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An Extended Greenwood-Williamson Model Based Normal
Interaction Law for Discrete Element Modelling of

Spherical Particles with Surface Roughness

T. Zhao, Y. T. Feng∗, Min Wang
Zienkiewicz Centre for Computational Engineering, Swansea University, UK

Abstract

The current work aims to develop an improved random normal interaction law based
on an extended Greenwood-Williamson (GW) model for spherical particles with surface
roughness in the discrete element modelling (DEM) of particle systems. The extended
GW model overcomes some theoretical defects of the classic GW model when incor-
porated into the discrete element framework. Based on two non-dimensional forms in
which only two surface roughness parameters are involved, an empirical formula of the
improved interaction law is derived by the curve-fitting technique. The resulting inter-
action law is incorporated into DEM to investigate the mechanical response of particle
systems with different surface roughness. Numerical simulations are performed to model
one-dimensional and three-dimensional compression tests to explore the macro and micro
characteristics of granular particles with surface roughness. The results show that sur-
face roughness makes the initial packing of a particle assembly looser and has a greater
influence on looser packed samples as expected, but an assembly with moderate rough-
ness may exhibit a higher strength. The limitations of the current development are also
highlighted.

keywords: Surface roughness; Extended GW model; Normal contact interaction law; Stochas-
tic discrete element modelling; Compression test

1 Introduction

Since it was originated in the 1970s by the pioneer work of Cundall and Strack [1], the
discrete element method (DEM) has emerged as a reliable and effective numerical technique to
model many scientific and engineering problems involving granular matters and discontinuous
materials. The computational framework of the classic DEM is essentially deterministic, in
which the material and geometric properties and the loading conditions are assumed to be
known in prior. The results obtained from a deterministic analysis are implicitly assumed
to represent all the possible scenarios of the system. This is, however, not true for most
practical problems where a certain degree of uncertainties is always involved, and therefore
the traditional deterministic approach may not be able to treat real problems adequately.
One deterministic DEM simulation result can only be regarded as one realisation in the
context of Monte Carlo simulations. Considering the influence of inherent uncertainties on
particulate systems leads to a stochastic discrete element modelling (SDEM) methodology as
firstly developed for rough spherical particles in our previous work [2].
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To investigate the response of particle systems, the classic DEM has a disadvantage in sim-
ulating complicated shaped objects. Real particles contain geometric irregularities at both
macroscopic and microscopic levels. However, basic elements commonly used in DEM are
regular geometric entities such as disc, ellipse, ellipsoid and polygon. The surfaces of all the el-
ements are assumed to be smooth. Issues related to geometric uncertainty and its influence on
the mechanical behaviour of the particulate system are gaining an increasing attention[3, 4].
In addition to representing complicated shapes by bonding or clumping together several basic
entities [5, 6, 7, 8, 9], there has been a continuous effort in DEM to introduce non-spherical
entities such as polygons, polyhedra, super-quadrics, and cylinders etc.[11, 12, 13, 14, 15, 16].
Note that such solutions for modelling irregularities of real particles are mostly focused on
the macroscopic level.

The geometric irregularities at the microscopic level, also called the surface roughness, are
more difficult to be accounted for. The surface roughness can be considered by an interaction
law which estimates contact forces between particles. This issue is commonly treated by the
tangential contact model involving friction. Moreover, the surface roughness will affect the
rolling behaviour of particles, and this issue has been considered in the rotational resistance
model [10, 17, 18]. However, these methods treat the surface roughness in a deterministic
way, which is not surprising as currently used normal contact laws in DEM, such as the linear
and the Hertz contact models, are intended for contact between smooth particles.

A few investigations have been made to develop contact models for rough particles but based
on some strong assumptions. By making the idealisation that the contact width is homoge-
neously distributed with a finite number of normal/tangential basic elements, Jiang et al.[19]
develop a two-dimensional roughness theory which introduces two artificial parameters to
represent the particle roughness. Wilson et al.[20] derive an analytical model by assuming
that the rough particles make contact at exactly 2 points in 2D and 3 points in 3D.

Yet, very few attempts have been reported to address the problem of geometric irregularities
in randomness. It may be significant if surface roughness can be included in contact interac-
tion laws in a statistic sense. A first attempt has been made towards this goal in our previous
work [2] where a novel random normal interaction law has been proposed.

Our new normal interaction law that considers surface roughness for spheres is based on the
classic Greenwood-Williamson (GW) model [21, 22]. As the theoretical basis of this stochastic
approach, the GW model plays a crucial role in determining the accuracy and rationality of
the resulting interaction model. However, it is found [2] that some theoretical defects may
exist when incorporating the classic GW model into DEM simulations and could lead to
some unreasonable results. To resolve these issues, an extended GW model is developed in
[23]. The main objective of the current work is to derive an improved normal interaction
law based on this extended GW model for spherical particles with surface roughness and to
incorporated it into DEM.

The paper is organised as follows. Both the classic and the extended GW models are briefly
described in the next section. Two non-dimensional forms of the extended GW model are
introduced in Section 3. Based on the numerical results, an improved normal interaction
law is derived by a two-step curve-fitting method in Section 4. The new interaction law,
which can now be incorporated into DEM, is used to investigate the mechanical response
of granular assemblies with different roughness parameters in Section 5, where numerical
simulations are performed to model one-dimensional and three-dimensional compression tests
on granular assemblies, and macro and micro properties of the numerical samples are analysed
to investigate the influence of surface roughness on the particle systems. Some concluding
remarks are made in Section 6 to highlight the limitations of the current model.
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Figure 1: Contact between a smooth sphere and a nominally flat rough surface

(a) (b)

Figure 2: Profile of the contact between smooth sphere and rough surface based on the classic
GW model (a); and the extended GW model (b)

2 The GW model and its Extension

In this section, the classic GW model is briefly reviewed first and then its extension to general
contact cases is described which forms the basis for the development of an improved normal
contact law in the subsequent sections.

2.1 The classic GW model

A rough surface consists of a myriad of asperities or peaks that restrict the real contact
area. Due to the complexity of a rough surface, an appropriate mathematical expression is
needed to model a real surface as a profile with asperities that their heights obey a particular
statistical distribution, for instance, the Gaussian distribution. This statistical approach
to mathematically representing rough surfaces is adopted in the GW model. By further
combining with the Hertz theory, a solution to the contact problem of rough surfaces is
derived. The elaborated explanation of the GW model can be found in the original work
[21, 24] or other related work [2, 22, 25].

The contact between two rough spheres can be mathematically transformed into the contact
between a deformable smooth sphere and a nominal rigid flat rough surface as shown in
Figure 1. The equivalent radius R and the equivalent standard deviation of the asperity
height distribution σ can be obtained by the radii and roughness parameters of the two
spheres as

1

R
=

1

R1
+

1

R2
; σ2 = σ2

1 + σ2
2 (1)

in which subscripts 1 and 2 indicate the sphere number.
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Referring to Figure 2(a), δ is the separation or overlap between the non-deformed configu-
ration of the sphere and the mean line of the flat surface. To make it compatible with the
convention of the DEM, δ is assumed to be negative when the two surfaces are in separa-
tion, and positive in overlap. wG is the bulk deformation of the sphere. The profile of the
undeformed sphere (black dashed line) can be described by

z(r) = δ − r2

2R
(2)

where r is the distance from the centre to the contact point. The overlap of the asperity of
height zs at r with the un-deformed sphere is

δ(r) = zs − wG(r) (3)

When δ(r) > 0, the contact force between the sphere and the asperity can be computed by
the Hertzian theory

f(zs) =
3

4
Eβ1/2[zs − wG(r)]3/2 (4)

in which β is the radius of the top of the asperity and is assumed to be the same for all the
asperities. Further assume that the distribution of the asperity heights obeys the following
Gaussian probability density function

φ(zs) =
1√

2πσ2
exp

(
− z2

s

2σ2

)
(5)

The probability of having a contact at any given asperity of height zs is

prob(zs > wG(r)) =

∫ +∞

w
G

(r)
φ(zs)dzs (6)

Then the contact pressure distribution between the sphere and the asperities over the entire
contact area can be expressed as

pG(r) = C

∫ +∞

w
G

(r)

[
zs − wG(r)

]3/2
φ(zs)dzs (7)

with the constant

C =
4

3
ENβ1/2 (8)

in which E is the equivalent Young’s modulus of the original two spheres, and N is the number
of summits in the nominal area. The corresponding deformation wG(r) can be obtained from
the solution to the axi-symmetric deformation of an elastic half-space as follows [28]

wG(r) =
4

πE

∫ ā

0

t

r + t
pG(t)K(k)dt (9)

where K(k) is the complete elliptic integral of first kind with elliptic modulus

k =
2
√
rt

r + t
(10)

and ā is the radius of the contact area. By integrating the pressure distribution over the
contact area, the total contact force PG between the sphere and the rough surface with
overlap δ can be obtained by

PG(δ, σ) =

∫ ā

0
2πr pG(r) dr (11)
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The relevant numerical procedure in order to effectively and accurately obtain PG(δ, σ) has
been extensively discussed in [2].

This model contains three roughness parameters N , β and σ which are not easily measurable
but may be identified by Nayak’s analysis [26] of correlated random fields. The pioneering
work in statistical geometry of the oceanographer can be applied to the analysis of surface
roughness[27]. Then the parameters of the GW model can be related to the properties of
peaks in a two-dimensional, isotropic, Gaussian random field by

N =
m4

6π
√

3m2

=

√
3

6πl2c
(12)

β =
8

3

√
m4

π
=

8σz√
3πl2c

(13)

σ = m0 −
0.8969m2

2

m4
= 0.7011σ2

z (14)

where lc and σz are the parameters of the random field; and m0, m2 and m4 are the zeroth,
second and fourth moments of the power spectral density which is derived from Fourier
transform of the surface profile.

2.2 An extended GW model

The classic GW model has been validated (mainly qualitatively though), extended and applied
to many applications, see for instance [24, 28, 29, 30, 32]. It is evident, however, that the GW
model is better suited for lightly loaded contacts with large separations where the surface
asperities deform elastically. Also, the purely elastic model (GW model) overestimates the
separation at a given load [30]. This coincides with our previous work, in which a simple
extension of the GW model to the case δ > 0 is made but when δ is small, a detailed analysis
conducted leads to the following conclusion

PG(δ) < PH (δ) (15)

where PH (δ) = 4
3E
√
Rδ3/2 is the Hertzian contact force for the smooth spheres. Clearly this

is not physical as the contact force for the two rough spheres cannot be smaller than the
smooth case for the same nominal overlap δ.

The classic GW model has been extended to consider the plastic deformation of the surface
asperities under the condition of high loads and small separations. Several plastic mod-
els have been proposed in which the deformation is divided into different regimes: elastic,
elasto/plastic and fully plastic [29, 30, 31]. In all these models, the inception of the plastic
deformation needs to be determined by introducing additional parameters, such as plastic
index (or hardness), which are material dependent. As our current work is a preliminary
study of developing the random contact law for rough particles contacts in DEM simulation,
the classic GW model is used for its simplicity.

To overcome the above mentioned defect of the classic GW model when applied to the DEM
simulation, an extended contact model is developed in the current work [23], and briefly
introduced as follows.

The rough (flat) surface is divided into two parts: the nominal smooth surface and the rough
asperities above, and both parts additively contribute to the deformation of the (smooth)
sphere and the final contact force. As shown in the Figure 2(b), the profile in green represents
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the deformed sphere in contact only with the smooth surface (i.e. the Hertizan part); while
the profile in red represents the final deformed configuration of the sphere in contact with
the rough surface.

The contact force due to the smooth part can be obtained from the Hertz law and the
additional contact force caused by the asperities is determined by the classic GW model.
The contact pressure distribution is the sum of the Hertz pressure distribution in terms of
the overlap δ and the GW pressure distribution in terms of the roughness parameter σ.

Thus the total pressure distribution pI (r) and deformation distribution wI (r) of the sphere
can be expressed by

pI (r) = pH (r) + pG(r) (16)

wI (r) = wH (r) + wG(r) (17)

where pG(r) and wG(r) are defined by (7) and (9) respectively in the classic GW model; while
pH (r) and wH (r) are defined by the Hertizan theory with aH =

√
Rδ as:

pH (r) =


0; r ≤ aH

2E

π

aH

R

(
1− r2

a2
H

)
1/2; r > aH

(18)

wH (r) =


δ − r2

2R
; r ≤ aH

a2
H

πR

[ r2

a2
H

− 1 +
(

2− r2

a2
H

)
sin−1

(aH

r

)]
; r > aH

(19)

The total contact force PI (δ, σ) is the summation of the Hertz force PH (δ) and the rough
GW contribution PG(δ, σ) defined by (11) as

PI (δ, σ) = PH (δ) + PG(δ, σ) (20)

By utilising the fact that the Hertz contribution is zero when δ is negative, the above extended
GW model includes the classic case as a special case. For the rough part, pG can be set to be
zero when δ < −3σ because the probability that a summit zs lies in the range [−3σ,+3σ] is
99.9%. The comparison with the classic GW model and further discussions of this extended
model can be found in [23].

Compared with conventional contact models for smooth spheres such as the linear contact
model, and the Hertz contact model, the current contact model explicitly takes account of
the influence of sphere roughness on normal contact forces. Also, compared with the other
two contact models [19, 20] for rough spheres mentioned in Introduction, which essentially
treat the surface roughness in a deterministic way, our contact model considers the random
feature of the surface roughness in a statistical sense.

3 Non-dimensional forms

The aim of this work is to establish a normal contact law that can be readily used in DEM.
Considering the complicity of the above extended GW model, non-dimensional analysis is
performed to make the final formula with a minimum number of parameters. There are three
roughness parameters in the GW model: N, β and σ. A non-dimensional parameter, µ, is
defined in [24] as

µ =
8

3
σN
√

2Rβ (21)
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Nβ1/2 in (11) can be replaced by

Nβ1/2 =
3µ

8
√

2Rσ
(22)

Then the coefficient C defined by (8) can be expressed in terms of only two roughness pa-
rameters σ and µ as

C =
3µ

8
√

2Rσ
(23)

The explicit expression between the overlap δ and the total contact force PI needs to be
established following the numerical procedure developed in [2]. To reduce the computational
costs and improve the accuracy of the subsequent curve fitted empirical formulas, two non-
dimensional forms are presented below using δ and σ as the scaling factor respectively.

Table 1: The scaling factors in two non-dimensional forms

q∗ σ-form δ-form

δ∗ σ -
σ∗ - δ

w∗
I/G/H

σ δ

z∗s σ δ
φ∗(z∗s ) 1/σ 1/δ

r∗
√

2Rσ
√

2Rδ

ā∗
√

2Rσ
√

2Rδ
p∗
I/G/H

E
√
σ/8R E

√
δ/8R

P ∗
I/G/H

PH (σ) PH (δ)

There are three input parameters δ, σ and µ. To reduce the input parameters, two non-
dimensional parameters α and α′ are defined as

α =
σ

δ
; α′ =

1

α
=
δ

σ
(24)

Table 3 lists the scaling factors for those quantities in the two non-dimensional forms. The
non-dimensional expressions of the functions pI (r), wI (r) and PI for the two forms in terms
of the non-dimensional parameters α (or α′) are presented below.

The δ-form:

p∗
I
(r∗, α) = p∗

H
(r∗) + p∗

G
(r∗, α)

=
2a∗

π

(
1− r∗2

a∗2

)1/2
+ µ

∫ ∞
w∗

G
(r∗,α)

[
z∗s − w∗G(r∗, α)

]3/2
φ(z∗s )dz∗s (25)

w∗
G

(r∗, α) = w∗
H

(r∗) + w∗
G

(r∗, α)

=
(

1− r∗2

2a∗2

)
+

2

π

∫ ā∗

0

t∗

t∗ + r∗
p∗
G

(t∗, α)K(k)dt∗ (26)

P ∗
I

(α, µ) = P ∗
H

+ P ∗
G

(α, µ) = 1 +
3
√

2

8

∫ ā∗

0
2πr∗p∗

G
(r∗, α) (27)
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Figure 3: The division of the δ − σ plane into three cases

The σ-form:

p∗
I
(r∗, α′) = p∗

H
(r∗) + p∗

G
(r∗, α′)

=
2a∗

π

(
1− r∗2

a∗2

)1/2
+ µ

∫ ∞
w∗

G
(r∗,α′)

[
z∗s − w∗G(r∗, α′)

]3/2
φ(z∗s )dz∗s (28)

w∗
I
(r∗, α′) = w∗

H
(r∗, α′) + w∗

G
(r∗, α′)

= α′
(

1− r∗2

2a∗2

)
+

2

π

∫ ā∗

0

t∗

t∗ + r∗
p∗
G

(t∗, α′)K(k)dt∗ (29)

P ∗
I

(α′, µ) = P ∗
H

(α′) + P ∗
G

(α′, µ) = 1 +
3
√

2

8

∫ ā∗

0
2πr∗p∗

G
(r∗, α′)dr∗ (30)

The total contact force between two rough spheres can be expressed as

PI (δ, σ) = PH (δ)P ∗
I

(α, µ) = PH (σ)P ∗
I

(α′, µ) (31)

where both non-dimensional coefficients P ∗
I

(α, µ) and P ∗
I

(α′, µ) will be derived in empirical
form in the next section.

4 A normal interaction law based on the extended GW model

Interaction laws commonly used in DEM are an explicit formula in terms of the overlap
and other parameters of contact features which is obviously different from the extended
GW model in (31). Due to the complicity and implicit nature of the extended GW model
which cannot be implemented directly into the DEM framework, a curve-fitting procedure
is conducted to obtain a normal interaction law based on numerical results. The detailed
numerical procedures and computational issues have been discussed in our previous work [2].

As PH and P ∗
I

have been separated in (31), only P ∗
I

needs to be curve-fitted. Moreover, to
avoid numerical difficulties, the range of the input parameters has been divided into three
parts: Case I: 0 ≤ α ≤ 1; Case II: 0 ≤ α′ ≤ 1; and Case III: −3 ≤ α′ ≤ 0, as shown in
Figure 3.
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Three explicit approximations to P ∗
I

for the three cases, denoted as P ∗
I1

(α, µ), P ∗
I2

(α′, µ),
P ∗

I3
(α′, µ), are sought. The corresponding fitting results are acquired respectively with addi-

tional requirements for the continuity conditions as

P ∗
I1

(1, µ) = P ∗
I2

(1, µ);P ∗
I2

(0, µ) = P ∗
I3

(0, µ) (32)

The curve-fitting procedure is conducted by two steps to obtain the empirical formulas. In
the first step, a limited number of values for µ are selected, and for each fixed µ, a curve
fitting for P ∗

I
will be conducted. In the second step, the coefficients of the empirical functions

attained will be further curve-fitted in terms of µ by interpolating functions such as cubic
splines.

The first variable µ is assumed to be in the range of [1,50], and seven values of µ =
1, 2, 4, 10, 20, 35, 50 are selected. For each µ, 200 equally spaced values of α in [0,1] and
1000 α′ in [-3,1] are used to generate all the curves.

4.1 Empirical formula for Case I

(a) (b)

Figure 4: Case I - 0 ≤ α ≤ 1: (a) Computed P ∗
I

and cubic polynomial fitted curves; (b) The
coefficients of the cubic polynomial

Table 2: Case I (0 ≤ α ≤ 1): Coefficients of the cubic polynomial for different µ

coef.
µ

1 2 4 10 20 35 50

b0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
b1 0.6187 0.9078 1.2343 1.6938 2.0466 2.3291 2.5069
b2 -0.0694 -0.0220 0.0938 0.3399 0.5777 0.7919 0.9361
b3 0.0513 0.0593 0.0481 0.0085 -0.0344 -0.0745 -0.1018

Fitted formula

b0 1.0
b1 0.3484 ln(µ) + 0.6066µ0.1642

b2 0.3176µ0.3782 − 0.4135
b3 −0.0745/µ− 0.1737µ0.2134 + 0.2992

The numerical results of P ∗
I

for Case I (0 ≤ α ≤ 1) are shown in Figure 4(a) as the solid
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lines. A cubic polynomial is chosen as the curve-fitted formula for P ∗
I1

(α, µ)

P ∗
I1

(α, µ) = b0(µ) + b1(µ)α+ b2(µ)α2 + b3(µ)α3 (33)

which is subjected to the continuity condition (32).

The extended model reduces to the Hertz model when σ = α = 0 as

P ∗
I1

(0, µ) = 1 + P ∗
G1

(0, µ) = 1 (34)

So
b0(µ) = 1 (35)

Four points at α = 0, 1/3, 2/3, 1 are selected for the interpolation function P ∗
I1

(α, µ). The
fitted curves are plotted for each µ in Figure 4(a) by dashed lines. A very good fitting result
can be observed.

The relations between four coefficients bi(i = 0, ..., 3) and µ are depicted in Figure 4(b) and
listed in Table 2. A nonlinear least-squares procedure is applied to acquire the fitted formula
for each coefficient with µ as presented in Table 2.

4.2 Empirical formula for Case II

(a) (b)

Figure 5: Case II - 0 ≤ α′ ≤ 1: (a) Computed P ∗
I

and quadratic polynomial fitted curves;
(b) The coefficients of the quadratic polynomial

Table 3: Case II (0 ≤ α′ ≤ 1): Coefficients of the quadratic polynomial for different µ

coef.
µ

1 2 4 10 20 35 50

b0 0.3011 0.4989 0.7672 1.2141 1.6022 1.9357 2.1544
b1 0.7960 0.9877 1.2044 1.4986 1.7139 1.8810 1.9845
b2 0.5082 0.4630 0.4090 0.3339 0.2781 0.2342 0.2066

Fitted formula

b0 0.2284 ln(µ) + 0.2786µ0.3913

b1 0.2688 ln(µ) + 0.7873µ0.0451

b2 −0.0778 ln(µ) + 0.5132µ−0.0008
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(a) (b)

Figure 6: Case III - −3 ≤ α′ ≤ 0: (a) Computed P ∗
I

and quartic polynomial fitted curves;
(b) The coefficients of the quartic polynomial

Table 4: Case III (−3 ≤ α′ ≤ 0): Coefficients of the quartic polynomial for different µ

coef.
µ

1 2 4 10 20 35 50

b0 0.3011 0.4989 0.7672 1.2141 1.6022 1.9357 2.1544
b1 0.6187 0.6638 0.8981 1.1507 1.2872 1.3770 1.4295
b2 0.2431 0.3227 0.3460 0.2440 0.1058 0.0012 -0.0516
b3 0.0604 0.0665 0.0408 -0.0498 -0.1316 -0.1810 -0.1999
b4 0.0057 0.0047 -0.0010 -0.0161 -0.0277 -0.0333 -0.0345

Fitted formula

b0 0.2284 ln(µ) + 0.2768µ0.3913

b1 −0.2862/µ+ 0.191 ln(µ) + 0.7095
b2 −0.5037/µ− 0.2005 ln(µ) + 0.7384
b3 −0.2347/µ− 0.1473 ln(µ) + 0.226
b4 −0.0338/µ− 0.0245 ln(µ) + 0.0005µ+ 0.0387

The numerical results of P ∗
I2

for Case II 0 ≤ α′ ≤ 1 are showed in Figure 5(a) as the solid lines.
A quadratic polynomial is chosen as the curve-fitted formula for P ∗I2(α′, µ). The continuity
condition should also be satisfied in this case.

P ∗
I2

(α′, µ) = b0(µ) + b1(µ)α′ + b2(µ)α′2 (36)

P ∗
I2

(α′, µ) is determined as the interpolation function passing through the three points at
α = 0, 1/2, 1. Similar to Case I, the fitted results are presented both in Figure 5 and Table 3.
It is evident that a very good fitting result has been achieved.

4.3 Empirical formula for Case III

The numerical results of P ∗
I3

for Case III −3 ≤ α′ ≤ 0 are showed in Figure 6(a) as the
solid lines. A quartic polynomial is chosen as the curve-fitted formula for P ∗

I3
(α′, µ). The

continuity condition should also be satisfied in this case.

P ∗
I3

(α′, µ) = b0(µ) + b1(µ)α′ + b2(µ)α′2 + b3(µ)α′3 + b4(µ)α′4 (37)
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Figure 7: Rough surfaces of particles with different roughness parameters

P ∗
I3

(α′, µ) is determined as the interpolation function passing through the five points at α =
−3,−9/4,−6/4,−3/4, 0. Similar to the previous cases, the fitted results are presented both
in Figure 6 and Table 4. It is evident that a very good fitting result has been achieved.

In summary, the final explicit form of the normal interaction law based on the extended GW
model can be expressed as

PI (δ, σ, µ) =


PH (δ)P ∗

I1
(α, µ); δ ≥ σ

PH (σ)P ∗
I2

(α′, µ); 0 < δ < σ
PH (σ)P ∗

I3
(α′, µ); −3σ < δ < 0

0; δ < −3σ

(38)

5 Numerical Illustrations

The new random normal interaction law based on the extended GW model has been imple-
mented into a DEM code to investigate the effect of surface roughness on the mechanical
behaviour of a particle system. It should be noted that the material parameters used are
artificially chosen, and no real surface roughness parameters are taken. The results obtained
are therefore for illustration.

The material properties of the particles are: Young’s modulus E=1GPa, Poisson’s ratio ν =
0.3, density ρ = 2000kg/m3 and frictional coefficient f = 0.2. A constant frictional coefficient
is chosen here to exclusively show the influence of the roughness parameters, although the
coefficient itself is entirely determined by these parameters.

Four levels of surface roughness ratios σr = (0, 0.001, 0.005, 0.01) are considered for the fol-
lowing simulations, where σr = 0 represents the smooth surface. The surface roughness σ of
a particle is set to be proportional to its radius r: σ = σr r. The second roughness parameter
µ is taken to be 10 or 50. The first roughness parameter σ can be regarded as the measure-
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(a) (b)

Figure 8: The normal force interaction laws for particles with different surface roughness
parameters

ment of surface roughness in the normal direction which represents the height of the asperity.
The second roughness parameter may be viewed as the measurement of surface roughness in
the tangent direction in relation to the number and the radii of curvature of the asperities.
The surface of rough particles (r = 1) with different roughness parameters are depicted in
Figure 7.

In summary, seven samples with different roughness parameters have been created. The
normal contact laws for a unit particle (r = 1) with different surface roughness parameters
are showed in Figure 8(a), with an enlarged view in Figure 8(b) for overlap δ < 0. It is
obvious that as σr and µ increase, the value and range of the normal force increase as well.
Unlike the linear or Hertz contact law which defines the relationship between the total force
and the overlap by a power function with a constant exponent of 1 or 1.5.

The current normal contact law considers different contact behaviour of rough particles at
different contact stages. At the initial stage of contact between two rough particles, only
some asperities are in contact which corresponds to the slow growth part (Case III) of the
random normal contact law. As the overlap increases from zero, the contact force between
rough particles is subject to a rapid growth (Cases I and II). The random normal contact
law can reflect the contact behaviour between rough particles more reasonably.

Compressive tests will be simulated below to illustrate the effect of surface roughness on the
macro and micro mechanical characteristics of a particle assembly. The particle assembly is
generated randomly in a cubic box of the side length 60cm. The particle diameters obey the
Gaussian distribution with the average radius of 1cm and the relative deviation of 0.25. The
total number of the particles is 14812.

Two compressive loadings are carried out on the sample: one-dimensional compression and
three-dimensional compression. For the one-dimensional compress test, the sample is first
compacted to reach an initial isotropic stress of 0.5MPa. By setting the top and bottom
boundaries as rigid wall, and the periodic boundary to the two lateral directions, the one-
dimensional compression is simulated by moving the top and bottom walls at a constant
velocity in the vertical direction (Figure 9(a)). For the three-dimensional compress test,
the initial isotropic stress is 5MPa. The sample is enclosed with rigid walls in all directions.
Three-dimensional compression is simulated by moving the top and bottom walls at the same
constant velocity and using a servo-control mechanism to maintain the stress on the lateral
walls as 5MPa (Figure 9(b)).
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(a) One-dimensional compression (b) Three-dimensional compression

Figure 9: Numerical samples

5.1 One-dimensional compression

Figure 10: Porosities of the initial packings for samples with different roughness parameters

The initial porosities of samples with different roughness parameters with an isotropic stress
state of 0.5MPa are displayed in Figure 10. It shows that as the surface roughness ratio σr
increases, the porosity almost linearly increases from 0.5670 to 0.5745 (µ = 10) or 0.5790
(µ = 50). A larger roughness parameter µ leads to a higher porosity which indicates that
surface roughness makes the initial packing looser. This phenomenon can be explained by
investigating the normal contacts between particles.

Figure 11 depicts the normal contact links between particles. As mentioned above, the
random normal contact law is divided into three cases: Case I: σ ≤ δ; Case II: 0 ≤ δ < σ;
Case III: −3σ ≤ δ < 0. In Figure 11, the contact belonging to Case I is in red, Case II
in yellow and Case III in blue. It can be seen that increasing surface roughness parameters
gradually increases the number of contacts in Cases II and III.
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(a) µ = 10 σr = 0.001 (b) µ = 10 σr = 0.005 (c) µ = 10 σr = 0.01

(d) µ = 50 σr = 0.001 (e) µ = 50 σr = 0.005 (f) µ = 50 σr = 0.01

Figure 11: Normal contact links for initial packing samples with different roughness param-
eters

(a) µ = 10 σr = 0.001 (b) µ = 10 σr = 0.005 (c) µ = 10 σr = 0.01

(d) µ = 50 σr = 0.001 (e) µ = 50 σr = 0.005 (f) µ = 50 σr = 0.01

Figure 12: Normal contact distributions and contact laws for different samples
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Table 5: Percentage of the number of contacts number of initial packings (One-dimensional
compression)

µ = 10 µ = 50

Case σr = 0.001 σr = 0.005 σr = 0.01 σr = 0.001 σr = 0.005 σr = 0.01

I 91.07% 38.29% 6.58% 88.63% 26.54% 2.25%
II 3.94% 28.33% 25.93% 4.59% 25.09% 12.42%
III 4.99% 33.38% 67.49% 6.78% 48.37% 85.33%

Table 5 lists the percentage of the number of contacts in each case for six samples with rough
particles. Obviously, all the contacts in the samples of smooth particles belong to Case I
as the random normal contact law reduces to the Hertz contact law. The two roughness
parameters σr and µ affect the percentage to different degrees. σr determines the ranges
of the three cases so has a more significant influence. For both µ = 10 and µ = 50, as σr
increases from 0.001 to 0.01, the percentage of the number of contacts in Case I decreases
from around 90% to less than 10%. The percentage in Case II firstly increases then decreases
as σr increases from 0.001 to 0.05, then to 0.01. Meanwhile, the percentage in Case III
generally increases. For all σr=0.001,0.05,0.01, increasing µ increases the percentage in Case
III while decreases the percentage in Cases I and II.

Figure 12 illustrates the normal contact distribution, average normal contact force and contact
force vs the overlap for different samples. The blue solid line represents the normal contact
force vs overlap, the dashed red line represents the average normal force, the dashed vertical
black lines divide the contacts into the three cases, and the blue histogram indicates the
normal contact distribution over the overlap range. As the initial state stress for the six
samples is the same, the average normal force is in the range of 1.5 ∼ 1.6× 104N. With the
increase of σr, the average normal force decreases because the extension of the contact range
leads to more normal contacts but with small values. The intersection of the average normal
force and the normal contact law (red dashed line and blue solid line) determines the overlap
where most contacts occur. When σr = 0.001, for both µ, this intersection is located within
Case I, and most of the contacts occur in Case I as well. When σr = 0.005, for µ = 10, the
intersection is near the line dividing Cases II and III; the contacts in Case II (28.33%) and
Case III (33.38%) are almost the same. While for µ = 50, the intersection is in Case III,
making the percentage of contacts in Case III (48.37%) two times of it in Case II (25.09%).
When σr = 0.01, the intersection is in Case III and most contacts occur in Case III.

The one-dimensional compression is preformed on each sample reaching the final axial strain
of 0.2. Figure 13 shows the compression results for seven samples. It can be seen from
Figure 13(b) that the sample with smooth particles has the smallest coordination number.
Increasing σr will increase the coordination number while increasing µ has the opposite effect.
The coordination number increases as the porosity of the sample decreases or the contact
range of the normal contact law extends. The contact range is enlarged with the increase of
σr (Figure 8). The porosity of the sample increases with the increase of µ (Figure 10). Fig-
ure 13(a) shows the stress-strain curves, and the zoomed details of the stress-strain curves are
shown in Figure 14 for three axial strains (0.1,0.15 and 0.2), together with the corresponding
contacts distributions.

The compression stress exhibits a complicated relation with σr and µ. It can be explained
by collectively considering the coordination number, the normal contact distribution and
the normal contact law. Contacts between particles decide the stress state of the sample.
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(a) Stress-strain curves (b) Coordination number

Figure 13: Results of seven different samples under one-dimensional compression

Both the number of contacts and the corresponding forces make contributions. As roughness
parameters increase, the ranges for Cases II and III become larger.

Figure 14(a) illustrates the stress state when the axial strain is 0.1, while the left figure is an
enlarged view of Figure 13 for the axial strain between 0.09 and 0.1. For µ = 10, σr = 0.005
produces the largest stress and σr = 0.001 leads to the smallest stress. This is because
increasing σr will extend the contact range which will increase the number of contacts in
Case III. A larger contact number will result in the increase of stress as shown by comparison
between σr = 0.005 and σ = 0.001. While the contact force in Case III is very small especially
for large σr, if the increase of contact number cannot offset the decrease of the normal contact
force, the stress will decrease by comparison between σr = 0.005 and σ = 0.01. For each σr,
the stress for µ = 10 is larger than that for µ = 50. This is because that the total contact
number is smaller for µ = 50 due to a looser packing.

In Figures 14(b) and (c), where the axial strains are 0.15 and 0.2 respectively, the difference
between the stress for σr = 0.001 and σr = 0.01 diminishes gradually. For σr = 0.01, the
stress increase is caused by more contacts in Cases I and II and fewer contacts in Case III
during the compression (see Figure 15). For σr = 0.001, small contact ranges of Cases II and
III means that most of the contacts belong to Case I. The stress of σr = 0.005 is the largest.
Compared to σr = 0.01, smaller ranges of Cases II and III for σr = 0.005 make more contacts
occurring in Case I with larger normal forces. Compared to σr = 0.001, the larger ranges of
Case II and III for σr = 0.005 gives rise to a larger contact number.

In summary, surface roughness makes the initial packing of the samples more looser. When
the particle assembly is under one-dimensional compression, the sample of particles with
moderate roughness parameters shows a higher strength.

5.2 Three-dimensional compression

The initial isotropic stress state for the three-dimensional compression is 5MPa which is ten
times of that for the one-dimensional compression. Different contacts distributions can be
observed from these initial packings.

Table 6 lists the percentage of the number of contacts in each case for all the samples of rough
particles. For the smooth surface when σr = 0, all the contacts belong to Case I. For all the
rough samples, the percentage in Case I is dominant. Under the isotropic stress of 5MPa,
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(a) Axial strain=0.1

(b) Axial strain=0.15

(c) Axial strain=0.2

Figure 14: Stress-strain curves and corresponding normal contact distribution

(a) Case I (b) Case II (c) Case III

Figure 15: Relation between percentage of the number of contacts and axial strain for three
cases
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the packing is denser than the initial packing under the stress of 0.5MPa. More contacts are
shifted to Case I.

Table 6: Percentage of the number of contacts of initial packings (Three-dimensional com-
pression)

µ = 10 µ = 50

Case σr = 0.001 σr = 0.005 σr = 0.01 σr = 0.001 σr = 0.005 σr = 0.01

I 99.0% 93.75% 84.21% 98.82% 92.38% 76.39%
II 0.33% 2.42 % 8.32 % 0.28% 3.08 % 11.76%
III 0.67% 3.83 % 7.47 % 0.90% 4.54 % 11.85%

(a) Stress-strain curves (b) Coordination number

Figure 16: Results of seven different samples under three-dimensional compression

(a) Case I (b) Case II (c) Case III

Figure 17: Relation between percentage of the number of contacts and axial strain for three
cases

The three-dimensional compression is performed on each sample reaching the final axial strain
of 0.3. Figure 16 shows the stress-strain curves and corresponding variations of coordination
number for seven samples. As the influence of roughness parameters is significant in the initial
stage of the contact (Case III), the difference of the mechanical response between different
samples is not obvious compared to the difference in the one-dimensional compression with
the initial isotropic stress of 0.5MPa. Two reasons result in this phenomenon. Firstly, as
shown in Table 6, the large isotropic stress leads to almost the same contact distribution for
different initial packings. Secondly, during the compression, the lateral compression stress is
kept to be 5MPa which maintains a dense compaction of the sample. Under such a condition,
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the percentages of the number of contacts for the three contact cases keep constantly during
the compression process for all the samples as shown in Figure 17.

In summary, the roughness parameters have a significant influence on the looser packed
samples with more contacts occurring in the initial contact stage. For the dense packing,
the deformation of the particles is sufficiently large which makes the influence of the surface
roughness negligible.

Overall, compared to other properties of particles such as Youngs modulus, Poissons ratio and
density, the asperity characteristics play a secondary role in the macro property of the particle
systems. This is the main reason that the Hertz model governs the macro stress/strain curves.
The influence of the surface roughness cannot be neglected, however, especially for a loosely
packed particle system. The influence caused by the roughness characteristics on the packing
under an initial isotropic stress of 0.5MPa is more significant than on the packing under
the initial isotropic stress of 5MPa. For both particle systems considered, the discrepancies
caused by the roughness are more significant at the initial compressive loading stage.

6 Concluding Remarks

A random normal contact law based on the extended GW model for spheres with surface
roughness has been developed in this work. With the two non-dimensional forms proposed,
only two roughness parameters are required. The contact forces against different roughness
parameters are obtained numerically and then curve-fitted to derive an empirical formula as a
new and improved normal interaction law for spheres with surface roughness. The resulting
normal contact law has been incorporated into the existing DEM modelling procedure to
conduct compression tests under different loading paths. Numerical simulations illustrate
the influence of roughness parameters on the mechanical behaviour of the particle system.
The results show that surface roughness makes the initial packing of a sample more looser
and has a greater influence on looser packed samples as expected. It also shows that an
assembly of particles with moderate roughness parameters may exhibit a higher strength. It
is also possible to extend the current work to drive both a tangential frictional model and a
possible rolling resistant model, and the related work will be reported later.

It should be highlighted again that the current developed contact law is essentially based on
the classic GW theory where asperities are assumed to deform elastically. When the overlap
is large, some asperities, particularly those with large heights, will deform inelastically or
plastically. Therefore, the proposed contact law is more appropriate for small overlap cases
and/or for materials likely behaving elastically. Nevertheless, plastic-based GW models can
be readily incorporated within the current framework. Further developments to relax other
conditions inherent in the GW theory are also worth pursuing.

It is also important to mention that the current contact model has not been verified by any
experiment which is beyond the scope of the current work. This is mainly due to the fact
that very few experimental investigations of normal contact laws for rough surfaces have
been reported. In the limited cases, the experiments mainly focus on the contact between
two rough flat surfaces [33, 34, 35, 36], and most results lack the information that can be
used to validate theoretical models. Therefore more work is clearly needed in this aspect.
Due to the lack of real parameters of particle roughness and related experiment results, it is
not easy to clarify the application domain of the proposed model yet.
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