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minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expan-

sion of the spectral action for the Bianchi type-IX geometry are expressed in terms of

polynomials with rational coefficients in the cosmic evolution factors w1(t), w2(t), w3(t),

and their higher derivates with respect to time. We begin with the computation of the

Dirac operator of this geometry and calculate the coefficients a0, a2, a4 of the spectral ac-

tion by using heat kernel methods and parametric pseudodifferential calculus. An efficient

method is devised for computing the Seeley-de Witt coefficients of a geometry by making

use of Wodzicki’s noncommutative residue, and it is confirmed that the method checks out

for the cosmological model studied in this article. The advantages of the new method are

discussed, which combined with symmetries of the Bianchi type-IX metric, yield an elegant

proof of the rationality result.
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1 Introduction

Quantum cosmology studies the early universe where the energy scale is so high that one

would need to incorporate into the theory both quantum gravity and the Standard Model

with unbroken symmetries such as the hypothetical supersymmetry. This makes the exact

solution of any quantum cosmological problem essentially impossible as it amounts to

solving quantum fields genuinely interacting with quantized gravity, the nature of which

we know little about. However, since we are only interested in the large-scale behavior of the

early universe whose mass-energy distribution is highly homogeneous, we are encouraged

to exploit this symmetry and focus only on a few long-wavelength degrees of freedom. In

quantum cosmology, this common practice is known as the minisuperspace approximation,

which can be rigorously justified under certain criteria [37, 51].

Well-known examples of minisuperspaces include the Robertson-Walker model and its

anisotropic generalization to the Bianchi type-IX model. The Robertson-Walker metric is

of the form

ds2 = dt2 + a(t)2dσ2,

where a(t) is a general cosmic factor of the expanding universe and dσ2 is the round metric

on the 3-sphere S3. The Bianchi type-IX model, which enjoys a reduced SU(2) isometry

group rather than the full S3 symmetry, is written as

ds2 = w1(t)w2(t)w3(t)dt
2 +

w2(t)w3(t)

w1(t)
σ2
1 +

w3(t)w1(t)

w2(t)
σ2
2 +

w1(t)w2(t)

w3(t)
σ2
3, (1.1)

where σi are left-invariant 1-forms on SU(2)-orbits.

– 1 –
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In quantum cosmology, according to the Hartle-Hawking proposal (see [19, 24]), a

path integral approach is formulated in terms of a sum over 4-dimensional geometries,

with an action functional determined by the Einstein-Hilbert action (or a variant thereof)

for Euclidean gravity on the 4-dimensional geometries. The contribution of most geome-

tries is negligible and, in a semi-classical approximation, the path integral concentrates

on the instanton geometries. In particular, the minisuperspace models, which are based

on spatially homogeneous 3-dimensional geometries, have the advantage that the metric

structure is encoded in a finite dimensional problem, and the instanton equations reduce

in the Bianchi IX case to a well known system of singular ordinary differential equation,

the Painlevé VI equations, see [32], and also [3, 49, 53].

This paper is the first part of an ongoing investigation on a new approach to quantum

cosmology, based on the spectral action functional. In particular, here we focus on explicitly

computing the spectral action functional for the Bianchi IX minisuperspace models. In the

forthcoming second part [23] we will crucially use the explicit formulae that we obtained

in this paper to compute the spectral action for those Bianchi IX models that are also

self-dual, namely the gravitational instantons. In particular, the rationality result that

we prove in this paper will play a crucial role in obtaining an explicit expression of the

spectral action of the gravitational instantons in terms of modular forms. This will lead to a

surprising occurrence in quantum cosmology of the vector valued modular forms considered

in the Eichler-Zagier theory of Jacobi forms [21].

The spectral action functional, [7, 13], is an action functional for Euclidean gravity,

which can be regarded as a modified gravity model. It is defined in terms of the spectrum

of the Dirac operator, and it recovers the usual Einstein-Hilbert action with cosmological

term, along with modified gravity terms (Weyl curvature conformal gravity, Gauss-Bonnet

gravity), in an asymptotic expansion in the energy scale. As a model of gravity, the

spectral action was used in recent years as a possible source of new early universe models

and inflationary mechanisms, [4, 22, 36, 42–48].

More precisely, in this approach all the information about the gravitational field is

encoded in and recovered from the Dirac operator. The spectral action is defined as

Trace(f(D/Λ)), where D is the Dirac operator of the 4-dimensional geometry, Λ is an

energy scale, and f is a positive even function on the real line, a smooth approximation to

a cutoff function. This functional has an asymptotic expansion for large Λ of the form [7, 18]

Trace
(
f(D/Λ)

)
∼

∑

β∈Π

fβΛ
β

∫
− |D|−β + f(0)ζD(0) + · · · ,

where the sum is over points β ∈ R+ that belong to the dimension spectrum (the set of poles

of the zeta functions ζD(s) of the Dirac operator, and other related zeta functions), and the

contribution
∫
− |D|−β of each of these points is a residue, which is given by an integration of

certain explicit curvature expressions. The coefficients fβ are the momenta of the function

f and can be thought of as parameters of the model. In the case of a 4-dimensional compact

Riemannian manifold, the contributions of β = 0, 2, 4 in the expansion recover the Einstein-

Hilbert action with cosmological term, together with Weyl curvature conformal gravity and

a Gauss-Bonnet term. The momenta fβ give the (effective) gravitational and cosmological

– 2 –
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constants of the model. For a spinc manifold M , the coefficients of this expansion are

determined by the Seeley-de Witt coefficients a2n(D
2) appearing in the heat expansion,

Trace
(
e−tD2) ∼ t−dim(M)/2

∞∑

n=0

a2n(D
2)tn (t → 0+).

For a detailed mathematical treatment of the above asymptotic expansion, we refer the

reader to chapter 1 of the book [18].

An advantage of the spectral action, with respect to other gravity action functionals, is

that it continues to make sense when the underlying geometry becomes a noncommutative

geometry, [14]. Indeed, a good analog of compact Riemannian manifolds in the noncommu-

tative world is given by the theory of spectral triples. These are specified by data (A,H, D),

where A is an involutive algebra represented by bounded operators on a Hilbert space H,

and D is an unbounded self-adjoint operator in H that plays the role of the Dirac op-

erator, by encoding the metric information. This set up, which includes a great variety

of noncommutative spaces, generalizes Riemannian geometry, since Connes’ reconstruction

theorem [16] states that if A is commutative, then, under suitable regularity conditions, the

triple consists of the algebra of smooth function on a spinc manifold acting on the L2-spinors

and D is the Dirac operator. Extending the gravity action functional to noncommutative

spaces is especially useful as a method for constructing models of gravity coupled to matter.

These are obtained by taking a product of the ordinary 4-dimensional spacetime geometry

with a finite noncommutative geometry that specifies the matter content of the model.

Then gravity (modelled by the spectral action) on the product “almost-commutative ge-

ometry” gives, in the asymptotic expansion, a model of gravity non-minimally coupled to

matter on the curved background given by the 4-geometry, [6, 13]. Indeed, in addition to

extracting local geometric information and recovering the Einstein-Hilbert action, the spec-

tral action, generalized to suitable almost-commutative geometries, recovers (extensions of)

the Standard Model of elementary particles, including gauge fields with the Yang-Mills ac-

tions, a Higgs sector, and a fermion content that includes right handed neutrinos with

Majorana masses, and a candidate inflation field [6, 8–10, 12, 15, 43, 45].

In this paper we focus only on pure gravity, hence we consider the spectral action

on an ordinary, commutative geometry rather than its extension to almost-commutative

geometries. However, the model that we discuss here can be further enriched by coupling

to a matter sector, by considering different possible almost-commutative geometries over

the Bianchi-IX spacetimes.

Beside trying to fit the Standard model into the early universe spacetime, another

possible investigation of physical importance is to quantize supersymmetric systems in a

Bianchi-type IX minisuperspace. Since the energy scale of the early universe is very likely

to be higher than the supersymmetry breaking scale, it is of great interest to see how super-

symmetry may possibly change the picture of the early universe. Since the Hamiltonians of

supersymmetric systems can often be identified with well-behaving elliptic operators acting

on spin bundles for Majorana fermions or fields of differential forms for Dirac fermions, the

spectral action [7] approach appears to be a handy tool, where the celebrated Atiyah-Singer

– 3 –
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index theorem may be used to calculate the Witten indices of certain supersymmetric theo-

ries and thus to conclude whether the supersymmetry can be spontaneously broken [2, 56].

We also do not explicitly discuss these aspects in the present paper.

Our main focus here is the explicit computation of the terms in the expansion of the

spectral action for a Bianchi-type IX minisuperspace. Carrying out explicit computations

of the spectral action functional is usually a very challenging problem: it is of great im-

portance, as a general problem, to develop different methods for computing the spectral

action. In particular, any interpretation of the full expansion of a spectral action is highly

desirable. For example, using the Poisson summation formula, the spectral action for the

Dirac operator on highly symmetric manifolds, such as products of spheres by tori, was

computed in [10], and generalized to the case of spherical space forms and Bieberbach

manifolds in [5, 44, 45, 52]. For the Euclidean Robertson-Walker spacetime, with a gen-

eral cosmic factor a(t), Chamseddine and Connes have devised an efficient method in [11]

for computing the terms of the spectral action, which is based on making the use of the

Euler-Maclaurin formula and the Feynman-Kac formula. They computed the terms up to

a10 in the expansion and made a conjecture, which was addressed in [26] by using pseu-

dodifferential operators and heat kernel techniques. That is, it was shown that a general

term in the expansion is described by a polynomial with rational coefficients in a(t) and

its derivatives of a certain order.

The Bianchi type-IX minisuperspace case, which is the focus in this paper, is a homoge-

neous but anisotropic cosmological model. Since the spectral action of a geometry depends

on the eigenvalues of the square of its Dirac operator, we explicitly compute the Dirac

operator D of the Bianchi type-IX metric in section 2 and derive the pseudodifferential

symbol of D. Since it has a lengthy expression, the symbol of D2 is given the appendix A.

In section 3, following a review of the heat kernel method that uses pseudodifferential cal-

culus for the computation of the Seeley-de Witt coefficients [30], we present the calculation

of the terms a0, a2, a4 in the expansion of the spectral action associated with D. The term

a4 is presented in a short form there, and for the sake of clarity its full expression is given

in the appendix B.

We devise a new method for calculating the Seeley de-Witt coefficients of a geometry in

terms of noncommutative residues of operators, which extends the result on the realization

of the Einstein-Hilbert action as the residue of a power of the Laplacian, see [31, 33, 35].

This method is explained in detail in section 4 and it checks out to give the same result for

the calculated terms a0, a2, a4 for the Bianchi type-IX metric. Combining the symmetries

of the metric with technical properties of pseudodifferential symbols of parametrices of

the Laplacians, which significantly simplify in view of the new method using the Wodzicki

residue, we prove a rationality result for a general term in the expansion of the spectral

action for the Bianchi type-IX metric in section 5. That is, we show that general terms

of the expansion are expressed by several variable polynomials with rational coefficients

evaluated on w1(t), w2(t), w3(t), and their derivatives of certain orders. In section 6, we

discuss the gravitational instantons, which form an especially interesting class of Bianchi

type-IX models, and elaborate on the significance of the rationality for the spectral action

in relation to the arithmetic and number theoretic structures in mathematical physics. Our

main results and conclusions are summarized in section 7.

– 4 –
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2 The Dirac operator of Bianchi type-IX metrics

The heat kernel method that uses pseudodifferential calculus for computing the Seeley-

de Witt coefficients of an elliptic positive operator on a compact manifold relies on the

pseudodifferential symbol of the operator in local charts, see chapter 1 of the book [30].

Thus, in this section we compute the Dirac operator D of the Bianchi type-IX metric and

thereby obtain its symbol, using which one can calculate the symbol of D2.

The most efficient way of computing the Dirac operator of a geometric space is to use

an orthonormal coframe {θa} for the metric, which, from the definition of D, yields

D =
∑

a

θa∇S
θa ,

where ∇S is the spin connection of the spin bundle and {θa} is the predual of the coframe,

cf. page 68 of the book [29]. Since ∇S is the lift of the Levi-Civita connection ∇ to the spin

bundle, one starts with computing the matrix of 1-forms ω = (ωa
b ) such that ∇ = d + ω

in terms of θa in a local chart x = (xµ) ∈ U , which can be lifted to the matrix of the spin

connection 1-forms by making use of the Lie algebra isomorphism µ : so(m) → spin(m)

given by

µ(A) =
1

4

∑

a,b

Aabeaeb, A = (Aab) ∈ so(m),

where m is the dimension of the manifold, see Lemma 4.8 on page 59 of [50]. We note

that {ea} is the standard basis for Rm considered inside the Clifford algebra of Rm where

spin(m) is spanned linearly by {eaeb; a < b}.
The ωa

b are found uniquely by writing

∇θa =
∑

b

ωa
b ⊗ θb,

and by imposing the conditions that characterize the Levi-Civita connection, namely

metric-compatibility and torsion-freeness which respectively imply that

ωa
b = −ωb

a, dθa =
∑

b

ωa
b ∧ θb.

Therefore the Dirac operator is written as

D =
∑

a,µ

γadxµ(θa)
∂

∂xµ
+

1

4

∑

a,b,c

γcωb
acγ

aγb, (2.1)

where ωb
ac are defined by

ωb
a =

∑

c

ωb
acθ

c,

and the matrices γa represent the Clifford action of θa on the spin bundle S, namely

that, they are k × k matrices, k = rk(S), which satisfy the relations (γa)2 = −I and

γaγb + γbγa = 0 for a 6= b.

– 5 –
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The Dirac operator is a differential operator of order 1, and using the Fourier inversion

formula, its action on a spinor s written in the chosen local chart U can be expressed by

Ds(x) = (2π)−m/2

∫
eix·ξ σ(D)(x, ξ) ŝ(ξ) dξ

= (2π)−m

∫ ∫
ei(x−y)·ξ σ(D)(x, ξ) s(y) dy dξ, (2.2)

where σ(D) : U × Rm → Mk(C) is the pseudodifferential symbol of the operator, ŝ is the

component-wise Fourier transform of s, and endomorphisms of S are locally identified with

Mk(C). That is, considering the formula (2.1), the symbol is written as

σ(D)(x, ξ) =
∑

a,µ

γadxµ(θa)(iξµ+1) +
1

4

∑

a,b,c

γcωb
acγ

aγb,

where x = (x0, x1, . . . , xm−1) ∈ U and ξ = (ξ1, ξ2, . . . , ξm) ∈ Rm. In general, the effect of

change of coordinates on pseudodifferential symbols suggests that it is natural to consider

Rm as the cotangent fibre at point x, see for example Lemma 1.3.2 on page 24 of [30].

We go through the above process for the Bianchi type-IX metric,

ds2 = w1w2w3 dt dt+
w1w2 cos(η)

w3
dφ dψ +

w1w2 cos(η)

w3
dψ dφ

+

(
w2w3 sin

2(η) cos2(ψ)

w1
+ w1

(
w3 sin

2(η) sin2(ψ)

w2
+

w2 cos
2(η)

w3

))
dφ dφ

+

(
w2
1 − w2

2

)
w3 sin(η) sin(ψ) cos(ψ)

w1w2
dη dφ+

(
w2
1 − w2

2

)
w3 sin(η) sin(ψ) cos(ψ)

w1w2
dφ dη

+

(
w2w3 sin

2(ψ)

w1
+

w1w3 cos
2(ψ)

w2

)
dη dη +

w1w2

w3
dψ dψ, (2.3)

which is written in the local coordinates (xµ) = (t, η, φ, ψ), where S3 is parametrized by

the map

(η, φ, ψ) 7→
(
cos(η/2)ei(φ+ψ)/2, sin(η/2)ei(φ−ψ)/2

)
,

with the parameter ranges 0 ≤ η ≤ π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π. An orthonormal coframe

for ds2 is given by

θ0 =
√
w1w2w3 dt,

θ1 = sin(η) cos(ψ)

√
w2w3

w1
dφ− sin(ψ)

√
w2w3

w1
dη,

θ2 = sin(η) sin(ψ)

√
w1w3

w2
dφ+ cos(ψ)

√
w1w3

w2
dη,

θ3 = cos(η)

√
w1w2

w3
dφ+

√
w1w2

w3
dψ.

– 6 –
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By explicit calculations in this basis we find that the non-vanishing ωb
ac are determined

by the following terms:

ω0
11 = −w2 (w1w

′
3 − w3w

′
1) + w1w3w

′
2

2(w1w2w3)3/2
, ω0

22 = −w2 (w3w
′
1 + w1w

′
3)− w1w3w

′
2

2(w1w2w3)3/2
,

ω0
33 = −w2 (w3w

′
1 − w1w

′
3) + w1w3w

′
2

2(w1w2w3)3/2
, ω1

23 = −w2
1w

2
2 − w2

3

(
w2
1 + w2

2

)

2(w1w2w3)3/2
,

ω1
32 = −w2

1

(
w2
2 − w2

3

)
+ w2

2w
2
3

2(w1w2w3)3/2
, ω2

31 = −w2
2w

2
3 − w2

1

(
w2
2 + w2

3

)

2(w1w2w3)3/2
.

Thus we can write the Dirac operator explicitly as

D =
∑

a,µ

γaeµa
∂

∂xµ
+

1

4
√
w1w2w3

(
w

′

1

w1
+

w
′

2

w2
+

w
′

3

w3

)
γ1

−
√
w1w2w3

4

(
1

w2
1

+
1

w2
2

+
1

w2
3

)
γ2γ3γ4, (2.4)

where the only non-vanishing eµa = dxµ(θa) are:

e00 =
1√

w1w2w3
, e11 = −

√
w1 sin(ψ)√
w2w3

, e12 =

√
w2 cos(ψ)√
w1w3

,

e21 =

√
w1 csc(η) cos(ψ)√

w2w3
, e22 =

√
w2 csc(η) sin(ψ)√

w1w3
, e31 = −

√
w1 cot(η) cos(ψ)√

w2w3
,

e32 = −
√
w2 cot(η) sin(ψ)√

w1w3
, e33 =

√
w3√

w1w2
.

We note that we use the following gamma matrices in our calculations:

γ0 =




0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0


 , γ1 =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 , γ2 =




0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0


 , γ3 =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


 .

Accordingly, the pseudodifferential symbol of the above Dirac operator is given by

σ(D)(x, ξ) = − iγ2
√
w1 (csc(η) cos(ψ) (ξ4 cos(η)− ξ3) + ξ2 sin(ψ))√

w2
√
w3

+
iγ3

√
w2 (sin(ψ) (ξ3 csc(η)− ξ4 cot(η)) + ξ2 cos(ψ))√

w1
√
w3

+
iγ1ξ1√

w1
√
w2

√
w3

+
iγ4ξ4

√
w3√

w1
√
w2

+
1

4
√
w1w2w3

(
w

′

1

w1
+

w
′

2

w2
+

w
′

3

w3

)
γ1

−
√
w1w2w3

4

(
1

w2
1

+
1

w2
2

+
1

w2
3

)
γ2γ3γ4. (2.5)

By computing D2 explicitly using (2.4) or by using the composition rule for symbols,

σ(D2)(x, ξ) =
∑

α∈Z4
≥0

(−i)|α|

α!
∂α
ξ σ(D)(x, ξ) ∂α

xσ(D)(x, ξ), (2.6)

– 7 –
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which is explained more generally by (3.3) and used crucially in the following section, one

can find the pseudodifferential symbol of D2 explicitly. Note that the above summation is

over finitely many non-zero terms since σ(D)(x, ξ) is a polynomial in ξ whose coefficients

are matrix-valued functions of the coordinates x = (xµ) ∈ U . Indeed, one finds that

σ(D2)(x, ξ) = p2(x, ξ) + p1(x, ξ) + p0(x, ξ),

where each pk is homogeneous of order k in ξ. The specific expressions for the pk(x, ξ) are

given in the appendix A.

3 Calculation of the terms up to a4 in the spectral action

Calculation of the Seeley-de Witt coefficients associated with an elliptic positive differential

operator on an m-dimensional compact manifold M can be achieved by using the Cauchy

integral formula and parametric pseudodifferential calculus, which is explained in detail in

chapter 1 of the book [30]. Let us review this method for the operator D2, where D is the

Dirac operator acting on a spin bundle on M . In order to derive a small time asymptotic

expansion of the form

Trace
(
e−tD2) ∼ t−m/2

∞∑

n=0

a2n(D
2)tn (t → 0+), (3.1)

one can start with the Cauchy integral formula by writing

e−tD2

=
1

2πi

∫

γ
e−tλ(D2 − λ)−1 dλ, (3.2)

where the contour γ in the complex plane goes around the non-negative real numbers

clockwise. Then, the idea is to approximate (D2−λ)−1 by pseudodifferential operators and

to derive the expansion (3.1) by computing the trace of the corresponding approximation

of the heat kernel.

The symbol of D2 in a local chart U is of the form p2(x, ξ) + p1(x, ξ) + p0(x, ξ) :

U × Rm → Mk(C), where each pk is homogeneous of order k in ξ. Since D2 is an elliptic

differential operator of order 2, the inverse of D2 − λ is approximated by its parametrix

Rλ with

σ(Rλ) ∼
∞∑

j=0

rj(x, ξ, λ),

where each rj(x, ξ, λ) is a parametric pseudodifferential symbol of order −2 − j, in the

sense that

rj(x, tξ, t
2λ) = t−2−jrj(x, ξ, λ).

For precise details about the type of pseudodifferential symbols used in this article, we

refer the reader to page 11 and page 50 of the book [30].

We mainly use the following property of the pseudodifferential calculus. Consider

pseudodifferential operators Pj , j = 1, 2, of orders dj defined in a local chart by symbols
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σ(Pj) : U × Rm → Mr(C), namely that, for any local section s,

Pjs(x) = (2π)−m/2

∫
eix·ξ σ(Pj)(x, ξ) ŝ(ξ) dξ

= (2π)−m

∫ ∫
ei(x−y)·ξ σ(Pj)(x, ξ) s(y) dy dξ.

Then, the composition P1P2 is a pseudodifferential operator of order d1+d2 and its symbol

is given asymptotically by (see Lemma 1.2.3 on page 17 of the book [30])

σ(P1P2) ∼
∑

α∈Zm
≥0

(−i)|α|

α!
∂α
ξ σ(P1)(x, ξ) ∂

α
xσ(P2)(x, ξ). (3.3)

It is customary and convenient to use the notation σ(P1) ◦ σ(P2) for the latter, which

indeed defines a product on pseudodifferential symbols corresponding to the composition

of pseudodifferential operators modulo infinitely smoothing operators.

Thus, by taking advantage of the calculus of symbols, the approximation of (D2−λ)−1

by the parametrix Rλ turns to solving the symbolic equation

σ(Rλ(D
2 − λ)) ∼ I,

where I is the identity matrix. There is a recursive solution for the terms rj(x, ξ, λ) as

follows. Considering the nuance that the parameter λ is of order 2 (see page 51 of [30]),

and using the notation p̃2 = p2 − λ, p̃1 = p1, p̃0 = p0, the above equation yields




∞∑

j=0

rj(x, ξ, λ)


 ◦

(
2∑

k=0

p̃k

)
∼

2∑

k=0

∞∑

j=0

rj ◦ p̃k

∼
2∑

k=0

∞∑

j=0

∑

α∈Zm
≥0

(−i)|α|

α!
∂α
ξ rj ∂

α
x p̃k

∼
∞∑

n=0


 ∑

−2−j−|α|+k=−n

(−i)|α|

α!
∂α
ξ rj ∂

α
x p̃k


 ∼ I. (3.4)

Note that ∂α
ξ rj ∂

α
x p̃k is of order −2 − j − |α| + k, which is a non-negative integer, and in

the last summation the terms of the same homogeneity order −n, are gathered together.

For the case n = 0, there is only one solution to −2− j − |α|+ k = 0, which is k = 2,

j = 0, α = 0 ∈ Zm, and the corresponding term in the above summation is r0 p̃2. Setting

this equal to I, which is the only homogeneous term of order 0 on the right side, one has

r0(x, ξ, λ) = p̃2(x, ξ, λ)
−1 = (p2(x, ξ)− λ)−1. (3.5)

The following argument shows that for any integer n > 0, rn can be computed if r0, r1,

. . . , rn−1 are given, thus, having r0 one can proceed recursively to compute the next terms.

That is, for an arbitrary arbitrary integer n > 0, one can write the terms in the summation
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in (3.4) that are homogeneous of order −n as

∑

j≥0, 0≤k≤2, α∈Zm
≥0

−2−j−|α|+k=−n

(−i)|α|

α!
∂α
ξ rj ∂

α
x p̃k = rn p̃2 +

∑

0≤j<n, 0≤k≤2, α∈Zm
≥0

−2−j−|α|+k=−n

(−i)|α|

α!
∂α
ξ rj ∂

α
x p̃k,

because in order to have −2 − j − |α| + k = −n, the conditions on the indices force that

0 ≤ j ≤ n, and when j = n the only solution to the equation is the case k = 2, α = 0 ∈ Zm.

Since the equation (3.4) indicates that the sum of the homogeneous terms of negative order

should vanish, one concludes that

rn = −
(
∑ (−i)|α|

α!
∂α
ξ rj ∂

α
x p̃k

)
(p̃2)

−1 = −
(
∑ (−i)|α|

α!
∂α
ξ rj ∂

α
x pk

)
r0, (3.6)

where the summations are over all α ∈ Z4
≥0, j ∈ {0, 1, . . . , n − 1}, k ∈ {0, 1, 2}, such that

|α| + j + 2 − k = n. Note that in the final expression for rn, we have replaced p̃k by pk,

which is allowed since in the summation, α has to be a non-zero tuple of non-negative

integers whenever k = 2.

By choosing a large enough N , the pseudodifferential operator associated with the sym-

bol r0(x, ξ, λ)+· · ·+rN (x, ξ, λ) provides a desired approximation of the operator (D2−λ)−1.

By substituting this approximation in the Cauchy integral formula (3.2), one obtains an

approximation of the kernel of the operator e−tD2

. Then, in order to derive the asymptotic

expansion for Trace(e−tD2

), one can calculate the integral of the approximation of the ker-

nel of e−tD2

over the diagonal of M ×M (against the volume form). This process requires

an intricate analysis, which is carried out rigorously in section 1.7 of the book [30]. It is

shown that a general coefficient in the asymptotic expansion (3.1) is given by

a2n(D
2) =

∫

M
a2n(x,D

2) dvolg(x), (3.7)

where the invariantly defined function in the integral is defined in terms of the symbol r2n,

which as shown above can be computed recursively in a local chart. That is,

a2n(x,D
2) =

(2π)−m

2πi

∫

Rm

∫

γ
e−λ tr (r2n(x, ξ, λ)) dλ d

mξ. (3.8)

This shows that these coefficients are local invariants of the geometry. We note that the

odd coefficients vanish since for any odd j, the term rj(x, ξ, λ) is an odd function of the

variable ξ ∈ Rm, whose integral over Rm vanishes.

Applying this method to D2, where D is the Dirac operator (2.4) of the Bianchi type-

IX metric (2.3), we compute the corresponding a0, a2, a4, which are recorded below without

writing the integral with respect to the time coordinate t. That is, using the expressions

for the homogeneous components pk of order k = 0, 1, 2 of the symbol of D2, which are

given in the appendix A, we use the formulas (3.5) and (3.6) to explicitly compute the

corresponding r0, . . . , r4. We then use the formula (3.8) to compute the functions whose

integrals over the manifold, according to the formula (3.7), give the terms a0(D
2), a2(D

2),
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a4(D
2). It should be stressed that because of the following particular structure (cf. page

57 of the book [30])

tr (rn(x, ξ, λ)) =
∑

n=2j−|α|−2
|α|≤3n

rn,j,α(x) ξ
α tr

(
r0(x, ξ, λ)

j
)
,

which can be proved by induction from (3.5) and (3.6), the integrals involved in (3.8) can

be calculated explicitly in concrete examples by using standard methods of analysis and

complex analysis (indeed, the Cauchy integral formula is mainly used).

The first term, which up to multiplication by a universal constant gives the volume, is

simply found to be

a0(D
2) = 4w1w2w3.

After remarkable cancelations, the next term, which up to multiplication by a universal

constant gives the total curvature, is given by

a2(D
2) = −w2

1

3
− w2

2

3
− w2

3

3
+

w2
1w

2
2

6w2
3

+
w2
1w

2
3

6w2
2

+
w2
2w

2
3

6w2
1

− (w′
1)

2

6w2
1

− (w′
2)

2

6w2
2

− (w′
3)

2

6w2
3

− w′
1w

′
2

3w1w2
− w′

1w
′
3

3w1w3
− w′

2w
′
3

3w2w3
+

w′′
1

3w1
+

w′′
2

3w2
+

w′′
3

3w3
.

Although it seems lengthy, after an enormous amount of cancellations, the next coefficient

is expressed as:

a4(D
2)=

w2w
3
1 + w3

2w1

15w3
3

− w3
1w

3
2

15w5
3

− w2w3

15w1
+

2 (w′
1)

2

15w1w2w3
− w3

(
w2
1 (w

′
1)

2 + w2
2 (w

′
2)

2
)

15w3
1w

3
2

− 7w′
2w

′
3

60w3
1

− (w2w
′
1 + w1w

′
2)w

′
3

45w2
1w

2
2

+
7w3w

′
2w

′
1

90w2
1w

2
2

− w2w3 (w
′
1)

2

18w5
1

+
5 (w3w

′
2 + w2w

′
3)w

′
1

36w4
1

− w′′
1

12w2w3
+

w3w
′′
2 + w2w

′′
3

24w3
1

+
w3 (w2w

′′
1 + w1w

′′
2)

36w2
1w

2
2

− 5w2w3w
′′
1

72w4
1

− 31 (w′
1)

4

90w5
1w2w3

−

41 (w3w
′
2 + w2w

′
3) (w

′
1)

3

180w4
1w

2
2w

2
3

− 91w′
2w

′
3 (w

′
1)

2

180w3
1w

2
2w

2
3

+
5w′′

1 (w
′
1)

2

8w4
1w2w3

+
71w′

2 (w2w
′′
1 + w1w

′′
2)w

′
1

180w3
1w

3
2w3

− w
(3)
1 (t)w′

1

6w3
1w2w3

− 23 (w′
2)

2 (w′
3)

2

90w1w3
2w

3
3

− (w′′
1)

2

6w3
1w2w3

−w3

(
w2
2 (w

′
1)

2+w2
1 (w

′
2)

2
)

18w3
1w

3
2

+
11w′

2w
′
3w

′′
1

36w2
1w

2
2w

2
3

+
41

(
w2w

′′
2 (w

′
1)

2+w1 (w
′
2)

2w′′
1

)

360w3
1w

3
2w3

− w′′
2w

′′
3

15w1w2
2w

2
3

− w′
3w

(3)
2 (t)+w′

2w
(3)
3 (t)

10w1w2
2w

2
3

+
w

(4)
1 (t)

30w2
1w2w3

+ cyclic permutations. (3.9)

By cyclic permutations in the latter, we mean applying such permutations to the indices

of the given expression. For the sake of clarity, the full expression of the term a4(D
2) is

provided in the appendix B.

Following the conjecture of Chamseddine and Connes for Robertson-Walker met-

rics [11], which was addressed in [26], the crucial observation to make at this stage is

that all of the coefficients appearing in the above terms are rational numbers. This indi-

cates that the rationality result holds for the Bianchi type-IX metric, which is proved in

section 5.
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4 Heat coefficients and the Wodzicki residue

In this section we introduce a method for computing the Seeley-de Witt coefficients by

making use of Wodzicki’s noncommutative residue [54, 55]. The advantage of this method

is that it involves significantly less complexity in computations, thus, for instance, it illu-

minates the structure of the heat expansion of the Bianchi type-IX metric more elegantly.

Given a closed m-dimensional manifold M , the Wodzicki residue is the unique trace

functional on the algebra of classical pseudodifferential operators acting on the smooth

sections of a vector bundle over M (up to multiplication by a constant). The local symbol

σ of a classical pseudodifferential operator Pσ of order d ∈ Z has an asymptotic expansion

of the form

σ(x, ξ) ∼
∞∑

j=0

σd−j(x, ξ) (ξ → ∞), (4.1)

where each σd−j : U × (Rm \ {0}) → Mr(C) is positively homogeneous of order d− j in ξ

in a local chart U on M , and the endomorphisms of the vector bundle are locally identified

with Mr(C). The noncommutative residue of the operator Pσ is defined by

Res(Pσ) =

∫

S∗M
tr (σ−m(x, ξ)) dm−1ξ dmx,

where S∗M = {(x, ξ) ∈ T ∗M ; ||ξ||g = 1} is the cosphere bundle of M and the integral is in

fact the integral of the corresponding Wodzicki residue density over M . To be more precise,

consider the volume form on the unit sphere |ξ| = 1 in each cotangent fibre Rm ∼= T ∗
xM ,

σξ =
m∑

j=1

(−1)j−1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξm.

The Wodzicki residue density associated with a classical pseudodifferential operator with

a symbol of the form (4.1) is a 1-density on M defined by

wresxPσ =

(∫

|ξ|=1
tr (σ−m(x, ξ)) |σξ|

)
|dx0 ∧ dx1 ∧ · · · ∧ dxm−1|.

One obtains Res(Pσ) by integrating this density over the manifold M . See [34, 54, 55]

and section 7.3 of the book [31] for more details about this residue, its equivalent spectral

formulation which will be explained shortly and used crucially in this section, and the fact

that, up to multiplication by a constant, it gives the unique trace functional on the algebra

of classical pseudodifferential operators on a vector bundle on M . A crucial point is that

tr (σ−m(x, ξ))σξ is a closed form (see for example Proposition 7.3 on page 265 of [31]), and

one can use Stokes’ theorem to perform the local integrations at each point x over the unit

sphere |ξ| = 1 or alternatively over the fibre of the cosphere bundle ||ξ||g = 1.

An alternative definition for Res, which is quite spectral, provides a link between the

Seeley-de Witt coefficients and the noncommutative residue. That is, for any pseudodiffer-

ential operator Pσ, the map that sends a complex number s with a large enough real part

to Trace(Pσ∆
−s), where ∆ is a Laplacian, has a meromorphic extension to the complex
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plane with at most simple poles at its singularities. The noncommutative residue can be

defined as the linear functional

Pσ 7→ ress=0Trace(Pσ∆
−s),

which turns out to be a trace functional. Thus, considering the uniqueness of the Wodzicki

residue that we mentioned earlier in this section, there is a constant cm such that for any

classical Pσ, we have

Res(Pσ) =

∫

S∗M
σ−m(x, ξ) dm−1ξ dmx = cm

(
ress=0Trace(Pσ∆

−s)
)
.

The constant cm can be computed easily as follows. The operator Res(∆−m/2) is of order

−m and its principal symbol is given by

σP (∆
−m/2) = σP (∆

−1)m/2 = σP (∆)−m/2,

which yields

Res(∆−m/2) =

∫

S∗M
tr
(
σP (∆)−m/2

)
dm−1ξ dmx.

On the other hand, writing σP (∆) =
(∑

i,j g
ijξiξj

)
I, we have

ress=0Trace(∆
−m/2∆−s) = ress=m/2Trace(∆

−s)

=
1

Γ(m/2)

(2π)−m

2πi

∫ ∫ ∫

γ
e−λ tr ((σP (∆)− λ)−1) dλ dmξ dmx

=
(2π)−m

Γ(m/2)
rk(V )

∫ ∫
e−

∑
i,j g

ijξiξj dmξ dmx

=
(2π)−m

Γ(m/2)
rk(V )

∫ √
πm

det(gij)
dmx

=
2−mπ−m/2

Γ(m/2)
rk(V )

∫
det−1/2(gij) dmx,

where for the second identity, we have used the formula (4.2) proved below, for n = 0.

Therefore, we have

cm = 2mπm/2Γ(m/2)

∫ (∑
i,j g

ijξiξj

)−m/2
dm−1ξ dmx

∫
det−1/2(gij) dmx

= 2m+1πm.

We also need to recall from [30] the relation between small time asymptotic expansions

and residues and values of corresponding zeta functions in the following sense. Using the

Gamma function Γ(s) =
∫∞
0 e−tts−1 dt, and the Mellin transform,

λ−s =
1

Γ(s)

∫ ∞

0
e−tλts

dt

t
, λ > 0,
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one has

Trace(∆−s) =
∑

λ−s
j =

1

Γ(s)

∫ ∞

0

(
Trace(e−t∆)− dim ker(∆)

)
ts

dt

t
, ℜ(s) ≫ 0,

where the summation is over all non-zero eigenvalues λj of ∆. By breaking the interval

of the integration in the latter to [0, 1] and (1,∞), and by substituting the small time

asymptotic expansion,

Trace
(
e−t∆

)
= t−m/2

N∑

n=0

a2nt
n +O(t−m/2+N+1), N ∈ Z≥0,

in the first part, one finds that

Γ(s) Trace(∆−s) =

∫ 1

0

(
t−m/2

N∑

n=0

a2nt
n +O(t−m/2+N+1)− dim ker(∆)

)
ts−1 dt+ h(s),

where the second term,

h(s) =

∫ ∞

1

(
t−m/2

N∑

n=0

a2nt
n +O(t−m/2+N+1)− dim ker(∆)

)
ts−1 dt,

is an entire function of s.

Therefore, provided that ℜ(s) > m/2, one can write

Γ(s) Trace(∆−s) =

(
N∑

n=0

a2n

∫ 1

0
t−m/2+n+s−1 dt

)
+

∫ 1

0
O(t−m/2+N+1)ts−1 dt

− dim ker(∆)

∫ 1

0
ts−1 dt+ h(s)

=

(
N∑

n=0

a2n
s− (m/2− n)

)
+ h̃(s)− dim ker(∆)

s
+ h(s),

where

h̃(s) =

∫ 1

0
O(t−m/2+N+1)ts−1 dt

is a holomorphic function in the region ℜ(s) > m/2−N−1. By letting N → ∞, this shows

that the map s 7→ Trace(∆−s) defined initially for complex numbers s with large enough

real parts, has a meromorphic extension to the complex plane with at most simple poles

located at certain points on the real line. Moreover, since Γ(s) is holomorphic in the region

ℜ(s) > 0, it follows that

ress=m/2−nTrace(∆
−s) =

a2n(∆)

Γ(m/2− n)
, (4.2)

for any non-negative integer n ≤ m/2− 1. In particular we have

ress=1Trace(∆
−s) = am−2(∆). (4.3)

This observation yields the following assertion, which is used crucially in the sequel.
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Lemma 4.1. If ∆ is a Laplacian acting on the smooth sections of a vector bundle over an

m-dimensional manifold, then

am−2(∆) =
1

cm
Res(∆−1) =

1

2m+1πm
Res(∆−1).

Proof. It follows from the identity (4.3) and the fact that

ress=1Trace(∆
−s) = ress=0Trace(∆

−1∆−s) =
1

cm
Res(∆−1).

Since we are mainly concerned with studying the spectral action for the Bianchi type-

IX metric in this article, let us assume that D is the Dirac operator on a 4-dimensional

manifold. By applying Lemma (4.1) to ∆ = D2, we have

a2(D
2) =

1

c4
Res(D−2) =

1

32π4

∫

S∗M
tr
(
σ−4(D

−2)
)
d3ξ d4x,

where σ−4(D
−2) is the homogeneous component of order −4 in the expansion of the symbol

of the parametrix of D2. In the following theorem, we show that the next coefficients

a2n(D
2), n ≥ 2, can similarly be expressed as noncommutative residues of Laplacians.

Theorem 4.1. Let D be the Dirac operator on a 4-dimensional manifold. For any non-

negative even integer r, we have

a2+r(D
2) =

1

25 π4+r/2
Res(∆−1),

where

∆ = D2 ⊗ 1 + 1⊗∆Tr ,

in which ∆Tr is the flat Laplacian on the r-dimensional torus Tr = (R/Z)r.

Proof. It follows from Lemma 4.1 that

a2+r(∆) =
1

c4+r
Res(∆−1).

Since the metric on Tr is chosen to be flat, its volume term is evidently the only non-zero

heat coefficient, which combined with the Künneth formula (see part (b) of Lemma 1.7.5

on page 55 of the book [30]) implies that

a2+r((x, x
′),∆) = a2+r(x,D

2)a0(x
′,∆Tr) = 2−rπ−r/2a2+r(x,D

2). (4.4)

Note that, since σ(∆Tr) (x′, (ξ5, . . . , ξ4+r)) = ξ25 + · · ·+ ξ24+r, using (3.5) and (3.8) we have

a0(x
′,∆Tr) = 2−rπ−r/2.

Therefore, by integrating (4.4), we obtain

a2+r(D
2) = 2rπr/2a2+r(∆) =

2rπr/2

c4+r
Res(∆−1) =

1

25π4+r/2
Res(∆−1).
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A direct consequence of this theorem provides an efficient method for computing the

Seeley-de Witt coefficients with significantly less complexities in the calculations. It also

yields an elegant proof of the rationality result for the Bianchi type-IX metric, which is

presented in the following section.

Corollary 4.1. Assuming the conditions and notations of Theorem 4.1 and using the

symbol ξ′ ∈ R4+r for a covector in the cotangent fibre at (x, x′) ∈ U × Tr in a local chart,

we have

a2+r(D
2) =

1

25π4+r/2

∫

S∗(M×Tr)
tr
(
σ−4−r(∆

−1)
)
d3+rξ′ d4x,

where in the local chart, σ−4−r(∆
−1) : (U × Tr) × R4+r → M4(C) is the homogeneous

component of order −4 − r in the asymptotic expansion of the symbol of the parametrix

∆−1 of ∆ = D2 ⊗ 1 + 1⊗∆Tr .

Proof. It follows from the fact that if

σ(D2)(x, ξ) = p2(x, ξ) + p1(x, ξ) + p0(x, ξ) : U × R4 → M4(C),

where each pk is homogeneous of order k in ξ, then σ(∆) : (U × Tr) × R4+r → M4(C) is

given by

σ(∆)
(
(x, x′), (ξ1, . . . , ξ4, ξ5, . . . , ξ4+r)

)
= p′2 + p′1 + p′0,

where

p′2 = p2(x, ξ) + (ξ25 + · · ·+ ξ24+r)I, p′1 = p1(x, ξ), p′0 = p0(x, ξ), (x, ξ) ∈ U ×R4.

Clearly each p′k = p′k((x, x
′), ξ′) is defined on (U × Tr) × R4+r with values in M4(C), and

it is homogeneous of order k in ξ′. Using Theorem 4.1,

a2+r(D
2) =

1

25 π4+r/2
Res(∆−1)

=
1

25π4+r/2

∫

S∗(M×Tr)
tr
(
σ−4−r(∆

−1)((x, x′), ξ′)
)
d3+rξ′ d4x drx′, (4.5)

where σ−4−r(∆
−1) is the homogeneous component of order −4−r in ξ′ = (ξ, ξ5, . . . , ξ4+r) ∈

R4+r in the asymptotic expansion of the symbol of the parametrix ∆−1 of ∆. We claim

that σ−4−r(∆
−1) is independent of the coordinate x′ ∈ Tr, thus, combined with the fact

Vol(Tr) = 1, it follows from the equation (4.5) that

a2+r(D
2) =

1

25π4+r/2

∫

S∗(M×Tr)
tr
(
σ−4−r(∆

−1)((x, x′), ξ′)
)
d3+rξ′ d4x.

The claimed fact about the independence of σ−4−r(∆
−1)((x, x′), ξ′) from x′ can be jus-

tified easily from the independence of the symbols p′k from x′. However, since it will be used

crucially in the following section, we find explicit recursive formulas for all homogeneous

terms σ−2−j(∆
−1) of order −2 − j in ξ′ in the expansion σ(∆−1) ∼ ∑∞

j=0 σ−2−j(∆
−1),
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which will in particular prove their independence from x′. Using the composition rule (3.3)

we have

σ(∆−1) ◦ σ(∆) =




∞∑

j=0

σ−2−j(∆
−1)


 ◦

2∑

k=0

p′k

∼
∞∑

j=0

2∑

k=0

∑

α∈Z4
≥0

∑

β∈Zr
≥0

(−i)|α|+|β|

α!β!

(
∂
(α,β)
ξ′ σ−2−j(∆

−1)
)(

∂β
x′∂

α
x p

′
k

)

∼
∞∑

n=0


 ∑

−2−j−|α|−|β|+k=−n

(−i)|α|+|β|

α!β!

(
∂
(α,β)
ξ′ σ−2−j(∆

−1)
)(

∂β
x′∂

α
x p

′
k

)

∼ I.

Note that
(
∂
(α,β)
ξ′ σ−2−j(∆

−1)
)(

∂β
x′∂α

x p
′
k

)
is a symbol of order −2− j−|α|− |β|+k, which

is a non-positive integer, and in the last summation the symbols of the same order −n

are gathered together. The zero order term corresponds to the case n = 0, for which the

equation −2−j−|α|−|β|+k = 0 has only one solution, namely k = 2, j = 0, α = 0 ∈ Z4
≥0,

β = 0 ∈ Zr
≥0. Therefore, by comparing the homogeneous terms on the two sides of the

equation, we have σ−2(∆
−1) p′2 = I, which gives

σ−2(∆
−1)

(
(x, x′), ξ′

)
= (p′2)

−1 =
(
p2(x, ξ) + (ξ25 + · · ·+ ξ24+r)I

)−1
, (4.6)

and the following argument shows that each σ−2−n(∆
−1) is recursively computable once

σ−2(∆
−1), σ−3(∆

−1), . . . , σ−2−n+1(∆
−1) are computed. The reason is that when j = n,

the only solution to −2 − j − |α| − |β| + k = −n is k = 2, α = 0 ∈ Z4
≥0, β = 0 ∈ Zr

≥0.

Therefore the terms that are of order −n in the above equation can be written as

σ−2−n(∆
−1) p′2 +

∑

0≤j<n, 0≤k≤2
α∈Z4

≥0
, β∈Zr

≥0

−2−j−|α|−|β|+k=−n

(−i)|α|+|β|

α!β!

(
∂
(α,β)
ξ′ σ−2−j(∆

−1)
)(

∂β
x′∂

α
x p

′
k

)
.

Setting this expression equal to 0 for n > 0, and using (p′2)
−1 = σ−2(∆

−1) we have

σ−2−n(∆
−1)

(
(x, x′), ξ′

)

= −




∑

0≤j<n, 0≤k≤2
α∈Z4

≥0
, β∈Zr

≥0

−2−j−|α|−|β|+k=−n

(−i)|α|+|β|

α!β!

(
∂
(α,β)
ξ′ σ−2−j(∆

−1)
)(

∂β
x′∂

α
x p

′
k

)




σ−2(∆
−1).

Note that in the latter, since p′k has no dependence on x′, for any β 6= 0 ∈ Zr
≥0 the

corresponding term in the summation is 0. Moreover, when k = 2, since j < n, α is a

non-zero 4-tuple of non-negative integers, which means that ∂α
x p

′
k = ∂α

x pk. Therefore for
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any n > 0 we have

σ−2−n(∆
−1)

(
(x, x′), ξ′

)
= −




∑

0≤j<n, 0≤k≤2
α∈Z4

≥0

−2−j−|α|+k=−n

(−i)|α|

α!

(
∂α
ξ σ−2−j(∆

−1)
)
(∂α

x pk)




σ−2(∆
−1),

(4.7)

which is seen by induction to have no dependence on x′.

We confirm the validity of the coefficients a0, a2, a4, calculated for the Bianchi type-IX

metric in section 3 by noting that the method devised in the present section produces

the same expressions. We stress that in practice the new method is significantly more

convenient since the expression that leads to a Seeley-de Witt coefficient simplifies when

one considers its restriction to the corresponding cosphere bundle in order to compute the

noncommutative residue.

The noncommutative residue was originally discovered in the 1-dimensional case by

Adler [1] and Manin [39]. Its coincidence with the Dixmier trace [13] on pseudodifferential

operators of order −m on an m-dimensional closed manifold indicates its applicability for

explicit and convenient computations. It is also worth mentioning that a noncommutative

residue developed for noncommutative tori [27, 28] simplified a purely noncommutative

heat kernel computation significantly and clarified in [25] the reason for mysterious and

remarkable cancellations that occur in this type of computations.

5 Rationality of the spectral action for Bianchi type-IX metrics

In this section we prove that the Seeley-de Witt coefficients a2n(D
2) appearing in the

expansion of the spectral action for the Bianchi type-IX metric are expressed in terms

of several variable polynomials with rational coefficients evaluated on the cosmic evolu-

tion factors w1(t), w2(t), w3(t), and their derivatives of certain orders. This extends the

statement conjectured in [11] and addressed in [26] for Robertson-Walker metrics to a

homogeneous anisotropic cosmological model.

In order to prove the rationality result for the Bianchi type-IX metric, similar to

the treatment in [26], let us start with the crucial observation that the local forms

a2n(x,D
2)d3x, where D is the Dirac operator of this geometry, are invariant over the

spatial manifold S3. This can be seen from the defining formula (1.1) for the metric, in

which the left invariance of the 1-forms σ1, σ2, σ3, implies that the metric is invariant un-

der any diffeomorphism arising from left multiplication by an element of SU(2). Since

the action is transitive and left multiplication by an element of SU(2) is an isometry, any

isometry-invariant function on S3 is independent of the spatial coordinates. In particular,

the restriction of the kernel of e−tD2

to the diagonal and consequently the differential forms

a2n(x,D
2) d4x are invariant, and if we set a2n(x,D

2) d3x = ã2n(x,D
2) dvolg, where dvolg

is the volume form, then ã2n(x,D
2) is independent of the spatial coordinates for any n.
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Furthermore, we can easily determine the general form of ã2n(x,D
2) by applying the

method devised in section 4, which is based on making use of the noncommutative residue

and the Künneth formula and restricting the computations to the cosphere bundle. This

method is summarized in Corollary 4.1. In order to use this statement for our purpose,

which is finding out the general form of ã2n(x,D
2) for the Bianchi type-IX metric, we choose

r such that 2+r = 2n. Then, we need to consider the homogeneous term σ−2−2n((x, x
′), ξ′)

of order −2n−2 = −4−r in the expansion of the symbol of the operator ∆ = D2⊗1+1⊗
∆T2n−2 . Note that, as it is shown in the proof of Corollary 4.1, σ−2−2n is independent of

the coordinate x′ ∈ T2n−2, and it is homogeneous in ξ′ = (ξ, ξ5, . . . , ξ4+r) ∈ R4+r \ {0} (in

accordance with the notation used in the proof, we consider ξ ∈ R4). Thus, in the sequel

we simply write σ−2−2n(x, ξ
′) instead of σ−2−2n ((x, x

′), ξ′).

Now if we set ζµ+1 =
∑

ν e
ν
µξ

′
ν+1, then considering the explicit recursive formula (4.7),

which starts from (4.6), and by using the explicit expressions given in the appendix B for

the components of the symbol of D2, it can be seen by induction that for any integer n ≥ 1,

σ−2−2n(x, ξ
′)
∣∣
S∗(M×T2n−2)

= σ−2−2n(x, ξ
′(ζ))

∣∣
ζ∈S2n+1 = (w1w2w3)

−3nP2n(ζ), (5.1)

where P2n(ζ) is a polynomial in ζ1, . . . , ζ2n+2, with the following property. The coefficients

of the polynomial P2n are matrices whose entries are in the algebra generated by rational

numbers, trigonometric functions of the spatial coordinates, and w
(p)
i where i ∈ {1, 2, 3},

p ∈ {0, 1, . . . , 2n}. This fact leads to the following statement about the general form of the

coefficients a2n(D
2).

Theorem 5.1. For any non-negative integer n, the coefficient a2n(D
2) in the expansion

of the spectral action for the Bianchi type-IX metric is of the form

a2n(D
2) = (w1w2w3)

1−3nQ2n

(
w1, w2, w3, w

′
1, w

′
2, w

′
3, . . . , w

(2n)
1 , w

(2n)
2 , w

(2n)
3

)
,

where Q2n is a polynomial with rational coefficients.

Proof. It follows from Corollary 4.1 that

a2+r(x,D
2) =

1

25π4+r/2

∫

S∗(M×Tr)
tr(σ−4−r(∆

−1)) d3+rξ′

=
1

25π4+r/2

∫

S3+r

tr(σ−4−r(∆
−1)) dvolg d

3+rζ,

where, as above ζµ+1 =
∑

ν e
ν
µξ

′
ν+1 so that the Jacobian of the coordinate transformation

is just dvolg. This implies that

ã2n(x,D
2) =

1

25πn+3

∫

S2n+1

tr(σ−2−2n(∆
−1)) d2n+1ζ,

which, as shown above, is independent of the spatial coordinates. Thus, we have

a2n(D
2) =

∫
ã2n(x,D

2) dvolg = Vol · ã2n(D2) = 16π2w1w2w3 ã2n(D
2)

=
w1w2w3

2πn+1

∫

S2n+1

tr(σ−2−2n(∆
−1)) d2n+1ζ.
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The equation (5.1) allows us to write σ−2−2n(x, ξ
′(ζ)) = (w1w2w3)

−3nP2n(ζ), which

yields

a2n(D
2) =

(w1w2w3)
1−3n

2πn+1

∫

S2n+1

tr
(
P2n(ζ))(∆

−1)
)
d2n+1ζ

= (w1w2w3)
1−3nQ2n

(
w1, w2, w3, w

′
1, w

′
2, w

′
3, . . . , w

(2n)
1 , w

(2n)
2 , w

(2n)
3

)
.

Note that tr (P2n(ζ)) is a polynomial in ζ1, ζ2, . . . , ζ2n+2, with the coefficients in the algebra

generated by the rational numbers, trigonometric functions of the spatial coordinates, and

w
(p)
i where i ∈ {1, 2, 3}, p ∈ {0, 1, . . . , 2n}.

The integral of a monomial mα(ζ) = cα ζ
α1

1 · · · ζα2n+2

2n+2 over S2n+1 is either 0, or can be

written as ∫

S2n+1

mα(ζ) d
2n+1ζ =

2cα
∏

j Γ(
αj+1
2 )

Γ(n+ 1 + |α|
2 )

,

if each αj is an even non-negative integer. Also, recall that Γ(n2 ) = qπ
1

2 for some q ∈ Q

when n ∈ 2N+ 1, and Γ(n2 ) ∈ Z when n ∈ 2N. Therefore we have

∫

S2n+1

mα(ζ) d
2n+1ζ = qπ

2n+2

2 = qπn+1,

for some q ∈ Q if cα ∈ Q. Since a2n(D
2) = (w1w2w3)

1−3nQ2n has no spatial dependence,

we conclude that

Q2n =
1

2πn+1

∫

S2n+1

tr(P2n(ζ))(∆
−1)) d2n+1ζ

belongs to the algebra generated by the w
(p)
i and rational numbers.

6 Gravitational instantons, modular forms, and rationality

Among the Euclidean Bianchi type-IX models, an especially interesting class consists of the

Bianchi IX gravitational instantons. A gravitational instanton is both self-dual (that is, the

Weyl curvature tensor is self-dual) and an Einstein metric (the Ricci tensor is proportional

to the metric). A remarkable feature of Bianchi IX gravitational instantons with SU(2)

symmetry is that they can be completely classified in terms of solutions to Painlevé VI

integrable systems, [32, 49, 53]. The latter are a 4-parameter family of singular ordinary

differential equations of the form

d2X

dt2
=

1

2

(
1

X
+

1

X − 1
+

1

X − t

)(
dX

dt

)2

−
(
1

t
+

1

t− 1
+

1

X − t

)
dX

dt

+
X(X − 1)(X − t)

t2(t− 1)2

(
α+ β

t

X2
+ γ

t− 1

(X − 1)2
+ δ

t(t− 1)

(X − t)2

)
.

The self-dual equation for the SU(2) Bianchi IX metrics is written in [49] as an ordinary

differential equation in the wi and in additional functions αi, i = 1, 2, 3 that arise as the

components of the connection 1-form in a basis of anti-self-dual 2-forms, see [53]. In terms
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of the conformally invariant variable x = (α2 − α1)(α2 − α3)
−1 the self-dual equations for

the Riemannian Bianchi IX metric can be rephrased as a system of equations

wi = Ωix
′(x(1− x))−1/2, Ω′

1 = − Ω2Ω3

x(1− x)
, Ω′

2 = −Ω3Ω1

x
, Ω′

3 = −Ω1Ω2

1− x
.

These in turn can then be reduced to a case of the Painlevé VI equation with parameters

(α, β, γ, δ) =

(
1

8
,−1

8
,
1

8
,
3

8

)
,

see [49, 53]. In [3], the solutions to this equation are given explicitly in terms of a param-

eterization involving theta functions and theta characteristics

ϑ[p, q](z, iµ) :=
∑

m∈Z

exp
(
−π(m+ p)2µ+ 2πi(m+ p)(z + q)

)
.

Namely, with the notation ϑ[p, q] := ϑ[p, q](0, iµ), and

ϑ2 := ϑ[1/2, 0], ϑ3 := ϑ[0, 0], ϑ4 := ϑ[0, 1/2],

one finds αi = 2 ∂µ log ϑi+1 and

w1 = − i

2
ϑ3ϑ4

∂
∂qϑ[p, q +

1
2 ]

eπipϑ[p, q]
, w2 =

i

2
ϑ2ϑ4

∂
∂qϑ[p+

1
2 , q +

1
2 ]

eπipϑ[p, q]
, w3 = −1

2
ϑ2ϑ3

∂
∂qϑ[p+

1
2 , q]

ϑ[p, q]
.

The asymptotics of these solutions were analyzed in [40], where it is shown that, for large

µ, they approximate Eguchi-Hanson type gravitational instantons with w2 = w3 6= w1, [20].

It is clear that, for the Bianchi IX gravitational instantons, using the parameterization

of [3], the Seeley-de Witt coefficients a2n of the spectral action are rational functions, with

Q-coefficients, in the ϑ2, ϑ3, ϑ4, ϑ[p, q], ∂qϑ[p, q] and eiπp and derivatives, hence they belong

to the field generated, over Q, by these functions. We will return in a second part of this

work [23] to discuss in detail the arithmetic properties of the spectral action for Bianchi

IX gravitational instantons.

In this perspective, one can view the rationality question about the spectral action

in a similar light to analogous questions that occur whenever arithmetic and number the-

oretic structures arise in theoretical physics. For example, when Feynman integrals are

interpreted as periods (see [41] for an overview of that setting), the fact that the relevant

amplitude forms and domains of integration are algebraic over Q (or Z) has direct impli-

cations on the class of numbers that arise as periods. Another such instance of arithmetic

structures in physics, where rational coefficients play an important role, is in the zero tem-

perature KMS states of quantum statistical mechanical systems: in the case constructed

in [17] (see also chapter 3 of [18]) for instance, the construction of an arithmetic algebra of

observables, defined over Q, is linked to modular functions and makes it possible to have

KMS states with values in the modular field. The relation between the spectral action of

Bianchi IX gravitational instantons and modular forms will be discussed in [23].
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7 Conclusions

We have shown that the Seeley-de Witt coefficients a2n(D
2) associated with the Dirac

operator D of the Bianchi type-IX metric, which appear in the expansion of the spectral

action [7], are expressed by polynomials with rational coefficients evaluated on the cosmic

evolution factors w1(t), w2(t), w3(t), and their derivatives of certain orders. It is quite inter-

esting that although this metric provides a homogeneous anisotropic cosmological model,

after remarkable cancellations, only rational coefficients appear in the final expression for

each a2n(D
2). Such a rationality result was first conjectured in [11] for Robertson-Walker

metrics, which was addressed in [26].

Our proof of the rationality statement for the Bianchi type-IX model, similar to the

argument given in [26], begins with the crucial observation that the kernel of e−tD2

is re-

stricted to have no spatial dependence on the diagonal. We then take a novel approach

to proceed the argument. That is, we have devised a general method that expresses the

Seeley-de Witt coefficients of a geometry as noncommutative residues of operators. This

is an efficient method that allows explicit calculations with significantly less complexities,

compared to the method of using parametric pseudodifferential calculus [30]. More impor-

tantly, it leads to an elegant proof of the rationality result for the Bianchi type-IX metric.

To be more explicit, the Wodzicki residue [54, 55] involves an integration over the cosphere

bundle of a manifold, and the expression for computing a2n(D
2) simplifies to our favor

when restricted to the cosphere bundle, in the view of our method.

A main application of the explicit formulae for the spectral action of the Bianchi IX

minisuperspace models obtained in this paper will be given in the forthcoming second part

of this work [23]: we will use our explicit formulae, along with the parameterization of the

Bianchi IX gravitational instantons in terms of solutions of Painlevé VI equations, to show

that the spectral action for these Euclidean signature spacetimes is expressible in terms of

vector valued modular forms, of the type that occurs in the Eichler-Zagier theory of Jacobi

forms [21]. The rationality result we proved in this paper will play a crucial role, as it will

reveal an underlying (and otherwise invisible) arithmetic structure, with the coefficients of

the asymptotic expansion being rational combinations of modular forms.

A Pseudodifferential symbol of D2

The Dirac operator D of the Bianchi type-IX metric is computed explicitly in section 2

and its expression is given by (2.4). This allows to find the pseudodifferential symbol

σ(D) : U × R4 → M4(C) of this operator in the local chart explicitly, which is given

by (2.5). However, in order to employ the methods explained in section 3 and section 4

for computing the Seeley-de Witt coefficients, it is necessary to compute the symbol of D2.

This can be achieved in two different ways. First, one can use the expression (2.4) to obtain

an explicit formula for D2 and thereby obtain its pseudodifferential symbol. Note that (2.2)

makes it clear how, by means of the Fourier transform and the Fourier inversion formula,

one can express a pseudodifferential operator and in particular a differential operator in

terms of its symbol. Second, one can use the composition rule (3.3) for the composition of
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symbols, which reduces to (2.6) for the computation of

σ(D2)(x, ξ) = p2(x, ξ) + p1(x, ξ) + p0(x, ξ),

where each pk : U × R4 → M4(C) is homogeneous of order k in ξ.

We find that the principal part of σ(D2) is given by

p2(x, ξ) =
1

w1w2w3
(ξ24w

2
1 cot

2(η) cos2(ψ) + ξ23w
2
1 csc

2(η) cos2(ψ) + ξ2ξ4w
2
1 cot(η) sin(2ψ)

− ξ2ξ3w
2
1 csc(η) sin(2ψ)− 2ξ3ξ4w

2
1 cot(η) csc(η) cos

2(ψ) + ξ22w
2
1 sin

2(ψ)

+ ξ24w
2
2 cot

2(η) sin2(ψ)− ξ2ξ4w
2
2 cot(η) sin(2ψ) + ξ23w

2
2 csc

2(η) sin2(ψ)+

ξ2ξ3w
2
2 csc(η) sin(2ψ)−2ξ3ξ4w

2
2 cot(η) csc(η) sin

2(ψ)+ξ22w
2
2 cos

2(ψ)+ξ24w
2
3+ξ21)I,

where I is the 4 × 4 identity matrix. The component of σ(D2) that is homogeneous of

order 1 has a lengthy expression:

p1(x, ξ) =

(
− iξ2w1 cot(η) cos

2(ψ)

w2w3
− iξ2w2 cot(η) sin

2(ψ)

w1w3
− 3iξ4w2 csc

2(η) sin(2ψ)

4w1w3
+

3iξ4w1 csc
2(η) sin(2ψ)

4w2w3
− iξ4w2 cos(2η) csc

2(η) sin(2ψ)

4w1w3
+

iξ4w1 cos(2η) csc
2(η) sin(2ψ)

4w2w3

+
iξ3w2 cot(η) csc(η) sin(2ψ)

w1w3
− iξ3w1 cot(η) csc(η) sin(2ψ)

w2w3

)
I

+

(
iξ4w3

2w2
1

+
iξ4w3

2w2
2

− iξ4
2w3

)
γ2γ3 +

(
iξ4w2 cot(η) sin(ψ)

2w2
1

− iξ3w2 csc(η) sin(ψ)

2w2
1

− iξ2w2 cos(ψ)

2w2
1

+
iξ4w2 cot(η) sin(ψ)

2w2
3

− iξ3w2 csc(η) sin(ψ)

2w2
3

− iξ2w2 cos(ψ)

2w2
3

− iξ4 cot(η) sin(ψ)

2w2
+

iξ3 csc(η) sin(ψ)

2w2
+

iξ2 cos(ψ)

2w2

)
γ2γ4

+

(
− iξ4w1 cot(η) cos(ψ)

2w2
2

+
iξ3w1 csc(η) cos(ψ)

2w2
2

− iξ2w1 sin(ψ)

2w2
2

− iξ4w1 cot(η) cos(ψ)

2w2
3

+
iξ3w1 csc(η) cos(ψ)

2w2
3

− iξ2w1 sin(ψ)

2w2
3

+
iξ4 cot(η) cos(ψ)

2w1
− iξ3 csc(η) cos(ψ)

2w1

+
iξ2 sin(ψ)

2w1

)
γ3γ4 +

(
− iξ4w

′
1

2w2
1w2

− iξ4w
′
2

2w1w2
2

+
iξ4w

′
3

2w1w2w3

)
γ1γ4

+

(
− iξ4 cot(η) cos(ψ)w

′
1

2w1w2w3
+

iξ3 csc(η) cos(ψ)w
′
1

2w1w2w3
− iξ2 sin(ψ)w

′
1

2w1w2w3
+

iξ4 cot(η) cos(ψ)w
′
2

2w2
2w3

− iξ3 csc(η) cos(ψ)w
′
2

2w2
2w3

+
iξ2 sin(ψ)w

′
2

2w2
2w3

+
iξ4 cot(η) cos(ψ)w

′
3

2w2w2
3

− iξ3 csc(η) cos(ψ)w
′
3

2w2w2
3

+
iξ2 sin(ψ)w

′
3

2w2w2
3

)
γ1γ2

+

(
iξ4 cot(η) sin(ψ)w

′
1

2w2
1w3

− iξ3 csc(η) sin(ψ)w
′
1

2w2
1w3

− iξ2 cos(ψ)w
′
1

2w2
1w3

− iξ4 cot(η) sin(ψ)w
′
2

2w1w2w3

+
iξ3 csc(η) sin(ψ)w

′
2

2w1w2w3
+

iξ2 cos(ψ)w
′
2

2w1w2w3
+

iξ4 cot(η) sin(ψ)w
′
3

2w1w2
3

− iξ3 csc(η) sin(ψ)w
′
3

2w1w2
3

− iξ2 cos(ψ)w
′
3

2w1w2
3

)
γ1γ3.

– 23 –



J
H
E
P
1
0
(
2
0
1
5
)
0
8
5

Finally, we have the zero order part of σ(D2):

p0(x, ξ)=

(
− w′

1

8w1w2
2

− w′
1

8w1w2
3

+
3w′

1

8w3
1

− w′
2

8w2
1w2

− w′
3

8w2
1w3

− w′
2

8w2w2
3

+
3w′

2

8w3
2

− w′
3

8w2
2w3

+
3w′

3

8w3
3

)
γ1γ2γ3γ4+

(
− w′′

1

4w2
1w2w3

+
w′
1w

′
2

8w2
1w

2
2w3

+
w′
1w

′
3

8w2
1w2w2

3

+
5w′2

1

16w3
1w2w3

− w′′
2

4w1w2
2w3

+
w′
2w

′
3

8w1w2
2w

2
3

+
5w′2

2

16w1w3
2w3

− w′′
3

4w1w2w2
3

+
5w′2

3

16w1w2w3
3

+
w2w3

16w3
1

+
w3

8w1w2
+

w1w3

16w3
2

+
w2

8w1w3
+

w1

8w2w3
+

w1w2

16w3
3

)
I.

B Full expression of the term a4(D
2)

The expression (3.9) for the term a4(D
2), where D is the Dirac operator of the Bianchi

type-IX metric, is given in a short form by indicating that one needs to apply cyclic

permutations to the indices of the given expression and add the results to the expression.

For the sake of clarity the full expression of this term is provided here:

a4(D
2) = −w3

1w
3
2

15w5
3

− w3
1w

3
3

15w5
2

− w3
2w

3
3

15w5
1

+
w3
1w2

15w3
3

+
w1w

3
2

15w3
3

+
w3
1w3

15w3
2

+
w3
2w3

15w3
1

+
w1w

3
3

15w3
2

+
w2w

3
3

15w3
1

− w1w2

15w3
− w1w3

15w2
− w2w3

15w1
− w2 (w

′
1)

2

15w1w3
3

− w3 (w
′
1)

2

15w1w3
2

− w3 (w
′
2)

2

15w3
1w2

− w1 (w
′
2)

2

15w2w3
3

− w1 (w
′
3)

2

15w3
2w3

− w2 (w
′
3)

2

15w3
1w3

+
2 (w′

1)
2

15w1w2w3
+

2 (w′
2)

2

15w1w2w3

+
2 (w′

3)
2

15w1w2w3
− w2 (w

′
1)

2

18w3
1w3

− w3 (w
′
1)

2

18w3
1w2

− w1 (w
′
2)

2

18w3
2w3

− w3 (w
′
2)

2

18w1w3
2

− w1 (w
′
3)

2

18w2w3
3

− w2 (w
′
3)

2

18w1w3
3

− w2w3 (w
′
1)

2

18w5
1

− w1w3 (w
′
2)

2

18w5
2

− w1w2 (w
′
3)

2

18w5
3

− 31 (w′
1)

4

90w5
1w2w3

− 31 (w′
2)

4

90w1w5
2w3

− 31 (w′
3)

4

90w1w2w5
3

− 7w′
1w

′
2

60w3
3

− 7w′
1w

′
3

60w3
2

− 7w′
2w

′
3

60w3
1

− w′
1w

′
2

45w2
1w3

− w′
1w

′
2

45w2
2w3

− w′
2w

′
3

45w1w2
3

+
5w3w

′
1w

′
2

36w4
1

+
5w3w

′
1w

′
2

36w4
2

+
5w2w

′
1w

′
3

36w4
1

+
5w2w

′
1w

′
3

36w4
3

+
5w1w

′
2w

′
3

36w4
2

+
5w1w

′
2w

′
3

36w4
3

+
7w3w

′
1w

′
2

90w2
1w

2
2

+
7w2w

′
1w

′
3

90w2
1w

2
3

+
7w1w

′
2w

′
3

90w2
2w

2
3

− 41 (w′
1)

3w′
2

180w4
1w

2
2w3

− 41w′
1 (w

′
2)

3

180w2
1w

4
2w3

− 41 (w′
1)

3w′
3

180w4
1w2w2

3

− 41w′
1 (w

′
3)

3

180w2
1w2w4

3

− 41w′
2 (w

′
3)

3

180w1w2
2w

4
3

− 41 (w′
2)

3w′
3

180w1w4
2w

2
3

− 23 (w′
1)

2 (w′
2)

2

90w3
1w

3
2w3

− 23 (w′
1)

2 (w′
3)

2

90w3
1w2w3

3

− 23 (w′
2)

2 (w′
3)

2

90w1w3
2w

3
3

− w′
1w

′
3

45w2
1w2

− w′
1w

′
3

45w2w2
3

− w′
2w

′
3

45w1w2
2

− 91 (w′
1)

2w′
2w

′
3

180w3
1w

2
2w

2
3

− 91w′
1 (w

′
2)

2w′
3

180w2
1w

3
2w

2
3

− 91w′
1w

′
2 (w

′
3)

2

180w2
1w

2
2w

3
3

+
w2w

′′
1

24w3
3

+
w3w

′′
1

24w3
2

+
w1w

′′
2

24w3
3

+
w3w

′′
2

24w3
1

+
w1w

′′
3

24w3
2

+
w2w

′′
3

24w3
1

− w′′
1

12w2w3
− w′′

2

12w1w3
− w′′

3

12w1w2
+

w2w
′′
1

36w2
1w3

+
w3w

′′
1

36w2
1w2

+
w1w

′′
2

36w2
2w3
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− 5w2w3w
′′
1

72w4
1

− 5w1w3w
′′
2

72w4
2

− 5w1w2w
′′
3

72w4
3

+
5 (w′

1)
2w′′

1

8w4
1w2w3

+
5 (w′

2)
2w′′

2

8w1w4
2w3

+
5 (w′

3)
2w′′

3

8w1w2w4
3

+
71w′

1w
′
2w

′′
1

180w3
1w

2
2w3

+
71w′

1w
′
2w

′′
2

180w2
1w

3
2w3

+
71w′

1w
′
3w

′′
1

180w3
1w2w2

3

+
71w′

1w
′
3w

′′
3

180w2
1w2w3

3

+
71w′

2w
′
3w

′′
3

180w1w2
2w

3
3

+
71w′

2w
′
3w

′′
2

180w1w3
2w

2
3

+
41 (w′

2)
2w′′

1

360w2
1w

3
2w3

+
41 (w′

3)
2w′′

1

360w2
1w2w3

3

+
41 (w′

2)
2w′′

3

360w1w3
2w

2
3

+
41 (w′

3)
2w′′

2

360w1w2
2w

3
3

+
41 (w′

1)
2w′′

2

360w3
1w

2
2w3

+
41 (w′

1)
2w′′

3

360w3
1w2w2

3

+
11w′

2w
′
3w

′′
1

36w2
1w

2
2w

2
3

+
11w′

1w
′
3w

′′
2

36w2
1w

2
2w

2
3

+
11w′

1w
′
2w

′′
3

36w2
1w

2
2w

2
3

− (w′′
1)

2

6w3
1w2w3

− (w′′
2)

2

6w1w3
2w3

− (w′′
3)

2

6w1w2w3
3

+
w3w

′′
2

36w1w2
2

+
w1w

′′
3

36w2w2
3

+
w2w

′′
3

36w1w2
3

− w′′
1w

′′
2

15w2
1w

2
2w3

− w′′
2w

′′
3

15w1w2
2w

2
3

− w′′
1w

′′
3

15w2
1w2w2

3

− w′
1w1

(3)

6w3
1w2w3

− w′
2w2

(3)

6w1w3
2w3

− w′
3w3

(3)

6w1w2w3
3

− w′
2w1

(3)

10w2
1w

2
2w3

− w′
3w1

(3)

10w2
1w2w2

3

− w′
1w2

(3)

10w2
1w

2
2w3

− w′
3w2

(3)

10w1w2
2w

2
3

− w′
1w3

(3)

10w2
1w2w2

3

− w′
2w3

(3)

10w1w2
2w

2
3

+
w1

(4)

30w2
1w2w3

+
w2

(4)

30w1w2
2w3

+
w3

(4)

30w1w2w2
3
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