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PERIODS AND MOTIVES IN THE SPECTRAL ACTION OF
ROBERTSON–WALKER SPACETIMES

FARZAD FATHIZADEH AND MATILDE MARCOLLI

Abstract. We show that, when considering the scaling factor as an affine variable,
the coefficients of the asymptotic expansion of the spectral action on a (Euclidean)
Robertson-Walker spacetime are periods of mixed Tate motives, involving relative
motives of complements of unions of hyperplanes and quadric hypersurfaces and
divisors given by unions of coordinate hyperplanes.
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1. Introduction

Over the past decade, Grothendieck’s theory of motives has come to play an in-
creasingly important role in theoretical physics. While the existence of a relation
between motives and periods of algebraic varieties and computations in high-energy
physics might have seemed surprising and unexpected, the existence of underlying
motivic structures in quantum field theory has now been widely established, see for
instance [2], [3], [7], [15]. Typically, periods and motives occur in quantum field
theory in the perturbative approach, through the asymptotic expansion in Feynman
diagrams, where in the terms of the asymptotic expansion the renormalized Feyn-
man integrals are identified with periods of certain hypersurface complements. The
nature of the motive of the hypersurface constraints the class of numbers that can
occur as periods. Similarly, a large body of recent work on amplitudes in N = 4
Supersymmetric Yang–Mills has uncovered another setting where the connection to
periods and motives plays an important role, see [1], [11], [12].

In this paper, we present another surprising instance of the occurrences of periods
and motives in theoretical physics, this time in a model of (modified) gravity based
on the spectral action functional of [5]. The situation is somewhat similar to the
one seen in the quantum field theory setting, with some important differences. As
in the QFT framework, we deal with an asymptotic expansion, which in our case is
given by the large energy expansion of the spectral action functional. We show in this
paper that, in the case of (Euclidean) Robertson–Walker spacetimes, the terms of the
asymptotic expansion of the spectral action functional can be expressed as periods of
mixed Tate motives, given by complements of quadric hypersurfaces. An important
difference, with respect to the case of a scalar massless quantum field theory of [2],
is that here we need to consider only one quadric hypersurface for each term of the
expansion, whereas in the quantum field theory case one has to deal with the much
more complicated motive of a union of quadric hypersurfaces, associated to the edges
of the Feynman graph. On the other hand, the algebraic differential form that is
integrated on a semi-algebraic set in the hypersurface complement is much more
complicated in the spectral action case considered here, than in the quantum field
theory case: the terms in the algebraic differential form arise from the computation,
via pseudo-differential calculus, of a parametrix for the square of the Dirac operator on
the Robertson–Walker spacetime, after a suitable change of variables in the integral.
While the explicit expression of the differential form, even for the simplest cases of
the coefficients a2 and a4 can take up several pages, the structure of the terms can
be understood, as we explain in the following sections, and the domain of definition
is, in the case of the a2n term, the complement of a union of two hyperplanes and a
quadric hypersurfaces defined by a family of quadrics Qα,2n in an affine space A2n+3.

In Section 2 we compute, using the Hopf coordinates on the sphere S3, the pseudo-
differential symbol of the square D2 of the Dirac operator on a (Euclidean) Robertson-
Walker metric. In §2.3, we describe briefly how the Seeley-DeWitt coefficients of the
heat kernel expansion can be computed in terms of Wodzicki residues, by taking prod-
ucts with auxiliary tori with flat metrics. We present in §2.4 the recursive formula
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for the terms σ−2−n(∆−1
r+2) of the heat kernel expansion of D2. In §2.5 we introduce

the integrals γ2n(α, α1, . . . , α2n) and their densities Υ2n(α, α1, . . . , α2n) associated to
the coefficients a2n of the heat kernel expansion, treating the scaling factor a(t) and
its derivatives a(k)(t) as affine coordinates α, αk. The integrals γ2n(α, α1, . . . , α2n)
are what we aim to express in terms of algebro-geometric period integrals. Section 3
contains the main results. We introduce in §3.1 as set of algebraic coordinates, and
we show in §3.2 that the volume form is algebraic over Q in these coordinates. In
§3.3 we show that the density Υ2(α, α1, α2) associated to the a2 term, in the alge-
braic coordinates is a rational function on the complement in A5 of the union of a
quadric hypersurface and two hyperplanes. In §3.4 we prove inductively a formula
for the densities Υ2n(α, α1, . . . , α2n) in algebraic coordinates. The algebraic differen-
tial forms depend on 2n auxiliary affine parameters α1, . . . , α2n, which correspond to
the time derivatives of the scaling factor of the Robertson–Walker metric. In §3.5,
passing to a homologous domain of integration in the cosphere bundle and using
the symmetries of the Robertson–Walker metric, we prove that all terms in the ex-
pression of Υ2n(α, α1, . . . , α2n) with half-integer exponent have to cancel out, leaving
an algebraic differential form, which is written more explicitly in §3.6. In §3.7 we
show that, in the same choice of algebraic coordinates, the domain of integration
in the integrals computing the terms γ2n(α, α1, . . . , α2n) is a Q-semialgebraic set.
Together with the results of §3.6 about the algebraic differential form, this identifies
the γ2n(α, α1, . . . , α2n) with algebro-geometric period integrals. We identify explicitly
the associated motives. The Q-semialgebraic set in this hypersurface complement has
boundary contained in a divisor given by a union of coordinate hyperplanes. Although
the boundary divisor and the hypersurface intersect nontrivially, all the integrals are
convergent and we do not have a renormalization problem, unlike what happens in
the quantum field theory setting. In Section 4 we analyze more explicitly the motive,
showing that, over a quadratic field extension Q(

√
−1) where the quadrics become

isotropic, it is a mixed Tate motive, while over Q it is a form of a Tate motive in the
sense of [17], [19], [20]. We compute explicitly, by a simple inductive argument, the
class in the Grothendieck ring of the relevant hypersurface complement. In §4.1, 4.2,
and 4.3 we recall some general facts about pencils of quadrics, motives of quadrics,
and Grothendieck classes of affine and projective cones. In §4.4 we compute the
Grothendieck class and the motive for the case of the a2 coefficient. In §4.5 we com-

pute inductively the Grothendieck class of the complement A2n+3r(H0∪H1∪ĈZα,2n)

and in §4.6 we prove that the motive m(A2n+3 r (H0 ∪H1 ∪ ĈZα,2n),Σ) underlying
the periods γ2n(α, α1, . . . , α2n) is mixed Tate.

1.1. The spectral model of gravity. The spectral action functional, introduced in
[5] is a regularized trace of the Dirac operator D given by

S(Λ) = Tr(f(D/Λ)) =
∑

λ∈Spec(D)

Mult(λ)f(λ/Λ),

where the test function f is a smooth even rapidly decaying function, which should
be thought of as a smooth approximation to a cutoff function. The parameter Λ > 0
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is an energy scale. One of the main advantages of this action functional is that it
is not only defined for smooth compact Riemannian spin manifolds, but also for a
more general class of geometric objects that include the noncommutative analogs
of Riemannian manifolds, finitely summable spectral triples, see [6]. In particular,
the spectral action functional applied to almost commutative geometries (products of
manifolds and finite noncommutative spaces) is used as a method to generate particle
physics models with varying possible matter sectors depending on the finite geometry
and with matter coupled to gravity, see [18] for a recent overview. It was shown in [5]
that, in the case of commutative and almost commutative geometries, the spectral
action functional has an asymptotic expansion for large energy Λ,

Tr(f(D/Λ)) ∼
∑
β∈Σ+

ST

fβ Λβ

∫
−|D|−β + f(0) ζD(0) + · · · ,

where the coefficients depend on momenta fβ =
∫∞

0
f(v) vβ−1 dv and Taylor coeffi-

cients of the test function f and on residues∫
−|D|−β =

1

2
Ress=β ζD(s)

at poles of the zeta function ζD(s) of the Dirac operator. The leading terms of
the asymptotic expansion recover the usual local terms of an action functional for
gravity, the Einstein-Hilbert action with cosmological term, with additional modified
gravity terms given by Weyl conformal gravity and Gauss-Bonnet gravity. In the case
of an almost commutative geometry the leading terms of the asymptotic expansion
also determine the Lagrangian of the resulting particle physics model. The spectral
action on ordinary manifold, as an action functional of modified gravity, was applied
to cosmological models, see [16] for an overview. In the manifold case, the Mellin
transform relation between zeta function and trace of the heat kernel expresses the
coefficients of the spectral action expansion in terms of the Seeley-DeWitt coefficients
a2n of the heat kernel expansion,

Tr(e−τD
2

) ∼τ→0+ τ−m/2
∞∑
n=0

a2n(D2) τn.

Pseudodifferential calculus techniques and the parametrix method can then be ap-
plied to the computation of the symbol and the Seeley-DeWitt coefficients. The
resulting computations can easily become intractable, but a computationally more
efficient method introduced in [8], based on Wodzicki residues and products by aux-
iliary flat tori can be applied to make the problem more easily tractable.

In the case of the Robertson-Walker spacetimes, it was conjectured in [4] and proved
in [10] that all the terms in the expansion of the spectral action are polynomials with
rational coefficients in the scaling factor and its derivatives. This rationality result
suggests the existence of an underlying arithmetic structure. In the case of the Bianchi
IX metrics, a similar rationality result was proved in [8] and the underlying arithmetic
structure was analyzed in [9] for the Bianchi IX gravitational instantons, in terms of
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modular forms. Here we consider the case of the Robertson-Walker spacetimes and
we look for arithmetic structures in the expansion of the spectral action in terms of
periods and motives. A similar motivic analysis of the Bianchi IX case will be carried
out in forthcoming work.

2. Robertson-Walker metric, Dirac operator, and heat kernel
expansion

In this section we discuss some basic properties of the Dirac operator on a Euclidean
Robertson–Walker spacetime, and of the coefficients of the corresponding heat kernel
expansion, which we need for our main result.

2.1. Robertson–Walker metric. We consider the Robertson-Walker metric with
the expansion factor a(t),

ds2 = dt2 + a(t)2dσ2,

where dσ2 is the round metric on the 3-dimensional sphere S3. Using the Hopf
coordinates for S3, we consider the following local chart

x = (t, η, φ1, φ2) 7→ (t, sin η cosφ1, sin η sinφ2, cos η cosφ1, cos η sinφ2),

0 < η <
π

2
, 0 < φ1 < 2π, 0 < φ2 < 2π.

In this coordinate system, the Robertson-Walker metric is written as

(2.1) ds2 = dt2 + a(t)2
(
dη2 + sin2(η) dφ2

1 + cos2(η) dφ2
2

)
,

or alternatively we write:

(gµν) =


1 0 0 0
0 a(t)2 0 0
0 0 a(t)2 sin2(η) 0
0 0 0 a(t)2 cos2(η)

 ,

with

(gµν) = (gµν)
−1 =


1 0 0 0
0 1

a(t)2
0 0

0 0 csc2(η)
a(t)2

0

0 0 0 sec2(η)
a(t)2

 .

2.2. Pseudodifferential symbol. One can write the local expression for the Dirac
operator D of the Robertson-Walker metric (2.1), as in §2 of [10], and one finds that
the pseudodifferential symbol σD of D is given by

σD(x, ξ) = q1(x, ξ) + q0(x, ξ),
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where the matrices q1 and q0 are as follows. Using the notation ξ = (ξ1, ξ2, ξ3, ξ4)∈ R4

for an element of the cotangent fibre T ∗xM ' R4 at the point x = (t, η, φ1, φ2), we
have

q1(x, ξ) =


0 0 i sec(η)ξ4

a(t)
− ξ1

iξ2
a(t)

+ csc(η)ξ3
a(t)

0 0 iξ2
a(t)
− csc(η)ξ3

a(t)
−ξ1 − i sec(η)ξ4

a(t)

−ξ1 − i sec(η)ξ4
a(t)

− iξ2
a(t)
− csc(η)ξ3

a(t)
0 0

csc(η)ξ3
a(t)

− iξ2
a(t)

i sec(η)ξ4
a(t)

− ξ1 0 0

 ,

q0(x, ξ) =


0 0 3ia′(t)

2a(t)
cot(η)−tan(η)

2a(t)

0 0 cot(η)−tan(η)
2a(t)

3ia′(t)
2a(t)

3ia′(t)
2a(t)

tan(η)−cot(η)
2a(t)

0 0
tan(η)−cot(η)

2a(t)
3ia′(t)
2a(t)

0 0

 .

(2.2)

That is, the local formula of the action of the Dirac operator D on a spinor s is given
by

Ds(x) = (2π)−2

∫
eix·ξ σ(D)(x, ξ) ŝ(ξ) dξ

= (2π)−4

∫ ∫
ei(x−y)·ξ σ(D)(x, ξ) s(y) dy dξ,

where ŝ is the component-wise Fourier transform of s.
The above matrices can be used to find the pseudodifferential symbol of the square

of the Dirac operator:

σD2(x, ξ) = p2(x, ξ) + p1(x, ξ) + p0(x, ξ),

where, denoting the 4× 4 identity matrix by I4×4, we have:

p2(x, ξ) = q1(x, ξ) q1(x, ξ) =
(∑

gµνξµξν

)
I4×4

=

(
ξ2

1 +
ξ2

2

a(t)2
+

csc2(η)ξ2
3

a(t)2
+

sec2(η)ξ2
4

a(t)2

)
I4×4,(2.3)

(2.4) p1(x, ξ) = q0(x, ξ) q1(x, ξ) + q1(x, ξ) q0(x, ξ) +
4∑
j=1

−i∂q1

∂ξj
(x, ξ)

∂q1

∂xj
(x, ξ),

(2.5) p0(x, ξ) = q0(x, ξ) q0(x, ξ) +
4∑
j=1

−i∂q1

∂ξj
(x, ξ)

∂q0

∂xj
(x, ξ).
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2.3. Heat expansion and the Wodzicki residue. It is in general computation-
ally difficult to obtain explicit expressions for the Seeley–DeWitt coefficients of the
heat kernel expansions, even for nicely homogeneous and isotropic metrics like the
Friedmann–Robertson–Walker case. A computationally more efficient method was
introduced in [8], based on products with auxiliary flat tori and Wodzicki residues
[22], [23]. We apply it here to calculate the coefficients a2n that appear in the small
time heat kernel expansion

(2.6) Tr(e−τD
2

) ∼τ→0+ τ−2

∞∑
n=0

a2n τ
n.

In fact, it is proved in [8] that, for any non-negative even integer r, we have

(2.7) a2+r =
1

25 π4+r/2
Res(∆−1),

where

∆ = D2 ⊗ 1 + 1⊗∆Tr ,

in which ∆Tr is the flat Laplacian on the r-dimensional torus Tr = (R/Z)r. Here, the
linear functional Res defined on the algebra of classical pseudodifferential operators
is the Wodzicki residue, which is defined as follows. Assume that the dimension of
the manifold is m, and that the symbol of a classical pseudodifferential operator is
given in a local chart U by

σ(x, ξ) ∼
∞∑
j=0

σd−j(x, ξ) (ξ →∞),

where each σd−j : U × (Rm \ {0})→Mr(C) is positively homogeneous of order d− j
in ξ. Then one needs to consider the 1-density defined by

(2.8) wresxPσ =

(∫
|ξ|=1

tr (σ−m(x, ξ)) |σξ,m−1|
)
|dx0 ∧ dx1 ∧ · · · ∧ dxm−1|,

in which σξ,m−1 is the volume form of the unit sphere |ξ| = 1 in the cotangent fibre
Rm ' T ∗xM given by

(2.9) σξ,m−1 =
m∑
j=1

(−1)j−1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξm.

The Wodzicki residue of the pseudodifferential operator Pσ associated with the symbol
σ is by definition the integral of the above 1-density associated to σ:

(2.10) Res (Pσ) =

∫
M

wresxPσ.

One can find a detailed discussion of the Wodzicki residue in [22], [23] and in Chapter
7 of [13].
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2.4. Recursive formula for densities. A recursive formula for the densities in
(2.8) is the crucial property underlying our main result. It is obtained by performing
symbolic calculations as explained in [8], to which we refer the reader for the details
of the argument.

Lemma 2.1. For a positive integer r, let ∆r+2 denote the operator

∆r+2 = D2 ⊗ 1 + 1⊗∆Tr ,

where ∆Tr is the flat Laplacian on the r-dimensional torus Tr = (R/Z)r. Then one
has

(2.11) σ−2(∆−1
r+2) =

(
p2(x, ξ1, ξ2, ξ3, ξ4) + (ξ2

5 + · · ·+ ξ2
4+r)I4×4

)−1
,

and, for n > 0, the terms σ−2−n(∆−1
r+2) are computed by the recursive formula

(2.12)

σ−2−n(∆−1
r+2) = −


∑

0≤j<n, 0≤k≤2
α∈Z4

≥0

−2−j−|α|+k=−n

(−i)|α|

α!

(
∂αξ σ−2−j(∆

−1
r+2)

)
(∂αx pk)

σ−2(∆−1
r+2).

In particular, when we express the term a2n as the noncommutative residue (2.7),

(2.13) a2n =
1

25 π3+n
Res(∆−1

2n ),

one needs to compute the term σ−2n−2 which is homogeneous of order −2n − 2 in
the expansion of the pseudodifferential symbol of ∆−1

2n . This is obtained from the
following recursion, which is a specialization of the previous lemma.

Corollary 2.2. The densities tr(σ−2n−2(∆−1
2n )) can be computed through the recursion

(2.14)

σ−2n−2(∆−1
2n ) = −


∑

0≤j<2n, 0≤k≤2
α=(`1,`2)∈Z2

≥0

−2−j−|α|+k=−2n

(−i)`1+`2

`1! `2!

(
∂`1ξ1∂

`2
ξ2
σ−2−j(∆

−1
2n )
) (
∂`1t ∂

`2
η pk

)
σ−2(∆−1

2n ).

Proof. The expression (2.14) follows immediately from Lemma 2.1, upon observing
that, by (2.2) and (2.3), (2.4), (2.5), the terms pk only depend on the coordinates
(t, η) and not on the angles (φ1, φ2) in the Hopf coordinates of S3. �
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2.5. Integrated densities and differential forms. For the rest of this paper we
focus on the form of the coefficients a2n, written as residues as in (2.7), and we
investigate the nature of the residue integral as a period in the sense of algebraic
geometry.

To this purpose, we treat the scaling factor a(t) and its derivatives a(k)(t) as
independent affine variables α, . . . , αk, . . ., so that the choice of a specific scaling
factor a(t) corresponds to restricting the variables (α, α1, . . . , α2n) to a real curve
(a(t), a′(t), . . . , a(2n)(t)) inside the affine space A2n+1.

Lemma 2.3. The coefficient a2n is computed as an integral

a2n =

∫
R
γ2n(a(t), a′(t), . . . , a(2n)(t)) dt,

with

(2.15) γ2n(α, α1 . . . , α2n) =
1

8 πn+1

∫
0<η<π

2

∫
|ξ|=1

Υ2n(α, α1 . . . , α2n, η, ξ) σ̃2n+1(η, ξ),

where the volume form is given by

(2.16) σ̃2n+1(η, ξ) = dη ∧ σξ, 2n+1

with σξ, 2n+1 as in (2.9), and

(2.17) Υ2n(α, α1 . . . , α2n, η, ξ)|α=a(t),αk=a(k)(t) = b−2n−2(t, η, ξ),

where the density b−2n−2(t, η, ξ) satisfies
(2.18)∫

0<η<π
2

∫
|ξ|=1

b−2n−2(t, η, ξ) σ̃2n+1(η, ξ) =

∫
0<η<π

2

∫
|ξ|=1

tr(σ−2n−2)(t, η, ξ) σ̃2n+1(η, ξ)

and is obtained from tr(σ−2n−2)(t, η, ξ) by dropping all terms that have odd powers of
some of the coordinates ξj in the numerator.

Proof. As observed in Corollary 2.2, by (2.2) and (2.3), (2.4), (2.5), the homogeneous
components p0, p1, and p2 of the pseudodifferential symbol of D2 depend only on the
variable η and are independent of the angles φ1, φ2 of the Hopf coordinates (η, φ1, φ2)
on S3. Thus, when writing the coefficient a2n as a residue, using (2.7), (2.8), and
(2.10), one finds

(2.19) a2n =
1

8πn+1

∫
R

∫
0<η<π

2

∫
|ξ|=1

tr(σ−2n−2)(t, η, ξ) σ̃2n+1(η, ξ) dt,

with σ̃2n+1(η, ξ) as in (3.4). Using the recursions of Lemma 2.1 and Corollary 2.2,
together with (2.11) and the explicit formula for the term tr(σ−4((D2)−1) given in
the appendix, it follows that the terms tr(σ−2n−2(∆−1

2n )(t, η, ξ) are a sum of fractions
with monomials in the ξj coordinates, the scaling factor a(t) and its derivatives, and
trigonometric functions of η in the numerator and a power of a quadratic form in
the ξj coordinates and trigonometric functions of η in the denominator. The more
precise form of these terms will be discussed below. It suffices here to notice that
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all the terms that contain odd powers of coordinates ξj in the numerator necessar-
ily vanish when the integration in (2.19) is performed. Thus, we can replace the
expression tr(σ−2n−2(∆−1

2n ))(t, η, ξ) by another density b−2n−2(t, η, ξ) obtained from
tr(σ−2n−2(∆−1

2n ))(t, η, ξ) by removing all summands with odd powers of ξj in the nu-
merator. It is then clear that (2.18) is satisfied and that it is possible to define a
density Υ2n(α, α1 . . . , α2n, η, ξ) satisfying (2.17) so that (2.15) holds. �

3. Algebraic differential forms, semi-algebraic sets, and periods

In this section we study the functions γ2n(α, α1, . . . , α2n) as periods of a family
of algebraic differential forms Ωα

(α1,...,α2n) defined over Q, integrated on a Q-semi-
algebraic set A2n in an algebraic variety given by a family Xα of hypersurfaces in the
affine space A2n+3.

3.1. Algebraic coordinates. In order to interpret the terms γ2n(α, α1, . . . , α2n) as
periods, we introduce a simple change of coordinates that makes it possible to rewrite
the integrand Υ2n(α, α1 . . . , α2n, η, ξ) σ̃2n+1(η, ξ) as an algebraic differential form.

Definition 3.1. The algebraic coordinates (u0, . . . , u2n+2) are defined by the change
of variables

(3.1)
u0 = sin2(η), u3 = csc(η) ξ3, u4 = sec(η) ξ4,

uj = ξj, j = 1, 2, 5, 6, . . . , 2n+ 2.

Lemma 3.2. In the algebraic coordinates (3.1) the pseudodifferential symbol

σ(D2) = p2 + p1 + p0

is given by

p2 = q2
1 =

(
u2

1 +
1

a(t)2
(u2

2 + u2
3 + u2

4)

)
I4×4,

p1 = q0 q1 + q1 q0 +

(
−i∂q1

∂ξ1

∂q1

∂t
− i∂q1

∂ξ2

∂q1

∂η

)
,

p0 = q2
0 +

(
−i∂q1

∂ξ1

∂q0

∂t
− i∂q1

∂ξ2

∂q0

∂η

)
,

where q0 and q1 are given by

(3.2) q1 =


0 0 iu4

a(t)
− u1

iu2
a(t)

+ u3
a(t)

0 0 iu2
a(t)
− u3

a(t)
−u1 − iu4

a(t)

−u1 − iu4
a(t)

− iu2
a(t)
− u3

a(t)
0 0

u3
a(t)
− iu2

a(t)
iu4
a(t)
− u1 0 0

 ,
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(3.3) q0 =


0 0 3ia′(t)

2a(t)
1−2u0

2a(t)
√

(1−u0)u0

0 0 1−2u0

2a(t)
√

(1−u0)u0

3ia′(t)
2a(t)

3ia′(t)
2a(t)

− 1−2u0

2a(t)
√

(1−u0)u0
0 0

− 1−2u0

2a(t)
√

(1−u0)u0

3ia′(t)
2a(t)

0 0

 .

Proof. In the coordinates (3.1) the pseudodifferential symbol of the Dirac operator
D of the Robertson-Walker metric is given by

σ(D) = q1 + q0,

where q1 and q0 are now expressed as in (3.2) and (3.3). Since q1 and q0 depend
only on t and u0, or equivalently only on t and η, for the symbol of D2, we have
σ(D2) = p2 + p1 + p0, where p2, p1 and p0 are as in the statement. �

3.2. Algebraic volume form. The volume form σ̃2n+1, when written in the alge-
braic coordinates (3.1), is an algebraic differential form on A5, defined over Q.

Lemma 3.3. The volume form σ̃2n+1(η, ξ) in the algebraic coordinates is given by

(3.4) σ̃2n+1(u0, . . . , u2n+2) =
1

2

2n+2∑
j=1

(−1)j−1uj du0 du1 ∧ · · · ∧ d̂uj ∧ · · · ∧ du2n+2.

Proof. Under the change of variables (3.1) we have

dη =
1

2 sin(η) cos(η)
du0 =

1

2
csc(η) sec(η) du0,

dξ3 = cos(η)u3 dη + sin(η) du3,

dξ4 = − sin(η)u4 dη + cos(η) du4,

dξj = duj for j = 1, 2, 5, 6, . . . , 2n+ 2.

Thus we obtain

σ̃3 := dη ∧ σξ, 3

=
4∑
j=1

(−1)j−1ξj dη ∧ dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξ4

= sin(η) cos(η)
(
u1 dη du2 du3 du4 − u2 dη du1 du3 du4

+u3 dη du1 du2 du4 − u4 dη du1 du2 du3

)
=

1

2

(
u1 du0 du2 du3 du4 − u2 du0 du1 du3 du4 + u3 du0 du1 du2 du4

−u4 du0 du1 du2 du3

)
,
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and similarly, for all n > 0

σ̃2n+1 := dη ∧ σξ, 2n+1

=
2n+2∑
j=1

(−1)j−1ξj dη ∧ dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξ2n+2

=
1

2

2n+2∑
j=1

(−1)j−1uj du0 du1 ∧ · · · ∧ d̂uj ∧ · · · ∧ du2n+2.

�

3.3. The a2 term and quadric surfaces in P3. We consider here the first term
γ2(α, α1, α2), defined as in (2.15) in Lemma 2.3. We show that the differential form
Υ2(α, α1, α2)σ̃3, written in the algebraic coordinates of (3.1), is an algebraic differen-
tial form over Q, defined on the complement of a quadric surface. We first introduce
some preliminary notation.

Let Z be a projective hypersurface in PN−1. In the following we denote by Ẑ the
affine cone over Z in AN , and by CZ the projective cone over Z in PN . We also

denote by ĈZ the affine cone in AN+1 of CZ.

Consider the set of rational functions of the form

(3.5)
P (u0, u1, u2, u3, u4, α, α1, α2)

α2ruk0(1− u0)m(u2
1 + α−2(u2

2 + u2
3 + u2

4))`
,

where

P (u0, u1, u2, u3, u4, α, α1, α2) = P(α1,α2)(u0, u1, u2, u3, u4, α)

are polynomials in Q[u0, u1, u2, u3, u4, α, α1, α2] and where r, k, m and ` are non-
negative integers.

We then obtain the following characterization of the differential form Υ2(α, α1, α2)σ̃3.

Theorem 3.4. Consider affine coordinates (u0, u1, u2, u3, u4) ∈ A5, α ∈ Gm, and
(α1, α2) ∈ A2. Consider the complement

(3.6) A5 r (H0 ∪H1 ∪ ĈZα).

in the affine space A5 of the union of two affine hyperplanes

(3.7) H0 = {u0 = 0} and H1 = {u0 = 1}

and the hypersurface ĈZα defined by the vanishing of the quadratic form

(3.8) Qα,2 = u2
1 + α−2(u2

2 + u2
3 + u2

4).

There is a 2-parameter (α1, α2) family of algebraic differential forms

(3.9) Ωα
(α1,α2)(u0, u1, u2, u3, u4) = f(α1,α2)(u0, u1, u2, u3, u4, α) σ̃3(u0, u1, u2, u3, u4),
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defined on the complement (3.6), with f(α1,α2) Q-linear combinations of rational func-
tions of the form (3.5), such that the differential form Υ2(α, α1, α2)σ̃3, written in the
coordinates (3.1) satisfies

Υ2(α, α1, α2, u0, u1, u2, u3, u4)σ̃3(u0, u1, u2, u3, u4) = Ωα
(α1,α2)(u0, u1, u2, u3, u4).

Proof. We have seen in Lemma 3.3 that the form σ̃3(u0, u1, u2, u3, u4) is an algebraic
differential form on A5, defined over Q. The explicit form of the density tr(σ−4(t, η, ξ))
is reported in (5.1) in the Appendix. The corresponding density b−4(t, η, ξ) is obtained
from tr(σ−4(t, η, ξ)) of (5.1) by eliminating all the terms with odd exponents of ξj in
the numerator. In particular, we see by direct inspection of (5.1) and of the associ-
ated density b−4(t, η, ξ), using elementary trigonometric identities for cot(2η), csc2(η),
tan2(η) and cot2(2η), that the density Υ2(a(t), a′(t), a′′(t), η, ξ) is a sum of fractions
involving even powers of the ξj variables, and integer powers of the expressions

ξ2
1 +

ξ2
2

a(t)2
+
ξ2

3 csc2(η)

a(t)2
+
ξ2

4 sec2(η)

a(t)2
= u2

1 +
1

a(t)2
(u2

2 + u2
3 + u2

4),

cot2(η) =
1− u0

u0

, csc2(η) =
1

u0

, sec2(η) =
1

1− u0

,

with the quadratic polynomial in the denominator. Thus, when expressed in the
algebraic coordinates, each summand in

Υ2(α, α1, α2, u0, u1, u2, u3, u4)

is a rational function of the form (3.5), hence the result follows. �

The quadratic form (3.8) determines a quadric surface Zα in P3, in fact a pencil of

quadric surfaces depending on the parameter α ∈ Gm. The affine hypersurface ĈZα

in A5 is the affine cone over the projective cone CZα in P4.

3.4. Density Υ2n in algebraic coordinates. We now consider the following terms
γ2n(α, α1, . . . , α2n) for all n > 1, and we obtain inductively a general expression for
the densities

Υ2n(α, α1, . . . , α2n, u0, . . . , u2n+2).

Theorem 3.5. The term Υ2n(α, α1, . . . , α2n), written in the algebraic coordinates of
(3.1), satisfies

(3.10) Υ2n(α, α1, . . . , α2n, u0, . . . , u2n+2) =

Mn∑
j=1

cj,2n u
β0,1,j/2
0 (1− u0)β0,2,j/2

u
β1,j
1 u

β2,j
2 · · · uβ2n+2,j

2n+2

Q
ρj,2n
α,2n

αk0,j α
k1,j
1 · · · αk2n,j2n ,

where

Qα,2n = u2
1 +

1

α2
(u2

2 + u2
3 + u2

4) + u2
5 + · · ·+ u2

2n+2,

and with coefficients and exponents

cj,2n ∈ Q, β0,1,j, β0,2,j, k0,j ∈ Z, β1,j, . . . , β2n+2,j, ρj,2n, k1,j, . . . , k2n,j ∈ Z≥0.
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Proof. We need to compute the homogeneous term σ−2n−2(∆−1
2n ). Using (2.14) and

considering the independence of the symbols from the variables φ1 and φ2, we obtain

(3.11) σ−2(∆−1
2n ) =

(
p2 + (u2

5 + · · ·+ u2
2n+2)I4×4

)−1
=

1

Qα,2n

I4×4,

with the quadratic form

(3.12) Qα,2n = u2
1 +

1

α2
(u2

2 + u2
3 + u2

4) + u2
5 + · · ·+ u2

2n+2.

Then the desired σ−2n−2(∆−1
2n ) can be calculated recursively using Corollary 2.2. In

expressing the result of (2.14) in the algebraic coordinates (3.1), note that in general,
for a smooth function f of the variables (t, η, ξ), using the notation

f(t, η, ξ1, ξ2, . . . , ξ2n+2) = f̃(t, u0, u1, u2, . . . , u2n+2),

we have the identities

∂tf = ∂tf̃ , ∂ξjf = ∂uj f̃ , j = 1, 2,

∂ηf = 2
√
u0(1− u0) ∂u0 f̃ − u3

√
1− u0

u0

∂u3 f̃ + u4

√
u0

1− u0

∂u4 f̃ .(3.13)

Combining (2.14), the result for the term σ−4 discussed in Theorem 3.4 and in the
Appendix, and the change of variables of (3.13), one can see by induction that (3.10)
holds as stated. �

Theorem 3.5 above shows that Υ2n(α, α1, . . . , α2n), in the form (3.10) is a rational
expression in

√
u0,
√

1− u0, u1, . . . , u2n+2, α, α1, . . . , α2n. In order to prove that
γ2n(α, α1, . . . , α2n) is an integral of a rational differential form, we need to show that
in fact only terms with even powers of

√
u0 and

√
1− u0 contribute nontrivially

in the calculation of γ2n(α, α1, . . . , α2n). This will then be used to show that the
integral expression (2.15) for γ2n(α, α1, . . . , α2n) is equal to the integral of a rational
differential form in u0, u1, . . . , u2n+2, α, α1, . . . , α2n over a Q-semialgebraic set. We
need a preliminary observation, which we state in the next subsection.

3.5. Integration on the unit cosphere bundle. The claim that only terms with
β0,1,j, β0,2,j ∈ 2Z in the summation of (3.10) contribute nontrivially to the computa-
tion of the term Υ2n(α, α1, . . . , α2n) can be proved as follows.

Consider the unit cosphere of the metric in the cotangent fibre. This is given by
the locus {ξ : |ξ|2g = 1}, with

|ξ|2g = ξ2
1 +

ξ2
2

a(t)2
+

csc2(η)ξ2
3

a(t)2
+

sec2(η)ξ2
4

a(t)2
+ ξ2

5 + · · ·+ ξ2
2n+2(3.14)

= u2
1 +

1

α2
(u2

2 + u2
3 + u2

4) + u2
5 + · · ·+ u2

2n+2.
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Proposition 3.6. The integral of the density tr(σ−2n−2) · σξ, 2n+1 on the unit sphere
is equal to the integral on the unit cosphere of the metric in the cotangent fibre,∫

∑2n+2
j=1 ξ2j=1

tr(σ−2n−2) · σξ, 2n+1 =

∫
|ξ|2g=1

tr(σ−2n−2) · σξ, 2n+1.

Proof. Fixing a point (x, x′) = (t, η, φ1, φ2, x
′) ∈ M × T2n−2, the differential form

tr(σ−2n−2)σξ, 2n+1 on the Euclidean space R2n+2 ' T ∗(x,x′)(M × T2n−2) is a closed

differential form of degree 2n+ 1, since tr(σ−2n−2) is homogeneous of order −2n− 2
in ξ ∈ R2n+2, see Proposition 7.3, page 265 of [13]. Therefore, using the Stokes
theorem, the integral of this differential form over the unit sphere |ξ| = 1 is the same
as its integral over the cosphere of the metric in the cotangent fibre given by |ξ|2g = 1,
since as closed cycles these two loci are homologous. �

We parametrize the cosphere |ξ|g = 1 by writing

ξ1 = sin(ψ2n+1) sin(ψ2n) · · · sin(ψ2) cos(ψ1),

ξ2 = α sin(ψ2n+1) sin(ψ2n) · · · sin(ψ2) sin(ψ1),

ξ3 =
α

csc(η)
sin(ψ2n+1) sin(ψ2n) · · · sin(ψ3) cos(ψ2),

ξ4 =
α

sec(η)
sin(ψ2n+1) sin(ψ2n) · · · sin(ψ4) cos(ψ3),(3.15)

ξ5 = sin(ψ2n+1) sin(ψ2n) · · · sin(ψ5) cos(ψ4),

ξ6 = sin(ψ2n+1) sin(ψ2n) · · · sin(ψ6) cos(ψ5),

· · ·
ξ2n+1 = sin(ψ2n+1) cos(ψ2n),

ξ2n+2 = cos(ψ2n+1),

with the variables ψ1, . . . , ψ2n+1 having the following ranges:

0 < ψ1 < 2π, 0 < ψ2 < π, 0 < ψ3 < π, . . . , 0 < ψ2n+1 < π.

Lemma 3.7. In the parameterization (3.15) of the unit cosphere |ξ|g = 1, the density
tr(σ−2n−2)σξ, 2n+1 is given by the expression
(3.16)

sin(η) cos(η)
Mn∑
j=1

{
cj,2n α

β2,j+β3,j+β4,j+k0,j α
k1,j
1 · · · αk2n,j2n sinβ0,1,j(η) cosβ0,2,j(η)

cosβ1,j(ψ1) sinβ2,j(ψ1)
2n+1∏
`=2

(sinψ`)
`−1+

∑`
i=1 βi,j (cosψ`)

β`+1,j

}
dψ1 dψ2 · · · dψ2n+1.
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Proof. Using the parameterization (3.15), over the cosphere |ξ|g = 1 we have

σξ, 2n+1 =
2n+2∑
j=1

(−1)j−1ξj dξ1 ∧ · · · ∧ d̂ξj ∧ · · · ∧ dξ2n+2

= α3 sin(η) cos(η) sin(ψ2) sin2(ψ3) · · · sin2n(ψ2n+1) dψ1 dψ2 · · · dψ2n+1.

Combining this form with the expression given by (3.10), we obtain (3.16). �

Proposition 3.8. Only terms with even powers of
√
u0 and

√
1− u0 contribute non-

trivially in the expression of Υ2n(α, α1, . . . , α2n) in (3.10).

Proof. By exploiting symmetries of the Robertson-Walker metric and its consequent
isometry group, it is shown in Lemma 1 of [10] that the local density that integrates
to the term a2n has a spatial independence. This fact, together with Lemma 3.7,
implies that the following expression is independent of the variable η:

1

sin(η) cos(η)

∫
|ξ|g=1

tr(σ−2n−2)σξ, 2n+1

=
Mn∑
j=1

cj,2n dj,2n α
β2,j+β3,j+β4,j+k0,j α

k1,j
1 · · · αk2n,j2n sinβ0,1,j(η) cosβ0,2,j(η),(3.17)

where

dj,2n =

∫ 2π

0

cosβ1,j(ψ1) sinβ2,j(ψ1) dψ1 ×∫ π

0

dψ2 · · ·
∫ π

0

dψ2n+1

2n+1∏
`=2

(sinψ`)
`−1+

∑`
i=1 βi,j (cosψ`)

β`+1,j .

We now exploit the independence from η of the sum in (3.17) to show that only the
terms in (3.10) for which β0,1,j and β0,2,j are both even integers contribute in the com-
putation of γ2n(α, α1, . . . , α2n). We prove this by showing that, if for some coefficients
cj and some integers γj and νj, a finite summation of the form

∑
j cj sinγj(η) cosνj(η)

is identically equal to a non-zero constant, or without loss in generality equal to 1,
then all the exponents γj and νj are even integers, and possible terms with odd ex-
ponents have to inevitably cancel each other out. Since η varies between 0 and π/2,
this is equivalent to saying that if∑

j

cj s
γj (1− s2)νj/2 = 1, s ∈ (0, 1),

then all γj and νj are even integers and all other terms cancel.
First observe that replacing s in the above equation by s1 = (1− s2)1/2 shows that

our claim is symmetric with respect to exchanging the γj and νj, hence it suffices to
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show that all γj are even integers. We decompose the summation on the left-hand-side
of the above identity and write∑

jo

cjo s
γjo (1− s2)νjo/2 +

∑
je

cje s
γje (1− s2)νje/2 = 1, s ∈ (0, 1),

where for each term in the first summation either γjo or νjo is odd, and in the second
summation the γje and νje are even integers. Therefore we have∑

jo

cjo s
γjo (1− s2)νjo/2 = 1−

∑
je

cje s
γje (1− s2)νje/2, s ∈ (0, 1),

and we proceed by considering the binomial series of the two sides of this equation.
Since the series of the right-hand-side has only even powers of the variable s ∈ (0, 1),
it follows that the terms on left-hand-side whose γjo are odd cancel each other out,
therefore with no loss in generality we can assume all the γjo are even, which implies
that all the νjo have to be odd integers. Now by making the replacement s1 =
(1− s2)1/2 we are led to∑

jo

cjo (1− s2
1)γjo/2 s

νjo
1 = 1−

∑
je

cje (1− s2
1)γje/2 s

νje
1 , s1 ∈ (0, 1).

Finally we compare the binomial series in s1 of the two sides of this equation: since
the series of the right-hand-side has only even exponents and all the νjo on the left
side are odd integers, we conclude that∑

jo

cjo (1− s2
1)γjo/2 s

νjo
1 = 0, s1 ∈ (0, 1).

�

3.6. Algebraic differential forms. We obtain the following generalization of The-
orem 3.4 for the densities Υ2n(α, α1, . . . , α2n, u0, . . . , u2n+2).

Definition 3.9. Let R2n be the set of rational functions given by Q linear combina-
tions of terms of the form

u
β0,1,j
0 (1− u0)β0,2,j

u
β1,j
1 u

β2,j
2 · · · uβ2n+2,j

2n+2

Q
ρj,2n
α,2n

αk0,j α
k1,j
1 · · · αk2n,j2n ,

where

Qα,2n = u2
1 +

1

α2
(u2

2 + u2
3 + u2

4) + u2
5 + · · ·+ u2

2n+2,

with β0,1,j, β0,2,j, k0,j ∈ Z and β1,j, . . . , β2n+2,j, ρj,2n, k1,j, . . . , k2n,j ∈ Z≥0.

Theorem 3.10. Consider affine coordinates (u0, . . . , u2n+2) ∈ A2n+3, α ∈ Gm, and
(α1, . . . , α2n) ∈ A2n. Consider the algebraic variety, defined over Q, given by the
complement

(3.18) A2n+3 r (H0 ∪H1 ∪ ĈZα,2n),
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where H0 and H1 are hyperplanes defined as in (3.7) and ĈZα,2n is the hypersurface in
A2n+3 defined by the vanishing of the quadratic form Qα,2n, with α ∈ Gm(Q) regarded
as a fixed parameter. There is a 2n-parameter family of algebraic differential forms
Ωα

(α1,...,α2n), defined over Q, with parameters (α1, . . . , α2n) ∈ A2n(Q), such that

(3.19) Ωα
(α1,...,α2n)(u0, . . . , u2n+2) = f(α1,...,α2n)(u0, . . . , u2n+2, α) σ̃2n+1(u0, . . . , u2n+2),

where the rational functions f(α1,...,α2n) belong to the set R2n of Definition 3.9, and
with the property that

(3.20) Υ2n(α, α1, . . . , α2n, u0, . . . , u2n+2) = f(α1,...,α2n)(u0, . . . , u2n+2, α).

Proof. The statement follows directly from Theorem 3.5 and Proposition 3.8. �

3.7. Semi-algebraic sets and Periods. Let K be a number field. A K-semialgebraic
set is a subset S of some Rn that is of the form

(3.21) S = {(x1, . . . , xn) ∈ Rn : P (x1, . . . , xn) ≥ 0},
for some polynomial P ∈ K[x1, . . . , xn], or obtained from such sets by taking a finite
number of complements, intersections, and unions. A semialgebraic set S in an
algebraic variety X is a finite number of complements, intersections, and unions of
subsets that, in a set of algebraic local coordinates have the form (3.21).

A period is an integral
∫
S

Ω of a K-algebraic differential form Ω over a K-semialgebraic
set S in an algebraic variety X defined over the number field K, see [14].

The theory of periods and motives of algebraic varieties constraints the type of
numbers that can occur as periods on an algebraic variety X in terms of the motive
m(X), see [14]. In the rest of the paper we identify explicitly the periods and motives
associated to the terms a2n of the heat kernel expansion.

We first show that the density γ2(α, α1, α2) associated to the coefficient a2 of the
heat kernel expansion is a period and we identify the corresponding motive.

Theorem 3.11. The term γ2(α, α1, α2) is a period integral given by

(3.22) γ2(α, α1, α2) = C ·
∫
A4

Ωα
(α1,α2),

with the algebraic differential form of Theorem 3.4, with domain of integration the
Q-semialgebraic set

(3.23) A4 =

{
(u0, u1, u2, u3, u4) ∈ A5(R) :

u2
1 + u2

2 + u0u
2
3 + (1− u0)u2

4 = 1,
0 < ui < 1, for i = 0, 1, 2

}
,

and with a coefficient C in Q[(2πi)−1]. This integral is a period of the mixed motive

(3.24) m(A5 r (ĈZα ∪H0 ∪H1),Σ),

where ĈZα is the hypersurface in A5 defined by the vanishing of the quadric Qα,2 of
(3.8), H0, H1 are the hyperplanes (3.7), and Σ = ∪i,aHi,a is the divisor given by the
union of the hyperplanes Hi,a = {ui = a}, with i ∈ {0, 1, 2} and a ∈ {0, 1}.
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Proof. We have

γ2(a(t), a′(t), a′′(t)) =
1

23π2

∫ π/2

0

dη

∫
ξ21+ξ22+ξ23+ξ24=1

d3ξ · b−4(t, η, ξ) · σξ, 3

=
1

23π2

∫
(0,π

2
)×S3

Υ2(a(t), a′(t), a′′(t), η, ξ) σ̃3(η, ξ).(3.25)

By Lemma 3.3 and Theorem 3.4, after changing coordinates as in (3.1), for the case
n = 1, we rewrite the form Υ2(α, α1, α2)σ̃3 as the algebraic differential form Ωα

(α1,α2).

Correspondingly, the domain of integration (η, ξ) ∈ (0, π
2
)× S3 is transformed in the

algebraic coordinates into the Q-semialgebraic set (3.23). Thus, with a coefficient
C = (8π2)−1 in Q[(2πi)−1], we rewrite (3.25) as (3.22).

To identify the associated motive, notice that the forms Ωα
(α1,α2) are defined on the

complement in A5 of the union of the hyperplanes H0 and H1 and the hypersurface

ĈZα given by the vanishing of the quadric Qα of (3.8). Thus, the Ωα
(α1,α2) are a

two-parameter family (depending on the parameters (α1, α2) of algebraic differential

forms on the algebraic variety A5 r (ĈZα ∪ H0 ∪ H1). The domain of integration
A4 is not a closed cycle: it has a boundary ∂A4 which is contained in the union of
the hyperplanes Hi,a = {ui = a}, with i ∈ {0, 1, 2} and a ∈ {0, 1}. Thus, the period

corresponds to the relative motive m(A5 r (ĈZα ∪H0 ∪H1),Σ), where the divisor Σ
is the union of these hyperplanes, Σ = ∪i,aHi,a. �

Remark 3.12. The singular locus ĈZα ∪H0 ∪H1 of the algebraic differential form
and the divisor Σ containing the boundary of the domain of integration A4 have
nonempty intersection along H0 ∪ H1. However, unlike the case of quantum field
theory where the intersection of the boundary of the domain of integration with the
graph hypersurface is the source of infrared divergences, here we know a priori that
the integral (3.22) is convergent, and so are all the other analogous integrals for the
higher order a2n terms, as one can see by computing them in the original spherical
coordinates. Thus, we do not have a renormalization problem for these integrals.

We have a similar result for the terms γ2n(α, α1, . . . , α2n).

Theorem 3.13. The term γ2n(α, α1, . . . , α2n) is a period integral given by

γ2n(α, α1, . . . , α2n) = C ·
∫
A2n

Ωα
α1,...,α2n

of the algebraic differential form Ωα
α1,...,α2n

(u0, u1, . . . , u2n+2) of Theorem 3.10, defined

on the algebraic variety A2n+3 r (ĈZα,2n ∪H0 ∪H1), with domain of integration the
Q-semialgebraic set

(3.26) A2n+2 ={
(u0, . . . , u2n+2) ∈ A2n+3(R) :

u2
1 + u2

2 + u0u
2
3 + (1− u0)u2

4 +
∑2n+2

i=5 u2
i = 1

0 < ui < 1, i = 0, 1, 2, 5, 6, . . . , 2n+ 2

}
,
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and with a coefficient C ∈ Q[(2πi)−1]. The associated motive is the relative mixed
motive

m(A2n+3 r (H0 ∪H1 ∪ ĈZα,2n),Σ)

where Σ is a divisor in A2n+3 consisting of a union of hyperplanes Σ = ∪i,aHi,a with
i = 0, 1, 2, 5, 6, . . . , 2n+2 and a = 0, 1, with Hi,a = {ui = a}. This divisor Σ contains
the boundary ∂A2n of the domain of integration.

Proof. We have

γ2n(a(t), a′(t), . . . , a(2n)(t)) =
1

8π1+n

∫
(η, ξ)∈(0,π

2
)×S2n+1

tr(σ−2n−2) σ̃2n+1

=
1

8π1+n

∫
(η, ξ)∈(0,π

2
)×S2n+1

Υ2n(a(t), a′(t), . . . , a(2n)(t), η, ξ) σ̃2n+1(η, ξ).

Passing to the algebraic coordinates of (3.1), the domain of integration

{(η, ξ) ∈ (0,
π

2
)× S2n+1}

is transformed into the Q-semialgebraic set (3.26), while by Theorem 3.5 the density
Υ2n(α, α1, . . . , α2n, η, ξ) σ̃2n+1(η, ξ) is transformed into the algebraic differential form
Ωα

(α1,...,α2n)(u0, . . . , u2n+2). �

Again, as mentioned in Remark 3.12, the integrals are all convergent, hence there is
no renormalization problem caused by the intersection of the boundary of the domain
of integration with the singular set of the algebraic differential form.

4. The motives

In this section we analyze the motives associated to the periods obtained from the
coefficients a2n of the spectral action. We are considering a family of quadrics

(4.1) Qα,2n = u2
1 +

1

α2
(u2

2 + u2
3 + u2

4) + u2
5 + · · ·+ u2

2n+2,

where α is a (rational) parameter. These define quadric hypersurfaces Zα,2n in P2n+1.
We will also be considering the projective cone CZα,2n in P2n+2 and the affine cone

ĈZα,2n in the affine space A2n+3.

4.1. Pencils of quadrics. A quadratic form Q on a vector space V determines a
quadric ZQ ⊂ P(V ). Given two quadratic forms Q1 and Q2 on V , a pencil ZQ of
quadrics in P(V ) is obtained by considering, for each z = (λ : µ) ∈ P1, the quadric
ZQz defined by the quadratic form λQ1 + µQ2. Let ZQ = {(z, u) ∈ P1 × P(V ) : u ∈
ZQz} ⊂ P1 × P(V ).

In particular, we can view the quadrics Zα,2n defined by the quadratic forms Qα,2n

of (4.1) as defining a pencil of quadrics in P1 × P2n+1, with λ/µ = α2. Namely, we
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regard the quadric Zα,2n as part of the pencil of quadrics Z2n = {Zz,2n}z∈P1 , defined
by

(4.2) Qz,2n = λ(u2
1 + u2

5 + · · ·+ u2
2n+2) + µ(u2

2 + u2
3 + u2

4),

for z = (λ : µ) ∈ P1. The quadric Zz,2n becomes degenerate over the set X = {0, 1} ⊂
P1, where it reduces, in the case λ = 0 to a projective cone ZQ1,2n = C2n−1B1 over
the conic B1 = {u2

2 + u2
3 + u2

4 = 0} in P2, and in the case µ = 0 to a projective cone
ZQ2,2n = C3B2 over the quadric B2 = {u2

1 + u2
5 + · · ·+ u2

2n+2 = 0} in P2n−2. There is
a correspondence, as in §10 of [2],

(P1 × P2n+1) r Zn //

��

P2n+1 r (ZQ1,2n ∩ ZQ2,2n)

P1

where the horizontal map is an A1-fibration and the vertical map is the projection to
z = (λ : µ) ∈ P1. By homotopy invariance, we can identify H2n+2

c ((P1×P2n+1)rZ2n)
with the Tate twisted H2n+1

c (P2n+1 r (ZQ1,2n ∩ ZQ2,2n))(−1).

4.2. Motives of quadrics. The theory of motives of quadrics is a very rich and
interesting topic, see [17], [19], [20]. We recall here only a few essential facts that
we need in our specific case. Suppose given a quadratic form Q on an n-dimensional
vector space V over a field K of characteristic not equal to 2. For our purposes, we
will focus on the case where K = Q. We write 〈a1, . . . , an〉 for the matrix of Q in
diagonal form. The quadratic form H := 〈1,−1〉 is the elementary hyperbolic form.
A quadratic form Q is isotropic if H is a direct summand, hence Q = H ⊥ Q′. It is
anisotropic otherwise. Any quadratic form can be written in the form Q = d ·H ⊥ Q′,
where Q′ is a uniquely determined anisotropic quadratic form. The integer d is the
Witt isotropy index of Q. Given an anisotropic quadratic form Q over the field K,
there is a tower of field extensions K1 = K(Q), K2 = K1(Q1), . . ., Ks = Ks−1(Qs−1),
such that over K1 the quadric Q|K1 = d1 ·H ⊥ Q1, with Q1 anisotropic; over K2 the
quadric Q1|K2d2 · H ⊥ Q2, with Q2 anisotropic, and so on, until Qs = 0. The tower
of extensions K1, . . . ,Ks is the Knebusch universal splitting tower, and d1, . . . , ds are
the Witt numbers of Q.

Let ZQ be the quadric defined by the quadratic form Q over K. For a hyperbolic
quadratic form Q = d ·H of dimension 2d, the motive of ZQ is given by (see [20])

(4.3) m(ZdH) = Z(d− 1)[2d− 2]⊕ Z(d− 1)[2d− 2]⊕
⊕

i=0,...,d−2,d,...,2d−2

Z(i)[2i],

where Z = m(Spec(K)). In the case where Q = d ·H ⊥ 〈1〉 in dimension 2d + 1, the
motive of ZQ is given by (see [20])

(4.4) m(ZdH⊥〈1〉) =
⊕

i=0,...,2d−1

Z(i)[2i].
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Given a quadric ZQ, we denote by ZQi the variety of i-dimensional planes on the
quadric ZQ. As in [20], we write XQi for the associated simplicial scheme (Definition
2.3.1 of [20]) and m(XQi) for the corresponding object in the category DMeff(K) of
motives.

We also recall the following result (see Proposition 4.2 of [20]) that will be useful
in our case. Let ZQ ⊂ Pm+1 be a quadratic form of dimension m = 2n over K, such
that there exists a quadratic extension K(

√
a) of K over which Q is hyperbolic. Then

the motive m(ZQ) decomposes as a direct sum

(4.5) m(ZQ) =

{
m1 ⊕m1(1)[2] m = 2 mod 4
m1 ⊕RQ,K ⊕m1(1)[2] m = 0 mod 4

where the motive m1 is an extension of the motives m(XQi)(i)[2i] and m(XQ`)(dim(Q)−
`)[2 dim(Q)−2`], for i (respectively, `) ranging over all even (respectively, odd) num-
bers less than or equal to 2[dim(Q)/4]. The motive we denote by RQ,K is a form of

a Tate motive, which is denoted by RQ,K = K(
√

det(Q))(dim(Q)
2

)[dim(Q)] in [20].

If Q is d-times isotropic, Q = d · H ⊥ Q′, then m(XQj) = Z for all 0 ≤ j < i.
Thus, the motives m(XQj) become Tate motives in a field extension in which the
quadric becomes isotropic, and one recovers the motivic decomposition into a sum of
Tate motives mentioned above. The motives m(XQj) are therefore forms of the Tate
motive, which means that over the algebraic closure m(XQj |K̄) = Z.

4.3. Grothendieck classes. It if often convenient, instead of working with objects
in the category of mixed motives, to consider a simpler invariant given by the class
in the Grothendieck ring of varieties, which can be regarded as a universal Euler
characteristics. The Grothendieck ring K0(VK) of varieties over a field K is generated
by the isomorphism classes [X] of smooth quasi-projective varieties X ∈ VK with
the inclusion-exclusion relations [X] = [Y ] + [X r Y ] for closed embeddings Y ⊂ X
and the product [X × Y ] = [X] · [Y ]. The following simple identities will be useful
in the computations of Grothendieck classes of the motives involved in the period
computations described in the previous sections.

Lemma 4.1. Let Z be a projective subvariety Z ⊂ PN−1, with Ẑ ⊂ AN the affine

cone. Let CZ denote the projective cone in PN and ĈZ the corresponding affine cone
in AN+1. Let H and H ′ be two affine hyperplanes in AN+1 with H ∩H ′ = ∅ and such

that the intersections ĈZ ∩H and ĈZ ∩H ′ are sections of the cone, given by copies
of Ẑ. The Grothendieck classes of the projective and affine complements satisfy

(1) [AN r Ẑ] = (L− 1)[PN−1 r Z]

(2) [AN+1 r ĈZ] = (L− 1)[PN r CZ]
(3) [CZ] = L [Z] + 1

(4) [AN+1 r ĈZ] = LN+1 − L(L− 1)[Z]− L
(5) [AN+1 r (ĈZ ∪H ∪H ′)] = LN+1 − 2LN − (L− 2)(L− 1)[Z]− (L− 2),

where L = [A1] is the Lefschetz motive, the class of the affine line.
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Proof. The first and second identities follow from the fact that the class of the affine
cone is given by [Ẑ] = (L− 1)[Z] + 1, so that

[AN r Ẑ] = LN − (L− 1)[Z]− 1 = (L− 1)(
(LN − 1)

(L− 1)
− [Z]) = (L− 1)[PN−1 − Z].

The identity [CZ] = L [Z] + 1 follows by viewing the projective cone over Z as the

union of a copy of Z and a copy of the affine cone Ẑ over Z, and using the same
identity [Ẑ] = (L− 1)[Z] + 1 for the affine cone. The fourth identity follows from the
second and the third,

(L− 1)[PN r CZ] = LN+1 − 1− (L− 1)[CZ]

= LN+1 − 1− (L− 1)(L[Z] + 1) = LN+1 − (L2 − L)[Z]− L.
For the last identity, we write

[AN+1 r (ĈZ ∪H ∪H ′)] = LN+1 − [ĈZ ∪H ∪H ′].

The class of the union is given by

[ĈZ ∪H ∪H ′] = [ĈZ] + [H ∪H ′]− [ĈZ ∩ (H ∪H ′)].

Since H ∩H ′ = ∅, we have [H ∪H ′] = 2LN and [ĈZ ∩ (H ∪H ′)] = [ĈZ ∩H] + [ĈZ ∩
H ′] = 2[Ẑ] = 2(L− 1)[Z] + 2. Thus, we have

[AN+1 r (ĈZ ∪H ∪H ′)] = LN+1 − 2LN − [ĈZ] + 2(L− 1)[Z] + 2

= LN+1−2LN−L(L−1)[Z]−L+2(L−1)[Z]+2 = LN+1−2LN−(L−2)(L−1)[Z]−(L−2).

�

4.4. Pencils of quadrics in P3. We look first at the case of the quadric Zα = Zα,2
in P3 that arises in the computation of the a2 term of the heat kernel expansion.

Over C, any quadric surface ZQ in P3 can be put in the standard formXY = ZW by
a simple change of coordinates. Thus, over C any quadric surface in P3 is isomorphic
to the Segre embedding P1×P1 ↪→ P3. When we consider quadrics over Q, this is no
longer necessarily the case.

Theorem 4.2. For α ∈ Q, over the quadratic extension K = Q(
√
−1), the quadric

Zα = Zα,2 in P3 is isomorphic to the Segre embedding P1 × P1 ↪→ P3. The class of
the complement in the Grothendieck ring is [P3 r Zα] = L3 − L, while the class of

the affine complement of ĈZα is [A5 r ĈZα] = L5 − L4 − L3 + L2. The class of the

complement A5 r (ĈZα ∪ H0 ∪ H1) with the affine hyperplanes H0 = {u0 = 0} and
H1 = {u0 = 1} is given by

[A5 r (ĈZα ∪H0 ∪H1)] = L5 − 3L4 + L3 + 3L2 − 2L.
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Proof. Over the quadratic extension K = Q(i) we can consider the change of variables

X = u1 +
i

α
u2, Y = u1 −

i

α
u2, Z =

i

α
(u3 + iu4), W =

i

α
(u3 − iu4),

where we assume that α ∈ Q. This change of coordinates determines the identification
of Zα with the Segre quadric {XY − ZW = 0} ' P1 × P1.

The classes in the Grothendieck ring are then given by [Zα] = [P1×P1] = (L+1)2 =
L2 + 2L+ 1, so that [P3 rZα] = L3 +L2 +L+ 1− (L2 + 2L+ 1) = L3−L. We then

use Lemma 4.1 to compute the class [A5 r ĈZα]. We have

[A5r ĈZα] = L5−L(L−1)[Zα]−L = L5−L−L(L−1)(L+1)2 = L5−L4−L3 +L2.

We then use the last identity of Lemma 4.1 to compute

[A5 r (ĈZα ∪H0 ∪H1)] = L5 − 2L4 − (L− 2)(L− 1)[Zα]− (L− 2)

= L5 − 2L4 − (L− 2)(L− 1)(L + 1)2 − (L− 2) = L5 − 3L4 + L3 + 3L2 − 2L.
�

Theorem 4.3. Over the quadratic extension K = Q(
√
−1), the motive

m(A5 r (ĈZα ∪H0 ∪H1),Σ)

is mixed Tate.

Proof. Over K = Q(
√
−1), the quadric Qα, for α ∈ Q, satisfies

Qα|Q(
√
−1) = 2 ·H

hence the motive is given by (4.3) as

m(Zα) = Z⊕ Z(1)[2]⊕ Z(1)[2]⊕ Z(2)[4] = m(P1 × P1)

where m(P1) = Z ⊕ Z(1)[2]. This corresponds to the Grothendieck class [Zα] =
1 + 2L + L2.

The Gysin distinguished triangle of the closed embedding Zα ↪→ P3 of codimension
one gives

m(P3 r Zα)→ m(P3)→ m(Zα)(1)[2]→ m(P3 r Zα)[1],

hence if two of the three terms are in the triangulated subcategory of mixed Tate
motives, the third term also is. This implies that m(P3 r Zα) is mixed Tate.

When passing to the projective cone CZα in P4, since P4 r CZα → P3 r Zα is an
A1-fibration, by homotopy invariance we have mj

c(P4 r CZα) = mj−2
c (P3 r Zα)(−1),

where we consider here the motive mj
c with compact support that corresponds to the

cohomology Hj
c . Thus, if the motive m(P3 rZα) is mixed Tate, then so is the motive

m(P4 r CZα).

In passing from the motive m(P4 rCZα) to the motive m(A5 r ĈZα), consider the

P1-bundle P compactification of the Gm-bundle T = A5 r ĈZα → X = P4 r CZα
and the Gysin distinguished triangle

m(T )→ m(P)→ mc(P r T )∗(1)[2]→ m(T )[1],
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see [21], p.197. The motive of a projective bundle satisfies m(P) hence m(P) is mixed
Tate, since m(X) is. The motive mc(P r T ) is also mixed Tate since P r T consists
of two copies of X, hence the remaining term m(T ) is also mixed Tate.

We then consider the union of ĈZα and the affine hyperplanes H0 = {u0 = 0} and
H1 = {u0 = 1} in the affine space A5. In order to check that the motive of the union

ĈZα ∪H0 ∪H1 is mixed Tate suffices to know that the motives m(A5 r (H0 ∪H1))

and m(A5 r ĈZα) as well as the motive of the intersection m(ĈZα ∩ (H0 ∪H1)) are
mixed Tate. This follows by applying the Mayer-Vietoris distinguished triangle

m(U ∩ V )→ m(U)⊕m(V )→ m(U ∪ V )→ m(U ∩ V )[1]

with U = A5 r ĈZα and V = A5 r (H0 ∪ H1). This shows that it suffices to know
two of the three terms are mixed Tate to know the remaining one also is. The motive

m(A5rĈZα) is mixed Tate by our previous argument. The motive m(A5r(H0∪H1))
is also mixed Tate by a similar argument, since m(H0∪H1) clearly is. Thus, it suffices

to show that the motive m(A5r(ĈZα∩(H0∪H1)) is mixed Tate, which can be shown

by showing that the motive m(ĈZα ∩ (H0 ∪ H1)) is mixed Tate. The intersection

ĈZα∩ (H0∪H1) consists of two sections of the cone, hence one has two copies of the

motive m(Ẑα) that is also a Tate motive.

The divisor Σ in A5 is a union of coordinate hyperplanes and their translates, and is

also mixed Tate. Thus, the motive m(A5r(ĈZα∩(H0∪H1),Σ) sits in a distinguished
triangle in the Voevodsky triangulated category of mixed motives over Q, where two

of the three terms, m(A5 r (ĈZα ∩ (H0 ∪H1)) and m(Σ), are both mixed Tate. This

implies that the remaining term m(A5r (ĈZα∩ (H0∪H1),Σ) is also mixed Tate. �

4.5. The Grothendieck class of P2n−1 r Zα,2n over K = Q(
√
−1). We proceed

with an inductive argument to compute the Grothendieck class [P2n−1 rZα,2n] for all
the quadrics Zα,n determined by the quadratic forms

(4.6) Qα,2n = u2
1 +

1

α2
(u2

2 + u2
3 + u2

4) + u2
5 + u2

6 + · · ·+ u2
2n+1 + u2

2n+2,

for all n ≥ 3.

Theorem 4.4. Over the quadratic field extension K = Q(
√
−1) the quadric Zα,2n has

Grothendieck class [P2n+1 r Zα,2n] = L2n+1 − Ln. The affine complement of ĈZα,2n

has class

[A2n+3 r ĈZα,2n] = L2n+3 − L2n+2 − Ln+2 + Ln+1

and the affine complement of the union ĈZα,2n ∪H0 ∪H1 has class

[A2n+3 r (ĈZα,2n ∪H0 ∪H1)] = L2n+3 − 3L2n+2 + 2L2n+1 − Ln+2 + 3Ln+1 − 2Ln.

Proof. Over the field K = Q(
√
−1) the change of coordinates

X = u2n+1 + iu2n+2, Y = u2n+1 − iu2n+2
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puts Qα,2n in the form

Qα,2n = Qα,2n−2(u1, . . . , u2n) +XY.

Thus, the Grothendieck class [Ẑα,2n] is a sum of a contribution corresponding to
Y 6= 0, which is of the form (L − 1)L2n and a contribution from Y = 0, which is of

the form L [Ẑα,n−1]. This gives

[A2n+2 r Ẑα,2n] = L2n+2 − 2L2n+1 + L2n + L[A2n r Ẑα,2n−2],

hence using the relation between the classes of the affine and projective complements,

[P2n+1 r Zα,2n] = L2n(L− 1) + L[P2n−1 r Zα,2n−2].

Assuming inductively that [P2n−1rZα,2n−2] = L2n−1−Ln−1 we indeed obtain that the
class of the complement is [P2n+1rZα,2n] = L2n(L−1)+L(L2n−1−Ln−1) = L2n+1−Ln.
We then have

[Zα,2n] = [P2n+1]−[P2n+1rZα,2n] = L2n+L2n−1+· · ·+Ln+1+2Ln+Ln−1+· · ·+L2+L+1.

Using Lemma 4.1, we obtain

[A2n+3 r ĈZα,2n] = L2n−3 − L(L− 1)[Zα,2n]− L

= L2n+3−
n∑
j=2

Lj−Ln+1−2Ln+2−
2n+1∑
j=n+3

Lj−L2n+2 +
n∑
j=2

Lj +2Ln+1 +Ln+2 +
2n+1∑
j=n+3

Lj

= L2n+3 + Ln+1 − Ln+2 − L2n+2.

We proceed in the same way for the computation of the class of the affine complement

of the union ĈZα,2n ∪H0 ∪H1, using Lemma 4.1. We have

[A2n+3 r (ĈZα,2n ∪H0 ∪H1)] = L2n+3 − 2L2n+2 − (L− 2)(L− 1)[Zα,2n]− (L− 2)

and using again the expression

[Zα,2n] = L2n + L2n−1 + · · ·+ Ln+1 + 2Ln + Ln−1 + · · ·+ L2 + L + 1

we obtain

(L− 2)(L− 1)[Zα,2n] = 2− L + 2Ln − 3Ln+1 + Ln+2 − 2Ln+1 + L2n+2

due to cancellations of terms similar to the previous case. We then have

L2n+3 − 2L2n+2 − (L− 2)(L− 1)[Zα,2n]− (L− 2) =

L2n+3 − 3L2n+2 + 2L2n+1 − Ln+2 + 3Ln+1 − 2Ln,
which agrees with the case n = 1 computed in Theorem 4.2. �

We then obtain an analog of Theorem 4.3, proved by a similar argument.

Proposition 4.5. Over the field extension K = Q(
√
−1), the mixed motive

m(A2n+3 r (ĈZα,2n ∪H0 ∪H1),Σ)

is mixed Tate.
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Proof. The argument is completely analogous to Theorem 4.3, using the fact that,
over K = Q(

√
−1) the quadratic form is

Qα,2n|Q(
√
−1) = (n+ 1) ·H,

with (4.3) giving the motive m(Qα,2n|Q(
√
−1)). The motives of complements, and pro-

jective and affine cones and the relative motives m(A2n+3rĈZα,2n,Σ) and m(A2n+3r
(ĈZα,2n ∪H0 ∪H1),Σ) are then obtained as in Theorem 4.3. �

4.6. The motive of Zα,2n over Q. Over the rationals, the quadratic form Qα,2n is
anisotropic, although, as we have seen, it becomes isotropic over the field extension
K = Q(

√
−1), with Qα,2n|Q(

√
−1) = (n + 1) ·H. The motive of Zα,2n over Q(

√
−1) is

a sum of Tate motives

m(Zα,2n|K) = Z(n)[2n]⊕ Z(n)[2n]⊕
⊕

i=0,...,n−1,n+1,...2n

Z(i)[2i],

which corresponds to the Grothendieck class [Zα,2n] = [P2n+1] − [P2n+1 r Zα,2n] =
1 + · · ·+ L2n+1 − (L2n+1 − Ln) = 1 + L + · · ·+ Ln−1 + 2Ln + Ln+1 + · · ·+ L2n. Over
the field Q, the motive of Zα,2n is given by (4.5), with

m(Zα,2n|Q) = m1 ⊕m1(1)[2]

when n is odd and
m(Zα,2n|Q) = m1 ⊕RQ,Q,n ⊕m1(1)[2]

when n is even, where RQ,Q,n is a form of a Tate motive denoted by RQ,Q,n =

Q(
√

det(Qα,2n))(n)[2n] in [20]. When passing to the quadratic field extension Q(
√
−1)

these motivic decompositions become the decomposition into Tate motives given
above.

5. Appendix: explicit density for the a2 coefficient

We use the formula (2.7) in the special case of r = 0 to calculate the term a2

appearing in the heat kernel expansion (2.6). In this case we have

a2 =
1

25 π4
Res

(
(D2)−1

)
,

where (D2)−1 denotes the parametrix of D2. In order to use the formula (2.8), since
the dimension of the manifold is 4, we need to calculate the term σ−4(x, ξ) that is
homogeneous of order −4 in the expansion of the symbol of (D2)−1. By performing
symbolic calculations we find the following explicit expression.

(5.1) tr(σ−4(t, η, ξ)) =

32 cot2(η)ξ43 csc4(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+
32ξ22ξ

2
3 csc4(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+

32ξ43a
′(t)2 csc4(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 8ξ23 csc4(η)

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
−
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192ξ21ξ
4
3a
′(t)2 csc4(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
− 384 cot(η)ξ1ξ2ξ43a

′(t) csc4(η)

a(t)7
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
−

192 cot2(η)ξ22ξ
4
3 csc4(η)

a(t)8
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
− 384 sec(η)ξ1ξ2ξ23ξ

2
4a
′(t) csc3(η)

a(t)7
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5

+

64 cot2(η)ξ22ξ
2
3 csc2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+
16 cot(η) cot(2η)ξ23 csc2(η)

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3

+

384 sec2(η)ξ22ξ
2
3ξ

2
4 csc2(η)

a(t)8
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5

+
64ξ22ξ

2
3a
′(t)2 csc2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+

4ξ23a
′(t)2 csc2(η)

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3

+
64 sec2(η)ξ23ξ

2
4a
′(t)2 csc2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+

48 cot(η)ξ1ξ2ξ23a
′(t) csc2(η)

a(t)5
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+
8ξ23a

′′(t) csc2(η)

a(t)3
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
−

csc2(η)

a(t)2
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
2
− 12 cot2(η)ξ23 csc2(η)

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
−

32ξ21ξ
2
3a
′′(t) csc2(η)

a(t)3
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 48ξ21ξ

2
3a
′(t)2 csc2(η)

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
−

96 cot(2η)ξ1ξ2ξ23a
′(t) csc2(η)

a(t)5
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 96 cot(η) cot(2η)ξ22ξ

2
3 csc2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
−

64 sec2(η)ξ23ξ
2
4 csc2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 384ξ21ξ

2
2ξ

2
3a
′(t)2 csc2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
−

384 sec2(η)ξ21ξ
2
3ξ

2
4a
′(t)2 csc2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
− 384 cot(η)ξ1ξ32ξ

2
3a
′(t) csc2(η)

a(t)7
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5

+

384 sec3(η)ξ1ξ2ξ23ξ
2
4a
′(t) csc(η)

a(t)7
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5

+
32 csc2(2η)ξ22

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3

+

32 sec4(η)ξ22ξ
2
4

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+
32 sec4(η)ξ44 tan2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+

64 sec2(η)ξ22ξ
2
4 tan2(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+
32ξ42a

′(t)2

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+

32 sec4(η)ξ44a
′(t)2

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+
4ξ22a

′(t)2

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3

+

4 sec2(η)ξ24a
′(t)2

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3

+
64 sec2(η)ξ22ξ

2
4a
′(t)2

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+

3a′(t)2

a(t)2
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
2

+
96 cot(2η) sec2(η)ξ22ξ

2
4 tan(η)

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4

+

384 sec4(η)ξ1ξ2ξ44 tan(η)a′(t)

a(t)7
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5

+
384 sec2(η)ξ1ξ32ξ

2
4 tan(η)a′(t)

a(t)7
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5

+

8ξ22a
′′(t)

a(t)3
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3

+
8 sec2(η)ξ24a

′′(t)

a(t)3
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3

+

6a′′(t)

a(t)

(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
2
− sec2(η)

a(t)2
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
2
−
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4

a(t)2
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
2
− 24ξ21a

′′(t)

a(t)

(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
−

12ξ21a
′(t)2

a(t)2
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
− 16 cot(2η)ξ1ξ2a′(t)

a(t)3
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
−

16 cot2(2η)ξ22

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
− 8 sec4(η)ξ24

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
−

12 sec2(η)ξ24 tan2(η)

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
− 16 cot(2η) sec2(η)ξ24 tan(η)

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
3
−

32ξ21ξ
2
2a
′′(t)

a(t)3
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 32 sec2(η)ξ21ξ

2
4a
′′(t)

a(t)3
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
−

48ξ21ξ
2
2a
′(t)2

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 48 sec2(η)ξ21ξ

2
4a
′(t)2

a(t)4
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
−

96 cot(2η)ξ1ξ32a
′(t)

a(t)5
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 96 cot(2η) sec2(η)ξ1ξ2ξ24a

′(t)

a(t)5
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
−

48 sec2(η)ξ1ξ2ξ24 tan(η)a′(t)

a(t)5
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
4
− 192ξ21ξ

4
2a
′(t)2

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
−

192 sec4(η)ξ21ξ
4
4a
′(t)2

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
− 384 sec2(η)ξ21ξ

2
2ξ

2
4a
′(t)2

a(t)6
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
−

192 sec4(η)ξ22ξ
4
4 tan2(η)

a(t)8
(
ξ21+

ξ22
a(t)2

+
csc2(η)ξ23
a(t)2

+
sec2(η)ξ24
a(t)2

)
5
.

The density b−4(t, η, ξ) is obtained from tr(σ−4(t, η, ξ)) above by eliminating all
terms with an odd exponent of ξj in the numerator.
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