Mit+13b; Jia+13]

Sub-band Truncation [Du+05]

Ringing Artefacts [Liu+10]

Mittal et al. [Mit+12a] propose an NR-IQA metric based on natural scene statistics
designed for natural images under synthetic distortions, trained against subjective
quality scores given by human observers from the Live [She+14] and TID2008
[Pon+09] databases. Mittal et al. [Mit+13a] also develop a “completely blind”
NR-IQA based on natural scene statistics which does not need to be fitted against
subjective quality scores. Kundu et al. [Kun+16a] develop a NR-IQA metric based
on spatial and gradient domain features. Specifically their method is targeted at
high dynamic range images under varying tone-mapping methods. Their method is
evaluated on tone-mapped HDR images from the ESPL-HDR [Kun+16b] database
and also on LDR synthetically distorted images from the Live [She+14] database.
Sheikh et al. [She+05b] apply a simplified form of natural scene statistics to develop

5.2 Related Work

137



138

an NR-IQA metric for natural images distorted by JPEG 2000 block encoding from
the Live [She+14] database.

In the above works, distorted images are sampled from publicly available datasets,
namely Live [She+14], TID2008 [Pon+09], TID2013 [Pon+13], Kodak Lossless
True Colour [Fra99], MICT [Hor+11], and IRCCyN/IVC [AB0O9]. These datasets
contain clean reference images and their synthetically distorted test images, coupled
with subjective quality scores given by and pooled over a set of human observers.
The reference images are natural photographs covering a wide range of scene
compositions and subject matters. Much of the work contained within the current of
state of the art in IQA methods focus on fitting models to the subjective quality scores
given for these synthetically distorted images. The types of distortion considered
attempt to approximate the types of distortions that can occur during compression,
transmission, or image synthesis. In our work we find that in many cases synthetic
distortions do not present a representative target for training and evaluating metrics
that will be applied to naturally distorted images. Thus, in this work we propose
a model trained directly on images containing naturally occurring distortions from
un-converged Monte Carlo rendering processes.

5.2.1 IQA in Monte Carlo Rendering

Monte Carlo rendering algorithms [Kaj86] allow for photo-realistic images to be
computed that can faithfully recreate complex physically based lighting phenomena.
These methods approximate an integral to create an image using an average over
many discrete samples. In such light simulations each sample represents the energy
contribution of individual photons or regions of path-space and as such no one
sample is representative of the integral’s final expectation. Rather, only in the
limit as the number of samples goes to infinity will the error of the approximation
go to zero, and the average of the samples converge to the expectation of the
integral. By limiting the number of samples used in the rendering computation the
approximate image will naturally contain a certain amount of error compared to
the final expectation. When benchmarking the rendering algorithms themselves
it is a commonly accepted methodology to render an image to an high sample
count to ensure it will have high visual quality, and to use this image as a GT
with which to compare images generated with competing algorithms in either an
equal time or computation comparison using a well established FR-IQA measure. In
this formulation the rendered GT image can potentially contain distortions as it is
also the product of an integral approximated using a finite number of samples. In
the previous chapter 4 we surveyed of the robustness of 19 FR-IQA and 2 RR-IQA
(Reduced Reference) algorithms and showed that Multi-Scale Structural Similarity
Index (MS-SSIM) [Wan+03] and Structural Contrast Quality Index (SC-QI) [BK16]

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



give the most consistent results when the GT image itself contains visible distortions,
and is therefore not representative of the final expectation image.

Another use of IQA methods in Monte Carlo rendering is to evaluate the quality
of images during the rendering process — either to evaluate when the simulation
has converged to its true value, or to direct proportionally more computation into
regions with lower quality. In such cases, NR-IQA measures can allow for image
quality to be approximated without explicitly knowing what the final value should
be.

Ferwerda et al. [Fer+97] propose a model for predicting the effects of visual masking
in rendered images. Their method allows for textures and mesh details in Monte
Carlo rendered images to be chosen to optimally hide the effects of noise and
distortions that are prevalent when light simulations are yet to converge.

Herzog et al. [Her+12a] present an NR-IQA method designed to capture visual
sensitivity to rendering artefacts, such as those arising from Virtual Point Lights
[Kel97], and shadow map discretisation. In addition to the rendered images, the
method also uses information such as the surface albedo and depth map, which
are available within the rendering framework. Yee et al. [Yee+01a] use animation
sequences rendered without global illumination to approximate where viewers will
focus their attention throughout the sequence. By directing proportionally more
computational effort to regions determined to be visually important high quality
can be achieved in the final global illumination pass using a significantly reduced
number of samples.

Lavoué et al. [LM15a] show that visible distortions in Monte Carlo rendered images
are highly correlated with artefacts in the 3D meshes composing the rendered

scene.

5.2.2 Machine Learning

The NR-IQA problem is closely related to the problem of blind denoising, where we
wish to recover a clean image from a corrupted input image. Intuitively, if we could
perfectly detect noise in a distorted image, then subtracting the noise map would
result in a perfectly denoised image. Similarly, if a perfectly denoised image could be
extracted from the distorted image, then the difference map would perfectly capture
the distortion at each pixel. In this way we can see that there is a shared feature
space of information relevant to both tasks.

5.2 Related Work

139



140

Recently, machine learning has been applied to the task of blind image denoising
under synthetic and naturally occurring distortions. Kalantari et al. [Kal+15] apply
deep learning to denoising Monte Carlo rendered images. Their method uses a set
of 7 primary features such as pixel colour, screen-space coordinates, world-space
coordinates, shading normals, texture albedo at the first and second bounces, and
the direct illumination shadow-map; which can all be extracted directly from the
rendering pipeline without loss of rendering performance. From this they compute
36 secondary features by computing per-pixel statistics over the sample set and over
local neighbourhood regions of the primary feature maps. These secondary features
are fed, for each pixel independently, to an MLP to predict a set of variances for each
dimension in a cross bilateral or cross non-local means filter which is to be to the
distorted input image. Inference on full images is performed by considering each
pixel batch-wise. Formally their method calls for an MLP with 36 input units for the
secondary features, a single hidden layer with 10 units with Sigmoid activation, and
lastly 6 output units with Softplus activation representing the 6 control parameters
of the filter model being used for denoising. Their model is trained using the RPROP
optimization algorithm [RB93] to minimize the Relative-MSE [Rou+12b] of the
reconstructed pixel colour compared to the ground truth pixel colour, scaled by the
sample-rate of the pixel to account for the rate of convergence of the rendering
simulation.

Deep learning has also shown promise in blind denoising of natural images corrupted
by additive Gaussian noise [Zha+17b]. In that work the residual image R(z) of
the noisy input is predicted such that § = = — R(x) gives a denoised image that
approximates y. Corrupted image patches are generated by distorting each pixel by a
value drawn from a Gaussian distribution A/ (0, o) where o is held constant for pixels
in the same patch. The distinction that o is constant for each patch is important
as it means a robust strategy for denoising is to approximate the distribution that
was used to corrupt the input. In the case of naturally occurring distortions this is
a considerably more difficult task as natural distortions are often spatially varying
with complex underlying distributions. Formally their model is a CNN referred
to as a Denoising Convolutional Neural Network (DnCNN) consisting of: 3 input
feature maps for RGB image input; a 3 x 3 convolutional layer with 64 output feature
maps with ReLU activation; 18 blocks consisting of a 3 x 3 convolutional layer with
64 output feature maps, batch normalization [IS15], and ReLU activation; and a
final 3 x 3 convolutional layer with 3 output feature maps representing the residual
RGB image that denoises the input image when summed. Their model is trained to
minimize the L5 loss between reconstructed and true images using the Adam [KB14]
optimizer.

The application of deep learning to image de-raining [Zha+17a; Fu+17] repre-
sents a denoising task on natural images under natural distortion. In [Fu+17] a

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



convolutional neural network is trained using clean images with rain synthetically
added to them, evaluated using standard FR-IQA methods such as SSIM [Wan+04a],
PSNR, and VIF [SBO6]. Their model is then validated against competing methods
on real-world rainy images where a ground truth is not available using Blind Image
Quality Index [MB10]. Their model starts by splitting the input RGB image into
a low- and high-pass image. The high-pass RGB image is de-rained by feeding it
to a CNN with 3 convolutional layers, the first consisting of 16 x 16 convolutions
outputting 512 feature maps, the second consisting of 1 x 1 convolutions outputting
512 feature maps, and the third layer with 8 x 8 convolutions outputting 3 feature
maps for the RGB de-rained high-pass image. Both the de-rained high-pass and
low-pass images are colour enhanced and summed to produce the final de-rained
image. The model is trained to minimize the £, loss between de-rained and true
images using the Stochastic Gradient Descent (SGD) [RM51] optimizer.

An alternative method using conditional adversarial training [Zha+17a] also shows
promising results. Rainy/snowy images are fed through two networks, the first
of which attempts to reconstruct the de-rained image. De-rained images are then
concatenated with clean images labelled as fake and real respectively, and fed to a
second discriminator network. The generative model is a CNN with residual connec-
tions built around blocks of 3 x 3 convolutional or de-convolutional layers coupled
with batch normalization and ReLU activation. The input RGB image is fed to four
subsequent convolutional blocks with 64 feature maps each. This is followed by a
pair of blocks with 32 and 1 feature maps respectively. The generator then switches
to deconvolution with the first block outputting 32 feature maps. Then, four de-
convolutional blocks with 64 feature maps are applied in sequence, with a final block
outputting 3 feature maps for the RGB channels of the de-rained image. Additive
residual connections are added between the input image and output feature maps,
between second convolutional block and the second to last de-convolutional block,
and finally between the fourth convolutional block and the second de-convolutional
block. TanH activation is applied to the result of the outermost residual connection
yielding the final de-rained image. The discriminator model compresses an input
image down to a single Sigmoid activated neuron representing whether the discrimi-
nator thinks the image is a real or fake input. The discriminator down-samples the
input image by sequentially applying three convolutional blocks with stride 2 and
48, 96, and 192 output feature maps respectively. This is followed by a final two
blocks with stride 1 with 384 and 1 feature channels each. Training the networks
in lock-step, the discriminator network learns to tell real clean images from fake
de-rained images, while the reconstruction network learns to fool the discriminator
by producing de-rained images with high visual fidelity. This is done by freezing the
weights in the discriminator and updating the generator weights to minimize the
loss from lying to the discriminator.

5.2 Related Work

141



142

Liet al. [Li+11] apply General Regression Neural Networks (GRNN) to NR-IQA on
natural images under synthetic distortion. In their formulation hand crafted features
are extracted from distorted images based on phase congruency, information entropy,
and the image gradient; these features are fed, independently for each pixel, to an
MLP with two hidden layers to predict the DMOS from the Live [She+14] database.
Liu et al. [Liu+16] employ a similar strategy using neural nets with AdaBoosting,
which improves the robustness of quality predictions.

Bosse et al. [Bos+16a; Bos+16b] apply deep convolutional networks to NR-IQA.
Their model is a sequential CNN without residual or skip connections. Starting from
a 32 x 32 RGB input this data is fed through five blocks consisting of two 3 x 3
convolutions followed by a 2 x 2 max-pooling layer [Bou+10]. Each block halves
the width and height dimensions, and doubles the number of output feature maps.
Starting with 32 feature maps of size 16 x 16 after the first block and ending with 512
feature maps of size 1 x 1 after the fifth block. The model then has a fully-connected
hidden layer with 512 units and dropout [Sri+14] regularization with a probability
of 50%, before a final hidden layer with a single output neuron with linear activation
which represents the quality score for the input image patch. All convolutional layers
and the first fully-connected layer have ReLU activation. Their method was trained
using the Adam optimizer [KB14] to minimize the £, loss to the predicted DMOS
quality score for an image from the Live [She+14] database, given a set of randomly
sampled 32 x 32 RGB patches from the image. For each full image assessment the
network is only presented with a random subset of possible patches; this forms an
implicit dropout regularization which helps prevent memorization of the training
set. When the loss is computed using ground truth IQA values for individual patches
(as is the case with our data) the ability of the network to memorize the input
data becomes prohibitive to the models ability to learn a generalized strategy for
NR-IQA.

5.3 Experiment |

In our first experiment we wish to test whether a deep convolutional neural network
can capture the distribution of error in Monte Carlo rendered images using only
local neighbourhood information from the distorted image. To accommodate this,
our model directly predicts the Mean Absolute Error (MAE) of 32 x 32 RGB image
patches with pixels in the range [0, 1] sampled from images rendered with Monte
Carlo rendering algorithms to varying degrees of quality. The choice of RGB as
the input colour-space is motivated by the work of Reddy et. al. [Red+17] who
studied the effect of colour-space on CNN learning performance, concluding that the

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



RGB and LUV colour-spaces lead to the greatest prediction accuracy compared to
alternative representations.

1 1111

Fig. 5.1.: Experiment I: Our patch based model. The model consists of four convolutional
blocks, each with batch normalization and PReLU activation, separated by max
pooling; followed by two fully connected layers with 70% dropout. The output
neuron has ReLU activation to ensure the resulting quality score is positive. The
full model is: Input(32 X 32,3), Conv(3 x 3,32), BNorm, PReLU, Conv(3 x 3,32),
BNorm, PReLU, Max(2 x 2),Conv(3 x 3,64), BNorm, PReLU, Conv(3 x 3,64),
BNorm, PReLU,Full(512), Dropout(70%), Full(1), ReLU.

Our model architecture is motivated by the work of Bosse et al. [Bos+16a; Bos+16b].
Early experimentation with their architecture showed that the model had an ex-
tremely high capacity for memorization. In order to improve training stability and
avoid over-fitting we use a smaller model of only four blocks of 3 x 3 convolutions
with max-pooling [Bou+10] after the second convolution. On the convolutional
layers we apply batch normalization with momentum 0.9 [IS15] and Parametric-
Rectified Linear Unit (PReLU) activations [He+15b]. After the convolutional blocks
the feature space is flattened and fed to a fully connected layer with 512 units. An
aggressive dropout [Sri+14] probability of 70% is used to encourage generalization
and prevent memorization from the training set. Finally, the fully-connected layer is
brought down to a single unit for output. ReLU activation on the output neuron en-
sures the resulting quality estimate is positive. In total the model contains 8, 553, 889
trainable parameters where the majority of these parameters are components of the
first fully-connected layer. Figure 5.1 shows the full architecture.

5.3.1 Training

Using the Monte Carlo image database from chapter 4 we construct a training regime
for our NR-IQA method. We apply leave-one-scene-out cross validation whereby the
model is trained from random initialization using each scene in turn as the validation
set while training on the remaining scenes. In this way we can evaluate whether

5.3 Experiment |

143



144

the model is not over-fitting and can generalize to unknown scene compositions,
materials, textures, and colour palettes. Table 5.1 shows the sizes of the training and
validation sets for each cross validation run.

Validation Training Validation
Scene Images Patches Percent Images Patches Percent
Cornell Box 348 80,179,200 76% 109 25,113,600 24%
Veach Bidir 337 77,644,800 4% 120 27,648,000 26%
Veach Door 334 76,953,600 73% 123 28,339, 200 27%
Sponza 352 81, 100, 800 7% 105 24,192,000 23%

Tab. 5.1.: Experiment I: Training and Validation set sizes for leave one scene out cross
validation, before random jitter is applied. For example, when validating on
the Cornell Box scene, the training set is comprised of images from the Veach
Bidir, Veach Door, and Sponza scenes. The subset of the Monte Carlo image
database used contains 457, 512 x 512 images, with (512 — 32)? = 230400 32 x 32
patches per image, distributed over four scenes and seven different Monte Carlo
rendering algorithms.

At each training step we sample a random mini-batch [Li+14] of 32 x 32 noisy
patches from the training set and compute the true MAE y; = M AE(x;, x}) of the
i sampled noisy image patch x; compared to its ground truth patch . The noisy
patches are fed to the network and the approximate MAE of the sampled noisy
patch g; = Q(x;, ©) predicted by the network Q using the set of trainable weights ©.
We then update the weights © via gradient descent w.r.t. a loss function using the
Adam optimizer [KB14]. We chose Adam because it adaptively anneals the learning
rate as training progresses based on the steepness of the gradient, leading to good

convergence without the need to manually tune hyper-parameters.

Formally we train for 32 epochs consisting of 100 minibatches of 1024 32 x 32 RGB
image patches in the range [0, 1] randomly sampled from the training scenes. We
train using the Adam optimizer [KB14] with a base learning rate of 0.0005. Training
was performed on a single NVidia GTX 1070 GPU and took roughly 6 hours per
cross validation fold. Through experimentation we found that when images in the
validation scene contained vastly different structural compositions to images in the
training set the model was susceptible to over-fitting by memorizing the structural
features surrounding image regions of low quality in the training set. To encourage
generalization on the naturally distorted image patches we apply random jitter to
the inputs in the form of a horizontal flip with 50% probability, and random rotations
in jumps of 90° with 25% probability each.

However, the model is still prone to over-fitting when validating on image patches
from scenes with dramatically different colour palettes than those in the training
set. To counter this we also apply a random jitter to the patches in the HSV colour
space before calculating the ground truth MAE for the example. The HSV jitter

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



applies a common hue, saturation, and brightness shift to all pixels within the patch
and its associated ground truth patch (equation 5.1), where the shift is sampled
independently for every training example in the minibatch. During validation batches
no jitter is applied.

H,S,V = RGBtoHSV(R, G, B)
H' = (H + &) mod 1
S" = clip(S + £5,0,1)
V' =clip(V + &y, 0,1)
R',G', B = HSVtoRGB(H', S, V")
where ¢y € U(0,1) and &g,&y € U(—0.3,0.3)

(5.1)

Figure 5.2 shows the effect of the above rotational and flip jitters in combination
with the proposed HSV jitter. Image patches are sampled from the Veach Bidir scene
of the Monte Carlo image database. In the top row we see the non-jittered images
and in each subsequent row the same source images after random jitter has been
applied.

0E_EN ;
_ 3I_IIMII_IIII

Fig. 5.2.: An example of the proposed jitter exhibiting rotations, flips, and HSV perturba-
tions. Image patches are sampled from the Veach Bidir scene of the Monte Carlo
image database. The top row shows the non-jittered images and each subsequent
row contains the same source images after random jitter has been applied.

A review of robust loss functions [Bar17] makes a case for the use of the Charbonnier
or Pseudo-Huber loss function. The L5 loss works well for regression problems where
the data is balanced and does not contain outliers. However, when this is not the
case the square weighting of the L5 loss can place considerably more importance on

5.3 Experiment |

145



outlier training examples, stalling convergence. The £; loss avoids this by scaling
linearly with divergence, meaning strong outliers do not have as much of an impact
on performance. However, the £; loss has a discontinuous gradient jump from —1 to
1 at origin which is undesirably coarse and can introduce variance into the training.
The Charbonnier loss combines the best of both worlds and behaves like the £ loss
far from the origin, scaling linearly with divergence, and like the £, loss near the
origin, giving it a well defined derivative which smoothly transitions from —1 to 1.

dLc y—9 (5.2)

The Charbonnier loss and its first derivative parametrised by expected and predicted
values y and ¢ are shown in equation 5.2; where smoothness of the gradient
transition is controlled by an auxiliary ¢ parameter. Experimentally, a small ¢ value
of 1 x 103 has been shown to produce good results [Bar17]. Figure 5.3 shows a
comparison of the Charbonnier, £, and £, losses and their first order derivatives. For
the Charbonnier loss the ¢ parameter has been exaggerated to 1 x 10~! to highlight
the smooth transition that occurs at origin.

Loss value over (y —) Derivative of loss value over (y — 9)

0.5k
1L
a N 0.5f
I N&
2 CIa
Q 0f Sl
-0.5¢
-1
Ly L)
Ly Ly
Lo Lo
1 . . . ) . . . )
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
(y—19) (y—19)

(a) (b)

Fig. 5.3.: An example of the Charbonnier, £1, and L- losses (a) and their first order deriva-
tives (b). For the Charbonnier loss the ¢ parameter has been exaggerated to
1 x 107! to highlight the smooth transition that occurs at origin.

In the context of an IQA metric a relevant measure of goodness of fit is the Pearson’s
Correlation Coefficient (PCC). Incorporating this into the loss function we jointly

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



minimize the Charbonnier loss and maximize the absolute batch-wise PCC as shown
in equation 5.3.

. e A
Lioint = 6(1 — ]PCC(y, y)]) + N ZEC(%‘,%) (5.3)
i=1
The contribution of PCC to the joint loss is scaled up by § = 1 to give it equal
importance with the Charbonnier loss which is operating on images in the range
[0, 1]. Incorporating PCC into the loss function has the effect of increasing accuracy
and stability during training.

5.3.2 Results and Discussion

After training for 32 epochs as described in section 5.3.1 we report the accuracy of
our model on patches from the training and validation sets. Accuracy is calculated
using the Pearson’s Correlation Coefficient (which measures the relationship between
linearly related variables), Spearman’s Rank Order Correlation Coefficient (SROCC)
(which measures the relationship between monotonically related variables), and
Kendall’s Tau Rank Order Correlation Coefficient (Kendall’s Tau) (which measures
the relationship between dependent variables) between the expected and predicted
quality values for each patch in the training and validation sets for each cross
validation fold.

In our first training run we use only the rotational and flip jitter. For the £, Lo, and
L losses the model did not train past the first epoch and suffered from a severe
exploding gradient problem, yielding NaN predictions for all inputs. Using the joint
loss Ljoint the model was able to train stably, but was prone to over-fitting on the
testing set.

Validation Training (Rot+Flip Jitter) Validation
Loss Scene PCC SROCC Tau PCC SROCC Tau
Ljoint Cornell Box 0.989778 0.972695 0.901166 0.398593 0.410840 0.313313
Veach Bidir 0.994436 0.971958 0.887453 0.984717 0.978086 0.890768
Veach Door 0.994979 0.970777 0.885271 0.943044 0.842643 0.698404
Sponza 0.993877 0.974384 0.894393 0.985955 0.925607 0.813046
pEo | 0.9933 £0.0024 0.9725 4 0.0015 0.8921 4 0.0072 0.8281 4 0.2870 0.7893 4+ 0.2584 0.6789 & 0.2562

Tab. 5.2.: Experiment I: Training and Validation set accuracies after 32 epochs for leave
one scene out cross validation using rotation, and flip jitter with the £ loss.
The mean and standard deviation in the reported correlations across the folds
are reported in the bottom row. For the £, L5, and L¢ losses the model did not
train past the first epoch and suffered from a severe exploding gradient problem.

Table 5.2 shows the result of the first training run using the Ljoin loss. For the testing
sets all four validation folds achieved good and consistent prediction accuracies,
with an average and standard deviation of 0.9933 + 0.0024 for PCC, 0.9725 4+ 0.0015

5.3 Experiment |

147



for SROCC, and 0.8921 + 0.0072 for Kendall’s Tau. However, the model did not
generalize well to the validation sets which have significantly lower accuracy and
variance between folds.

Scene: [ cbox ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 32
Train: 3.951606 Val: 164.651589 Batch Correlation Batch Distribution
100 800 3 Train Truth
% Train Prediction
102 700 Val Truth
80 Val Prediction
o 600
T >
) 3 500
" 3 g
g ¢ g H
g ] & 400
S 40 £
£ 3004 |
10!
2 200
— Train A 100
val o] 1 1.
o _
o 5 10 15 20 25 30 o 20 40 60 80 100 0 20 40 60 80 100
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992907 Val: 0.382751 Train: 0.978967 Val: 0.386286 Train: 0.898372 Val: 0.300298
107 9
g g 2
< & 107 o
102
— Train — Train | — Train
Val val 10 Val
o 5 10 15 20 25 30 6 5 10 15 20 25 30 0 s 10 15 20 25 30
Epoch Epoch Epoch

(a) Validation Scene: Cornell Box

Scene: [ veach_bidir ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 32
Train: 3.769589 Val: 4.973146 Batch Correlation Batch Distribution
600
— Train 1 Train Truth
2
2310 Val 100 ZC1 Train Prediction
5004 H Val Truth
80 Val Prediction
z 400
1 E z
, 10 3 60 ¢
g 3 2 300
k] L
3 a0 & |
6x10° \ & 200
20
100
4x100 §
0] £ =
o S
0 5 10 15 20 25 30 0 20 40 60 80 100 0 20 40 60 80 100
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.993424 Val: 0.984159 Train: 0.974100 Val: 0.983679 Train: 0.895379 Val: 0.901677
— Train — Train — Train
val \ val 4x107 val
\ 3x107 \
010
g 2
' & 2x107
A
/~
./\ v A
W
107
0 5 10 15 20 25 30 0 s 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch Epoch

(b) Validation Scene: Veach Bidir

Fig. 5.4.: Experiment [: Training and Validation set accuracies curves over 32 epochs for leave one scene out
cross validation using rotation, and flip jitter with the £joi loss. The plots show: Loss value over train-
ing and validation batches within an epoch (top-left), a scatter plot of correlation between predicted
and true quality for each patch in the most recent training and validation batch at the end of 32 epochs
(top-centre), overlaid histograms of predicted and true quality distributions for each patch in the most
recent batches at the end of 32 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre),
and Kendall’s Tau (bottom-right) for the last batch in each epoch during training. Here we show the
results for using the (a) Cornell Box and (b) Veach Bidir scenes are the validation scene. It is clearly
visible that the model has failed to generalize to the Cornell Box scene when it is excluded from the
training set. Full results for all cross validation folds are shown in appendix A.3.1.

148 Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



The validation accuracies were significantly lower with averages and standard
deviations of 0.82814-0.2870 for PCC, 0.7893+0.2584 for SROCC, and 0.6789+0.2562
for Kendall’s Tau. While the accuracies are consistently lower across all cross
validation folds, the Cornell Box scene stands out with especially low scores of
0.398593 for PCC, 0.410840 for SROCC, and 0.313313 for Kendall’s Tau.

The Cornell Box scene contains a vastly different colour palettes compared to the
Veach Bidir, Veach Door, and Sponza scenes which are more muted, containing a
variety of grays, soft oranges, and blues. The strong reds and greens of the Cornell
Box scene make it difficult for the model to generalize to these image patches,
implying that the model has memorized certain colour palettes as being more or
less likely to contain certain quality scores given the patches it has seen from the
training set. Figure 5.4 shows the training progression of the cross validation folds
for the Cornell Box and Veach Bidir scenes. Here we can see that for the Cornell Box
scene (figure 5.4a) after the first couple of epochs the model has failed to generalize
and is not able to accurately predict the quality of validation image patches. This is
visible in the validation loss curve (top-left) and in PCC, SROCC, and Kendall’s Tau
plots (bottom row). For the Veach Bidir scene (figure 5.4b) the model appears to
generalize but this is sporadic across cross validation scenes. Full results for all cross
validation folds are shown in appendix A.3.1.

In the second training run we add the HSV jitter in combination with the rotational
and flip jitters from the first run. With the £;, Lo, and L losses the model still did
not train past the first epoch and again suffered from a severe exploding gradient
problem, yielding NaN predictions for all inputs. Using the joint loss £jin: the model
was able to train stably, and with the addition of the HSV jitter was able to generalize
much better to the validation sets. We hypothesize that the Pearson’s Correlation
Coefficient in the joint loss function is acting as a regularization term, limiting the
extrema of the gradient in minibatch updates which stabilizes training. Now that the
model is generalizing properly, we extend the number of epochs used for training
each cross validation fold to 64 epochs.

Table 5.3 shows the result of the second training run using the Ljgi,. loss. For
the testing sets all four validation folds achieved good and consistent prediction
accuracies, with an average and standard deviation of 0.9903 + 0.0015 for PCC,
0.9789 +0.0069 for SROCC, and 0.9019 £ 0.0103 for Kendall’s Tau; showing a modest
improvement on training set accuracies without the HSV jitter.

The validation set accuracies, however, show a major improvement in quality and
consistency. For all four scenes (including the Cornell Box scene) accuracy was
largely consistent with that seen on the training sets. Across cross validation folds

5.3 Experiment |

149



validation accuracy had a average and standard deviation of 0.9871 + 0.0031 for PCC,
0.9593 4 0.0390 for SROCC, and 0.8604 4 0.0663 for Kendall’s Tau.

Scene: [ cbox ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip+hsv) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 64
Train: 4.351745 Val: 3.950570 Batch Correlation Batch Distribution
— Train 800 [ Train Truth
val 0 273 Train Prediction
700 Vval Truth
Val Prediction
600
260
] 2 500
9 4 g
8 ° El
S o gaooq | |
H & —
2 300
R 20
VGV 200
YA ALY

[ 10 20 30 40 50 60 [ 20 40 60 80 [ 20 40 60 80
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992043 Val: 0.989606 Train: 0.988573 Val: 0.888717 Train: 0.922362 Val: 0.756033
— Train — Train — Train
val val val
10-2
g
S gt 2
g g P
&

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch Epoch

(a) Validation Scene: Cornell Box

Scene: [ veach_bidir ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip+hsv) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 64
Train: 3.699640 Val: 5.026688 Batch Correlation Batch Distribution
500
— Train - Train . 3 Train Truth
val 12222 Train Prediction
| 80 400 I Val Truth
Val Prediction
‘ Ze 3 300
. E L
g B S
10t S a0 g
H < 200
20 L
100 —‘
0 i,
o .
0 10 20 30 4 50 60 0 20 40 60 80 o 20 0 0 80
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992865 Val: 0.985750 Train: 0.982268 Val: 0.983703 Train: 0.908449 Val: 0.901714
e — Train — Train — Train
10 val val Val
ax107{ |
I
‘ 3x 107
9 g1 B
g g g
- < S 2x107
- L
\
WA M
A/ /\,\ A
N \_,P / \/ 107t ’VL/\I‘\"\/\/\,\»\
\Z
0 10 20 30 4 50 60 0 10 20 3 40 50 60 0 10 20 30 40 50 60
Epoch Epoch Epoch

(b) Validation Scene: Veach Bidir

Fig. 5.5.: Experiment I: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation using rotation, flip, and HSV jitter with the £y, loss. The plots show: Loss value
over training and validation batches within an epoch (top-left), a scatter plot of correlation between
predicted and true quality for each patch in the most recent training and validation batch at the end of
64 epochs (top-centre), overlaid histograms of predicted and true quality distributions for each patch in
the most recent batches at the end of 64 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-
centre), and Kendall’s Tau (bottom-right) for the last batch in each epoch during training. Here we show
the results for using the (a) Cornell Box and (b) Veach Bidir scenes are the validation scene. We can
see that with the addition of the HSV jitter that the model is now able to generalize to the Cornell Box
scene when it is excluded from the training set. Full results for all cross validation folds are shown in
appendix A.3.2.

150 Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



Validation Training (Rot+Flip+HSV Jitter) Validation
Loss Scene PCC SROCC Tau PCC SROCC Tau
Ljoint Cornell Box 0.990588 0.988802 0.915202 0.989007 0.900845 0.761066
Veach Bidir 0.991008 0.973419 0.893524 0.982550 0.976555 0.892524
Veach Door 0.991432 0.978147 0.904963 0.987315 0.977666 0.891403
Sponza 0.988167 0.975147 0.893937 0.989405 0.982082 0.896622
pEo | 0.9903 £ 0.0015 0.9789 + 0.0069 0.9019 + 0.0103 0.9871 + 0.0031 0.9593 4 0.0390 0.8604 £ 0.0663

Tab. 5.3.: Experiment I: Training and Validation set accuracies after 64 epochs for leave
one scene out cross validation using rotation, flip, and HSV jitter with the
L joint loss. The mean and standard deviation in the reported correlations across
the folds are reported in the bottom row. For the £1, £, and L losses the model
did not train past the first epoch and suffered from a severe exploding gradient
problem.

Figure 5.5 shows the training progression of the cross validation folds for the Cornell
Box and Veach Bidir scenes. We can see that the addition of HSV jitter has encouraged
the model to generalize when the Cornell Box scene is used as the validation scene,
making it consistent with the other cross validation folds (figure 5.4a). The validation
loss curve (top-left) and the PCC, SROCC, and Kendall’s Tau curves (bottom row)
are smoother and more consistent with the training set curves. For the Veach Bidir
scene (figure 5.4b) the model performs just as well. An interesting observation is
that for the Cornell Box scene the model has better validation set PCC and worse
SROCC and Kendall’s Tau than the training set values, and for the Veach Bidir scene
the model has worse PCC and better SROCC and Kendall’s Tau values. Full results
for all cross validation folds are shown in appendix A.3.2.

From this experiment we conclude that the HSV jitter is successful in discouraging
the network from using the colour palettes of images from the training sets as an
indication of quality. Encouraging it to instead use variational and structural cues
to determine this information. This allows the model to generalize well to scene
compositions drastically different from those in the training set.

5.3.2.1. Patch Based NR-IQA

Our model operates on fixed sized 32 x 32 RGB image patches. In order to apply the
model to images of arbitrary size we use a strided sliding window approach. A pre-
diction is made for each patch extracted from the noisy input image, approximating
the MAE of the noisy patch compared to its unknown ground truth patch. These
predictions can then be used either as a map of relative quality across the image or
the predictions can be pooled and used as an overall quality index for the image.

There is a trade-off on the choice of stride value, between increasing computational
complexity for small strides, and decreasing IQA accuracy for larger stride values. For

5.3 Experiment |

151



152

a stride of one pixel, the network must make a prediction for all (512 —32)? = 230400
patches in the input image. This can be accelerated by grouping the extracted patches
into fixed sized batches and processing them simultaneously. However, this can
still lead to undesirably slow evaluation times. Using a more conservative stride of
8 pixels, the network only needs to process (@)2 = 3600 patches per image,
greatly increasing evaluation efficiency at the expense of IQA robustness.

) Predicted MAE Ground Truth
Noisy Image True MAE Map
Map Image

Cornell Box
Bidirectional
Path Tracing

2 s.p.p.

Veach Bidir
Path Tracing

2 s.p.p.

Veach Door
Energy
Redistribution
Path Tracing

2 s.p.p.

Sponza
Primary
Sample Space
Metropolis
Light
Transport

8 s.p.p.

Fig. 5.6.: Experiment II: Example IQA prediction from our model on images from the
validation sets. From left to right: The input noisy image to evaluate. The
predicted MAE of the noisy image computed patchwise with stride 8. The true
MAE of the noisy image compared to the ground truth image, computed patchwise
with stride 8. The ground truth image.

Figure 5.6 shows the predicted MAE maps for images from the validation scenes of
each cross validation fold. The top row shows an image of the Cornell Box scene,
rendered with Bidirectional Path Tracing at 2 s.p.p.. The prediction map accurately
captures the distribution of error across the image, specifically in regions such as
the near face of the short box (right), and the soft shadow behind the tall box (left).

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



In the second row we have an image for the Veach Bidir scene, rendered with Path
Tracing at 2 s.p.p.. The predicted map shows some overestimation of error in areas
lit primarily by diffuse indirect illumination. The third row, we see an image of
the Veach Door scene rendered with Energy Redistribution Path Tracing at 2 s.p.p..
For this scene the prediction map is able to correctly capture the visible distortions
around the teapot models and in corner regions of the room. Finally, in the fourth
row we see an image of the Sponza scene rendered with Primary Sample Space
Metropolis Light Transport at 8 s.p.p.. The prediction map accurately captures the
distribution of error across the image with some minor overestimation on the floor
in the foreground of the image.

In order to compare our proposed NR-IQA model to existing methods we apply mean
pooling to the resulting prediction maps from patch-wise strided evaluation of target
images to give a single scalar valued quality score. Using the predicted values from
our method and from the existing methods, and the ground truth quality scores
computed using an FR-IQA method such as MAE, we compute the correlation of the
predicted values compared to the FR-IQA values and report these results for each
validation scene, using the version of our method trained on each cross validation
fold, respectively.

Table 5.4 shows the results of our model applied patch-wise with stride 8 compared
to existing NR-IQA algorithms. Our method consistently performs best across all four
validation scenes. The BIQI [MB10], BRISQUE [Mit+12a], HIGRADE 1 [Kun+16a],
HIGRADE 2 [Kun+16a], JP2K-NR [She+05b], NIQE [Mit+13a], OG-IQA [Liu+16]
NR-IQA measures all exhibit both positive and negative correlations for different val-
idation scenes which indicates that they are not accurately describing the underlying
distribution of visible distortions present in the test images.

Cornell Box Veach Bidir Veach Door Sponza

PCC SROCC Tau ‘ PCC SROCC Tau ‘ PCC SROCC Tau PCC SROCC Tau

Metric
Ours - Experiment I 0.9951 0.9919 0.9425 0.9963 0.9928 0.9501 0.9965 0.9887 0.9258 0.9990 0.9949 0.9623
BLIINDS [Saa+10] -0.9912 -0.9870 -0.9297 -0.9289 -0.9525 -0.8701 -0.7388 -0.9770 -0.8941 -0.9706 -0.9596 -0.8581
BIQI [MB10] 0.1087 0.0396 0.0010 -0.0515 0.3481 0.2508 0.8700 0.3204 0.2085 0.4092 0.4945 0.3491
BRISQUE [Mit+12a] -0.3953 -0.6787 -0.5327 -0.0872 -0.3458 -0.2258 0.2516 -0.4082 -0.3391 0.6609 0.3566 0.3036
HIGRADE 1 [Kun+16a] -0.2284 0.0986 0.0651 0.5495 0.6105 0.4420 -0.7064 0.3329 0.2860 -0.2662 -0.0004 -0.0284
HIGRADE 2 [Kun+16a] -0.3893 -0.4237 -0.3150 0.5235 0.8505 0.6573 -0.6338 -0.1623 -0.1039 -0.2010 -0.2593 -0.1770
JP2K-NR [She+05b] 0.4325 0.9257 0.8087 0.3941 0.9095 0.7449 -0.0315 -0.2605 -0.1386 0.5007 0.8064 0.6397
NIQE [Mit+13a] -0.6218 -0.9465 -0.8197 -0.4744 -0.8691 -0.7123 0.4141 -0.4561 -0.3817 0.7032 0.2801 0.2289
OG-IQA [Liu+16] -0.3272 -0.4793 -0.3219 0.2447 0.1993 0.1833 0.7769 0.2168 0.1660 0.8336 0.6145 0.4481

Tab. 5.4.: Experiment I: Validation set NR-IQA performance for leave one scene out cross
validation. Each correlation is computed relative to the full reference MAE of
each 512 x 512 image in the validation set compared to its ground truth image.

5.4 Experiment Il

A shortcoming of the network design from experiment I is that each patch in an image
must be shown to the network individually. For a 512 x 512 image this results in

5.4 Experiment I

153



154

262144 image patches which need evaluation. Even when batch processing multiple
patches simultaneously and when accelerating evaluation with GPU hardware this is
slow compute.

One solution to this problem is to use a Fully-Convolutional Neural Network (FCNN)
architecture. This class of model were first proposed for the task of dense image
segmentation [Lon+15] where the goal is to perform multi-class classification on
each individual pixel of an input image. In this work the authors took existing
pre-trained models from AlexNet [Kri+12], VGG [SZ14], and GoogLeNet [Sze+14]
and modified the final layers to make the networks fully convolutional. The weights
on the original networks were frozen and the new output layers trained to perform
dense segmentation before a final fine tuning was performed on all layers of the
network. Because the output of a fully convolutional network does not have a fixed
size, and whose size is only dependent on the input tensor size this means that
once the network is trained it can perform segmentation on images of arbitrary size.
This, conveniently, means that during training images can be of a fixed size and
the can be grouped into minibatches, greatly accelerating and stabilizing training
performance.

In our second experiment we wish to see whether a fully convolutional neural
network can be trained to densely regress the error in Monte Carlo rendered images
at each pixel simultaneously using only local neighbourhood information from the
distorted image. Additionally we address a shortcoming of the original experiment
where the target of the regression was the MAE of 32 x 32 image patches. Local
patch wise MAE was a convenient target for the regression due to its simplicity and
efficiency of computation. However, when tiling this measure at each pixel and mean
pooling the result over a full image this does not form a robust IQA measure (chapter
4). In the second experiment we move to the SSIM [Wan+04a] IQA measure as
the target of the regression. Internally, SSIM uses (by default) an 11 x 11 pixel
neighbourhood over which it performs local statistics on the means, variances, and
covariance between the reference and test images. This yields an SSIM map which
is the same resolution as the input images which can be mean pooled to provide a
robust single valued IQA measure. Given a noisy test image of an arbitrary resolution
we aim to predict the value of the SSIM map at each pixel without access to the
ground truth image. The predicted SSIM map can then be mean pooled to provide a
single value representing predicted image quality.

Reducing the size of the receptive field from 32 to 11 x 11 pixels and moving to a
more complex regression target increases the learning difficulty for the network.
Because of this, our proposed network architecture is substantially larger than the
one used for experiment I.

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



Our proposed model is motivated by prior work in image denoising and NR-IQA. In
the work by Zhang et al. [Zha+17b] image denoising is performed using an FCNN
by densely regressing a residual image. Their simple feed-forward architecture,
composed from blocks of convolutional and regularization layers, is able to capture
complex information about the structure of natural images. We also draw from
the work of Li et al. [Li+11] who applied an MLP with hand crafted features
independently to the features extracted from each pixel, in order to regress the
DMOS of natural images under synthetic distortions.

From this we propose a feed-forward FCNN model with two stages. In the first stage
we extract image features from the local neighbourhood around each pixel, then
in the second stage we apply a series of dense layers to each pixel independently.
Normally, dense layers force the size of the output tensor to be a constant size.
However, this is undesirable for our use case as we would like to be able to perform
dense inference on images of any size after the model has been trained. In FCNN
models applying convolutions with a filter size of 1 x 1 has the same effect as
applying a dense layer to the features of each pixel individually. By phrasing this as a
convolution the operation remains invariant to the size of the input, meaning inputs
of arbitrary size can still be fed through the trained network to attain a prediction.

The model begins with four convolutional blocks, each using 3 x 3 convolutions with
256 output feature channels, each using batch normalization and ReLU activations.
This forms the feature extractor part of the network and raises the receptive field
of the network up to 11 x 11. This part of the network is responsible for extracting
and combining information about the local structure and composition of the input
image.

The next part of the network takes these features which are defined independently
on each pixel and combines them through a series of non-linear combinations to
compute a predicted image quality score for every pixel in the image in parallel. To
combine our feature channels down to a single quality score for each pixel, we apply
six convolutional layers using 1 x 1 with 128 output feature channels, each using
batch normalization and ReLU activations.

Finally we apply a last convolutional layer using 1 x 1 filters with a single output
feature channel to reduce the feature channels for each pixel down to a final
regression prediction. Due to the large size of the new network architecture, we
chose standard ReLU activations as opposed to PReLU used in experiment I because
of the large number of trainable parameters PReLU adds to the network and their
effect on training time. The SSIM map can contain values in the range [—1, 1],
however in practice values below zero rarely appear in our training data and greater
network performance can be achieved by clipping the target SSIM maps to be in the

5.4 Experiment I

155



156

range [0, 1] before computing the loss function. Because we only consider positive
values for the regression we apply a ReLU activation on the output prediction map
from the final convolution to ensure all network predictions are positive. In total
the model contains 1,896,577 trainable parameters, just 22.17% the number of
parameters used by the patch based model in experiment 1. 93.9% of weights are
used in the initial set of 3 x 3 feature extracting convolutions in the first four blocks of
the network, while the remaining six 1 x 1 convolutional blocks account for just 6.1%
of the parameters. Figure 5.7 shows the fully convolutional model architecture.

Fig. 5.7.: Experiment II: Our fully convolutional model. The model consists of four
3 x 3 convolutional blocks, each with batch normalization and ReLU acti-
vation; followed by six dense 1 x 1 convolutional blocks, each with batch
normalization and ReLU activation. The output neuron has ReLU activa-
tion to ensure the resulting quality scores are positive. The full model
is:  Imput(32 X 32,3), Conv(3 x 3,256), BNorm, ReLU, Conv(3 x 3,256),
BNorm, ReLU, Conv(3 x 3,256), BNorm, ReLU, Conv(3 x 3,256),
BNorm, ReLU, Conv(l x 1,128), BNorm, ReLU, Conv(l x 1,128), BNorm,
RelLU, Conv(l x 1,128), BNorm, ReLU, Conv(l x 1,128), BNorm, RelU,
Conv(1 x 1,128), BNorm, ReLU, Conv(1 x 1,128), BNorm, ReLU, Conv(l x 1,1),
Rel.U

5.4.1 Training

Training is performed in that same manner as in experiment I. Using the Monte Carlo
image database we apply leave-one-scene-out cross validation whereby the model
is trained from random initialization using each scene in turn as the validation set
while training on the remaining scenes.

At each training step we sample a random mini-batch [Li+14] of 64 x 64 noisy
patches from the training set and compute the true SSIM map y; = SSIMqp (24, 5)
of the i** sampled noisy image patch z; compared to its ground truth patch z}. The
noisy patches are fed to the network and the approximate SSIM map of the sampled
noisy patch g; = Q(z;, ©) predicted by the network Q using the set of trainable
weights ©. We then update the weights © via gradient descent w.r.t. a loss function
using the Adam optimizer [KB14].

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



Validation Training Validation
Scene Images Patches Percent Images Patches Percent
Cornell Box 348 69,844,992 76% 109 21,876,736 24%
Veach Bidir 337 67,637,248 74% 120 24,084,480 26%
Veach Door 334 67,035,136 73% 123 24,686,592 27%
Sponza 352 70,647,808 7% 105 21,073,920 23%

Tab. 5.5.: Experiment II: Training and Validation set sizes for leave one scene out cross
validation, before random jitter is applied. For example, when validating on
the Cornell Box scene, the training set is comprised of images from the Veach
Bidir, Veach Door, and Sponza scenes. The subset of the Monte Carlo image
database used contains 457, 512 x 512 images, with (512 — 64)2 = 200704 64 x 64
patches per image, distributed over four scenes and seven different Monte Carlo
rendering algorithms.

Formally we train for 1024 epochs consisting of 256 minibatches of 16 64 x 64 RGB
image patches in the range [0, 1] randomly sampled from the training scenes. We
train using the Adam optimizer [KB14] with a base learning rate of 0.001. Training
was performed on a single NVidia GTX 1070 GPU and took roughly 4 hours per cross
validation fold. As with experiment I we found that when images in the validation
scene contained vastly different structural compositions to images in the training
set the model was susceptible to over-fitting by memorizing the structural features
and colour information surrounding image regions of low quality in the training
set. To encourage generalization on the naturally distorted image patches we apply
random jitter to the inputs in the form of a horizontal flip with 50% probability;,
and random rotations in jumps of 90° with 25% probability each. We also apply the
HSV jitter which applies a common hue, saturation, and brightness shift to all pixels
within the patch and its associated ground truth patch (equation 5.1), where the
shift is sampled independently for every training example in the minibatch. During
validation batches no jitter is applied. Table 5.5 shows the sizes of the training and
validation sets for each cross validation run.

5.4.2 Results and Discussion

As with the results of experiment I (section 5.3.2) we report the accuracy of our
model on patches from the training and validation sets. Accuracy is calculated using
the PCC, SROCC, and Kendall’s Tau between the expected and predicted quality
values for each patch in the training and validation sets for each cross validation
fold.

In the first training run for experiment II we use the rotational, flip, and HSV jitters.
With the fully convolutional model the £, £, and L. losses were able to train
reasonably stably without the exploding gradient problem seen in the model from
experiment I. As an exploratory step we trained our new model for 128 epochs using

5.4 Experiment I

157



158

each of the four loss functions so as to compare their effects on training stability and
efficiency.

Table 5.6 shows the result of the first training run using each of the four loss
functions. All four losses perform reasonably well and do not show signs of major
over-fitting. On the validation sets, the L, loss has the highest average accuracy
and has consistently small standard deviations across cross validation folds for each
correlation measure.

Validation Training (Rot+Flip+HSV Jitter) Validation
Loss Scene PCC SROCC Tau PCC SROCC Tau
Ly Cornell Box 0.972193 0.973177 0.867047 0.982244 0.860295 0.700377
Veach Bidir 0.966749 0.968851 0.865146 0.978072 0.975443 0.888591
Veach Door 0.978891 0.969311 0.859785 0.944208 0.953709 0.835708
Sponza 0.977722 0.982417 0.897448 0.961138 0.961118 0.838531
pxo | 0.9739 £0.0056 0.9734 + 0.0063 0.8724 +0.0170 0.9664 4 0.0174 0.9376 4 0.0523 0.8158 4 0.0807
Lo Cornell Box 0.975399 0.968849 0.855512 0.988992 0.858504 0.703183
Veach Bidir 0.974397 0.933385 0.792890 0.982448 0.958809 0.842332
Veach Door 0.979344 0.951626 0.822898 0.937276 0.933206 0.805445
Sponza 0.967688 0.947931 0.820128 0.956717 0.960155 0.828935
pEto | 09742 £+ 0.0048 0.9504 + 0.0146 0.8229 + 0.0256 0.9664 + 0.0239 0.9277 £ 0.0477 0.7950 £ 0.0631
Le Cornell Box 0.965823 0.964170 0.846650 0.984243 0.896299 0.741704
Veach Bidir 0.964259 0.960643 0.846469 0.977131 0.981226 0.895550
Veach Door 0.975903 0.979250 0.887376 0.925470 0.931493 0.821929
Sponza 0.970519 0.962865 0.848396 0.957923 0.956690 0.825556
pEo | 0.9691 £ 0.0052 0.9667 = 0.0085 0.8572 %+ 0.0201 0.9612 + 0.0263 0.9414 £+ 0.0363 0.8212 + 0.0629
Ljoint Cornell Box 0.974092 0.975930 0.874233 0.988965 0.954679 0.830864
Veach Bidir 0.973101 0.961212 0.840273 0.975710 0.972310 0.862354
Veach Door 0.979507 0.978489 0.883210 0.942559 0.950619 0.848439
Sponza 0.975069 0.968283 0.859585 0.964857 0.968420 0.850224

pEo | 0.9754 4+ 0.0028 0.9710 4+ 0.0078 0.8643 + 0.0188 0.9680 + 0.0196 0.9615 + 0.0105 0.8480 + 0.0130

Tab. 5.6.: Experiment II: Training and Validation set accuracies after 128 epochs for leave
one scene out cross validation using rotation, flip, and HSV jitter. The cross
validation folds were computed for each of the four loss functions under test, and
for each of these configurations the mean and standard deviation in the reported
correlations across the folds are reported in the bottom row of each section. The
L¢ loss shows only a minor improvement over the £, and £; losses; however,
the Ljoint 10ss shows significantly more consistent results and has lower standard
deviations over the cross validation folds.

While all four loss functions perform similarly when comparing validation PCC
values with 0.9664 =+ 0.0174 for £q, 0.9664 =+ 0.0239 for L5, 0.9612 + 0.0263 for Lc,
and 0.9680 & 0.0196 for Ljuine; the difference between SROCC and Kendall’s Tau
values are more pronounced. For SROCC we observe values of 0.9376 + 0.0523 for
L1, 0.9277 4 0.0477 for £, 0.9414 + 0.0363 for L¢, and 0.9615 & 0.0105 for Lioint,
and for Kendall’s Tau we see values of 0.8158 4- 0.0807 for £1, 0.7950 £ 0.0631 for
Lo, 0.8212 4+ 0.0629 for L¢, and 0.8480 + 0.0130 for Ljein:. For these two measures
we see that the Ljq, loss is on average better by 2.01 — 3.38% for SROCC and
2.68 — 5.3% for Kendall’s Tau over the cross validation folds and has a lower standard
deviation between folds. This shows that even when the regularization properties
of incorporating PCC into the loss function are not explicitly needed to avoid the

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



exploding gradient problem, it is still effective in improving training stability and

accuracy.

Selecting L joinc as the best performing loss function we continued training the model
to 1024 epochs to improve the accuracy to effective convergence (table 5.7). Doing
so only gave a modest improvement in accuracy on the validation sets of +0.39% in
PCC, +0.56% in SROCC, and +2.21% in Kendall’s Tau.

Validation Training (Rot+Flip+HSV Jitter) Validation
Loss Scene PCC SROCC Tau PCC SROCC Tau
Ljoint Cornell Box 0.974825 0.979942 0.887806 0.988769 0.963563 0.858154
Veach Bidir 0.978509 0.982749 0.894389 0.988179 0.983878 0.914428
Veach Door 0.982456 0.986308 0.909126 0.951672 0.957310 0.864841
Sponza 0.981203 0.986476 0.915918 0.958848 0.963735 0.842833
pEo | 0.9792+ 0.0034 0.9839 & 0.0031 0.9018 £ 0.0130 0.9719 4+ 0.0194 0.9671 + 0.0116 0.8701 & 0.0310

Tab. 5.7.: Experiment II: Training and Validation set accuracies after 1024 epochs for leave
one scene out cross validation using rotation, flip, and HSV jitter.

Figure 5.8 shows the training progression of the cross validation fold for the Cornell
Box scenes using the Ljqin: 10ss. We can observe that compared to the scatter plots
for the same configuration in experiment I (figure 5.5) the new fully convolutional
model appears to have higher variance. This is largely due to the fact that in
experiment I quality scores were averaged over 32 x 32 sized image patches, while
in experiment II we show the prediction for individual pixels as data points in the
scatter plots (top-centre). Another difference can be seen in the utilization of the
output domain. In experiment I predicted quality values appear bunched up towards

zero, with a long tailed falloff to the right, and an unbounded maximum value.

Due to the use of SSIM as the regression target the new model consistently predicts

quality values in the range [0, 1] where the output space is used uniformly w.r.t.
image quality. This has the benefit of being more readily interpretable than MAE.

Full results for all loss functions and cross validation folds are shown in appendix
A4.

In figure 5.9 we see the predicted SSIM maps for images from the validation scenes
of each cross validation fold. The images shown are the same ones used in figure
5.6 of experiment I for comparison purposes. Compared to the results of experiment
I we can see that by moving from a 32 x 32 receptive field sampled with stride 8
from the image to a smaller 11 x 11 receptive field sampled at stride 1, the new
fully convolutional model is able to capture a much clearer understanding of the
distribution of noise in rendered images.

With this increased clarity, fine details such as quality around the edges of geometry

are more faithfully predicted by the network, even when they are heavily occluded
by noise in the region. In the bottom row of the grid we see an image of the Sponza

5.4 Experiment I

159



160

Loss - Batches: 262400 Patches: 4198400
Train: 0.059777 Val: 0.100628

256 Patch - Pixel Correlation

256 Patch - Pixel Distribution

, — Train 10 700000 [ Train Truth
1o val 223 Train Prediction
Val Truth
08 00000 Val Prediction
500000
2
T 06 >
" I3 E 400000
§ u
T 04 & 300000
&
200000
10! 02
Train 100000
val
0.0 Example Val
oL
0 200 400 600 800 1000 0o 02 04 06 08 10 00 02 04 0% 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.971242 Val: 0.991167 Train: 0.978500 Val: 0.983638 Train: 0.887525 Val: 0.898696
o
1o — Train 10° — Train 10° — Train
Val ‘ val Val
g l
g 107 3 2
4 l & £
. | o .
a © 107t a
“ -
Wi iy b
107!
0 200 400 600 800 1000 0 200 400 00 800 1000 0 200 400 600 800 1000
Epoch Epoch Epoch
(a) Scene: Cornell Box
Loss - Batches: 262400 Patches: 4198400
Train: 0.055793 Val: 0.121821 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
— Train 104 ) Train Truth
Vval 400000 4 {2773 Train Prediction
Val Truth
350000 4 Val Prediction
08+
300000
z
2 064 & 250000 -
" <] H
@ ] g
3 g = 200000
T 044 &
& 150000
-1
10 024 100000
Train
W o Val 50000 [ —
Ll 0.0 Example Val TR
. T T T . v v T v ¢ - 0l v v v v T
0 200 400 600 800 1000 0o 032 04 06 08 10 00 02 04 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.976095 Val: 0.982478 Train: 0.980921 Val: 0.980592 Train: 0.889135 Val: 0.900769
— Train — Train [ — Train
Val val val
w 104+ 1014 -
o =1 2
& & =
. & )
& o - 1
| , .! | | 1 l I| |
f Mitghed L N
ﬂ“u‘l{l\\'[ 1 1 | i) |
Rt Moy g
. M‘m 1"l o] A o e
1072 20
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 00 800 1000
Epoch Epoch Epoch

(b) Scene: Veach Bidir

Fig. 5.8.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for the Cornell Box and Veach Bidir scenes, using rotation, flip, and HSV jitter with the
Ljoine loss. The plots show: Loss value over training and validation batches within an epoch (top-left),
a scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 1024 epochs (top-centre), overlaid histograms
of predicted and true quality distributions for each pixel in each patch of the most recent batches at
the end of 1024 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s
Tau (bottom-right) for the pixels in the last batch of each epoch during training. The scatter plots show
higher variance than those from experiment I (figure 5.5) due to lack of 32 x 32 average pooling accross
patches from the original experiment. Full results for all loss functions and cross validation folds are

shown in appendix A.4.

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using




scene rendered with Primary Sample Space Metropolis Light Transport at 8 s.p.p.. In
this image we see the edges of floor tiles which are heavily occluded by noise. For
these edges the network consistently underestimates the SSIM quality in the local
region. This is potentially due to subtle differences in the distribution of noise on and
around geometric edges and texture induced edges from the Monte Carlo rendering
process. A possible way to improve the prediction accuracy in these regions would
be to feed the network and additional input of local texture albedo for geometry
visible within the image.

. Predicted SSIM Ground Truth
Noisy Image True SSIM Map
Map Image

Cornell Box
Bidirectional
Path Tracing

2 5.p.p.

Veach Bidir
Path Tracing

2 8.p.p.

Veach Door
Energy
Redistribution
Path Tracing

2 s.p.p.

Sponza
Primary
Sample Space
Metropolis
Light
Transport

8 s.p.p.

Fig. 5.9.: Experiment II: Example IQA prediction from our model on images from the
validation sets. From left to right: The input noisy image to evaluate. The
predicted SSIM of the noisy image. The true SSIM of the noisy image compared
to the ground truth image. The ground truth image.

Finally, in order to compare our proposed fully convolutional NR-IQA model to
existing methods we feed each 512 x 512 image in the validation sets to the network
and apply mean pooling to the resulting prediction maps to give a single scalar
valued quality score. Using the predicted values from our method and from the

5.4 Experiment I

161



162

existing methods, and the ground truth quality scores computed using the SSIM
FR-IQA method; we compute the correlation of the predicted values compared to the
FR-IQA values and report these results for each validation scene, using the version
of our method trained on each cross validation fold, respectively.

Cornell Box Veach Bidir Veach Door Sponza

PCC SROCC Tau ‘ PCC SROCC Tau ‘ PCC SROCC Tau ‘ PCC SROCC Tau

Metric
Ours - Experiment IT 0.9996 0.9959 0.9688 0.9982 0.9921 0.9393 0.9928 0.9916 0.9331 0.9989 0.9964 0.9686
BLIINDS [Saa+10] 0.9840 0.9858 0.9287 0.9619 0.9544 0.8650 0.9640 0.9870 0.9144 0.9066 0.9668 0.8723
BIQI [MB10] -0.2150 -0.0472 -0.0145 -0.0365 -0.3395 -0.2411 -0.7170 -0.3449 -0.2462 -0.4219 -0.5132 -0.3693
BRISQUE [Mit+12a] 0.3596 0.6854 0.5414 0.2211 0.3402 0.2172 0.1214 0.4154 0.3546 -0.5622 -0.3427 -0.2879
HIGRADE 1 [Kun+16a] 0.2321 -0.1136 -0.0779 -0.7522 -0.6113 -0.4465 0.3415 -0.3348 -0.2901 0.2163 -0.0028 0.0246
HIGRADE 2 [Kun+16a] 0.4008 0.4236 0.3167 -0.7526 -0.8591 -0.6761 0.4064 0.1528 0.1009 0.4042 0.2663 0.1867
JP2K-NR [She+05b] -0.3977 -0.9352 -0.8264 -0.5410 -0.9139 -0.7517 -0.0234 0.2408 0.1091 -0.6635 -0.8156 -0.6524
NIQE [Mit+13a] 0.6013 0.9490 0.8283 0.6573 0.8651 0.7089 -0.0037 0.4418 0.3581 -0.4974 -0.2841 -0.2371
OG-IQA [Liu+16] 0.2863 0.4868 0.3278 -0.2013 -0.1947 -0.1759 -0.5076 -0.2150 -0.1673 -0.7798 -0.6177 -0.4556

Tab. 5.8.: Experiment II: Validation set NR-IQA performance for leave one scene out cross
validation. Each correlation is computed relative to the full reference SSIM of
each 512 x 512 image in the validation set compared to its ground truth image.

Table 5.8 shows the results of our fully convolutional model applied to whole
images compared to existing NR-IQA algorithms. Our method consistently per-
forms best across all four validation scenes. As with experiment I, the BRISQUE
[Mit+12a], HIGRADE 1 [Kun+16a], HIGRADE 2 [Kun+16a], JP2K-NR [She+05b],
NIQE [Mit+13a], OG-IQA [Liu+16] NR-IQA measures all exhibit both positive and
negative correlations for different validation scenes which indicates that they are
not accurately describing the underlying distribution of visible distortions present in
the test images.

5.5 Conclusion and Discussion

In this chapter we have presented the results of our experiments into applying deep
learning to NR-IQA. We have shown that convolutional neural networks acting as
feature extractors are sufficiently able to detect and extract noise present in Monte
Carlo rendered images, and that such features can be used for the purpose of IQA.

When reviewing existing NR-IQA methods we observe that the vast majority of
measures in the literature are trained on images from publicly available datasets
such as Live [She+14], TID2008 [Pon+09], TID2013 [Pon+13], Kodak Lossless
True Colour [Fra99], MICT [Hor+11], IRCCyN/IVC [AB09], which contain clean
reference images (photographs) and their synthetically distorted test images, coupled
with subjective quality scores given by and pooled over a set of human observers.
We find that in many cases synthetic distortions do not present a representative
target for training and evaluating metrics that will be applied to naturally distorted
images. In our experiments we show that we can train models directly on images

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



containing naturally occurring distortions from unconverged Monte Carlo rendering

processes.

In experiment I we develop a convolutional neural network which accepts a noisy
fixed sized 32 x 32 RGB image patch from a Monte Carlo rendered image, and
predicts the quality of the patch to approximate the FR-IQA score that would be
computed for the patch if its associated ground truth patch was available. This model
initially suffered from stability issues such as the exploding gradient problem. We
were able to solve this problem by incorporating the Pearson’s Correlation Coefficient
into the loss function which acts as a regularization term, allowing the model to train
stably. The model also had a tendency to over-fit on the training data by memorizing
colour palettes, which caused it to struggle to correctly predict the quality of image
patches from scenes which were drastically different to those in the training sets. We
solved this problem by augmenting the training data by developing a jitter which
operates in the HSV colour space. By randomly shifting the hue of input patches and
modulating their contrast and saturation we discourage the model from using colour
information as a feature and encourage it to look for structural information which
remains invariant under these distortions. Even with a solution to the colour palette
issue it is clear from the difference in training stability between cross validation
folds, that model stability and generalization is tightly tied to the range and variation
of lighting and material compositions visible in scenes from the training set. On
leave one out cross validation folds using the Cornell Box scene the model is not
able to generalize well due to the difference of images of that scene compared to
those available in the training set. The only way to significantly improve on this is to
expand the Monte Carlo image dataset to contain additional and more varied scenes
to sample from the training sets.

A shortcoming of the model from experiment I is that individual patches of the images
must be extracted and processed separately by the network. This is not efficient and
causes many duplicated convolutions between image patches which overlap in the
source image. For experiment II we develop a fully convolutional model which is
able to perform a regression for all pixels in the source image simultaneously. In the
fully convolutional architecture an initial set of feature extraction layers using 3 x 3
convolutions are used to increase the models receptive field up to 11 x 11 pixels. We
chose a receptive field of 11 x 11 pixels to match the default neighbourhood size
used in the SSIM [Wan+04a] FR-IQA metric which was used to compute the ground
truth values for the experiment. The feature channels are then put through several
layers of 1 x 1 convolutions which are the equivalent of branching the network
independently for every pixel and applying fully connected layers on the branches,
where the fully connected layers all have shared weights. This allows for the network
to have a deep structure for regression while still only having a 11 x 11 pixel receptive
field.

5.5 Conclusion and Discussion

163



164

In both experiments we justify our method by comparing the accuracy on validation
sets to values computed using existing state of the art NR-IQA methods, namely:
BLIINDS [Saa+10], BIQI [MB10], BRISQUE [Mit+12a], HIGRADE 1 [Kun+ 16a], HI-
GRADE 2 [Kun+16a], JP2K-NR [She+05b], NIQE [Mit+13a], and OG-IQA [Liu+16].
In experiment I we compared our results to the MAE FR-IQA method and in exper-
iment IT we used SSIM as the FR-IQA method, computed on full images from the
validation sets. In both experiments our method was able to accurately capture
the distribution of image quality to a much higher degree than existing methods
which often had low correlation or inconsistently showed both positive and negative
correlation for different validation scenes. This implies that the synthetic distortions
used in the publicly available datasets are not representative of the distribution of
naturally occurring distortions we observe in Monte Carlo rendered images.

5.5.1 Further Work

As we have previously discussed, NR-IQA measures have a range of applications
when applied to Monte Carlo rendered images. NR-IQA can be used to inspect the
current quality of images during the rendering process, it can be used as a heuristic
for an early stopping criteria to determine when the image has reached a sufficient
quality, and it can be used as a heuristic for adaptively directing computational
efforts towards regions of the image with lower quality. As further work we want to
investigate the use of deep learning models like the one described in experiment II
applied to the task of adaptive rendering by integrating the output quality prediction
maps into a system for balancing computational resources like those defined in
[Mys98; BM98; Ram+99; Mys+00; Deb06] by considering the quality map as
showing regions which need proportionally more computation. This is a difficult
task as the model must be able to robustly predict the regions of the image with
the lowest quality, and be able to do this efficiently so that the computational gains
of the adaptive sampling are not outweighed by the expense of determining the
regions of low quality. In a potential failure case, if the predicted quality maps are
not representative enough of true error distribution such a method could hinder
convergence leading to worse performance than uniform sampling.

In section 4.6.1 we discussed our plans to expand the dataset of Monte Carlo
rendered images with additional scenes containing a larger range of lighting and
material compositions, and to provide this data in HDR to allow more flexibility in
future experimental design. As further work we would also look to train models on
this expanded dataset and for these new models to make predictions on the raw
HDR data that is available within the rendering software. These models could also
take as input additional meta data from the rendering software [Kel97; Kal+15]
such as pixel colour, screen-space coordinates, world-space coordinates, shading

Chapter 5 A Deep Learning Approach to No-Reference Image Quality Assessment using



normals, texture albedo at the first and second bounces, and the direct illumination
shadow-map.

The code for the two experiments discussed in this chapter are released open source,
implemented in Tensorflow [Aba+15] and Keras [Cho+15], and are available on
Github under the MIT license at:
https://github.com/CS-Swansea/MC-NR-IQA

5.5 Conclusion and Discussion 165






Conclusion

In conclusion we will now summarize the contributions made in each of the three
main chapters of this thesis.

Chapter 3

Chapter 3 describes the development of MEL, a modern C++11 framework around
the MPI 3.0 standard. MEL is a header-only library with the goal of creating a
lightweight and robust framework for building distributed parallel applications for
use in HPC environments. MEL is designed to introduce no (or minimal) overheads
while drastically reducing code complexity and allowing for a greater range of
common MPI errors to be caught at compile-time rather than during program
execution when it can be far more difficult to debug.

Prior work on providing C++ abstractions to MPI have focused on applying OO
design patterns to the way users interact with the MPI runtime [McC+96; Gru+00;
BC15b]. For example, an OO wrapper around an vpI_conm object will provide
functionality such as a destructor and copy and move constructors. While on the
surface this would appear to make code more robust by implicitly instructing the
underlying MPI runtime to correctly manage opaque resources, in practice this
leads to unnecessary interaction with the MPI runtime which can lead to poor and
inconsistent performance when scaling up the number of processes involved in a
distributed setting.

For a copy constructor to be properly implemented on an vp1_comm object an implicit
call to mPT_comm_dup to duplicate the existing communicator would need to be trig-
gered. Similarly for a destructor to be implemented on a communicator an implicit
call to vp1_comm_disconnect would be needed. Such operations are known to not scale
well in large systems, especially when network latency is a concern, and are ulti-
mately unnecessary in most use cases. By strictly adhering to certain best practices in
OO0 regimes users can attempt to avoid these kinds of scenarios by passing such OO
wrapped objects by reference or by using a form of reference counting scheme. But
even with care taken, something as simple as assigning a wrapped communicator
object to a temporary variable within a function could silently add an implicit call

167



168

to a poorly scaling function, making completely valid and pragmatic OO code have
confusing and inconsistent runtime characteristics which are difficult to debug.

By fundamentally changing the way in which the user’s program interacts with the
MPI runtime unnecessary overheads and performance bottlenecks are introduced
along with the need to relearn how one is supposed to interact with the MPI runtime,
which may hinder adoption of such frameworks. The MPI runtime is designed to sit
adjacent to the user’s program and to abstract the details of how code interacts with
the rest of the distributed system. Invoking OO design principles on this relationship
has the effect of injecting implicit and unnecessary micro-management on the MPI
runtime.

In our work we opt not apply an OO model and instead leverage the power of the
modern C++ compiler to provide much needed type-safety and consistency to the
existing imperative model with which MPI was designed to be used.

Another area of MPI we aim to improve upon, which has not been a strict focus
of prior modernization frameworks, has been on tightening the consistency of
code behaviour and compile-time error handling between MPI distributions. As a
motivating example we explore type safety in the MPI standard. With MPI being
intended as a C library certain design patterns emerge in the standard and its
implementations which have the unintentional side effect of nullifying key parts of
the type-system provided by the C and C+ + languages.

For example, the standard does not dictate how many of the object types should
be implemented, leaving these details to the implementation vendor. In Intel MPI
5.1 wpz_comn objects and many other types are implemented as integer handles,
typedef int MPI_comm, to opaque data that are managed by the MPI run-time. This
causes compile-time type-checking of function parameters to not flag erroneous
combinations of variables. The common signature mpT_send(void*, int, MPI_Datatype
, int, int, MPT_comm) is actually seen by the compiler as mp1_send(voidx, int, int,
int, int, int), allowing any ordering of the last five variables to be compiled as
valid MPI code, potentially causing catastrophic failure at run-time. In contrast,
Open MPI 1.10.2 implements these types as structs which are inherently type-safe.

In MEL we impose the necessary type-safety on the opaque data handles returned by
the MPI runtime regardless of the individual MPI vendor’s implementation. These
abstractions largely take the form of simple structs with the underlying MPI type
as a member variable, and an explicit cast operator for removing the abstraction
when the time is right. Such abstractions are designed to be soluble, existing only as
far as the intermediate representation during compilation, allowing the compiler to
remove the abstractions MEL provides to achieve the same performance as native

Chapter 6 Conclusion



MPI code while imposing the type-safety that was originally lacking. MEL makes
use of modern C+ + language features such as const types, pass by reference, and
advanced template meta-programming to both ensure correctness at compile-time
and to generate boiler-plate values that programmers have to provide themselves
with native MPI code.

Lastly, one of the main goals of MEL is to give higher-level functionality that is
not natively available within the MPI standard. To demonstrate this we tackle the
issue of performing deep copy on complex hierarchical and potentially cyclical data
structures between disjoint hosts in a distributed computing environment.

For user defined objects MPI natively adopts shallow copy semantics, where memory
allocation, copy, and de-allocation are the responsibility of the programmer. Shallow
copy is acceptable for shared-memory programming models where it is always legal
to dereference a pointer with the underlying assumption that the target of member
pointers will be shared among all processes. In environments which do not employ
a shared-memory model such as communication between processes on a single
machine or between processes on disjoint hosts connected by a network interface
deep copy is needed to recursively traverse pointer members in a data structure,
transferring all disjoint memory locations, and translating the pointers to refer to
the appropriate device location.

The task of writing code to perform such deep copy transfers is a complicated process
which must be implemented for each data structure that needs to be transferred,
and for each method by which it will be transferred. This is an error prone task that
can be difficult to debug as errors can easily exist on both sending and receiving
processes, and often present themselves as undefined behaviour stemming from
memory overruns or from failing to correctly traverse the entire structure. Such
errors often do not cause the program to outright terminate; rather, they leave the
still executing program in an undefined and potentially unstable state which can
further confuse debugging efforts.

In MEL we approach this problem by creating a set of generic deep copy semantics
that can easily be applied to user data structures, and a traversal and transportation
algorithm which can then walk the data structure performing the desired transport
operations. Our semantic markup is generic both in that it can be applied simply to
any user defined structure, but also in its abstraction of the transport operation that
will later be performed on it. Once a data structure has been prepared for our deep
copy algorithm it can be passed to all transport functions within the API, allowing for
MPI send, receive, broadcast, and file IO operations to all be performed. Additionally
we provide a variant of each of the above transport operations which internally

169



170

buffer data into or from a contiguous block of memory during transmission, yielding
considerable performance increases on appropriate data structures.

To justify our approach we provide code examples and run-time performance mea-
surements computed using the HPC Wales compute cluster.

In our first experiment we show that in just four simple lines of code (section
3.3.5.1) we can apply our deep copy semantics to a BVH-Tree data structure in the
context of a distributed ray tracing program. These four lines are able to convey
all the information needed by our algorithm to replace 34 and 70 lines of hand
written code needed to perform the same deep copy operation for non-buffered
and buffered MPI broadcast operations, respectively. Further we show that we can
accomplish this with no loss in performance. We also show that our method scales
with the number of processes involved in the communication at the same rate as the
underlying broadcast operation (logarithmically). In our second experiment we show
the performance of our method in reading and writing the BVH-Tree structure to disk
compared to Boost Serialization Library [Cog05], showing that our method scales
significantly better than Boost as the size of the structure increases. Finally, we show
the results of non-buffered versus buffered MEL deep copy broadcast operations, and
of MEL deep file IO operations versus Boost Serialization Library on arbitrary generic
graph structures of various connectivities (fully connected, randomly connected,
rings, binary-tree) and sizes, showing again that our method naturally scales well
without any tuning or modification.

MEL is Open-Source and available on Github under the MIT license at:
https://github.com/CS-Swansea/MEL

Chapter 4

In chapter 4 we provide an ensemble study on the robustness of IQA measures when
evaluating images created through Monte Carlo rendering processes. When assessing
image quality in Monte Carlo rendered images the use of a reference image or GT is
a common method to provide a baseline with which to compare experimental results
as we often need to determine the relative quality between images computed using
different algorithms and with varying amounts of computation.

We show that if not chosen carefully the quality of reference images used for IQA
can skew results leading to significant misreporting of error. We present an analysis
of error in Monte Carlo rendered images and discuss practices to avoid or be aware
of when designing an experiment.

Chapter 6 Conclusion



The issue stems from the fact that ground truth images are never truly available, as
they are the product of a stochastic rendering process just the like the test images
we wish to evaluate. Monte Carlo rendering processes are known to converge
in the limit, as the number of samples goes to infinity. For any finite number of
samples used to approximate an image there will always be some distortion or bias
introduced into the image estimate. By rendering reference images to a significantly
higher visual quality than the test images they will be used to evaluate we can limit
the bias introduced by distortions in reference images.

However, this raises the question of by how much distortions in reference images
affect the results of IQA measures when evaluating test images. To answer this
question we constructed an experiment where we rendered images of various scene,
material, and lighting compositions to increasing numbers of image samples using
several Monte Carlo rendering algorithms; we then used this dataset of images of
varying quality to calculate the reported error of test images compared to each of
the potentially noisy reference images drawn from the dataset, using a collection of
IQA measures we gathered from the literature. We used the highest quality images
as approximate ground truth images, and use these “true” values to compute the
amount each error metric had under- or overestimated its quality score for each
comparison, as a function of the quality of the potentially noisy reference image that
was used.

By this method we can show the robustness of each IQA measure we sample from
the literature when we consider the scenario where the reference image used in
image quality assessment is not a perfect representation of the ground truth image
and contains some magnitude of distortion.

The results of our study show that some IQA measures are significantly more suscep-
tible to under- or overestimating the amount of error in test images as a result of
distortions in reference images.

From our results, we recommend that MS-SSIM [Wan+03] or SC-QI [BK16] be used
for image quality assessments when evaluating images produced by Monte Carlo
rendering algorithms as these methods were the most robust when we consider noise
in reference images. Reference images should ideally be rendered with uniform
sampling methods such as Path Tracing (PT) or BDPT to avoid the introduction of
structural artefacts in IQA. We show that it is crucial that the reference used is not
only visually noise free, but also that it is of sufficiently higher numerical quality
than images tested against it. Reference images should therefore be rendered to
at least an order of magnitude higher sample count than test images to minimize
the possibility of noise in the reference causing a significant deviation in reported
error. Finally, the sample count and method of production of the reference image

171



172

should be stated clearly to give researchers attempting replication every confidence
in reported results.

Chapter 5

Finally, in chapter 5 we investigate the use of deep learning models applied to the
task of NR-IQA in the context of evaluating images rendered with Monte Carlo
rendering processes.

In FR-IQA, images are compared with ground truth images that are known to be of
high visual quality. These metrics are utilized in order to rank algorithms under test
on their image quality performance. However, during an intermediate stage of a
Monte Carlo rendering process we do not have access to ground truth images with
which to compare our current image estimate, as this would imply the availability of
the final image. To evaluate our current image estimate we need to utilise NR-IQA
methods which compare the image under evaluation to the distribution of natural
images we are likely trying to compute.

When reviewing existing NR-IQA methods we observe that the vast majority of
measures in the literature are trained on images from publicly available datasets
such as Live [She+14], TID2008 [Pon+09], TID2013 [Pon+13], Kodak Lossless
True Colour [Fra99], MICT [Hor+11], and IRCCyN/IVC [AB09], which contain clean
reference images (photographs) and their synthetically distorted test images, coupled
with subjective quality scores given by and pooled over a set of human observers.
We find that in many cases synthetic distortions do not present a representative
target for training and evaluating metrics that will be applied to naturally distorted
images. In our experiments we show that we can train models directly on images
containing naturally occurring distortions from un-converged Monte Carlo rendering
processes.

In our work, we propose a deep learning approach to NR-IQA trained specifically
on noise from Monte Carlo rendering processes, which significantly outperforms
existing NR-IQA methods, and produces performance close to the approximated
FR-IQA measure.

In our first experiment we develop a convolutional neural network which accepts
a noisy fixed sized 32 x 32 RGB image patch from a Monte Carlo rendered image,
and predicts the quality of the patch to approximate the FR-IQA score that would
be computed for the patch if its associated ground truth patch was available. We
incorporate the Pearson’s Correlation Coefficient which is commonly used to evaluate

Chapter 6 Conclusion



the performance of IQA methods into the loss function. This acts as a regularization
term, allowing the model to train stably and consistently. To reduce over-fitting on
the training data caused by memorization of colour palettes, we augment the training
data by developing a jitter which operates in the HSV colour space. By randomly
shifting the hue of input patches and modulating their contrast and saturation we
discourage the model from using colour information as a feature and encourage it to
look for structural information which remains invariant under these distortions.

A shortcoming of this approach is that individual patches of the images must be
extracted and processed separately by the network, causing many duplicated convo-
lutions to be performed between image patches which overlap in the source image.
For our second experiment we move to a fully convolutional model which is able
to perform a regression for all pixels in the source image simultaneously. In the
fully convolutional architecture an initial set of feature extraction layers using 3 x 3
convolutions is used to increase the model’s receptive field up to 11 x 11 pixels. We
chose a receptive field of 11 x 11 pixels to match the default neighbourhood size
used in the SSIM [Wan+04a] FR-IQA metric which was used to compute the ground
truth values for the experiment. The feature channels are then put through several
layers of 1 x 1 convolutions which are the equivalent of branching the network
independently for every pixel and applying fully connected layers on the branches,
where the fully connected layers all have shared weights. This allows for the network
to have a deep structure for regression while still only having a 11 x 11 pixel receptive
field.

We justify our method by comparing the accuracy on validation sets of Monte Carlo
rendered images to values computed using existing state of the art NR-IQA meth-
ods, namely: BLIINDS [Saa+10], BIQI [MB10], BRISQUE [Mit+12a], HIGRADE 1
[Kun+16a], HIGRADE 2 [Kun+16a], JP2K-NR [She+05b], NIQE [Mit+13a], and
OG-IQA [Liu+16]. In experiment I we compared our results to the MAE FR-IQA
method and in experiment II we used SSIM as the FR-IQA method, computed on
full images from the validation sets. In both experiments our method was able to
accurately capture the distribution of image quality to a much higher degree than
existing methods which often had low correlation or inconsistently showed both
positive and negative correlation for different validation scenes. This implies that the
synthetic distortions used in the publicly available datasets are not representative
of the distribution of naturally occurring distortions we observe in Monte Carlo
rendered images.

The code for the two experiments discussed in this chapter are released open source,
implemented in Tensorflow [Aba+15] and Keras [Cho+15], and are available on
Github under the MIT license at:
https://github.com/CS-Swansea/MC-NR-IQA

173



174

6.1 Summary of Contributions

In summary, with this thesis we address the problem of image quality assessment in
the domain of images generated with physically based rendering algorithms. To this
end we have provided contributions in the areas of high performance computing,
image quality assessment, and machine learning.

We have presented MEL, a modern C+ + framework built on top of MPI designed with
goals of increasing type-safety and compile-time error handling while adding higher-
level functionality such as deep-copy semantics. Using template meta programming
to automatically deduce boilerplate parameters MEL decreases the potential for
programmer error and significantly reduces code complexity compared to native
MPI. We make this framework open source for anyone to use.

With MEL we implemented Monte Carlo rendering algorithms on HPC platforms and
used this distributed rendering software to compute a dataset of images containing
varying material, lighting, and scene compositions. This dataset was designed for
the purpose of training and evaluating IQA measures directly on the domain specific
distortions that occur naturally as a result of under-sampling in stochastic rendering
processes.

Using the Monte Carlo image dataset we provided an ensemble study on the robust-
ness of modern and classical IQA measures when we consider the scenario where
the reference image used in FR-IQA or RR-IQA is not a perfect representation of the
ground truth image, and contains some magnitude of distortion. Out of the IQA
measures we evaluated, we found that the most robust were MS-SSIM [Wan+03]
and SC-QI [BK16] when evaluating images produced by Monte Carlo rendering algo-
rithms. We recommend that when evaluating such images, reference images should
ideally be rendered with uniform sampling methods such as PT or BDPT to avoid
the introduction of structural artefacts in IQA. We show that it is crucial that the
reference image used is not only visually noise free, but also that it is of sufficiently
higher numerical quality than images tested against it. We therefore recommend
that reference images should be rendered to at least an order of magnitude higher
sample count than images being evaluated to minimize the possibility of noise in the
reference causing a significant deviation in reported error.

Finally, we investigated the NR-IQA problem with a specific focus on evaluating
images produced by Monte Carlo rendering algorithms. As a result of this work we
presented two CNN architectures, one which computes a scalar valued quality score
when presented with a fixed sized 32 x 32 image patch, and a second more advanced
model which densely predicts a quality score for every pixel in an arbitrary sized

Chapter 6 Conclusion



input image in parallel by using an FCNN architecture, yielding significant speed
improvements for inferring image quality. These models are trained end-to-end to
regress the quality scores given by FR-IQA measures calculated at each pixel between
un-converged images and their clean ground truth images.

In order to improve model accuracy and training stability we develop HSV jitter as
an input regularization technique to discourage models from memorizing colour
palette information as part of their NR-IQA strategy. We also develop a joint loss
function which combines the Charbonnier loss and the PCC computed batch-wise
during training. Jointly minimizing the difference between the regression target
and prediction while maximizing the correlation between the prediction and target
value has the effect of greatly improving final accuracy and in several configurations
avoid the exploding gradient problem when initiating training from random weights.
From the raw un-converged image data, our models learn a distribution of what
natural images from the distortion domain look like. Our proposed models are able,
to within a high degree of accuracy, predict pixel level quality scores when only
shown un-converged test images. We make the code for these models, along with
their training and evaluation scripts, open source for anyone to use.

6.2 Further Work

It is important to reflect on the limitations of the current work that has been proposed,
and to identify where improved or alternative strategies can be applied to address
these problems going forward.

Our plans for further research from this work are to continue the development and
expansion of MEL to further improve the libraries capacity for compile-time error
handling and boilerplate code deduction. With this expansion we can address a
limitation of MEL deep-copy which currently only supports a blocking communication
function interface. We plan to investigate the implementation of a non-blocking
interface for performing deep-copy by using hybrid MPI where deep-copy is spawned
onto an auxiliary thread within the same address spaces as the initiating MPI
processes. Synchronization of the non-blocking deep-copy can be implemented in
this scenario by using a combination of thread and MPI process level synchronization
functions to implement proper asynchronous semantics for wait, test, and barrier
style functions.

We plan to address the limitations of the current Monte Carlo image dataset by
adding additional scenes, including scenes which aim to model photo-realistic image
compositions, and those which aim to model more synthetic based images of single

6.2 Further Work

175



176

material models under controlled lighting and viewing conditions. The expanded
dataset will be computed in high-dynamic range so that both HDR and LDR quality
measures can be trained and evaluated. With a larger dataset and one containing
a wider range of material, lighting, and scene compositions models trained on the
dataset will be able to better generalize and achieve more robust inference results.

In order to train and evaluate images using the Monte Carlo dataset experiments
must currently be designed to predict the values reported by FR-IQA algorithms
when they are shown both the un-converged image and the clean ground truth
image. To address this, we plan to conduct a user study to collect MOS and DMOS
for images in the expanded dataset. New FR-IQA, RR-IQA, and NR-IQA models
will be able to be fit and evaluated against the perceptually aware quality scores
provided by human observers. These scores represent a more meaningful target for
IQA regression and have a broader range of applications in real-world inference.

Finally, we plan to continue investigating the use of machine learning models in IQA
measures with specific application to the assessment of images rendered with Monte
Carlo rendering algorithms. New models should be trained on the expanded Monte
Carlo image dataset and should operate on raw HDR intensities and scene data that
are available directly within the rendering software. They should also be trained to
predict the MOS or DMOS given by human observers.

Chapter 6 Conclusion



Bibliography

[ABO9] Florent Autrusseau and Marie Babel. Subjective quality assessment of LAR coded
art images. http://www.irccyn.ec-nantes.fr/ autrusse/Databases/. 2009 (cit. on
pp. 6, 117, 132, 138, 162, 172).

[Aba+15] Martin Abadi, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from tensor-
flow.org. 2015 (cit. on pp. 66, 165, 173).

[AC86] James Arvo and MA Chelmsford. “Backward ray tracing”. In: Developments in
Ray Tracing, Computer Graphics, Proc. of ACM SIGGRAPH 86 Course Notes. 1986,
pp. 259-263 (cit. on p. 40).

[AES93] Arthur W. Springsteen Albert E. Stiegman Carol J. Bruegge. “Ultraviolet stability
and contamination analysis of Spectralon diffuse reflectance material”. In:
Optical Engineering 32 (1993), pp. 32 -32 -6 (cit. on p. 32).

[And+96] Matthew Anderson, Ricardo Motta, Srinivasan Chandrasekar, and Michael
Stokes. “Proposal for a Standard Default Color Space for the InternetsRGB”. In:
Color and Imaging Conference 1996.1 (1996), pp. 238-245 (cit. on p. 117).

[Avc+02] Ismail Avcibas, Bulent Sankur, and Khalid Sayood. “Statistical evaluation of
image quality measures”. In: Journal of Electronic Imaging 11.2 (2002), pp. 206—
223 (cit. on p. 114).

[BA83] Peter Burt and Edward Adelson. “The Laplacian pyramid as a compact image
code”. In: IEEE Transactions on communications 31.4 (1983), pp. 532-540
(cit. on p. 115).

[Bab+07] R Venkatesh Babu, Sundaram Suresh, and Andrew Perkis. “No-reference JPEG-
image quality assessment using GAP-RBF”. In: Signal Processing 87.6 (2007),
pp. 1493-1503 (cit. on p. 137).

[Barl7] Jonathan T. Barron. “A More General Robust Loss Function”. In: CoRR abs/1701.03077
(2017) (cit. on pp. 145, 146).

[BatO5] Christopher Batty. “Implementing energy redistribution path tracing”. In: De-
partment of Computer Science, The University of British Columbia (2005) (cit. on
pp. 52, 57, 58, 71).

[Bau+15] Pablo Bauszat, Martin Eisemann, Elmar Eisemann, and Marcus Magnor. “Gen-
eral and Robust Error Estimation and Reconstruction for Monte Carlo Ren-
dering”. In: Computer Graphics Forum (Proc. of Eurographics EG) 34.2 (2015),
pp. 597-608 (cit. on p. 114).

177



178

[BC15b]

[Bey+14]

[BK16]

[BM98]

[Bos+16a]

[Bos+16b]

[Bot10]

[Boul5]

[Bou+10]

[Bov09]

[BQO8]

[Bru+12]

[Cas+04]

[CD14]

[CHO7]

Boost-Community. BOOST C+ + Libraries. 2015 (cit. on pp. 77, 167).

James Beyer, David Oehmke, and Jeff Sandoval. “Transferring user defined
types in OpenACC”. In: Proc. Cray User Group (CUG’14) (2014) (cit. on p. 78).

S. H. Bae and M. Kim. “A Novel Image Quality Assessment With Globally and
Locally Consilient Visual Quality Perception”. In: IEEE Transactions on Image
Processing 25.5 (2016), pp. 2392-2406 (cit. on pp. 69, 116, 119, 136, 138,
171, 174).

Mark R Bolin and Gary W Meyer. “A perceptually based adaptive sampling
algorithm”. In: Proceedings of the 25th annual conference on Computer graphics
and interactive techniques. ACM. 1998, pp. 299-309 (cit. on pp. 56, 58, 164).

S. Bosse, D. Maniry, T. Wiegand, and W. Samek. “A deep neural network for
image quality assessment”. In: 2016 IEEE International Conference on Image
Processing (ICIP). 2016, pp. 3773-3777 (cit. on pp. 142, 143).

Sebastian Bosse, Dominique Maniry, Klaus-Robert Muller, Thomas Wiegand,
and Wojciech Samek. “Deep Neural Networks for No-Reference and Full-
Reference Image Quality Assessment”. In: CoRR abs/1612.01697 (2016) (cit.
on pp. 142, 143).

Léon Bottou. “Large-scale machine learning with stochastic gradient descent”.
In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177-186 (cit. on pp. 66,
68).

Aurélien Bouteiller. “Fault-Tolerant MPI”. In: Fault-Tolerance Techniques for
High-Performance Computing. Ed. by Thomas Herault and Yves Robert. Springer
Publishing Company, Incorporated, 2015. Chap. 3, pp. 145-228 (cit. on p. 79).

Y-Lan Boureau, Jean Ponce, and Yann Lecun. “A Theoretical Analysis of Feature
Pooling in Visual Recognition”. In: icml. 2010 (cit. on pp. 142, 143).

Alan C Bovik. “The essential guide to image processing”. In: Academic Press
(2009), p. 583 (cit. on p. 116).

Tomads Branddo and Maria Paula Queluz. “No-reference image quality assess-
ment based on DCT domain statistics”. In: Signal Processing 88.4 (2008),
pp. 822-833 (cit. on p. 137).

D. Brunet, E. R. Vrscay, and Z. Wang. “On the Mathematical Properties of the
Structural Similarity Index”. In: IEEE Transactions on Image Processing 21.4
(2012), pp. 1488-1499 (cit. on p. 116).

George Casella, Christian P. Robert, and Martin T. Wells. “Generalized Accept-
Reject sampling schemes”. In: A Festschrift for Herman Rubin. Ed. by Anirban
DasGupta. Vol. Volume 45. Lecture Notes—-Monograph Series. Beachwood, Ohio,
USA: Institute of Mathematical Statistics, 2004, pp. 342-347 (cit. on p. 15).

T. Chai and R. R. Draxler. “Root mean square error (RMSE) or mean abso-
lute error (MAE)?” In: Geoscientific Model Development Discussions 7 (2014),
pp. 1525-1534 (cit. on p. 115).

D. M. Chandler and S. S. Hemami. “VSNR: A Wavelet-Based Visual Signal-to-
Noise Ratio for Natural Images”. In: IEEE Transactions on Image Processing 16.9
(2007), pp. 2284-2298 (cit. on pp. 69, 116, 119).

Bibliography



[Cho+15]

[Chu92]

[Cia+11]

[CK11]

[Cli+05]

[Cog05]

[Coo+84]

[CY10]

[Dal93]

[Deb06]

[DJ13]

[DKO3]

[Doi+12]

[Duc+11]

[Du+05]

Francois Chollet et al. Keras. https://github.com/fchollet/keras.
2015 (cit. on pp. 165, 173).

Charles K. Chui. An Introduction to Wavelets. San Diego, CA, USA: Academic
Press Professional, Inc., 1992 (cit. on p. 115).

Alexandre Ciancio, André Luiz N Targino da Costa, Eduardo AB da Silva, et
al. “No-reference blur assessment of digital pictures based on multifeature
classifiers”. In: IEEE Transactions on image processing 20.1 (2011), pp. 64-75
(cit. on p. 137).

Ming Chuang and Michael Kazhdan. “Interactive and anisotropic geometry
processing using the screened Poisson equation”. In: ACM Transactions on
Graphics (TOG) 30.4 (2011), p. 57 (cit. on p. 54).

David Cline, Justin Talbot, and Parris Egbert. “Energy Redistribution Path
Tracing”. In: ACM Trans. Graph. 24.3 (2005), pp. 1186-1195 (cit. on pp. 52,
57,58, 71, 114).

Jeff Cogswell. “Adding an Easy File Save and File Load Mechanism to Your
C++ Program”. In: InformIT (2005) (cit. on pp. 78, 105, 170).

Robert L. Cook, Thomas Porter, and Loren Carpenter. “Distributed Ray Tracing”.
In: SIGGRAPH Comput. Graph. 18.3 (Jan. 1984), pp. 137-145 (cit. on p. 30).

Erez Cohen and Yitzhak Yitzhaky. “No-reference assessment of blur and noise
impacts on image quality”. In: Signal, image and video processing 4.3 (2010),
pp- 289-302 (cit. on p. 137).

Scott Daly. “Digital Images and Human Vision”. In: ed. by Andrew B. Watson.
Cambridge, MA, USA: MIT Press, 1993. Chap. The Visible Differences Predictor:
An Algorithm for the Assessment of Image Fidelity, pp. 179-206 (cit. on p. 56).

Kurt Debattista. “Selective rendering for high-fidelity graphics”. PhD thesis.
University of Bristol, 2006 (cit. on pp. 56, 58, 164).

Ian C. Doidge and Mark W. Jones. “Probabilistic illumination-aware filtering
for Monte Carlo rendering”. English. In: The Visual Computer (June 2, 2013),
pp. 1-10 (cit. on p. 114).

Dariusz Dereniowski and Marek Kubale. “Cholesky factorization of matrices
in parallel and ranking of graphs”. In: International Conference on Parallel
Processing and Applied Mathematics. Springer. 2003, pp. 985-992 (cit. on
p- 14).

Ian Doidge, Mark W. Jones, and Benjamin Mora. “Mixing Monte Carlo and Pro-
gressive Rendering for Improved Global Illumination”. In: The Visual Computer
28.6-8 (June 12, 2012), pp. 603-612 (cit. on p. 114).

John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for
online learning and stochastic optimization”. In: Journal of Machine Learning
Research 12.Jul (2011), pp. 2121-2159 (cit. on p. 66).

Juan Du, Yinglin Yu, and Shengli Xie. “A new image quality assessment based
on HVS”. In: Journal of Electronics (China) 22.3 (2005), pp. 315-320 (cit. on
p- 137).

Bibliography

179



180

[DVO05a]

[DV+00]

[ERO4]

[Fag+01]

[FDO4]

[Fer+97]

[FK09]

[Fra99]

[Fri+13]

[Fu+17]

[Gao+09]

[GLO4]

[GNAO0S8]

M. N. Do and M. Vetterli. “The contourlet transform: an efficient directional
multiresolution image representation”. In: IEEE Transactions on Image Processing
14.12 (2005), pp. 2091-2106 (cit. on p. 115).

Niranjan Damera-Venkata, Thomas D Kite, Wilson S Geisler, Brian L Evans, and
Alan C Bovik. “Image quality assessment based on a degradation model”. In:
IEEE transactions on image processing 9.4 (2000), pp. 636-650 (cit. on pp. 69,
116, 119).

Ramin Eslami and Hayder Radha. “Wavelet-based contourlet coding using
an SPIHT-like algorithm”. In: Conference on Information Sciences and Sys-
tems (CISS). Department of Electrical Engineering, Princeton University, 2004,
pp. 784-788 (cit. on pp. 70, 117, 119).

Graham E. Fagg, Antonin Bukovsky, and Jack J. Dongarra. “HARNESS and
Fault Tolerant MPI”. In: Parallel Comput. 27.11 (2001), pp. 1479-1495 (cit. on
p. 80).

Graham E. Fagg and Jack J. Dongarra. “Building and Using a Fault-Tolerant
MPI Implementation”. In: Int. J. High Perform. Comput. Appl. 18.3 (2004),
pp. 353-361 (cit. on p. 80).

James A Ferwerda, Peter Shirley, Sumanta N Pattanaik, and Donald P Green-
berg. “A model of visual masking for computer graphics”. In: Proceedings of the
24th annual conference on Computer graphics and interactive techniques. ACM
Press/Addison-Wesley Publishing Co. 1997, pp. 143-152 (cit. on p. 139).

Rony Ferzli and Lina J Karam. “A no-reference objective image sharpness metric
based on the notion of just noticeable blur (JNB)”. In: IEEE transactions on
image processing 18.4 (2009), pp. 717-728 (cit. on p. 137).

Rich Franzen. “Kodak lossless true color image suite”. In: source: http://rOk.
us/graphics/kodak 4 (1999) (cit. on pp. 6, 117, 132, 138, 162, 172).

A. Friedley, T. Hoefler, G. Bronevetsky, and A. Lumsdaine. “Ownership Passing:
Efficient Distributed Memory Programming on Multi-core Systems”. In: Proceed-
ings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel
programming. Shenzen, China: ACM, 2013, pp. 177-186 (cit. on pp. 77, 79).

X. Fu, J. Huang, X. Ding, Y. Liao, and J. Paisley. “Clearing the Skies: A Deep
Network Architecture for Single-Image Rain Removal”. In: IEEE Transactions on
Image Processing 26.6 (2017), pp. 2944-2956 (cit. on p. 140).

Xinbo Gao, Wen Lu, Dacheng Tao, and Xuelong Li. “Image Quality Assessment
Based on Multiscale Geometric Analysis”. In: Trans. Img. Proc. 18.7 (2009),
pp. 1409-1423 (cit. on p. 115).

William Gropp and Ewing Lusk. “Fault Tolerance in Message Passing Interface
Programs”. In: International Journal of High Performance Computing Applications
18.3 (2004), pp. 363-372. eprint: http://hpc.sagepub.com/content/
18/3/363.full.pdf+html (cit. on p. 79).

GNA. Autoserial Library. http: //home. gna.org/autoserial/mpi.
html. 2008 (cit. on p. 78).

Bibliography



[Gor+84] Cindy M Goral, Kenneth E Torrance, Donald P Greenberg, and Bennett Battaile.
“Modeling the interaction of light between diffuse surfaces”. In: ACM SIGGRAPH
Computer Graphics. Vol. 18. 3. ACM. 1984, pp. 213-222 (cit. on p. 31).

[Gou+98] Delphine Stéphanie Goujon, Martial Michel, Jasper Peeters, and Judith Ellen De-
vaney. “AutoMap and AutoLink tools for communicating complex and dynamic
data-structures using MPI”. In: Network-Based Parallel Computing Communica-
tion, Architecture, and Applications: CANPC '98. Ed. by Dhabaleswar K. Panda
and Craig B. Stunkel. Springer Berlin Heidelberg, 1998, pp. 98-109 (cit. on
p-77).

[Gru+00] T.Grundmann, M. Ritt, and W. Rosenstiel. “TPO+ +: an object-oriented message-
passing library in C++7”. In: Parallel Processing, 2000. Proceedings. 2000 Inter-
national Conference on. 2000, pp. 43-50 (cit. on pp. 78, 167).

[Hab10] John Hable. “Everything has Fresnel. Filmic Games”. In: (2010) (cit. on p. 32).

[Hac+08a] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, et al. “Multidi-
mensional Adaptive Sampling and Reconstruction for Ray Tracing”. In: ACM
Trans. Graph. 27.3 (2008), 33:1-33:10 (cit. on p. 114).

[Hac+08b] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. “Progressive Photon
Mapping”. In: ACM Trans. Graph. 27.5 (2008), 130:1-130:8 (cit. on p. 114).

[Hac+14] Toshiya Hachisuka, Anton S. Kaplanyan, and Carsten Dachsbacher. “Multi-
plexed Metropolis Light Transport”. In: ACM Trans. Graph. 33.4 (2014), 100:1-
100:10 (cit. on pp. 50, 71, 114).

[Har+17] Carlo Harvey, Kurt Debattista, Thomas Bashford-Rogers, and Alan Chalmers.
“Multi-Modal Perception for Selective Rendering”. In: Computer Graphics Forum
36.1 (2017), pp. 172-183 (cit. on pp. 57, 58).

[Has70] W Keith Hastings. “Monte Carlo sampling methods using Markov chains and
their applications”. In: Biometrika 57.1 (1970), pp. 97-109 (cit. on p. 17).

[Her+12a] Robert Herzog, Martin Cadik, Tunc O Aydéin, et al. “NoRM: No-Reference
Image Quality Metric for Realistic Image Synthesis”. In: Computer Graphics
Forum. Vol. 31. 2pt3. Wiley Online Library. 2012, pp. 545-554 (cit. on p. 139).

[He+15a] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: CoRR abs/1512.03385 (2015). arXiv:
1512.03385 (cit. on pp. 67, 68).

[He+15b] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”.
In: CoRR abs/1502.01852 (2015) (cit. on pp. 63, 143).

[Hor+11] Yuukou Horita, Keiji Shibata, Yoshikazu Kawayoke, and ZM Parvez Sazzad.
“MICT image quality evaluation database”. In: [Online], http://mict.eng.u-
toyama.ac.jp/mictdb.html (2011) (cit. on pp. 6, 117, 132, 138, 162, 172).

[HR15] Thomas Herault and Yves Robert. Fault-Tolerance Techniques for High-Performance
Computing. 1st. Springer, 2015 (cit. on p. 79).

[HS11] T. Hoefler and M. Snir. “Writing Parallel Libraries with MPI - Common Practice”.
In: Proceedings of the 18th MPI Users’ GroupMeeting. Vol. 6960. 2011, pp. 345—
355 (cit. on p. 77).

Bibliography 181



182

[Hua+06]

[Hua+14]

[Hua+16]

[IS15]

[Jak10]

[JC95]

[JenO1]

[Jia+13]

[JM12]

[Kaj86]

[Kal+15]

[KB14]

[KB15]

[Kel97]

Chao Huang, Gengbin Zheng, Laxmikant Kalé, and Sameer Kumar. “Perfor-
mance Evaluation of Adaptive MPI”. In: Proceedings of the Eleventh ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. PPoPP ’06.
New York, New York, USA: ACM, 2006, pp. 12-21 (cit. on p. 77).

Xiaotong Huang, Li Chen, Jing Tian, Xiaolong Zhang, and Xiaowei Fu. “Blind
noisy image quality assessment using block homogeneity”. In: Computers and
Electrical Engineering 40.3 (2014), pp. 796-807 (cit. on p. 137).

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. “Densely Connected Con-
volutional Networks”. In: CoRR abs/1608.06993 (2016). arXiv: 1608.06993
(cit. on pp. 67, 68).

Sergey loffe and Christian Szegedy. “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International confer-
ence on machine learning. 2015, pp. 448-456 (cit. on pp. 140, 143).

Wenzel Jakob. Mitsuba renderer. http://www.mitsuba-renderer.org. 2010 (cit.
on p. 120).

Henrik Wann Jensen and Niels Jgrgen Christensen. “Optimizing Path Tracing
using Noise Reduction Filters”. In: Proceedings of WSCG95. 1995, pp. 134-142
(cit. on p. 114).

Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. Natick,
MA, USA: A. K. Peters, Ltd., 2001 (cit. on p. 114).

Shuhong Jiao, Huan Qi, Weisi Lin, and Weihe Shen. “Fast and efficient blind
image quality index in spatial domain”. In: Electronics Letters 49.18 (2013),
pp. 1137-1138 (cit. on p. 137).

Wenzel Jakob and Steve Marschner. “Manifold exploration: a Markov chain
Monte Carlo technique for rendering scenes with difficult specular transport”.
In: ACM Transactions on Graphics (TOG) 31.4 (2012), p. 58 (cit. on pp. 50, 54,
58, 114).

James T. Kajiya. “The Rendering Equation”. In: Proceedings of the 13th Annual
Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’86.
New York, NY, USA: ACM, 1986, pp. 143-150 (cit. on pp. vii, 30, 36, 57, 59,
71, 114, 138).

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. “A Machine Learning
Approach for Filtering Monte Carlo Noise”. In: ACM Transactions on Graphics
(TOG) (Proceedings of SIGGRAPH 2015) 34.4 (2015) (cit. on pp. 114, 140,
164).

Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. In: CoRR abs/1412.6980 (2014) (cit. on pp. 66, 140, 142, 144, 156,
157).

Vipin Kamble and K.M. Bhurchandi. “No-reference image quality assessment
algorithms: A survey”. In: Optik - International Journal for Light and Electron
Optics 126.11-12 (2015), pp. 1090 —1097 (cit. on p. 137).

Alexander Keller. “Instant radiosity”. In: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques. ACM Press/Addison-
Wesley Publishing Co. 1997, pp. 49-56 (cit. on pp. 139, 164).

Bibliography



[Kel+02]

[Kenl16]

[Ket+15]

[KK93]

[Kon+04]

[Kri+12]

[KS00]

[KS13]

[Kun+16a]

[Kun+16b]

[Lag+14]

[Lam92]

[LeC+98]

Csaba Kelemen, Laszlé Szirmay-Kalos, Gyérgy Antal, and Ferenc Csonka. “A
simple and robust mutation strategy for the metropolis light transport algo-
rithm”. In: Computer Graphics Forum 21.3 (2002), pp. 531-540 (cit. on pp. 50,
57,58, 71, 114).

Tom Kennedy. Monte Carlo Methods - a special topics course - Chapter 6 -
Importance sampling. 2016. URL: http://math.arizona.edu/~tgk/mc/
book_chap6.pdf (cit. on pp. 23, 24).

Markus Kettunen, Marco Manzi, Miika Aittala, et al. “Gradient-Domain Path
Tracing”. In: ACM Trans. Graph. 34.4 (2015) (cit. on pp. 55, 58).

Laxmikant V. Kale and Sanjeev Krishnan. “CHARM+ +: A Portable Concurrent
Object Oriented System Based on C++". In: Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and Applica-
tions. OOPSLA ’93. Washington, D.C., USA: ACM, 1993, pp. 91-108 (cit. on
p- 78).

Janne Kontkanen, Jussi Rosonen, and Alexander Keller. “Irradiance Filtering
for Monte Carlo Ray Tracing”. In: Monte Carlo and Quasi-Monte Carlo Methods
2004. Springer, 2004, pp. 259-272 (cit. on p. 114).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger. Curran Associates, Inc., 2012, pp. 1097-1105 (cit. on
pp. 67, 68, 154).

Sing Bing Kang and Heung-Yeung Shum. “A Review of Image-based Rendering
Techniques”. In: Institute of Electrical and Electronics Engineers, Inc., 2000
(cit. on p. 56).

Nima Khademi Kalantari and Pradeep Sen. “Removing the Noise in Monte Carlo
Rendering with General Image Denoising Algorithms”. In: Computer Graphics
Forum 32.2ptl (2013), pp. 93-102 (cit. on p. 114).

D. Kundu, D. Ghadiyaram, A. C. Bovik, and B. L. Evans. “No-reference image
quality assessment for high dynamic range images”. In: 2016 50th Asilomar
Conference on Signals, Systems and Computers. 2016, pp. 1847-1852 (cit. on
pp- 70, 137, 153, 162, 164, 173).

Debarati Kundu, Deepti Ghadiyaram, Alan C Bovik, and Brian L Evans. “No-
reference Image Quality Assessment for High Dynamic Range Images”. In: Proc.
Asilomar Conf. on Signals, Systems, and Computers. 2016 (cit. on p. 137).

Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, and Bronis R.
de Supinski. “Evaluating User-Level Fault Tolerance for MPI Applications”. In:
Proceedings of the 21st European MPI Users’ Group Meeting. EuroMPI/ASIA ’14.
Kyoto, Japan: ACM, 2014, 57:57-57:62 (cit. on p. 79).

Johann Heinrich Lambert. Photometrie: Photometria, sive De mensura et gradibus
luminis, colorum et umbrae (1760). 31-33. W. Engelmann, 1892 (cit. on p. 32).

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11
(1998), pp. 2278-2324 (cit. on p. 66).

Bibliography

183



184

[Lee06]

[Leh+13]

[Lia+10]

[Liu+10]

[Liu+16]

[Li+11]

[Li+14]

[Li+15]

[LLO3]

[LM15a]

[Lon+15]

[LPO8]

[LP12]

[Lub95]

Edward A. Lee. “The Problem with Threads”. In: Computer 39.5 (2006), pp. 33—
42 (cit. on p. 77).

Jaakko Lehtinen, Tero Karras, Samuli Laine, et al. “Gradient-Domain Metropolis
Light Transport”. In: ACM Trans. Graph. 32.4 (2013) (cit. on pp. 54, 58).

Luhong Liang, Shiqi Wang, Jianhua Chen, et al. “No-reference perceptual image
quality metric using gradient profiles for JPEG2000”. In: Signal Processing:
Image Communication 25.7 (2010), pp. 502-516 (cit. on p. 137).

Hantao Liu, Nick Klomp, and Ingrid Heynderickx. “A no-reference metric for
perceived ringing artifacts in images”. In: IEEE Transactions on Circuits and
Systems for Video Technology 20.4 (2010), pp. 529-539 (cit. on p. 137).

Lixiong Liu, Yi Hua, Qingjie Zhao, Hua Huang, and Alan Conrad Bovik. “Blind
image quality assessment by relative gradient statistics and adaboosting neural
network”. In: Signal Processing: Image Communication 40 (2016), pp. 1 -15
(cit. on pp. 70, 142, 153, 162, 164, 173).

Chaofeng Li, Alan Conrad Bovik, and Xiaojun Wu. “Blind image quality as-
sessment using a general regression neural network”. In: IEEE Transactions on
Neural Networks 22.5 (2011), pp. 793-799 (cit. on pp. 142, 155).

Mu Li, Tong Zhang, Yugiang Chen, and Alexander J Smola. “Efficient mini-batch
training for stochastic optimization”. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM. 2014,
pp. 661-670 (cit. on pp. 144, 156).

Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Du-
rand. “Anisotropic Gaussian Mutations for Metropolis Light Transport Through
Hessian-Hamiltonian Dynamics”. In: ACM Trans. Graph. 34.6 (2015), 209:1-
209:13 (cit. on pp. 52, 53, 58, 71, 114).

Lie-Quan Lee and A. Lumsdaine. “The Generic Message Passing framework”. In:
Parallel and Distributed Processing Symposium, 2003. Proceedings. International.
2003 (cit. on p. 77).

Guillaume Lavoué and Rafal Mantiuk. “Quality assessment in computer graph-
ics”. In: Visual Signal Quality Assessment. Springer, 2015, pp. 243-286 (cit. on
p- 139).

Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015, pp. 3431-3440 (cit. on p. 154).

Feng Li and Fatih Porikli. “Harmonic variance: A novel measure for in-focus
segmentation”. In: Trans. PAMI 30.10 (2008), pp. 1699-1712 (cit. on p. 26).

Sangwoo Lee and Sang Ju Park. “A new image quality assessment method to
detect and measure strength of blocking artifacts”. In: Signal Processing: Image
Communication 27.1 (2012), pp. 31-38 (cit. on p. 137).

Jeffrey Lubin. “A visual discrimination model for imaging system design and
evaluation”. In: Vision Models for Target Detection and Recognition: In Memory
of Arthur Menendez. World Scientific, 1995, pp. 245-283 (cit. on p. 56).

Bibliography



[Lu+10]

[LW93]

[Maa+13a]

[Man+11]

[Man+15]

[Mar+04]

[MB10]

[MB11]

[McC+96]

[Mill5]

[Mit+12a]

[Mit+12b]

[Mit+12c]

[Mit+13a]

Wen Lu, Kai Zeng, Dacheng Tao, Yuan Yuan, and Xinbo Gao. “No-reference
image quality assessment in contourlet domain”. In: Neurocomputing 73.4
(2010), pp. 784-794 (cit. on p. 137).

Eric P Lafortune and Yves D Willems. “Bi-directional path tracing”. In: Proceed-
ings of CompuGraphics. Vol. 93. 1993, pp. 145-153 (cit. on pp. 44, 49, 57, 71,
114).

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities
improve neural network acoustic models”. In: Proc. icml. Vol. 30. 1. 2013, p. 3
(cit. on p. 63).

Rafat Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolfgang Heidrich. “HDR-
VDP-2: a calibrated visual metric for visibility and quality predictions in all
luminance conditions”. In: ACM Transactions on Graphics (TOG) 30.4 (2011),
p. 40 (cit. on pp. 69, 117, 119, 136).

Marco Manzi, Markus Kettunen, Miika Aittala, et al. “Gradient-domain bidirec-
tional path tracing”. In: (2015) (cit. on pp. 55, 58).

Pina Marziliano, Frederic Dufaux, Stefan Winkler, and Touradj Ebrahimi. “Per-
ceptual blur and ringing metrics: application to JPEG2000”. In: Signal process-
ing: Image communication 19.2 (2004), pp. 163-172 (cit. on p. 137).

Anush Krishna Moorthy and Alan Conrad Bovik. “A two-step framework for
constructing blind image quality indices”. In: IEEE Signal processing letters 17.5
(2010), pp. 513-516 (cit. on pp. 70, 137, 141, 153, 162, 164, 173).

Anush Krishna Moorthy and Alan Conrad Bovik. “Blind image quality assess-
ment: From natural scene statistics to perceptual quality”. In: IEEE transactions
on Image Processing 20.12 (2011), pp. 3350-3364 (cit. on p. 137).

B. C. McCandless, J. M. Squyres, and A. Lumsdaine. “Object Oriented MPI
(OOMPI): a class library for the Message Passing Interface”. In: MPI Developer’s
Conference, 1996. 1996, pp. 87-94 (cit. on pp. 77, 167).

Phil Miller. “Productive Parallel Programming with CHARM+ +". In: Proceedings
of the Symposium on High Performance Computing. HPC’15. Alexandria, Virginia:
Society for Computer Simulation International, 2015, pp. 241-242 (cit. on
p. 78).

A. Mittal, A. K. Moorthy, and A. C. Bovik. “No-Reference Image Quality Assess-
ment in the Spatial Domain”. In: IEEE Transactions on Image Processing 21.12
(2012), pp. 4695-4708 (cit. on pp. 70, 137, 153, 162, 164, 173).

Anish Mittal, Gautam S Muralidhar, Joydeep Ghosh, and Alan C Bovik. “Blind
image quality assessment without human training using latent quality factors”.
In: IEEE Signal Processing Letters 19.2 (2012), pp. 75-78 (cit. on p. 137).

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. “No-reference
image quality assessment in the spatial domain”. In: IEEE Transactions on Image
Processing 21.12 (2012), pp. 4695-4708 (cit. on p. 137).

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. “Making a “completely
blind” image quality analyzer”. In: IEEE Signal Processing Letters 20.3 (2013),
pp. 209-212 (cit. on pp. 70, 137, 153, 162, 164, 173).

Bibliography

185



186

[Mit+13b]

[MP43]

[MV93]

[Mys98]

[Mys+00]

[Neall]

[NeilO]

[NK11]

[Pap85]

[PH10]

[Pon+09]

[Pon+13]

[Ram+99]

Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. “Making a “completely
blind” image quality analyzer”. In: IEEE Signal Processing Letters 20.3 (2013),
pp. 209-212 (cit. on p. 137).

Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943),
pp. 115-133 (cit. on p. 59).

Theophano Mitsa and Krishna Lata Varkur. “Evaluation of contrast sensitivity
functions for the formulation of quality measures incorporated in halftoning
algorithms”. In: Acoustics, Speech, and Signal Processing, 1993. ICASSP-93.,
1993 IEEE International Conference on. Vol. 5. IEEE. 1993, pp. 301-304 (cit. on
p. 115).

Karol Myszkowski. “The visible differences predictor: Applications to global
illumination problems”. In: Rendering Techniques’ 98. Springer, 1998, pp. 223-
236 (cit. on pp. 56, 58, 164).

Karol Myszkowski, Przemyslaw Rokita, and Takehiro Tawara. “Perception-based
fast rendering and antialiasing of walkthrough sequences”. In: IEEE Transactions
on Visualization and Computer Graphics 6.4 (2000), pp. 360-379 (cit. on pp. 56,
58, 164).

R Neal. “MCMC using Hamiltonian dynamics”. In: Handbook of Markov Chain
Monte Carlo (2011), pp. 113-162 (cit. on p. 20).

Richard D. Neidinger. “Introduction to Automatic Differentiation and MATLAB
Object-Oriented Programming”. In: SIAM Review 52.3 (2010), pp. 545-563
(cit. on pp. 53, 66).

Niranjan D Narvekar and Lina J Karam. “A no-reference image blur metric based
on the cumulative probability of blur detection (CPBD)”. In: IEEE Transactions
on Image Processing 20.9 (2011), pp. 2678-2683 (cit. on p. 137).

Athanasios Papoulis. Random Variables and Stochastic Processes. 1985 (cit. on
p. 14).

Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition:
From Theory To Implementation. 2nd. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2010 (cit. on p. 114).

Nikolay Ponomarenko, Vladimir Lukin, Alexander Zelensky, et al. “TID2008-a
database for evaluation of full-reference visual quality assessment metrics”. In:
Advances of Modern Radioelectronics 10.4 (2009), pp. 30-45 (cit. on pp. 6, 117,
132, 137, 138, 162, 172).

N. Ponomarenko, O. Ieremeiev, V. Lukin, et al. “Color image database TID2013:
Peculiarities and preliminary results”. In: European Workshop on Visual Infor-
mation Processing (EUVIP). 2013, pp. 106-111 (cit. on pp. 6, 117, 132, 138,
162, 172).

Mahesh Ramasubramanian, Sumanta N Pattanaik, and Donald P Greenberg.
“A perceptually based physical error metric for realistic image synthesis”. In:
Proceedings of the 26th annual conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co. 1999, pp. 73-82 (cit. on
pp. 56, 58, 164).

Bibliography



[RB93]

[Red+17]

[Rei+02]

[Ren07]

[RM51]

[Ros57]

[Rou+12a]

[Rou+12b]

[Rum+85]

[Rum+95]

[RW94]

[Saa+10]

[Saa+12]

Martin Riedmiller and Heinrich Braun. “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm”. In: Neural Networks, 1993.,
IEEE International Conference on. IEEE. 1993, pp. 586-591 (cit. on p. 140).

K. S. Reddy, U. Singh, and P. K. Uttam. “Effect of image colourspace on per-
formance of convolution neural networks”. In: 2017 2nd IEEE International
Conference on Recent Trends in Electronics, Information Communication Technol-
ogy (RTEICT). 2017, pp. 2001-2005 (cit. on p. 142).

Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. “Photographic
tone reproduction for digital images”. In: ACM transactions on graphics (TOG)
21.3 (2002), pp. 267-276 (cit. on p. 120).

Eric Renault. “Extended MPICC to Generate MPI Derived Datatypes from C
Datatypes Automatically”. In: Recent Advances in Parallel Virtual Machine and
Message Passing Interface: 14th European PVM/MPI User’s Group Meeting. Ed.
by Franck Cappello, Thomas Herault, and Jack Dongarra. Springer Berlin
Heidelberg, 2007, pp. 307-314 (cit. on p. 77).

Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In:
The annals of mathematical statistics (1951), pp. 400-407 (cit. on p. 141).

Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory, 1957 (cit. on pp. 59, 68).

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. “Adaptive Rendering
with Non-local Means Filtering”. In: ACM Trans. Graph. 31.6 (2012), 195:1-
195:11 (cit. on p. 114).

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. “Adaptive rendering
with non-local means filtering”. In: ACM Transactions on Graphics (TOG) 31.6
(2012), p. 195 (cit. on p. 140).

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Tech. rep. California University San Diego
La Jolla Inst for Cognitive Science, 1985 (cit. on pp. 59, 65, 68).

David E. Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin. “Back-
propagation”. In: ed. by Yves Chauvin and David E. Rumelhart. Hillsdale, NJ,
USA: L. Erlbaum Associates Inc., 1995. Chap. Backpropagation: The Basic
Theory, pp. 1-34 (cit. on pp. 65, 68).

Holly E. Rushmeier and Gregory J. Ward. “Energy Preserving Non-linear Filters”.
In: Proceedings of the 21st Annual Conference on Computer Graphics and Interac-
tive Techniques. SIGGRAPH '94. New York, NY, USA: ACM, 1994, pp. 131-138
(cit. on p. 114).

Michele A Saad, Alan C Bovik, and Christophe Charrier. “A DCT statistics-
based blind image quality index”. In: IEEE Signal Processing Letters 17.6 (2010),
pp. 583-586 (cit. on pp. 70, 137, 153, 162, 164, 173).

Michele A Saad, Alan C Bovik, and Christophe Charrier. “Blind image quality
assessment: A natural scene statistics approach in the DCT domain”. In: IEEE
Transactions on Image Processing 21.8 (2012), pp. 3339-3352 (cit. on p. 137).

Bibliography

187



188

[Saz+08]

[SBO6]

[Ser+13]

[SH17]

[She+05a]

[She+05b]

[She+05c]

[She+06]

[She+14]

[Shi+96]

[SP94]

[Sri+14]

[Sur+09]

[Sut09]

ZM Parvez Sazzad, Yoshikazu Kawayoke, and Yuukou Horita. “No reference
image quality assessment for JPEG2000 based on spatial features”. In: Signal
Processing: Image Communication 23.4 (2008), pp. 257-268 (cit. on p. 137).

Hamid R Sheikh and Alan C Bovik. “Image information and visual quality”. In:
IEEE Transactions on image processing 15.2 (2006), pp. 430-444 (cit. on pp. 69,
116, 119, 141).

Amina Serir, Azeddine Beghdadi, and Fatma Kerouh. “No-reference blur im-
age quality measure based on multiplicative multiresolution decomposition”.
In: Journal of Visual Communication and Image Representation 24.7 (2013),
pp. 911-925 (cit. on p. 137).

Mateu Sbert and Vlastimil Havran. “Adaptive Multiple Importance Sampling
for General Functions”. In: Vis. Comput. 33.6-8 (2017), pp. 845-855 (cit. on
p. 26).

H. R. Sheikh, A. C. Bovik, and G. de Veciana. “An Information Fidelity Criterion
for Image Quality Assessment Using Natural Scene Statistics”. In: Trans. Img.
Proc. 14.12 (2005), pp. 2117-2128 (cit. on pp. 69, 116, 119).

H. R. Sheikh, A. C. Bovik, and L. Cormack. “No-reference quality assessment
using natural scene statistics: JPEG2000”. In: IEEE Transactions on Image Pro-
cessing 14.11 (2005), pp. 1918-1927 (cit. on pp. 70, 137, 153, 162, 164,
173).

Hamid R Sheikh, Alan C Bovik, and Lawrence Cormack. “No-reference quality
assessment using natural scene statistics: JPEG2000”. In: IEEE Transactions on
Image Processing 14.11 (2005), pp. 1918-1927 (cit. on p. 137).

H.R. Sheikh, M.F. Sabir, and A.C. Bovik. “A Statistical Evaluation of Recent Full
Reference Image Quality Assessment Algorithms”. In: Image Processing, IEEE
Transactions on 15.11 (2006), pp. 3440-3451 (cit. on pp. 115, 117).

H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik. LIVE Image Quality
Assessment Database Release 2. 2014 (cit. on pp. 6, 117, 132, 137, 138, 142,
162, 172).

Peter Shirley, Changyaw Wang, and Kurt Zimmerman. “Monte Carlo techniques
for direct lighting calculations”. In: ACM Transactions on Graphics (TOG) 15.1
(1996), pp. 1-36 (cit. on p. 38).

Douglas Shy and Pietro Perona. “XY separable pyramid steerable scalable
kernels”. In: CVPR. 1994, pp. 237-244 (cit. on p. 115).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A simple way to prevent neural networks from overfit-
ting”. In: The Journal of Machine Learning Research 15.1 (2014), pp. 1929-1958
(cit. on pp. 142, 143).

Sundaram Suresh, R Venkatesh Babu, and HJ Kim. “No-reference image quality
assessment using modified extreme learning machine classifier”. In: Applied
Soft Computing 9.2 (2009), pp. 541-552 (cit. on p. 137).

Shan Suthaharan. “No-reference visually significant blocking artifact metric
for natural scene images”. In: Signal Processing 89.8 (2009), pp. 1647-1652
(cit. on p. 137).

Bibliography



[SWO0O0]

[SZ14]

[Sze+14]

[Tao+09]

[TH12]

[TJ97]

[Toe+89]

[Tof15]

[TTO8]

[Vea97]

[VG95]

[VG97]

[Vis+10]

Frank Suykens and Yves D. Willems. “Adaptive filtering for progressive Monte
Carlo image rendering”. In: The 8-th International Conference in Central Europe
on Computer Graphics, Visualization and Interactive Digital Media 2000 (WSCG’
2000), February 2000. Held in Plzen, Czech Republic. 2000 (cit. on p. 114).

Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014)
(cit. on pp. 67, 68, 154).

C Szegedy, W Liu, Y Jia, et al. “Going deeper with convolutions, CoRR abs/1409.4842”.

In: arXiv preprint arXiv:1409.4842 (2014) (cit. on pp. 67, 68, 154).

D. Tao, X. Li, W. Lu, and X. Gao. “Reduced-Reference IQA in Contourlet Do-
main”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics) 39.6 (2009), pp. 1623-1627 (cit. on pp. 70, 117, 119).

T Tieleman and G Hinton. “RMSprop Gradient Optimization”. In: Lecture Notes
(2012) (cit. on p. 66).

Rasmus Tamstorf and Henrik Wann Jensen. “Adaptive Sampling and Bias
Estimation in Path Tracing”. In: Proceedings of the Eurographics Workshop on
Rendering Techniques '97. London, UK, UK: Springer-Verlag, 1997, pp. 285-296
(cit. on p. 114).

Alexander Toet, Lodewik J Van Ruyven, and J Mathee Valeton. “Merging ther-
mal and visual images by a contrast pyramid”. In: Optical engineering 28.7
(1989), pp. 287789-287789 (cit. on p. 115).

Chris Tofallis. “A better measure of relative prediction accuracy for model
selection and model estimation”. In: Journal of the Operational Research Society
66.8 (2015), pp. 1352-1362 (cit. on p. 122).

W. Tansey and E. Tilevich. “Efficient automated marshaling of C++ data
structures for MPI applications”. In: Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on. 2008, pp. 1-12 (cit. on p. 78).

Eric Veach. “Robust Monte Carlo methods for light transport simulation”. PhD
thesis. Stanford University, 1997 (cit. on pp. 25, 44, 49, 57, 71).

Eric Veach and Leonidas J. Guibas. “Optimally Combining Sampling Techniques
for Monte Carlo Rendering”. In: Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques. SIGGRAPH ’95. New York, NY,
USA: ACM, 1995, pp. 419-428 (cit. on p. 25).

Eric Veach and Leonidas J. Guibas. “Metropolis Light Transport”. In: Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH '97. New York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1997, pp. 65-76 (cit. on pp. 49, 57, 58, 71, 114).

Abhinav Vishnu, Huub Van Dam, Wibe de Jong, Pavan Balaji, and Shuaiwen
Song. “Fault-tolerant communication runtime support for data-centric pro-
gramming models”. In: 2010 International Conference on High Performance
Computing, HiPC 2010, Dona Paula, Goa, India, December 19-22, 2010. 2010,
pp. 1-9 (cit. on p. 79).

Bibliography

189



190

[VSO5]

[Wan+03]

[Wan+04a]

[WB02]

[WB09]

[Whi80]

[Whi+16]

[Whi+17]

[WL11]

[WMO05]

[Wu+09]

[Xu+15]

[YD12]

[Yee+01a]

P Vetrivelan and RR Subha. “Wavelet based contourlet transform for image com-
pression”. In: Proceeding of International conference of Cognition and Recognition.
IEEE. Citeseer. 2005, pp. 915-919 (cit. on p. 115).

Zhou Wang, Eero P Simoncelli, and Alan C Bovik. “Multiscale structural simi-
larity for image quality assessment”. In: Signals, Systems and Computers, 2004.
Conference Record of the Thirty-Seventh Asilomar Conference on. Vol. 2. Ieee.
2003, pp. 1398-1402 (cit. on pp. 69, 115, 119, 136, 138, 171, 174).

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image Quality
Assessment: From Error Visibility to Structural Similarity”. In: Trans. Img. Proc.
13.4 (2004), pp. 600-612 (cit. on pp. 69, 114, 115, 119, 136, 141, 154, 163,
173).

Zhou Wang and A. C. Bovik. “A universal image quality index”. In: IEEE Signal
Processing Letters 9.3 (2002), pp. 81-84 (cit. on pp. 69, 115, 119).

Z. Wang and A. C. Bovik. “Mean squared error: Love it or leave it? A new look
at Signal Fidelity Measures”. In: IEEE Signal Processing Magazine 26.1 (2009),
pp. 98-117 (cit. on p. 115).

Turner Whitted. “An Improved Illumination Model for Shaded Display”. In:
Commun. ACM 23.6 (June 1980), pp. 343-349 (cit. on p. 30).

Joss Whittle, Rita Borgo, and Mark W. Jones. “Implementing generalized deep-
copy in MPI”. In: PeerJ Computer Science 2 (2016), €95 (cit. on p. 74).

Joss Whittle, Mark W. Jones, and Rafal Mantiuk. “Analysis of reported error in
Monte Carlo rendered images”. In: The Visual Computer 33.6 (2017), pp. 705-
713 (cit. on p. 113).

Z. Wang and Q. Li. “Information Content Weighting for Perceptual Image
Quality Assessment”. In: IEEE Transactions on Image Processing 20.5 (2011),
pp. 1185-1198 (cit. on pp. 69, 116, 119).

Cort J Willmott and Kenji Matsuura. “Advantages of the mean absolute error
(MAE) over the root mean square error (RMSE) in assessing average model
performance”. In: Climate research 30.1 (2005), p. 79 (cit. on p. 115).

Shigian Wu, Weisi Lin, Shoulie Xie, et al. “Blind blur assessment for vision-based
applications”. In: Journal of Visual Communication and Image Representation
20.4 (2009), pp. 231-241 (cit. on p. 137).

Bing Xu, Naiyan Wang, Tiangi Chen, and Mu Li. “Empirical Evaluation of
Rectified Activations in Convolutional Network”. In: CoRR abs/1505.00853
(2015). arXiv: 1505.00853 (cit. on p. 63).

Peng Ye and David Doermann. “No-reference image quality assessment using
visual codebooks”. In: IEEE Transactions on Image Processing 21.7 (2012),
pp. 3129-3138 (cit. on p. 137).

Hector Yee, Sumanita Pattanaik, and Donald P Greenberg. “Spatiotemporal
sensitivity and visual attention for efficient rendering of dynamic environments”.
In: ACM Transactions on Graphics (TOG) 20.1 (2001), pp. 39-65 (cit. on p. 139).

Bibliography



[YKO3]

[Zha+08]

[Zha+11c]

[Zha+17a]

[Zha+17b]

[Z1.10]

[ZMS07]

[Zwi02]

[Mes14]

Christopher C Yang and Sai Ho Kwok. “Efficient gamut clipping for color image
processing using LHS and YIQ”. In: Optical Engineering 42.3 (2003), pp. 701-
711 (cit. on p. 116).

Guangtao Zhai, Wenjun Zhang, Xiaokang Yang, Weisi Lin, and Yi Xu. “No-
reference noticeable blockiness estimation in images”. In: Signal Processing:
Image Communication 23.6 (2008), pp. 417-432 (cit. on p. 137).

L. Zhang, L. Zhang, X. Mou, and D. Zhang. “FSIM: A Feature Similarity Index
for Image Quality Assessment”. In: IEEE Transactions on Image Processing 20.8
(2011), pp. 2378-2386 (cit. on pp. 69, 116, 119).

He Zhang, Vishwanath Sindagi, and Vishal M. Patel. “Image De-raining Using
a Conditional Generative Adversarial Network”. In: CoRR abs/1701.05957
(2017) (cit. on pp. 140, 141).

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. “Beyond a Gaussian
Denoiser: Residual Learning of Deep CNN for Image Denoising”. In: IEEE
Transactions on Image Processing 26.7 (2017), pp. 3142-3155 (cit. on pp. 140,
155).

Jing Zhang and Thinh M Le. “A new no-reference quality metric for JPEG2000
images”. In: IEEE Transactions on Consumer Electronics 56.2 (2010) (cit. on
p. 137).

Izak van Zyl Marais and Willem Herman Steyn. “Robust defocus blur identifi-
cation in the context of blind image quality assessment”. In: Signal Processing:
Image Communication 22.10 (2007), pp. 833-844 (cit. on p. 137).

D. Zwillinger. CRC Standard Mathematical Tables and Formulae, 31st Edition.
Advances in Applied Mathematics. CRC Press, 2002 (cit. on p. 14).

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 3.1. Tech. rep. Stuttgart, DE: High Performance Computing Center
Stuttgart (HLRS), 2014 (cit. on p. 76).

Bibliography

191






Appendix

A.1 MEL Experiment 1: Broadcasting a large tree

structure

Full code for this example is available at https://github.com/CS-Swansea/

MEL/ under example-code/RayTracingDeepCopy.cpp

// Example Usage:
// mpirun -n [number of processes] ./RayTracingDeepCopy [mesh path] [method]
// mpirun -n 8 ./RayTracingDeepCopy "Teapot.obj" 0

int main(int argc, char *argv[]) {

MEL::Init(argc, argv); // Setup

// Who are we?

MEL::Comm comm = MEL::Comm: :WORLD;

const int rank = MEL::CommRank(comm),
size = MEL::CommSize(comm);

// Check param count
if (arge = 3) {
if (rank == 0)
std::cout << "Wrong number of parameters..." << std::endl;
MEL::Exit(-1);
// "M Equivalent of calling MPI_Finalize() followed by std::exit(-1)

// Which model should we load and which algorithm should we use?
const std::string meshPath = std::string(argv[1]);
const int method = std::stoi(argv[2]);

// Load the scene on the root process

Scene *scene = nullptr;

if (rank == 0) {
std::cout << "Loading scene..." << std::endl;
scene = loadScene(meshPath);

MEL::Barrier(comm);
auto startTime = MEL::Wtime(); // Start the clock!

// Broadcast the Scene structure with the selected method
switch (method) {
case 0:

// Call MEL::Deep method.

MEL: :Deep::Bcast(scene, 0, comm);

break;

193



41
42
43

44
45

46,
47
48
49
50
51

52
53
54
55
56,
57,
58
59
60,
61
62,
63
64
65
66,
67
68,
69
70
71
72
73
74
75
76
77,
78
79
80,

case 1:
// Call MEL::Deep method.
MEL: :Deep: :BufferedBcast(scene, 0, comm);
break;

case 2:
// Hand written below
MPI_NonBufferedBcast_Scene(scene, 0, (MPI_Comm) comm);
break;

case 3:
// Hand written below
MPI_BufferedBcast_Scene(scene, 0, (MPI_Comm) comm);
break;

default:

if (rank == 0) std::cout << "Invalid method index..." << std

MEL::Exit(-1);

MEL::Barrier(comm);
auto endTime = MEL::Wtime(); // Stop the clock!

if (rank == 0) {

std::cout << "Broadcast Scene in " << (endTime - startTime)

<< " seconds..." << std::endl;

ttendl;

// ALl processes now have a Scene pointer that points to an equivalent

// data-structure
// Now we can do some ray-tracing using the scene object!

// Clean up

MEL: :MemDestruct(scene);

// “" Equivalent to explicitly calling the destructor
// followed by MPI_Free_mem.

// scene->~Scene();

// MPI_Free_mem(scene);

MEL::Finalize(); // Tear down
return 0;

Listing A.1: Deep Copy of Ray Tracing Scene Object

A.1.1 Scene object containing MEL Deep Copy methods

1
2
3
4
5
6
7
8|
9

10
11
12

// Structure representing a node in the BVH Tree
struct TreeNode {

int startElem, endElem; // Start and End indices into vector of triangles

Vec vO, vl; // Vec is non-deep struct
TreeNode *leftChild, *rightChild; // TreeNode is deep struct

TreeNode() : TreeNode(0, 0) {}

TreeNode(const int _s, const int _e)
startElem(_s), endElem(_e),
leftChild(nullptr), rightChild(nullptr),
vo{ INF, INF, INF }, vi{ -INF, -INF, -INF } {}

Chapter A Appendix




// Ensure TreeNode can't be used incorrectly

TreeNode(const TreeNode &old) delete;
inline TreeNode& operator=(const TreeNode &old) delete;
TreeNode(TreeNode &&o'ld) = delete;
inline TreeNode& operator=(TreeNode &&old) delete;

~TreeNode () {
MEL: :MemDestruct( leftChild);
MEL: :MemDestruct(rightChild);

// Implementation of Ray-TreeNode (Ray-AABB) intersection
// omitted for this example
bool intersect(const Ray &rayInv, double &tmin, const double dist) const;

template<typename MSG>

inline void DeepCopy(MSG &msg) {
msg.packPtr( leftChild);
msg.packPtr(rightChild);

};

// Structure representing a scene object to be rendered
struct Scene {

Camera camera; // Camera is non-deep struct
std::vector<Material> materials; // Material 1is non-deep struct
std::vector<Triangle> mesh; // Triangle is non-deep struct
TreeNode *rootNode; // TreeNode 1is deep struct

Scene() : rootNode(nullptr) {}

// Ensure Scene can't be used fincorrectly
Scene(const Scene &old) delete;
inline Scene& operator=(const Scene &old) = delete;

// Move Constructor
Scene(Scene &&old)
mesh(std::move(old.mesh)), materials(std::move(old.materials)),
camera(old.camera), rootNode(old.rootNode) {
old.mesh.clear();
old.materials.clear();
old.rootNode = nullptr;

// Move Assignment Operator
inline Scene& operator=(Scene &&old) {

mesh = std::move(old.mesh);
materials = std::move(old.materials);
rootNode = old.rootNode;

camera = old.camera;

old.mesh.clear();
old.materials.clear();
old.rootNode = nullptr;
return xthis;

~Scene() {
MEL: :MemDestruct(rootNode);

A.1 MEL Experiment 1: Broadcasting a large tree structure

195



196

72
73 // Implementation of Ray-Scene intersection omitted for this example
74 bool intersect(const Ray &ray, Intersection &isect) const;

75

76 template<typename MSG>

77, inline void DeepCopy(MSG &msg) {

78 msg & mesh & materials;

79 msg.packPtr(rootNode);

80 }

81f }3

Listing A.2: Ray Tracing Scene Object

A.1.2 Hand coded Non-Buffered Bcast of Scene object

1| inline void MPI_NonBufferedBcast_Scene(Scene *&scene,

2 const int root,

3 const MPI_Comm comm) {
4 int rank;

5 MPI_Comm_rank(comm, &rank);

6

7 // Receiving nodes allocate space for scene

8 if (rank != root) {

9 MPI_Alloc_mem(sizeof(Scene), MPI_INFO_NULL, &scene);
10, new (scene) Scene();

11 }

12

13 // Bcast the camera struct

14 MPI_Bcast(&(scene->camera), sizeof(Camera), MPI_CHAR, root, comm);
15

16 // Bcast the vector sizes

17 int sizes[2];

18 if (rank == root) {

19 sizes[0] = (int) scene->mesh.size();

20 sizes[1] = (int) scene->materials.size();

21 }

22 MPI_Bcast(sizes, 2, MPI_INT, root, comm);

23

24| // '"Allocate' space for vectors

25 if (rank != root) {

26 scene->mesh.resize(sizes[0]);

27 scene->materials.resize(sizes[1]);

28| }

29

30 // Bcast the vectors

31 MPI_Bcast(&(scene->mesh[0]), sizeof(Triangle) * sizes[0],
32) MPI_CHAR, root, comm);

33 MPI_Bcast(&(scene->materials[0]), sizeof(Material) * sizes[1],
34 MPI_CHAR, root, comm);

35

36 // Receiving nodes allocate space for rootNode

37 if (rank != root) {

38 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL, &(scene->rootNode));
39 new (scene->rootNode) TreeNode();

40| }

41

42 // While the stack 1is not empty there is work to be done

Chapter A Appendix




43 std::stack<TreeNodex> treeStack;

44| treeStack.push(scene->rootNode) ;

45 while (!treeStack.empty()) {

46| // Get the current node to traverse

47 TreeNode *currentNode = treeStack.top();

48 treeStack.pop();

49

50 // Bcast the current node's values

51 MPI_Bcast((currentNode), sizeof(TreeNode), MPI_CHAR, root, comm);
52

53 // Do we need to send/receive children?

54 bool hasChildren = (currentNode->leftChild != nullptr);

55

56 if (hasChildren) {

57, // Allocate space for child nodes on receiving process
58 if (rank != root) {

59 MPI_Alloc_mem(sizeof(TreeNode),

60 MPI_INFO_NULL, &(currentNode->leftChild));
61 MPI_Alloc_mem(sizeof(TreeNode),

62 MPI_INFO_NULL, &(currentNode->rightChild));
63

64 // Default construct new nodes into allocated memory
65 new (currentNode->1leftChild) TreeNode();

66 new (currentNode->rightChild) TreeNode();

67 }

68

69 // Push children onto the stack so they get processed

70, treeStack.push(currentNode->leftChild);

71 treeStack.push(currentNode->rightChild);

72 }

73 }

740 }

Listing A.3: Hand coded Non-Buffered Bcast of Ray Tracing Scene Object

A.1.3 Hand coded Buffered Bcast of Scene object

1l inline void MPI_BufferedBcast_Scene(Scene *&scene, const int root, const
MPI_Comm comm) {

2 int rank;

3 MPI_Comm_rank(comm, &rank);

4

5 // Receiving nodes allocate space for scene

6 if (rank != root) {

7 MPI_Alloc_mem(sizeof(Scene), MPI_INFO_NULL, &scene);

8 new (scene) Scene();

9 }

10

11 // Calculate the byte size of the tree on root process

12, int packed_size = 0;

13 if (rank == root) {

14 packed_size += sizeof(Camera);

15 packed_size += sizeof(int)

16, + ((int) scene->mesh.size() * sizeof(Triangle));

17 packed_size += sizeof(int)

18 + ((int) scene->materials.size() * sizeof(Material));

19

A.1 MEL Experiment 1: Broadcasting a large tree structure

197



20 // While the stack 1is not empty there is work to be done
21 std::stack<TreeNodex> treeStack;

22 treeStack.push(scene->rootNode);

23 while (!treeStack.empty()) {

24| // Get the current node to traverse

25 TreeNode *currentNode = treeStack.top();

26 treeStack.pop();

27

28 packed_size += sizeof(TreeNode);

29

30 // Do we need to send children?

31 bool hasChildren = (currentNode->leftChild != nullptr);
32

33 if (hasChildren) {

34 // Push children onto the stack so they get processed
35 treeStack.push(currentNode->1leftChild);

36, treeStack.push(currentNode->rightChild);

37 }

38 }

39 }

40

41 // Share the buffer size to all processes

42 MPI_Bcast(&packed_size, 1, MPI_INT, root, comm);

43

44 // Allocate the buffer

45 int position = 0;

46 char *buffer;

47, MPI_Alloc_mem(packed_size, MPI_INFO_NULL, &(buffer));

48

49) // If root then we pack the structure into the buffer

50 if (rank == root) {

51 // Pack the camera struct

52 MPI_Pack(&(scene->camera), sizeof(Camera),

53 MPI_CHAR, buffer, packed_size, &position, comm);
54

55 int mesh_size = scene->mesh.size(),

56 materials_size = scene->materials.size();

57

58 // Pack the mesh vector

59 MPI_Pack(&(mesh_size), 1,

60, MPI_INT, buffer, packed_size, &position, comm);
61 MPI_Pack(&(scene->mesh[0]), mesh_size * sizeof(Triangle),
62, MPI_CHAR, buffer, packed_size, &position, comm);
63

64 // Pack the materials vector

65 MPI_Pack(&(materials_size), 1,

66 MPI_INT, buffer, packed_size, &position, comm);
67 MPI_Pack(&(scene->materials[0]), materials_size * sizeof(Material),
68 MPI_CHAR, buffer, packed_size, &position, comm);
69

70 // While the stack is not empty there is work to be done
71 std::stack<TreeNodex> treeStack;

72, treeStack.push(scene->rootNode) ;

73 while (!treeStack.empty()) {

74 // Get the current node to traverse

75 TreeNode *currentNode = treeStack.top();

76, treeStack.pop();

77

78 // Pack the current node

198 Chapter A Appendix




104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

MPI_Pack(currentNode, sizeof(TreeNode),
MPI_CHAR, buffer, packed_size, &position, comm);

// Do we need to send children?
bool hasChildren = (currentNode->leftChild != nullptr);

if (hasChildren) {
// Push children onto the stack so they get processed
treeStack.push(currentNode->1leftChild);
treeStack.push(currentNode->rightChild);

// Send the buffer
MPI_Bcast(buffer, packed_size, MPI_CHAR, root, comm);

// If not root then we unpack the structure from the buffer
else {

// Receive the packed buffer

MPI_Bcast(buffer, packed_size, MPI_CHAR, root, comm);

MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL, &(scene->rootNode));
new (scene->rootNode) TreeNode();

// Unpack the camera struct

int mesh_size, materials_size;

MPI_Unpack(buffer, packed_size, &position, &(scene->camera),
sizeof(Camera), MPI_CHAR, comm);

// Unpack mesh vector
MPI_Unpack(buffer, packed_size, &position, &(mesh_size),
1, MPI_INT, comm);

scene->mesh.resize(mesh_size);

MPI_Unpack(buffer, packed_size, &position, &(scene->mesh[0]),
mesh_size * sizeof(Triangle), MPI_CHAR, comm);

// Unpack materials vector
MPI_Unpack(buffer, packed_size, &position, &(materials_size),
1, MPI_INT, comm);

scene->materials.resize(materials_size);

MPI_Unpack(buffer, packed_size, &position, &(scene->materials[0]),
materials_size x sizeof(Material), MPI_CHAR, comm);

// While the stack is not empty there is work to be done
std::stack<TreeNodex> treeStack;
treeStack.push(scene->rootNode) ;
while (!treeStack.empty()) {
// Get the current node to traverse
TreeNode *currentNode = treeStack.top();
treeStack.pop();

// Unpack the current node

MPI_Unpack(buffer, packed_size, &position, currentNode,
sizeof(TreeNode), MPI_CHAR, comm);

A.1 MEL Experiment 1: Broadcasting a large tree structure

199



138

139 // Do we need to receive children?

140 bool hasChildren = (currentNode->leftChild != nullptr);
141

142 if (hasChildren) {

143 // Allocate space for child nodes on receiving process
144 MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

145 &(currentNode->leftChild));

146) MPI_Alloc_mem(sizeof(TreeNode), MPI_INFO_NULL,

147 &(currentNode->rightChild));

148

149 new (currentNode->leftChild) TreeNode();

150 new (currentNode->rightChild) TreeNode();

151

152) // Push children onto the stack so they get processed
153 treeStack.push(currentNode->1leftChild);

154 treeStack.push(currentNode->rightChild);

155 }

156 }

157, }

158

159 // Clean up

160 MPI_Free_mem(buffer);

161 }

Listing A.4: Hand coded Buffered Bcast of Ray Tracing Scene Object

A.2 MEL Experiment 2: Communicating Generic
Directed Graph structures

1| // Example Usage:

2[ // mpirun -n [num of procs] ./GraphCycles [graph nodes] [graph type]
3 // mpirun -n 8 ./GraphCycles 11 0

4

5| int main(int argc, char *argv[]) {

6 MEL::Init(argc, argv);

7

8 MEL::Comm comm = MEL::Comm: :WORLD;

9 const int rank = MEL::CommRank(comm),

10, size = MEL::CommSize(comm);

11

12, if (arge !'= 3) {

13 if (rank == 0)

14 std::cout << "Wrong number of parameters..." << std::endl;
15 MEL::Exit(-1);

16 }

17

18 const int numNodes = 1 << std::stoi(argv[1]), // 2”n nodes
19 graphType = std::stoi(argv[2]);

20

21 DiGraphNode<int> *graph = nullptr;

22 if (rank == 0) {

23 switch (graphType) {

24| case 0:

25 graph = MakeBTreeGraph(numNodes);

200 Chapter A Appendix




26
27,
28
29
30
31
32
33
34
35
36
37
38
39
40,
41
42)
43
44
45,
46,
47
48
49
50
51
52
53
54
55
56
57]
58
59
60
61
62
63
64
65
66
67]
68
69

break;
case 1:

graph = MakeRingGraph(numNodes) ;
break;
case 2:
graph = MakeRandomGraph (numNodes) ;
break;
case 3:
graph = MakeFullyConnectedGraph(numNodes);
break;

MEL::Barrier (comm) ;
auto startTime = MEL::Wtime(); // Start the clock!

// Deep copy the graph to all nodes
MEL: :Deep: :Bcast(graph, 0, comm);

MEL: :Barrier(comm);
auto endTime = MEL::Wtime(); // Stop the clock!

if (rank == 0) {
std::cout << "Broadcast Graph in " << (endTime - startTime)
<< " seconds..." << std::endl;

// File name for output

std::stringstream sstr;

sstr << "rank=" << rank << " type=" << graphType
<< " nodes=" << numNodes << ".graph";

// Save the output to disk from each node
std::ofstream graphFile(sstr.str(), std::ios::out | std::ios::binary);
if (graphFile.is_open()) {

MEL: :Deep::FileWrite(graph, graphFile);

graphFile.close();

DestructGraph(graph);
MEL::Finalize();

return 0;

}

Listing A.5: Functions for constructing Directed Graphs in different shapes

A.2.1 Factory functions for building Directed Graphs in

different shaped structures

N v bW N

inline DiGraphNode<int>* MakeBTreeGraph(const int numNodes) {
// BTree Graph
std::vector<DiGraphNode<int>*> nodes(numNodes);
for (int i = @; i < numNodes; ++i) {
nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(1i);

A.2 MEL Experiment 2: Communicating Generic Directed Graph structures

201



202

if (numNodes > 1) nodes[0@]->edges.push_back(nodes[1]);
for (int i = 1; i < numNodes; ++i) {
const int § = ((i - 1) * 2) + 2;
nodes[i]->edges.reserve(2);
if (j < numNodes) nodes[i]->edges.push_back(nodes[j]);
if ((j + 1) < numNodes) nodes[i]->edges.push_back(nodes[j + 1]);
}
return nodes[0];
}

inline DiGraphNode<int>* MakeRingGraph(const int numNodes) {

// Ring Graph
std::vector<DiGraphNode<int>*> nodes(numNodes) ;
for (int i = 0; i < numNodesj; ++1) {
nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(i);
}
for (int i = 0; 1 < numNodes; ++1) {
nodes[i]->edges.reserve(2);
nodes[i]->edges.push_back(nodes[(i + 1) % numNodes]);
nodes[i]->edges.push_back(nodes[(i == 0) ? (numNodes - 1) : (i - 1)1);
}
return nodes[0];
}
inline DiGraphNode<int>* MakeRandomGraph(const int numNodes) {

srand(1234567);

// Random Graph

std::vector<DiGraphNode<int>*> nodes(numNodes);

for (int 1 = 0; i < numNodes; ++i) {
nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(i);

}

for (int i = 0; i < numNodes; ++i) {
const int numkEdges = rand() % numNodes;
nodes[i]->edges.reserve(numEdges);
nodes[i]->edges.push_back(nodes[(i + 1) % numNodes]);
for (int j = 1; j < numEdges; ++j) {

nodes[i]->edges.push_back(nodes[rand() % numNodes]);

}

}

return nodes[0];

}

inline DiGraphNode<int>* MakeFullyConnectedGraph(const int numNodes) {
// Fully Connected Graph
std::vector<DiGraphNode<int>*> nodes(numNodes);
for (int i = 0; i < numNodes; ++i) {
nodes[i] = MEL::MemConstruct<DiGraphNode<int>>(i);

for (int 1 = 0; i < numNodes; ++i) {
nodes[i]->edges.reserve(numNodes) ;
for (int j = 0; j < numNodes; ++j) {
nodes[i]->edges.push_back(nodes[j]);

Chapter A Appendix




67

return nodes[0];

68| }

Listing A.6: Functions for constructing Directed Graphs in different shapes

A.2.2 Generic implementation of Directed Graph container

VO ©® N v b WD

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

template<typename T>

struct DiGraphNode {
T value;
std::vector<DiGraphNode<T>*> edges;
DiGraphNode() {};
explicit DiGraphNode(const T &_value) : value(_value) {};
template<typename MSG>
inline void DeepCopy(MSG &msg) {
msg & edges;
for (auto &e : edges) msg.packSharedPtr(e);
}
};

inline void VisitGraph(DiGraphNode<int> *&root,
std::function<void(DiGraphNode<int> x&node)> func) {

std: :unordered_set<DiGraphNode<int>*> pointerMap;
std::stack<DiGraphNode<int>*> stack;

stack.push(root);

while (!stack.empty()) {
DiGraphNode<int> *node = stack.top();
stack.pop();

// If node has not been visited

if (pointerMap.find(node) == pointerMap.end()) {
pointerMap.insert(node);
for (auto e : node->edges) stack.push(e);
func(node) ;

inline void DestructGraph(DiGraphNode<int> *&root) {
VisitGraph(root, [](DiGraphNode<int> *&node) -> void {
MEL: :MemDestruct(node);
1)
}

Listing A.7: Generic implementation of Directed Graph container for Deep Copy

A.2 MEL Experiment 2: Communicating Generic Directed Graph structures

203



204

A.3 NR-IQA Experiment 1: Patch Based

A.3.1 Training and Validation Curves without HSV Jitter

Loss

Scene: [ cbox ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 32
Train: 3.951606 Val: 164.651589

Batch Correlation

Batch Distribution

3 Train Truth

100 800
£2233 Train Prediction
700 Val Truth
80 Val Prediction
N 600
s >
g e 3 500
3 : 1
] g 400
3 a0 £
£ 300
20 200 —‘
— Train 100
val ol o
0
0 5 10 15 20 25 30 0 20 40 60 80 100 0 20 60 80 100
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992907 Val: 0.382751 Train: 0.978967 Val: 0.386286 Train: 0.898372 Val: 0.300298
g 2
§ 100 =

— Train
val

— Train
val

107

— Train
val

Epoch

(a) Validation Scene: Cornell Box

2x10!

Loss

6x10°

4x10°

1-pCC

Scene: [ veach_bidir ] Model: [ Ours ]

Loss - Epoch: 32
Train: 3.769589 Val: 4.973146

0 5 10 15 20 25 30
Epoch

Batch Correlation

0 5 0 15 20 25
Epoch

Config: [ d (natural) - j (rot+flip) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Batch Distribution

— Train 600 [ Train Truth
val 100 173 Train Prediction
5004 H Val Truth
. Val Prediction
z 400
s >
3 e g
2 2 300
g 40 = 5
\ < 200
MMV i
100 7
0 =5 )
0 S
0 5 10 15 20 25 30 0 20 40 60 80 100 0 20 40 60 80 100
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.993424 Val: 0.984159 Train: 0.974100 Val: 0.983679 Train: 0.895379 Val: 0.901677
— Train — Train — Train
val \ val 4x107t val
\ 3x1071 \
g1 2 )
2 =
& T 2x1071
M g
VA X
W
107!
0 5 10 15 20 25 30 0 s 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch Epoch

(b) Validation Scene: Veach Bidir

Fig. A.1.: Experiment I: Training and Validation set accuracies curves over 32 epochs for leave one scene out
cross validation, for Cornell Box and Veach Bidir scenes, using rotation, and flip jitter and L. loss.
The plots show: Loss value over training and validation batches within an epoch (top-left), scatter
plot of correlation between predicted and true quality for each patch in the most recent training and
validation batch at the end of 32 epochs (top-centre), overlaid histograms of predicted and true quality
distributions for each patch in the most recent batches at the end of 32 epochs (top-right); and the
PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau (bottom-right) for the last batch in each
epoch during training.

Chapter A Appendix




Scene: [ veach_door ] Model: [

Loss - Epoch: 32
Train: 2.934769 Val: 21.400371

Batch Correlation

Ours ] Config: [ d (natural) - j (rot-+flip) - | (charbonnier+pcc) - m (MAE) - p (32) 1

Batch Distribution

Loss

1-pCC

[ Train Truth

Epoch

(a) Validation Scene: Veach Door

2x10!

Loss

6x10°

4x10°

3x10°

1-pPCC

Scene: [ sponza ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip) - | (charbonnier+pcc) -

Epoch

| 80 Train
| val 500 7273 Train Prediction
\ Val Truth
Val Prediction
> 400
L 2
3 g
g
g 40 23007 ||
& g H
3 g .
g
IS 200
20
100
— Train g
val 0 =
o o
0 5 10 15 20 25 30 20 40 60 80 100 0 20 40 60 80 100
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.994087 Val: 0.933479 Train: 0.976985 Val: 0.839909 Train: 0.897397 Val: 0.694980
— Train 4x107! \
val
3x1071
8 10m
g 2
& F2x107
— Train — Train
val . val
107
0 5 10 15 20 25 30 5 10 15 20 25 30 0 5 10 15 20 25 30

Epoch

m (MAE) - p (32) ]

Loss - Epoch: 32
Train: 3.749292 Val: 4.573913 Batch Correlation Batch Distribution
— Train 70 [ Train Truth
val <25 Train Prediction
60 400 Val Truth
Val Prediction
50
2z
B 300
T >
< 40 oy
\ 3
£30 g
\ £ £ 200
Ny H
R YAV 20 0
=N 100 -
A 10 L
0 i _
o - B
0 5 10 15 20 25 30 o 20 30 40 50 60 0 10 20 30 40 50 60 70
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992100 Val: 0.984519 Train: 0.969771 Val: 0.930843 Train: 0.883515 Val: 0.824417
— Train — Train — Train
val Val Val
3x1070
\ g 10 N 5 \
2 \ Z2x10
& :
x ~ -
n NV
\/\/\/» b ' V& W\/&
107
5 10 15 20 25 30 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch Epoch

(b) Validation Scene: Sponza

Fig. A.2.: Experiment I: Training and Validation set accuracies curves over 32 epochs for leave one scene out
cross validation, for Veach Door and Sponza scenes, using rotation, and flip jitter and the £y, loss.
The plots show: Loss value over training and validation batches within an epoch (top-left), a scatter
plot of correlation between predicted and true quality for each patch in the most recent training and
validation batch at the end of 32 epochs (top-centre), overlaid histograms of predicted and true quality
distributions for each patch in the most recent batches at the end of 32 epochs (top-right); and the
PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau (bottom-right) for the last batch in each

epoch during training.

A.3 NR-IQA Experiment 1: Patch Based

205



206

A3.2

Training and Validation Curves with HSV Jitter

Loss

1-pcC

Scene: [ cbox ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip+hsv) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 64
Train: 4.351745 Val: 3.950570 Batch Correlation Batch Distribution
— Train 800 3 Train Truth
val 50 Z3 Train Prediction
700 Val Truth
Val Prediction
600
Z60
] 2 500
14 g
E g
£ 40 g 400
H &
£ 300
. 20
L2 YSuYS| 200
A RARAL :
ety 100
0 .
o -
0 10 20 30 40 50 60 [ 20 40 6! 80 40 60 80
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992043 Val: 0.989606 Train: 0.988573 Val: 0.888717 Train: 0.922362 Val: 0.756033
— Train — Train — Train
val val val
8 10 2
10~
o g
& B
10
1072
[ 10 20 30 40 50 60 [ 10 20 30 40 50 60 10 20 30 40 50 60

(a) Validation Scene: Cornell Box

Loss

1-pCC

Epoch

Epoch

Scene: [ veach_bidir ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip+hsv) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 64
Train: 3.699640 Val: 5.026688

Batch Correlation

Batch Distribution

— Train Train 3 Train Truth
val 12253 Train Prediction
80 Val Truth
\ 400 Val Prediction
| 260
5 2 300
154 g
3 3
S 40 g
H £ 200
£
20 .
100 —‘
o s, O
o N
0 10 20 30 40 50 60 0 20 a0 0 80 20 a0 60 80
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992865 Val: 0.985750 Train: 0.982268 Val: 0.983703 Train: 0.908449 Val: 0.901714
| — Train — Train — Train
val val val
4x107
I 3x107
I A g 107 B
8 2
2 g
& " ax101
- L
\ \’\
WA N A
)Y 1Vo
Al /\/ o MU i
2

0 10 20 30 40 50 60

Epoch

(b) Validation Scene: Veach Bidir

Fig. A.3.:

Chapter A Appendix

o 10 20 30 40 50 60
Epoch

10 20 30 40 50 60
Epoch

Experiment I: Training and Validation set accuracies curves over 64 epochs for leave one scene out
cross validation, for Cornell Box and Veach Bidir scenes, using rotation, flip, and HSV jitter and the
L join loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each patch in the most recent training
and validation batch at the end of 64 epochs (top-centre), overlaid histograms of predicted and true
quality distributions for each patch in the most recent batches at the end of 64 epochs (top-right); and
the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau (bottom-right) for the last batch in
each epoch during training.




Scene: [ veach_door ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip+hsv) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 64

Train: 3.202231 Val: 5.239969 Batch Correlation Batch Distribution
—— Train 1001 - Train 6007 i 1 Train Truth
val val 227 Train Prediction
500 Val Truth
80 Val Prediction
>
z 400
3 60 >
n S g
8 10t g
K g 2 300
g g
T 40 & L
£
= 200
20
100 |
s
0 B
o
[ 10 20 3 40 50 60 [ 20 40 60 80 100 0 20 40 60 80 100
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.992883 Val: 0.988952 Train: 0.990706 Val: 0.982019 Train: 0.929208 Val: 0.899436
— Train — Train — Train
/\ val val 3x107* val
\ 10
\/ 2x107
g
g <] 2
2 £ ¥ s \
102 ! . 4 \
N
W V\’ W W
102
6x1072
[ 10 20 3 40 50 60 [ 10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch Epoch

(a) Validation Scene: Veach Door

Scene: [ sponza ] Model: [ Ours ] Config: [ d (natural) - j (rot+flip+hsv) - | (charbonnier+pcc) - m (MAE) - p (32) ]

Loss - Epoch: 64
Train: 3.818561 Val: 3.213330 Batch Correlation Batch Distribution
— Train 500 3 Train Truth
val <25 Train Prediction
80 Val Truth
400 Val Prediction
>
\ 35 60 >
s Z 300
5 10! 4 ¢
g T E
- Zao g 5
? 200
iV —\v-«/v\ )
20
NN 100 L
(R )
o e
0 10 20 30 40 50 60 0 20 40 60 80 0 20 40 60 80
Epoch True Quality Quality
Batch Pearsons Batch Spearmans Batch Kendalls Tau
Train: 0.988992 Val: 0.990250 Train: 0.966763 Val: 0.981052 Train: 0.883263 Val: 0.895695
107 — Train — Train . — Train
val Val ax10 Val
3x107
o 10
9 g >
s A 2 Z2x10
; ) g :
itk | |
LA bl | Ak
WV i 107 N \ hd" ,Jv
50 60

0 10 20 30 40 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch Epoch

(b) Validation Scene: Sponza

Fig. A.4.:

Experiment I: Training and Validation set accuracies curves over 64 epochs for leave one scene out
cross validation, for Veach Door and Sponza scenes, using rotation, flip, and HSV jitter and the £y,
loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each patch in the most recent training
and validation batch at the end of 64 epochs (top-centre), overlaid histograms of predicted and true
quality distributions for each patch in the most recent batches at the end of 64 epochs (top-right), and
the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau (bottom-right) for the last batch in
each epoch during training.

A.3 NR-IQA Experiment 1: Patch Based

207



A.4 NR-IQA Experiment 2: Full Convolutional

A.4.1 Trainina and Validation Curves for £ Loss

107t

Loss

1-PCC
=
2

1077

2x1071

6x1072

4x1072

1-pPCC

Loss - Batches: 33024 Patches: 528384
Train: 0.040400 Val: 0.029859

256 Patch - Pixel Correlation

256 Patch - Pixel Distribution

= Train 10 800000 [CJ Train Truth
Val £IZ21 Train Prediction
700000 Val Truth
08 Val Prediction
600000
B
§ 06 z 500000
2 H
\\‘ 3 3 400000
2 g oo
i ki 04 '3
JW\“\“W T 300000
e AP S 02 200000
Train {
val 100000 -
00 izt Example Val M
[
0 20 40 60 80 100 120 00 02 04 06 08 10 00 02 04 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.972193 val: 0.982244 Train: 0.973177 Val: 0.860295 Train: 0.867047 Val: 0.700377
— Train 100 — Train 100 — Train
l Val Val Val
‘ 6x10-1
9
{ Q 5 4x1071
1 g &
- ~ 310
101
’W‘NJ\JWWV\/\;\ R
i 2x10-1
I Il
0 20 40 60 80 100 120 o 20 40 60 80 100 120 0 20 40 60 80 100 120
Epach Epoch Epach
(a) Validation Scene: Cornell Box
Loss - Batches: 33024 Patches: 528384
Train: 0.040273 Val: 0.048018 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
— Train 10 [ Train Truth
val 350000 2221 Train Prediction
Val Truth
08 300000 Val Prediction
\ B 250000
306 5
l\ o =
. = 200000
\ ] g
N T 04 * 150000
\ &
{
100000
W “
W\,\,U Train
S AN o o
00 Example Val
0
20 40 60 80 100 120 0.0 02 04 06 08 10 0.0 02 04 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.966749 Val: 0.978072 Train: 0.968851 Val: 0.975443 Train: 0.865146 Val: 0.888591
— Train 10° — Train 10° — Train
Val 1 val \ Val
I
| I
‘ . | |
g >
2 | 3
£ . \J\v
] | A
) ‘w \‘W
1071

20 40 0 8 100 120
Epoch

(b) Validation Scene: Veach Bidir

Fig. A.5.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Cornell Box and Veach Bidir scenes, using rotation, flip, and HSV jitter with the
L1 loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 128 epochs (top-centre), overlaid histograms of
predicted and true quality distributions for each pixel in each patch of the most recent batches at the
end of 128 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau

208

[ 20 0 0 80 100 120
Epoch

20 40 60 80 100 120
Epoch

(bottom-right) for the pixels in the last batch of each epoch during training.

Chapter A Appendix




Loss - Batches: 32024 Patches: 528384

Train: 0.032451 Val: 0.070379 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
500000
—— Train 10 [ Train Truth
Val L2277 Train Prediction
Val Truth
08 400000 Val Prediction
z
5 06 - 300000
g 10t < £
3 3 H
g 2
7 04 £ 200000
02
100000
Train
Val
00 Example Val
o
0 20 4 e 80 100 120 00 02 04 06 08 10 00 02 04 06 08 1o
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.975691 Val: 0.937773 Train: 0.974027 Val: 0.939636 Train: 0.868713 Val: 0.829585
10° 4 1 —— Train 10° — Train 10° — Train
| Val { val 1 val
|
| |
I
| | ‘
| | |
g g V\A 2 i
£ % Wl g V |
4107t " \"L o it
- 107 \N [ 'IU
\ Ub
0 20 40 60 80 100 120 o 20 40 60 80 100 120 0 20 40 60 80 100 120
Epoch Epoch Epoch

(a) Validation Scene: Veach Door

Loss - Batches: 33024 Patches: 528384

Train: 0.030310 Val: 0.069404 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
— Train 10 - P 500000 7 Train Truth
val £7223 Train Prediction
Val Truth
Val Prediction
08 400000 ‘ |
z
E oe & 300000
4 107! A - g
) E -4
g g
© e “ 200000
02
100000
Train
i Val
00 Example Val
0
0 20 4 & 8 100 120 a0 02 04 06 08 10 00 02 0a 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.970780 Val: 0.963382 Train: 0.971072 Val: 0.960871 Train: 0.876414 Val: 0.835882
100 — Train 10° — Train 10° — Train

val \ val \ val

|
|
u g it 5 |
g g I z i
R} u \‘ ERCe d\.l o I 'J"
A |
I ) v
: | WVW/WWM
10t
0 20 4 e 8 100 120 0 2 4 e 8 100 120 0 220 4 e 8 100 120
Epoch Epoch Epoch

(b) Validation Scene: Sponza

Fig. A.6.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Veach Door and Sponza scenes, using rotation, flip, and HSV jitter with the £
loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 128 epochs (top-centre), overlaid histograms of
predicted and true quality distributions for each pixel in each patch of the most recent batches at the
end of 128 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau
(bottom-right) for the pixels in the last batch of each epoch during training.

A.4 NR-IQA Experiment 2: Full Convolutional 209



210

A.4.2 Training and Validation Curves for £,

Loss

Loss

107

Loss - Batches: 33024 Patches: 528384
Train: 0.005395 Val: 0.005296

256 Patch - Pixel Correlation

Loss

256 Patch - Pixel Distribution

= Train 10 700000 [ Train Truth
Val 2171 Train Prediction
Val Truth
600000 .
08 Val Prediction
S 500000
Zos z
o S 400000
3 HS -
I g g
g 04 & 300000
\ B
\’h 200000
g oz
s
AN b uﬂ\’ e 3:"‘ 100000
00 Example Val
[
0 20 40 60 80 100 120 00 02 04 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.975399 val: 0.988992 Train: 0.968849 Val: 0.858504 Train: 0.855512 val: 0.703183
— Train 100 — Train 100 — Train
Val Val Val
l 6x10-1
2 > 1
ax10-
g 2
H i
| SN " 3x10-1
v? “ \A 'l \ ;
Aanl
2x10-1
0 20 40 60 80 100 120 o 20 40 60 80 100 120 0 20 40 60 80 100 120
Epach Epoch Epach
(a) Validation Scene: Cornell Box
Loss - Batches: 33024 Patches: 528384
Train: 0.005027 Val: 0.012934 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
— Train 10 [ Train Truth
Val L1221 Train Prediction
400000 Val Truth
Val Prediction
08
I E 300000
| T 06 5
o =
\ = §
\ o 2
= @ 200000
L} E 04 L=
02 100000
Train
Val _
00 Example Val ]
-
0 20 40 60 80 100 120 0.0 02 04 06 08 10 0.0 02 04 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.974397 Val: 0.982448 Train: 0.933385 Val: 0.958809 Train: 0.792890 Val: 0.842332
— Train I —— Train t —— Train
Val \ val l Val
"\
l |
i
“ s} J Fl |
Q | F
JM e | g N
s | -
1071
0 20 40 &0 80 100 120 o 20 40 &0 80 100 120 o 20 40 60 80 100 120

Epoch

(b) Validation Scene: Veach Bidir

Fig. A.7.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Cornell Box and Veach Bidir scenes, using rotation, flip, and HSV jitter with the
L2 loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 128 epochs (top-centre), overlaid histograms of
predicted and true quality distributions for each pixel in each patch of the most recent batches at the
end of 128 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau

Epoch

Epoch

(bottom-right) for the pixels in the last batch of each epoch during training.

Chapter A Appendix




Loss - Batches: 32024 Patches: 528384

Train: 0.004323 val: 0.023742

10t t —— Train
Val
|
§
1072
0 20 40 &0 80 100 120
Epoch
256 Patch - Per Pixel Pearsons
Train: 0.976714 Val: 0.950998
I —— Train
‘ Val
1
Iy
V |
o
g ~ \
B -1 A
< W |
[ 20 40 60 80 100 120
Epoch

(a) Validation Scene: Veach Door

Loss - Batches: 33024 Patches: 528384

Train: 0.003633 Val: 0.016596

— Train
val
107!
g
107
0 20 40 60 80 100 120
Epoch
256 Patch - Per Pixel Pearsons
Train: 0.975578 Val: 0.954551
— Train
Val
u
&
10t it
! ‘f\)w
" W

0 20 40 60 80
Epoch

(b) Validation Scene: Sponza

Fig. A.8.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Veach Door and Sponza scenes, using rotation, flip, and HSV jitter with the Lo
loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 128 epochs (top-centre), overlaid histograms of
predicted and true quality distributions for each pixel in each patch of the most recent batches at the
end of 128 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau

1-SROCC

1-sROCC

Predicted Quality

Predicted Quality

107!

256 Patch - Pixel Correlation

256 Patch - Pixel Distribution

[ Train Truth
i 350000 273 Train Prediction
I Val Truth
| 300000 Val Prediction
250000
I
§ 200000
H
z
2
‘= 150000
100000
;r/ram 50000 =
jal e o
Example Val i =
0
00 02 04 06 08 10 00 02 04 06 05 10
True Quality Quality
256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.969120 Val: 0.944112 Train: 0.860541 Val: 0.818142
I — Train t — Train
val val
Gx107ty | |
2 4x10°t l'ﬁ I
g Vi
~ 3x107L vl_ ﬂm &
v ‘ WM A
' VMWMM
[ 20 4w 60 80 100 120 0 20 w60 80 100 120
Epoch Epoch
256 Patch - Pixel Carrelation 256 Patch - Pixel Distribution
[ Train Truth
£Z273 Train Prediction
400000 Val Truth
Val Prediction
[
300000
5
z
£ 200000
100000 ==
Train
Val
Example Val
0
0o 02 04 06 08 10 0o 02 04 06 08 10
True Quality Quality
256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.956974 Val: 0.955317 Train: 0.838384 Val: 0.821038
— Train —— Train
\ val \ val
6x107!
|
1 |
| |
N 4x1071 M\
2
| =
% ka0t f‘\.’\
! \
]
ik \ Ul |
ik Wl

Wi

0 20

42

(bottom-right) for the pixels in the last batch of each epoch during training.

60
Epach

80 100

120

A.4 NR-IQA Experiment 2: Full Convolutional

211



212

A.4.3 Training and Validation Curves for £- Loss

Loss

1-PCC

2x

107t

10°

107t

1071

6x 1072

4x1072

1-pPCC

Loss - Batches: 33024 Patches: 528384
Train: 0.040369 Val: 0.029986

256 Patch - Pixel Correlation

256 Patch - Pixel Distribution

| — Train 10 [ Train Truth
| Val 700000 £IZ21 Train Prediction
Val Truth
\ o 500000 Val Prediction
- 500000
| S 06 >
W g g
\ T $ 400000
8 &
g g .
\W B o4 200000
£
WMM 02 200000
Train i}
val 100000 ==
00 Example Val _
0
0 20 40 60 80 100 120 00 02 04 06 o8 10 0o 02 04 06 o8 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.965823 val: 0.984243 Train: 0.964170 Val: 0.896299 Train: 0.846650 Val: 0.741704
— Train 10° — Train 100 —— Train
Val Val Val
* o B
‘r\j e g
| & ;
0 20 a0 60 80 100 120 o 20 40 60 80 100 120 o 20 40 60 80 100 120
Epach Epoch Epach
(a) Validation Scene: Cornell Box
Loss - Batches: 33024 Patches: 528384
Train: 0.036956 Val: 0.053335 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
— Train Train [ Train Truth
val 12 val 12273 Train Prediction
Example Val 400000 Val Truth
Val Prediction
10
= 300000
508 5
o c
H ]
£ os H
s & 200000
H
\)‘v 04 g
gl " 02 100000 ]
AL —
VM 00 e
o .
0 20 40 60 80 100 120 00 02 04 06 08 10 00 02 04 06 o8 10 12
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.964258 Val: 0.977131 Train: 0.960643 Val: 0.981226 Train: 0.846460 Val: 0.895550
100
—— Train —— Train —— Train
Val \ Val \ Val
I |
| I I
|
| g | M . .
g | & p
& 101 | .
] A
{ - !
WMM«V\WJ\,W ! ) Lt
107t

0 20 40 0 8 100 120
Epoch

(b) Validation Scene: Veach Bidir

Fig. A.9.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Cornell Box and Veach Bidir scenes, using rotation, flip, and HSV jitter with the
Lc loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 128 epochs (top-centre), overlaid histograms of
predicted and true quality distributions for each pixel in each patch of the most recent batches at the
end of 128 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s Tau

[ 20 0 0 80 100 120
Epoch

0 20 40 60 80 100 120
Epoch

(bottom-right) for the pixels in the last batch of each epoch during training.

Chapter A Appendix




1.PCC

i

Loss - Batches: 33024 Patches: 528384
Train: 0.031213 val: 0.070374

— Train
val

7

20 40 0 8 100 120
Epoch

256 Patch - Per Pixel Pearsons
Train: 0.979230 Val: 0.924828

—— Train
val

20 40 60 80 100 120
Epoch

(a) Validation Scene: Veach Door

1-PCC

Loss - Batches: 33024 Patches: 528384
Train: 0.029459 Val: 0.068583

1 —— Train
Val
o 20 40 60 80 100 120
Epoch
256 Patch - Per Pixel Pearsons
Train: 0.973531 Val: 0.955126
—— Train
Val

0 20 40 60 B0 100 120
Epoch

(b) Validation Scene: Sponza

Fig. A.10.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Veach Door and Sponza scenes, using rotation, flip, and HSV jitter with the L.
loss. The plots show: Loss value over training and validation batches within an epoch (top-left), a
scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 128 epochs (top-centre), overlaid histograms
of predicted and true quality distributions for each pixel in each patch of the most recent batches at
the end of 128 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s

Predicted Quality

10°

1-sROCC

Predicted Quality

107t

1-SROCC

256 Patch - Pixel Correlation

256 Patch - Pixel Distribution

[ Train Truth
223 Train Prediction

Val Truth
400000 Val Prediction
=
300000
Z
H
g
H
z
2
i 200000
=
100000 e
Train
Val [
..... [T
Example Val [
==
00 02 04 06 08 10 00 02 04 06 08 10
True Quality Quality
256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.976035 Val: 0.929679 Train: 0.879826 Val: 0.821375
o
— Train 1 — Train
\l val \ val
I
|
|
el | l
] 2
i = i
’ - M
107t
o 20 60 80 100 120 0 20 40 60 80 100 120
Epoch Epoch
256 Patch - Pixel Carrelation 256 Patch - Pixel Distribution
3 Train Truth
L 223 Train Prediction
400000 Val Truth
Val Prediction
: |
I
| 300000
ol
| z
| g
e (& 200000
|
B
] |
; 100000 [
Train —
| Val —
s Example Val
0
00 02 04 06 o8 10 0o 02 04 06 o8 1o
True Quality Quality
256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.971754 Val: 0.957950 Train: 0.873668 Val: 0.828035
0
— Train 1o — Train
val val
H" |
. 0
z
| g h,
| l |
h
V‘ Ly |
‘v\)\'wl
107t
0 20 60 80 100 120 0 20 40 60 80 100 120
Epoch Epoch

Tau (bottom-right) for the pixels in the last batch of each epoch during training.

A.4 NR-IQA Experiment 2: Full Convolutional

213



214

A.4.4 Training and Validation Curves for Lot LOSS

Loss - Batches: 262400 Patches: 4198400
Train: 0.059777 Val: 0.100628

256 Patch - Pixel Correlation

256 Patch - Pixel Distribution

N — Train 10 700000 £ Train Trun
10 va | e ol 0 | o i Train Prediction
Val Truth
08 £00000 Val Prediction
500000
z
T 06 =
9 G 2 400000
8 ° -
5 8 =
g g
‘ T 04 & 300000
[
200000
107t 02
Train,
) i - g 100000
) 00 Example Val
0
0 200 400 600 800 1000 0o 02 a4 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.971242 val: 0.991167 Train: 0.978500 Val: 0.983638 Train: 0.887525 Val: 0.898696
10° — Train 10° — Train 10° — Train
val ‘ val val
g g .
-1
g0 2 =
" ' & ;
- - 107! -
MWW b
107t
0 200 400 600 800 1000 0 200 400 800 1000 0 200 400 600 800 1000
Epach Epn(h Epoch
(a) Validation Scene: Cornell Box
Loss - Batches: 262400 Patches: 4198400
Train: 0.055793 Val: 0.121821 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
— Train 10 T TrainTrutn
I 4000004 I Train Prediction
Val Truth
350000 Val Prediction
08
300000
g
5
5 06 & 250000
" <] g
[ - §
k) & 2 200000
£ o4 &
& 150000
107t |
02 100000
Train I
W "™ Ly val 50000 [ —
Lt 00 Example Val
0
0 200 400 600 800 1000 0o 02 04 06 08 10 00 02 0a 06 08 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.976095 Val: 0.982478 Train: 0.980921 Val: 0.980592 Train: 0.889135 Val: 0.900769
— Train — Train — Train
Val Val Val
1
v 107t 8 10t 5
o} =} 2
& g =
. & .
A K ' - |
L VN L
j M‘M bl | Ml
u \\rw] |‘ 115 N 'HH
L W"M RN o IV o
-2
o2 10
0 200 400 600 800 1000 0 200 400 00 800 1000 [} 200 400 600 800 1000
Epoch Epoch Epoch

(b) Validation Scene: Veach Bidir

Fig. A.11.:

Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Cornell Box and Veach Bidir scenes, using rotation, flip, and HSV jitter with the
Ljoine loss. The plots show: Loss value over training and validation batches within an epoch (top-left),
a scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 1024 epochs (top-centre), overlaid histograms
of predicted and true quality distributions for each pixel in each patch of the most recent batches at
the end of 1024 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s

Tau (bottom-right) for the pixels in the last batch of each epoch during training.

Chapter A Appendix



Loss - Batches: 262400 Patches: 4198400

Train: 0.046867 Val: 0.205441 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
— Train 10 [ Train Truth
Val L2273 Train Prediction
400000 Val Truth
Val Prediction
08
z 300000
; g 06 ;é);
g E g
2 04 £ 200000
o
10t = ’7
02 100000 ==
Train =]
Val -
00 Example Val e T
o
0 200 400 600 800 1000 00 02 04 06 08 10 00 02 04 06 (X3 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.983084 Val: 0.927462 Train: 0.986176 Val: 0.936092 Train: 0.907821 Val: 0.834349
10° —— Train 100 —— Train 100 — Train
Val | val val
Y g | | . |
=) =] a
<10t & 107 ' = L
- . ! - |
10t
1072
102
0 200 400 600 800 1000 o 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch Epoch
(a) Validation Scene: Veach Door
Loss - Batches: 262400 Patches: 4198400
Train: 0.040129 Val: 0.167007 256 Patch - Pixel Correlation 256 Patch - Pixel Distribution
100 1 — Train 10 | e [ Train Truth
val 500000 223 Train Prediction
Val Truth
08 Val Prediction
400000
z
g 06 ' =
" & | £ 300000
g g | H
] | o
S 04 £
£ 200000
107!
02 e
Train 100000 =
Val
0.0 Example Val
oL}
o 200 400 600 800 1000 00 02 04 06 o8 10 0o 02 04 06 os 10
Epoch True Quality Quality
256 Patch - Per Pixel Pearsons 256 Patch - Per Pixel Spearmans 256 Patch - Per Pixel Kendalls Tau
Train: 0.978062 Val: 0.955472 Train: 0.982041 Val: 0.963687 Train: 0.909562 Val: 0.842255
| — Train — Train — Train
Val | val l val
[
|
g 10! 2 101 > ‘
o 10 & 107 Fd |
& 2 =
" & ; 1
- ; K
1 A " I
10t
1072
1072
o 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch Epoch

(b) Validation Scene: Sponza

Fig. A.12.: Experiment II: Training and Validation set accuracies curves over each epoch for leave one scene out
cross validation, for Veach Door and Sponza scenes, using rotation, flip, and HSV jitter with the
L joint loss. The plots show: Loss value over training and validation batches within an epoch (top-left),
a scatter plot of correlation between predicted and true quality for each pixel within each patch of the
most recent training and validation batch at the end of 1024 epochs (top-centre), overlaid histograms
of predicted and true quality distributions for each pixel in each patch of the most recent batches at
the end of 1024 epochs (top-right), and the PCC (bottom-left), SROCC (bottom-centre), and Kendall’s
Tau (bottom-right) for the pixels in the last batch of each epoch during training.

A.4 NR-IQA Experiment 2: Full Convolutional 215






List of Acronyms

Monte Carlo Sampling

MC Monte Carlo

MCMC Markov Chain Monte Carlo

IS Importance Sampling

MIS Multiple Importance Sampling
ARS Accept Reject Sampling

MHMC Metropolis-Hastings Monte Carlo
HMC Hamiltonian Monte Carlo

HHMC Hessian Hamiltonian Monte Carlo
i.i.d. independent and identically distributed
S.p-p. samples per pixel

PDF Probability Density Function

Physically Based Rendering

PT Path Tracing

BDPT Bidirectional Path Tracing

MLT Metropolis Light Transport

PSSMLT  Primary Sample Space Metropolis Light Transport
MMLT Multiplexed Metropolis Light Transport

ERPT Energy Redistribution Path Tracing

G-PT Gradient Domain Path Tracing

G-BDPT  Gradient Domain Bidirectional Path Tracing
G-MLT Gradient Domain Metropolis Light Transport

BSDF Bidirectional Scattering Distribution Function
BRDF Bidirectional Reflectance Distribution Function
BTDF Bidirectional Transmittance Distribution Function

BSSRDF  Bidirectional Sub-Surface Scattering Reflectance Distribution Function

High Performance Computing

HPC High Performance Computing

217



218

MPI

MEL

oo
OpenMP
Pthreads
OpenCL
CUDA

Message Passing Interface

MPI Extension Library

Object Orientated

Open Multi-Processing

POSIX Threads

Open Computing Language

Compute Unified Device Architecture

Image Quality Assessment

IQA
FR-IQA
RR-IQA
NR-IQA
HVS
MGA
JND

GT
MOS
DMOS
LDR
HDR
PCC
SROCC

Image Quality Assessment

Full Reference Image Quality Assessment
Reduced Reference Image Quality Assessment
No Reference Image Quality Assessment
Human Visual System

Multi-scale Geometric Analysis

Just Noticeable Difference

Ground Truth

Mean Opinion Score

Differential Mean Opinion Score

Low Dynamic Range

High Dynamic Range

Pearson’s Correlation Coefficient

Spearman’s Rank Order Correlation Coefficient

Kendall’s Tau Kendall’s Tau Rank Order Correlation Coefficient

Image Quality Assessment



List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

3.4

An exemplar probability distribution we will use to compare and con-
trast Monte Carlo sampling strategies. . . ... ... ... ... .... 14

An example of the scenario where there is a closed form method for
drawing samples directly from the distribution p(©). . . ... ... .. 15

An example of ARS for drawing samples from the distribution p(©)
using the auxiliary proposal distribution ¢(©) which coarsely approxi-
mates p(©), and arejectionrate M. . . . . . ... ... 17
An example of MHMC for drawing samples from the distribution p(©)
using the auxiliary conditional proposal distribution ¢(6’|f) which pro-

poses a sample in the local neighbourhood of the previous sample. . . 20

An example of HMC for drawing samples from the distribution p(©)
using leapfrog updates. . . . . . . . . . ... ... ... 22

A selection of physically based rendered images created with software
developed forourresearch. . ... ... ... .............. 30

An example of a Multi-Layer Perceptron with two hidden layers. . . . . 60

A selection of activation functions commonly used with neural networks. 62

An example of a structure that requires deep-copy semantics. Arrows

represent pointer traversals to disjoint regions of memory. . . . . . .. 76
MEL Deep-Copy Architecture . . . . . ... ... ... .. .. ..... 85
Utah Teapot mesh used for Benchmarks . . . ... ... ........ 105

Time comparison of algorithms broadcasting large tree structures be-
tween processes within node and on separate nodes. . . .. ... ... 106

219



220

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

4.4

5.1

5.2

5.3

Time comparison of MEL to Boost Serialization Library for File Read-
/Write on a single node, to a within node Solid State Drive. . . .. .. 107

Graph Connectivities for {20,222 23 24 Y nodes. .......... 108

Time comparison for broadcast and file-IO operations on fully connected
graph StruCtures. . . . . . . o v v v i e e e e e e e e e e e 109

Time comparison for broadcast and file-IO operations on randomly
connected graph structures. . . . . . . ... ... ..o 109

Time comparison for broadcast and file-IO operations on ring graph
SEFUCLUTES. « . v v v v v e v e e e e e e e e e e e e e e 110

Time comparison for broadcast and file-IO operations on binary tree
graph StruCtures. . . . . . . . v v v i e e e e e e e e e e e e e 111

Scenes used for error analysis. From left to right: Cornell Box, Torus,
Veach Bidir, Veach Door, Sponza. . ... ................. 113

Image sequences from each scene, rendered with each algorithm. . . . 121

A visual comparison of the difference in symmetry between Log Accu-
racy Ratio and Percent Error. . . . . . . . .. ... ... ... 123

A visual depiction of how table 4.5 is formed. For each configuration
PC the value with maximum magnitude of misreported error using a
visually acceptable reference image becomes the value carried over to
the corresponding cell in table 4.5 for that configuration. . . . . . . .. 125

Experiment I: Our patch based model. . . .. ... ... ........ 143

An example of the proposed jitter exhibiting rotations, flips, and HSV
perturbations. . . . . . ... L. 145

An example of the Charbonnier, £, and L5 losses (a) and their first
order derivatives (b). . . . . . . . . ... 146

Chapter C List of Figures



5.4

5.5

5.6

5.7

5.8

5.9

Al

A2

A3

A4

A5

Experiment I: Training and Validation set accuracies curves over 32
epochs for leave one scene out cross validation using rotation, and
flip jitter with the Lypinc loss. . . . . . . . . . .o o o

Experiment I: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation using rotation, flip,
and HSV jitter with the Lygincloss. . . . . . . . . .. ...

Experiment I: Example IQA prediction from our model on images from
the validationsets. . . . ... ... ... ... . o o o ..

Experiment II: Our fully convolutional model. . . . . . ... ... ...

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for the Cornell Box and
Veach Bidir scenes, using rotation, flip, and HSV jitter with the £jgin,
10SS. . . . e e e e e e e

Experiment II: Example IQA prediction from our model on images from
the validationsets. . . . .. ... ... .. ... o o o oL

Experiment I: Training and Validation set accuracies curves over 32
epochs for leave one scene out cross validation, for Cornell Box and
Veach Bidir scenes, using rotation, and flip jitter and L joi, loss.

Experiment I: Training and Validation set accuracies curves over 32
epochs for leave one scene out cross validation, for Veach Door and
Sponza scenes, using rotation, and flip jitter and the £y, loss.

Experiment I: Training and Validation set accuracies curves over 64
epochs for leave one scene out cross validation, for Cornell Box and
Veach Bidir scenes, using rotation, flip, and HSV jitter and the Ljgin;
loss. . .

Experiment I: Training and Validation set accuracies curves over 64
epochs for leave one scene out cross validation, for Veach Door and
Sponza scenes, using rotation, flip, and HSV jitter and the Lj,;,, loss.

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Cornell Box and

. 204

. 205

207

Veach Bidir scenes, using rotation, flip, and HSV jitter with the £; loss208

221



222

A.6

A7

A8

A9

A.10

A1l

A.12

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Veach Door and
Sponza scenes, using rotation, flip, and HSV jitter with the £, loss. . 209

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Cornell Box and
Veach Bidir scenes, using rotation, flip, and HSV jitter with the £, loss210

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Veach Door and
Sponza scenes, using rotation, flip, and HSV jitter with the £, loss. . 211

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Cornell Box and
Veach Bidir scenes, using rotation, flip, and HSV jitter with the £ loss212

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Veach Door and
Sponza scenes, using rotation, flip, and HSV jitter with the £ loss. . 213

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Cornell Box and
Veach Bidir scenes, using rotation, flip, and HSV jitter with the £joinc
10SS. . . . e e e e e 214

Experiment II: Training and Validation set accuracies curves over each
epoch for leave one scene out cross validation, for Veach Door and
Sponza scenes, using rotation, flip, and HSV jitter with the Ljqin loss. 215

Chapter C List of Figures



List of Tables

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

5.5

A feature comparison of the 21 IQA measures sampled from the literature.119

In Q of various IQA measures as reference and test image quality are
varied for the Cornell Box scene, rendered with Bidirectional Path Tracing.126

In Q of various IQA measures as reference and test image quality are
varied for the Veach Door scene, rendered with Energy Redistribution
Path Tracing. . . . . . . . . o v v i i i e et e e e e e e 127

In Q of various IQA measures as reference and test image quality are
varied for the Torus scene, rendered with Metropolis Light Transport. . 128

A condensed table showing all 735 result tables, showing max P¢ for
all Algorithms, Scenes, and Metrics. . . . . . . .. ... ... ...... 130

Experiment I: Training and Validation set sizes for leave one scene out
cross validation, before random jitter is applied. . . . . . . .. ... .. 144

Experiment I: Training and Validation set accuracies after 32 epochs
for leave one scene out cross validation using rotation, and flip jitter
with the Lyoine loss. . . . o . o o o o 147

Experiment I: Training and Validation set accuracies after 64 epochs
for leave one scene out cross validation using rotation, flip, and HSV
jitter with the Ljyoincloss. . . . . . . . . o o o 151

Experiment I: Validation set NR-IQA performance for leave one scene
out cross validation. . . . . ... ... ... L o 153

Experiment II: Training and Validation set sizes for leave one scene
out cross validation, before random jitter is applied. . . ... ... .. 157

223



224

5.6

5.7

5.8

Experiment II: Training and Validation set accuracies after 128 epochs
for leave one scene out cross validation using rotation, flip, and HSV
Jitter. . .o e e e

Experiment II: Training and Validation set accuracies after 1024 epochs
for leave one scene out cross validation using rotation, flip, and HSV

Jitter. . .o e e e

Experiment II: Validation set NR-IQA performance for leave one scene
out cross validation. . . . . ... ... ... L o

Chapter D List of Tables



225



