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THE NUMERICAL INVARIANT MEASURE OF STOCHASTIC
DIFFERENTIAL EQUATIONS WITH MARKOVIAN SWITCHING

XIAOYUE LI∗, QIANLIN MA† , HONGFU YANG‡ , AND CHENGGUI YUAN§

Abstract. The existence and uniqueness of the numerical invariant measure of the backward
Euler-Maruyama method for stochastic differential equations with Markovian switching is yielded,
and it is revealed that the numerical invariant measure converges to the underlying invariant measure
in the Wasserstein metric. The global Lipschitz condition on the drift coefficients required by Bao
et al., 2016 and Yuan et al., 2005 is released. Under a polynomial growth condition imposed on drift
coefficients we show that the convergence is polynomial. Several examples and numerical experiments
are given to verify our theory.

Key words. The backward Euler-Maruyama method·Markovian switching·Numerical invariant
measure·Wasserstein metric

AMS subject classifications. 60H10 · 34F05

1. Introduction. As one of the important classes of hybrid systems, stochastic
differential equations (SDEs) with Markovian switching have been widely used in biol-
ogy, control problems, neutral activity, mathematical finance and other sciences (see,
e.g., the monographs [13, 32] and the references therein). So far, various dynamical
properties including moment boundedness, stability, ergodicity, recurrence and tran-
sience on SDEs with Markovian switching have been investigated extensively, refer to
[3, 4, 5, 13, 24, 26, 27, 31, 32]. Yin and Zhu [32, pp.181-280], and Mao and Yuan [13,
pp.164-190] investigated the stability of SDEs with Markovian switching and showed
that the Markov chain facilitates the stochastic stabilization in which the stationary
distribution of the Markov chain plays an important role. Pinsky and Scheutzow
[24] revealed the fact that the overall system may not to be positive recurrence (resp.
transience) even though each subsystem is. So, the dynamical behaviors of SDEs with
Markovian switching are significantly different from those of SDEs.

However, solving the SDEs with Markovian switching is still a challenging task
that requires using numerical methods or approximation techniques, see, e.g., the
monographs [10, 13, 14, 32]. Some long-time behaviors of the SDEs with Markovian
switching, for instance, the almost sure stability and the moment stability, have been
preserved by the numerical solutions, see, e.g., [7, 13, 15, 23, 32, 35] and the refer-
ences therein. For deterministic systems, the stability of equilibrium point is among of
the interesting topics. However, many stochastic systems don’t posses a deterministic
equilibrium state. Recently, for stochastic systems with Markovian switching, the sta-
bility of the “stochastic equilibrium state”-the existence of the invariant measure has
drawn increasing attention [3, 4, 26, 27, 31, 32]. Since the corresponding Kolmogorov-
Fokker-Planck equations are always computationally intensive, it is important to be
able to approximate the invariant measure numerically. Therefore, approximations of
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invariant measures for SDEs with Markovian switching have attracted much attention
recently. Mao et al. [12], Yuan and Mao [33] and Bao et al. [4] made use of Euler-
Maruyama (EM) method with a constant step size to approximate the underlying
invariant measure while Yin and Zhu [32, p.159-179] did that using the EM scheme
with the decreasing step size. In the mentioned papers, both the drift coefficients
and the diffusion coefficients of the SDEs with regime switching are required to be
global Lipschitz continuous. Although the classical Euler-Maruyama (EM) method
is convenient for computations and implementations, the absolute moments of its ap-
proximation for SDEs with super-linear coefficients may diverge to infinity at a finite
time (see, e.g. [8]). It is well know, see [16], that the EM numerical solutions fail to
be ergodic, even when the underlying SDE is geometrically ergodic. Many implicit
methods were used to study the numerical solutions to SDEs with nonlinear coeffi-
cients (see, e.g., [6, 22]). Higham et al. [6] proved that the implicit EM numerical
solutions converge strongly to the exact solutions of SDEs with globally one-sided
Lipschitz continuous drift term and globally Lipschitz continuous diffusion term, but
the explicit EM method fails to do that. Mattingly et al. [16] introduced variants of
the implicit EM method to preserve the ergodicity for SDEs with additional noises
usually established through the use of Foster-Lyapunov conditions in [18, 19, 20] while
Liu and Mao [11] took advantage of the implicit EM method to approximate the sta-
bility in distribution of non-globally Lipschitz continuous SDEs. For the background
on the implicit methods, we refer the reader to the books [10, 21]. Shardlow and
Stuart [28] established the perturbation theory of geometrically ergodic Markov chain
with an application to numerical approximations.

Motivated by the papers above, this paper focuses on using the backward Euler-
Maruyama (BEM) method to approximate the invariant measure of nonlinear SDEs
with Markovian switching that the drift coefficients need not to satisfy the global
Lipschitz condition. The BEM scheme, which is implicit in the drift term, has been
implemented for SDEs with Markovian switching to investigate the strong convergence
and the approximation of the almost sure stability as well as the moment stability
(see, e.g., [15, 35, 34] and the references therein). The main aim of this paper is to
study the existence and uniqueness of the numerical invariant measure of the BEM
method and the convergence in the Wasserstein metric to the invariant measure of
the corresponding exact solution as well as the convergence rate.

The rest of our paper is organized as follows. Section 2 gives some preliminary
results on the existence and uniqueness of the invariant measure for the exact solution.
Section 3 focuses on the existence and uniqueness of the numerical invariant measures
in BEM scheme. Then we go further to reveal that the numerical invariant measure
converges in the Wasserstein distance to the underlying one. Section 4 presents several
examples and numerical experiments to illustrate our results.

2. Preliminary. Throughout this paper, let | · | denote the Euclidean norm in
Rn := Rn×1 and the trace norm in Rn×m. If A is a vector or matrix, its transpose
is denoted by AT and its trace norm is denoted by |A| =

√
trace(ATA). For vectors

or matrixes A and B with compatible dimensions, AB denotes the usual matrix
multiplication. We denote the indicator function of a set D by ID, and 0 ∈ Rn is
a zero vector. For any ξ = (ξ1, ξ2, · · · , ξn)T ∈ Rn, ξ � 0 means each component

ξj > 0, j = 1, 2, · · · , n. Define ξ̂ = min
1≤j≤n

ξj and ξ̌ = max
1≤j≤n

ξj . For any a, b ∈ R,

a ∨ b = max{a, b}, and a ∧ b = min{a, b}. For each R > 0, let BR(0) = {x ∈ Rn :
|x| ≤ R}. Let B(Rn) denote the family of all Borel sets in Rn.
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Let (Ω, F , P) be a complete probability space, and E denotes the expectation
corresponding to P. Let B(t) be an m-dimensional Brownian motion defined on
this probability space. Suppose that {r(t)}t≥0 is a right-continuous Markov chain
with finite state space S = {1, 2, · · · , N} and independent of the Brownian motion
B(·), where N is a positive integer. Suppose {Ft}t≥0 is a filtration defined on this
probability space satisfying the usual conditions (i.e., it is right continuous in t and
F0 contains all P-null sets) such that B(t) and r(t) are Ft adapted. The generator of
{r(t)}t≥0 is denoted by Q = (qlj)N×N , so that for a sufficiently small ε > 0,

P{r(t+ ε) = j|r(t) = l} =

 qljε+ o(ε), if l 6= j,

1 + qllε+ o(ε), if l = j.

Here qlj ≥ 0 is the transition rate from l to j if l 6= j while qll = −
∑
l 6=j qlj . It is

well known that almost every sample path of r(t) is a right-continuous step function
with a finite number of simple jumps in any finite subinterval of R+ := [0,+∞) (see
[1, p.17-18]). As a standing hypothesis, we assume that the transition probability
matrix Q are irreducible and conservative. So Markov chain {r(t)}t≥0 has a unique
stationary distribution µ := (µ1, µ2, · · · , µN ) � 0 ∈ R1×N which can be determined
by solving the linear equation

µQ = 0, subject to

N∑
j=1

µj = 1.(2.1)

In this paper, we consider the two-component diffusion process (Y (t), r(t)) de-
scribed by the SDE with Markovian switching

dY (t) = f(Y (t), r(t))dt+ g(Y (t), r(t))dB(t)(2.2)

on t ≥ 0 with the initial data (Y (0), r(0)) = (x, i) ∈ Rn × S, where

f : Rn × S→ Rn and g : Rn × S→ Rn×m.

For convenience we further impose the following hypothesises on the drift and diffusion
coefficients.

Assumption 2.1. For any j ∈ S, there exists a constant αj ∈ R such that

(2.3) (u− v)T (f(u, j)− f(v, j)) ≤ αj |u− v|2, ∀u, v ∈ Rn.

Moreover, for any R ≥ 0, there exists a positive constant KR such that

|f(u, j)− f(v, j)| ≤ KR|u− v|,

for any u, v ∈ Rn, |u| ∨ |v| ≤ R , j ∈ S.
Assumption 2.2. For any j ∈ S, there exist constants hj ∈ R and h > 0 such

that

(2.4) |u− v|2|g(u, j)− g(v, j)|2 − 2|(u− v)T (g(u, j)− g(v, j))|2 ≤ hj |u− v|4,

and

(2.5) |g(u, j)− g(v, j)|2 ≤ h|u− v|2,
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for any u, v ∈ Rn.
Next, for convenience, define

βj = 2αj + hj , β = (β1, · · · , βN )T , λ = |µβ|.(2.6)

Assumptions 2.1 and the elementary inequality imply that for any u ∈ Rn

uT f(u, j) ≤ αj |u|2 + |uT f(0, j)| ≤ αj |u|2 +
λ|u|2

8
+

2|f(0, j)|2

λ

≤
(
αj +

1

8
λ
)
|u|2 + σ1,

(2.7)

and Assumption 2.2 and the elementary inequality imply that

|g(u, j)|2 ≤ 2h|u|2 + σ2,(2.8)

where σ1 = 2 max
j∈S
{|f(0, j)|2/λ}, σ2 = 2 max

j∈S
{|g(0, j)|2}. Moreover, choosing constants

2p ≤ ε = λ/16h, we find that

|u|2|g(u, j)|2 + (p− 2)|uT g(u, j)|2 ≤
(
hj + (3ε+ 2p)h

)
|u|4 +

σ2(1 + 2p+ 3ε−1)

2
|u|2

≤
(
hj +

1

4
λ
)
|u|4 + σ3|u|2,(2.9)

where σ3 = (1 + λ/16h+ 48h/λ)σ2/2.
Under Assumptions 2.1 and 2.2, the equation (2.2) admits a unique solution

(Y (t), r(t)) (see, e.g., [13, Theorem 3.17, p.93]). Throughout the paper, we write
(Y x,it , rit) in lieu of (Y (t), r(t)) to highlight the initial data (Y (0), r(0)) = (x, i). Let
P(Rn×S) denote the family of all probability measures on Rn×S. For any p ∈ (0, 1],
define a metric on Rn × S as the following

dp((u, j), (v, l)) := |u− v|p + I{j 6=l}, (u, j), (v, l) ∈ Rn × S,

and the corresponding Wasserstein distance between ν, ν̃ ∈ P(Rn × S) by

Wp(ν, ν̃) := inf
π∈C(ν,ν̃)

∫
(Rn×S)×(Rn×S)

dp(u, v)π(du,dv),

where C(ν, ν̃) denotes the set of all couplings of ν and ν̃. Let Pt(x, i; du × {l}) be
the transition probability kenel of the pair

(
Y x,it , rit

)
, a time homogeneous Markov

process (see, e.g, [13, Theorem 3.28, pp.105-106]). Recall that π ∈ P(Rn×S) is called
an invariant measure of

(
Y x,it , rit

)
if

π(Γ× {j}) =

N∑
l=1

∫
Rn

Pt(u, l; Γ× {j})π(du× {l}), ∀t ≥ 0, Γ ∈ B(Rn), j ∈ S

holds. For each p > 0, define

Λ = diag(2β1 + λ, · · · , 2βN + λ), Qp = Q+
p

4
Λ, ηp = − max

γ∈spec(Qp)
Reγ,(2.10)

where λ and βj are introduced in (2.6), Q is the generator of {r(t)}t≥0, and spec(Qp)
denotes the spectrum of Qp.

The following lemma highlights the relationship between the sign of µβ and the
sign of ηp.

Lemma 2.1. Assume that µβ < 0, then
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(1) ηp > 0 if 2β̌ + λ ≤ 0;

(2) ηp > 0 for p ∈
(

0, min
j∈S,2βj+λ>0

{−4qjj/(2βj + λ)}
)

if 2β̌ + λ > 0,

where λ and βj are introduced in (2.6).

Proof. According to (2.1) and µβ < 0, it is easy to obtain

N∑
j=1

µj(2βj + λ) = 2µβ + λ = µβ < 0.

Then the desired assertion follows from [5, Proposition 4.2] directly.

We have the following result on the invariant measure for the exact solution.

Theorem 2.2. Suppose that Assumptions 2.1, 2.2, and µβ < 0 hold, then the
solutions of the SDE with Markovian switching (2.2) converge to a unique invariant
measure π ∈ P(Rn×S) with some exponential rate ξ > 0 in the Wasserstein distance.

Proof. We shall adopt the approach of [4, Theorem 2.3] to complete the proof.
Let

p0 = 1 ∧ min
j∈S,2βj+λ>0

{−4qjj/(2βj + λ)} ∧ λ/32h.(2.11)

Thus, for any p ∈ (0, p0), (2.9) holds, and ηp > 0 follows from Lemma 2.1. One
observes that

L
(

(1 + |x|2)
p
2 ξ

(p)
i

)
≤ C − ηpξ(p)

i (1 + |x|2)
p
2 ,(2.12)

for p ∈ (0, p0), where ξ(p) = (ξ
(p)
1 , · · · , ξ(p)

N )� 0 is a eigenvector of Qp corresponding
to −ηp, C is a positive constant. Borrowing the proof method of [4, Theorem 2.3]
we can get the result on the existence and uniqueness of the invariant measure but
omit the details to avoid duplication. By the similar way to Theorem 3.5, we yield
the exponential convergence rate.

Remark 2.3. By virtue of Theorem 2.2, the solution (Y (t), r(t)) is ergodic
and the transition probability of (Y (t), r(t)) converges to its invariant measure with
exponential rate in the Wasserstein distance. Furthermore, due to (2.12) the Foster-
Lyapunov criterion [20, Theorem 6.1, p.536] implies that (Y (t), r(t)) is exponentially
ergodic, provided all compact sets are petite for some skeleton chain. Thus, this
pair is strongly mixing since it is positively Harris-recurrent, see details in [2, p.881].
However more conditions should be imposed on the coefficients of the equation in
order for all compact sets are petite for some skeleton chain.

3. Numerical Invariant Measure. This section is devoted to the existence and
uniqueness of the numerical invariant measure of the BEM method and approximation
of the numerical invariant measure to the underlying one in the Wasserstein metric. In
order to define the numerical solution, we need to explain how to simulate a discrete
Markov chain, which has been formulated in [13, Chapter 4, p.111]. To make the
content self-contained, we sketch it here.

Given a stepsize ∆ > 0 and let P (∆) = (Pij(∆))N×N = exp(∆Q). The discrete
Markov chain {rk, k = 0, 1, · · · } can be simulated as follows: let r(0) = i and give a
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random pseudo number ς1 obeying the uniform (0, 1) distribution. Define

r1 =


i1, if i1 ∈ S− {N} such that

i1−1∑
j=1

Pij(∆) ≤ ς1 <
i1∑
j=1

Pij(∆),

N, if

N−1∑
j=1

Pij(∆) ≤ ς1,

where
∑N
j=1 Pij(∆) = 0 as usual. In other words, the probability of state s being cho-

sen is given by P(r1 = s) = Pis(∆). Generally, after the computations of r0, r1, · · · , rk,
give a random pseudo number ςk+1 obeying a uniform (0, 1) distribution and define
rk+1 by

rk+1 =


ik+1, if ik+1 ∈ S− {N} such that

ik+1−1∑
j=1

Prkj(∆) ≤ ςk+1 <

ik+1∑
j=1

Prkj(∆),

N, if

N−1∑
j=1

Prkj(∆) ≤ ςk+1.

This procedure can be carried out independently to obtain more trajectories.
We can now define the BEM scheme for the SDEs with Markovian switching (2.2).

Let X0 = x, r0 = i, and define

Xk+1 = Xk + f(Xk+1, rk)4+ g(Xk, rk)4Bk, k ≥ 0,(3.1)

where 4Bk = B(tk+1) − B(tk). Here Xk, rk, k ≥ 0, depend on the step size 4, we
drop it for simplicity. We point out that the BEM method (3.1) is well-defined under
Assumption 2.1 based on a known result [15, Lemma 5.1] as follows.

Lemma 3.1. Let Assumption 2.1 holds and 4 < 1/|α̌|. Then for any j ∈ S,
b ∈ Rn, there is a unique root u ∈ Rn of the equation

u = b+ f(u, j)4.

It is useful to write (3.1) as

Xk+1 − f(Xk+1, rk)4 = Xk + g(Xk, rk)4Bk.(3.2)

For any j ∈ S, define a function Gj : Rn → Rn satisfying Gj(u) = u − f(u, j)4.
Then Gj has its inverse function G−1

j : Rn → Rn for any j ∈ S. Moreover, the BEM
method (3.1) can be represented as

Xk+1 = G−1
rk

(Xk + g(Xk, rk)4Bk), ∀k ≥ 0.(3.3)

Similar to that of [13, Theorem 6.14, p.250], we can prove the following result.
Lemma 3.2. {(Xk, rk)}k≥0 is a time homogeneous Markov chain.

Let P∆
k4(x, i; du×{l}) be the transition probability kernel of the pair

(
Xx,i
k , rik

)
,

a time homogeneous Markov chain. If π4 ∈ P(Rn × S) satisfies

π4(Γ× {j}) =

N∑
l=1

∫
Rn

P4k4(u, l; Γ× {j})π4(du× {l}),∀k ≥ 0,Γ ∈ B(Rn), j ∈ S,
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then π4 is called an invariant measure of
(
Xx,i
k , rik

)
. For convenience, Denote by C a

generic positive constant which value may be different with different appearance and
is independent of the iteration number k and the time stepsize 4.

In order to show the existence of the numerical invariant measure we prepare the
following lemma on the moment boundedness of the numerical solution of the BEM
scheme borrowing the idea of [11].

Lemma 3.3. Under the conditions of Theorem 2.2, there exists a constant 4̄
such that the numerical solution of BEM scheme with any initial value (x, i) ∈ Rn×S
satisfies

sup
k≥0

E|Xk|p ≤ C(1 + |x|p)(3.4)

for any 4 ∈ (0, 4̄) and any p ∈ (0, p0), where p0 is defined by (2.11).
Proof. It follows from (2.7) and (3.1) that

|Xk+1|2 =XT
k+1

(
f(Xk+1, rk)4+Xk + g(Xk, rk)4Bk

)
≤
(
αrk +

1

8
λ
)
|Xk+1|24+ σ14+

1

2
|Xk+1|2 +

1

2
|Xk + g(Xk, rk)4Bk|2.

Choosing a constant 0 < 41 < 1 such that (2 ˘|α| + 1
4λ)41 ≤ 1/3 (where ˘|α| :=

mini∈S |αi|), we then obtain for any 4 ∈ (0,41],

|Xk+1|2 ≤
1

1− (2αrk + 1
4λ)4

|Xk + g(Xk, rk)4Bk|2 +
2σ14

1− (2αrk + 1
4λ)4

,

which implies

1 + |Xk+1|2 ≤
1

1− (2αrk + 1
4λ)4

[
1 + |Xk + g(Xk, rk)4Bk|2 +

(
2σ1 − 2αrk

)
4
]

≤ (1 + |Xk|2)

1− (2αrk + 1
4λ)4

(
1 + υk(rk)

)
,

where

υk(rk) =
2XT

k g(Xk, rk)4Bk + |g(Xk, rk)4Bk|2 + c14
1 + |Xk|2

, c1 = |2σ1 − 2α̂|.

For any p ∈ (0, p0) where p0 is defined by (2.11), noting that

(1 + u)
p
2 ≤ 1 +

p

2
u+

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

48
u3, u ≥ −1(3.5)

and υk(rk) > −1, we then have

E
(

(1 + |Xk+1|2)
p
2 |Ftk

)
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4λ)4]

p
2

× E
(

1 +
p

2
υk(rk) +

p(p− 2)

8
υ2
k(rk) +

p(p− 2)(p− 4)

48
υ3
k(rk)

∣∣∣Ftk).
(3.6)

Since4Bk is independent of Ftk , we have E(4Bk|Ftk) = 0, E(|A4Bk|2|Ftk) = |A|24,
for any A ∈ Rn×m. Hence,

E
(
υk(rk)|Ftk

)
=
|g(Xk, rk)|24+ c14

1 + |Xk|2
.(3.7)
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Using the properties E(|4Bk|2j) = C4j , E(|4Bk|2j−1|Ftk) ≤ C4j− 1
2 , j = 2, 3, · · · ,

we compute
(3.8)

E
(
υ2
k(rk)|Ftk

)
=

1

(1 + |Xk|2)2

(
4|XT

k g(Xk, rk)|24+ C4 3
2

)
≥ 4|XT

k g(Xk, rk)|24
(1 + |Xk|2)2

,

and

E
(
υ3
k(rk)|Ftk

)
≤ 9

(1 + |Xk|2)3
E
[
8|XT

k g(Xk, rk)4Bk|3 + |g(Xk, rk)4Bk|6 + c3143
∣∣∣Ftk]

≤ C4 3
2 .

(3.9)

Combining (3.6)-(3.9) and using (2.8), for any k ≥ 0 we obtain,

E
(

(1 + |Xk+1|2)
p
2 |Ftk

)
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4λ)4]

p
2

{
1 +

p

2

[ |Xk|2|g(Xk, rk)|2 + (p− 2)|XT
k g(Xk, rk)|2

(1 + |Xk|2)2
4

+

(
2h+ c1

)
|Xk|2 + σ2 + c1

(1 + |Xk|2)2
4
]

+ C4 3
2

}
.

(3.10)

This, together with (2.8) and (2.9), implies

E
(

(1 + |Xk+1|2)
p
2 |Ftk

)
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4λ)4]

p
2

{
1 +

p

2

[(hrk + 1
4λ
)
|Xk|4 + σ3|Xk|2

(1 + |Xk|2)2
4

+

(
2h+ c1

)
|Xk|2 + σ2 + c1

(1 + |Xk|2)2
4
]

+ C4 3
2

}
≤ (1 + |Xk|2)

p
2

[1− (2αrk + 1
4λ)4]

p
2

[
1 +

p

2

(
hrk +

1

4
λ
)
4+ C4 3

2

]
+ C4.

(3.11)

Choosing a constant 0 < 42 ≤ 41 sufficiently small such that C4
1
2
2 ≤ pλ/8, and

27(p+ 2)
(
2 ˘|α|+ λ/4

)242 ≤ 2λ, this yields that for any 4 ∈ (0,42]

(3.12)
p

2

(
hrk +

1

4
λ
)
4+ C4 3

2 ≤ p

2

(
hrk +

1

2
λ
)
4

and [
1−

(
2αrk +

λ

4

)
4
]− p2

≤1 +
p

2

(
2αrk +

λ

4

)
4+

p(p+ 2)(2 ˘|α|+ 1
4λ)2

8[1− (2 ˘|α|+ 1
4λ)42]

p
2 +2
42

≤1 +
p

2

(
2αrk +

5λ

16

)
4.

(3.13)
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Then for any 4 ∈ (0,42], combining (3.11)-(3.13) we obtain

E
(
(1 + |Xk+1|2)

p
2 |Ftk

)
≤(1 + |Xk|2)

p
2

[
1 +

p

2

(
2αrk + hrk +

13λ

16

)
4+ C42

]
+ C4.

Letting 4̄ be a constant such that 4̄ ∈ (0,42], C4̄ ≤ pλ/32 and ( ˘|β| + 7
8λ)4̄ < 1

(where ˘|β| = maxi∈S |βi|), we arrive at for 4 ∈ (0, 4̄]

E
(
(1 + |Xk+1|2)

p
2 |Ftk

)
≤
[
1 +

p

2

(
βrk +

7

8
λ
)
4
]
(1 + |Xk|2)

p
2 + C4,(3.14)

where βi is defined as (2.6) for each i ∈ S. For any k ≥ 1, we further compute

E
(
(1 + |Xk+1|2)

p
2 |Ftk−1

)
≤
[
1 +

p

2

(
βrk +

7

8
λ
)
4
]
E((1 + |Xk|2)

p
2 |Ftk−1

) + C4

≤
k∏

j=k−1

[
1 +

p

2

(
βrj +

7

8
λ
)
4
]
(1 + |Xk−1|2)

p
2

+ C4
[
1 +

p

2

(
βrk +

7

8
λ
)
4
]

+ C4.

(3.15)

Repeating (3.15) we obtain

E
(
(1 + |Xk+1|2)

p
2 |F0

)
≤(1 + |X0|2)

p
2

k∏
j=0

[
1 +

p

2

(
βrj +

7

8
λ
)
4
]

+ C4
k∑
i=1

k∏
j=k−i+1

[
1 +

p

2

(
βrj +

7

8
λ
)
4
]

+ C4.

Hence, for any k ≥ 0, by virtue of the homogeneous property of the Markov chain,
taking expectations on both sides yields

E
(
(1 + |Xk+1|2)

p
2

)
≤(1 + |x|2)

p
2 E

[
k∏
j=0

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)]

+ C4
k∑
i=1

E
[
E
( k∏
j=k−i+1

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)
|Fk−i

)]
+ C4

≤(1 + |x|2)
p
2 E

[
k∏
j=0

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)]

+ C4
k∑
i=1

E
[ i∏
j=1

(
1 +

p

2

(
βrj +

7

8
λ
)
4
)]

+ C4.



10 LI, MA, YANG AND YUAN

Thus, we have

E
(
(1 + |Xk+1|2)

p
2

)
≤(1 + |x|2)

p
2 E

[
exp

( k∑
j=0

log
(

1 +
p

2

(
βrj +

7

8
λ
)
4
))]

+ C4
k∑
i=1

E

[
exp

( i∑
j=1

log
(

1 +
p

2

(
βrj +

7

8
λ
)
4
))]

+ C4.

= : H1 +H2 + C4.

(3.16)

Then, by the ergodic property of the Markov chain (see, e.g., [15]) and inequality
log(1 + u) ≤ u, ∀u > −1, we compute

lim
i→∞

1

i

i∑
j=1

log
(

1 +
p

16

(
8βrj + 7λ

)
4
)

=
∑
j∈S

µj log
(

1 +
p

16

(
8βj + 7λ

)
4
)

≤p4
16

∑
j∈S

µj
(
8βj + 7λ

)
= −λp4

16
a.s.

which implies limi→∞ exp
(
λp4i

32 +
∑i
j=1 log

(
1+ p

16

(
8βrj +7λ

)
4
))

= 0 a.s. By virtue

of the Fatou lemma (see, e.g. [30, p.187, Theorem 2]) we have

lim sup
i→∞

E

[
exp

(λp4i
32

+

i∑
j=1

log
(

1 +
p

16

(
8βrj + 7λ

)
4
))]

= 0.

Thus there is a positive integer N such that

(3.17) E

[
exp

( i∑
j=1

log
(

1 +
p

16

(
8βrj + 7λ

)
4
))]

≤ exp
(
− λp4

32
i
)
, ∀i > N.

Therefore

(3.18) H1 ≤ (1 + |x|2)
p
2

(
1 +

p

2

(
βr0 +

7

8
λ
)
4
)

exp
(
− λp4

32
k
)
, ∀k > N.

For the given N we know

N∑
i=1

E

[
exp

( i∑
j=1

log
(

1 +
p

2

(
βrj +

7

8
λ
)
4
))]

≤
N∑
i=1

(
1 +

p

2

( ˘|β|+ 7

8
λ
)
4
)i
≤ C.

This, together with (3.17), implies

H2 ≤ C4+ C4
∞∑

i=N+1

E

[
exp

( i∑
j=1

log
(

1 +
p

2

(
βrj +

7

8
λ
)
4
))]

≤ C4+ C4
k∑

i=N+1

exp
(
− λp4

32
i
)
, ∀k > N.

(3.19)
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Combining (3.18) and (3.19) with (3.16) yields

E
(
(1 + |Xk+1|2)

p
2

)
≤ C4+ C(1 + |x|2)

p
2 exp

(
− λp4

32
(k ∨ (N + 1))

)
+C4

k∨(N+1)∑
i=N+1

exp
(
− λp4

32
i
)
≤ C(1 + |x|p), ∀k ≥ 0.

(3.20)

Therefore the desired assertion follows.
Remark 3.1. Recently, the work of [11] gives the the moment boundedness of the

BEM numerical solutions for SDEs without globally Lipschitz continuous coefficients.
However the proof techniques can’t be adopted for SDEs with regime switching di-
rectly since their dynamical behaviors are significantly different from those of SDEs.
In the proof of Lemma 3.3 we establish the recursion formula (3.14) dependent on the
states, and then yield the desired result by making use of the ergodic property of the
Markov chain.

To investigate the uniqueness of the invariant measure we provide the asymptot-
ically attractive property of the numerical solutions of BEM scheme. Here we denote
the numerical solution of BEM scheme with any given initial value (x, i) by Xx,i

k .
Lemma 3.4. Under the conditions of Theorem 2.2, it holds that

E|Xx,i
k −X

y,j
k |

p ≤ C(1 + |x|p + |y|p)e−ςk4(3.21)

for any 4 ∈ (0, 4̄) and for any p ∈ (0, p0), (x, i), (y, j) ∈ Rn × S, 4̄ and p0 are given
in Lemma 3.3, ς > 0 is a constant.

Proof. Note that{
Xx,i
k+1 =Xx,i

k + f(Xx,i
k+1, r

i
k)4+ g(Xx,i

k , rik)4Bk,

Xy,i
k+1 =Xy,i

k + f(Xy,i
k+1, r

i
k)4+ g(Xy,i

k , rik)4Bk.

It follows from Assumption 2.1 that

|Xx,i
k+1 −X

y,i
k+1|

2

=
(
Xx,i
k+1 −X

y,i
k+1

)T(
f(Xx,i

k+1, r
i
k)− f(Xy,i

k+1, r
i
k)
)
4

+
(
Xx,i
k+1 −X

y,i
k+1

)T(
Xx,i
k −X

y,i
k +

(
g(Xx,i

k , rik)− g(Xy,i
k , rik)

)
4Bk

)
≤αrik

∣∣Xx,i
k+1 −X

y,i
k+1

∣∣24
+

1

2

∣∣Xx,i
k+1 −X

y,i
k+1

∣∣2 +
1

2

∣∣(Xx,i
k −X

y,i
k ) +

(
g(Xx,i

k , rik)− g(Xy,i
k , rik)

)
4Bk

∣∣2.
We hence obtain

|Xx,i
k+1 −X

y,i
k+1|

2 ≤ 1

1− 2αrik4
∣∣(Xx,i

k −X
y,i
k ) + (g(Xx,i

k , rik)− g(Xy,i
k , rik)4Bk)

∣∣2
=
|Xx,i

k −X
y,i
k |2

1− 2αrik4

(
1 + ϑ(rik)

)
,

where

ϑk(rik)

=
2(Xx,i

k −X
y,i
k )T (g(Xx,i

k , rik)− g(Xy,i
k , rik))4Bk + |

(
g(Xx,i

k , rik)− g(Xy,i
k , rik)

)
4Bk|2

|Xx,i
k −X

y,i
k |2
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if |Xx,i
k −X

y,i
k | 6= 0, otherwise it is set to −1. Clear, ϑk(rik) ≥ −1. For any p ∈ (0, p0),

then using (3.5) we derive that

E
(
|Xx,i

k+1 −X
y,i
k+1|

p
∣∣Ftk)

≤
|Xx,i

k −X
y,i
k |p(

1− 2αrik4
) p

2

I{|Xx,ik −X
y,i
k |6=0}E

[
1 +

p

2
ϑk(rik)

+
p(p− 2)

8
ϑ2
k(rik) +

p(p− 2)(p− 4)

48
ϑ3
k(rik)

∣∣Ftk].
(3.22)

Then following the same way as (3.7)-(3.9), by (2.5) we can show
(3.23)

I{|Xx,ik −X
y,i
k |6=0}E

(
ϑk(rik)|Ftk

)
= I{|Xx,ik −X

y,i
k |6=0}

|g(Xx,i
k , rik)− g(Xy,i

k , rik)|24
|Xx,i

k −X
y,i
k |2

,

I{|Xx,ik −X
y,i
k |6=0}E

(
ϑ2
k(rik)|Ftk

)
≥I{|Xx,ik −Xy,ik |6=0}

4|(Xx,i
k −X

y,i
k )T (g(Xx,i

k , rik)− g(Xy,i
k , rik))|24

|Xx,i
k −X

y,i
k |4

,
(3.24)

and

I{|Xx,ik −X
y,i
k |6=0}E

(
ϑ3
k(rik)|Ftk

)
≤ I{|Xx,ik −Xy,ik |6=0}C4

3
2 .(3.25)

Combining (3.22)-(3.25) and using Assumption 2.2, for any k ≥ 0 we arrive at

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)

≤
|Xx,i

k −X
y,i
k |p

(1− 2αrik4)
p
2

I{|Xx,ik −X
y,i
k |6=0}

[
1 +

p

2

( |g(Xx,i
k , rik)− g(Xy,i

k , rik)|2

|Xx,i
k −X

y,i
k |2

4

+ (p− 2)
|(Xx,i

k −X
y,i
k )T (g(Xx,i

k , rik)− g(Xy,i
k , rik))|24

|Xx,i
k −X

y,i
k |4

)
+
p(p− 2)(p− 4)

48
C4 3

2

]
≤
|Xx,i

k −X
y,i
k |p

(1− 2αrik4)
p
2

[
1 +

p

2

(
hrik + ph

)
4+

p(p− 2)(p− 4)

48
C4 3

2

]
.

It is easy to find from (2.11) that 4ph < λ holds for each p ∈ (0, p0). Choose a
constant 0 < 44 ≤ 4̄ (4̄ is a positive constant given in Lemma 3.3) sufficiently small

such that C41/2
4 ≤ 3λ/8, which implies that for any 4 ∈ (0,44]

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)
≤
|Xx,i

k −X
y,i
k |p(

1− 2αrik4
) p

2

[
1 +

p

2

(
hrik +

1

4
λ
)
4+

pλ

16
4
]
.(3.26)

Further choose 0 < 45 ≤ 44 such that for any 4 ∈ (0,45], any i ∈ S, any integer k

(1− 2αrik4)
p
2 ≥ 1− pαrik4− C4

2 ≥ 1− p

2
(2αrik +

1

16
λ)4(3.27)

holds. Substituting this in (3.26) yields

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)
≤

1 + p
2 (hrik + 3

8λ)4
1− p

2 (2αrik + 1
16λ)4

|Xx,i
k −X

y,i
k |

p.
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Using inequality 1/(1− u) ≤ 1 + u+ 2u2 for any u ∈ (−1/2, 1/2), we obtain

E
(
|Xx,i

k+1 −X
y,i
k+1|

p|Ftk
)
≤
(

1 +
p

2
(βrik +

1

2
λ)4

)
|Xx,i

k −X
y,i
k |

p(3.28)

for any 4 ∈ (0,4∗), p ∈ (0, p0), where 0 < 4∗ ≤ 45 satisfying C4∗ ≤ pλ/32, and

p0( ˘|β|+ λ/2)4∗/2 < 1. This implies that

E
(
|Xx,i

k −X
y,i
k |

p
)
≤ |x− y|pE

[ k−1∏
j=0

(
1 +

p

2
(βrij +

1

2
λ)4

)]

≤ |x− y|pE
[

exp
(k−1∑
j=0

log
(
1 +

p

2
(βrij +

1

2
λ)4

))]
.

(3.29)

This, together with the ergodic property of the Markov chain, yields

lim
k→∞

1

k

k−1∑
j=0

log
(

1 +
p

2
(βrij +

1

2
λ)4

)
=
∑
j∈S

µj log
(

1 +
p

2
(βj +

1

2
λ)4

)
≤ −λp4

4
a.s.

We therefore have

lim
k→∞

[
λpk4

8
+

k−1∑
j=0

log
(

1 +
p

4
(2βrj + λ)4

)]
= −∞ a.s.(3.30)

By virtue of the Fatou lemma, we have

lim
k→∞

E

[
exp

(
λpk4

8
+

k−1∑
j=0

log
(

1 +
p

4
(2βrj + λ)4

))]
= 0.

This together with (3.29) implies

E|Xx,i
k −X

y,i
k |

p ≤ C|x− y|pe−
λpk4

8 , ∀ k > 0.(3.31)

Define τ̄ = inf{k ≥ 0 : rik = rjk}. Since the state space S is finite, and Q is irreducible,
there exists γ̄ > 0 such that

P(τ̄ > k) ≤ e−γ̄k4(3.32)

for any k > 0. For the fixed p ∈ (0, p0), let q = (p + p0)/(2p) > 1, then pq =
(p+ p0)/2 ∈ (0, p0). Moreover, Hölder’s inequality implies that

E|Xx,i
k −X

y,j
k |

p

=E
(
|Xx,i

k −X
y,j
k |

pI{τ̄>[ k2 ]}

)
+ E

(
|Xx,i

k −X
y,j
k |

pI{τ̄≤[ k2 ]}

)
≤
(
E|Xx,i

k −X
y,j
k |

pq
) 1
q
(
P(τ̄ > [

k

2
])
)1− 1

q

+ E
[
I{τ̄≤[ k2 ]}E

(
|Xx,i

k −X
y,j
k |

p
∣∣Fτ̄4)]

≤
(
E|Xx,i

k −X
y,j
k |

pq
) 1
q
(
P(τ̄ > [

k

2
])
)1− 1

q

+ E
[
I{τ̄≤[ k2 ]}E

(
|XXx,iτ̄ ,riτ̄

k−τ̄ −XXy,jτ̄ ,rjτ̄
k−τ̄ |p

)]
≤Ce−

q−1
2q γ̄k4

(
E|Xx,i

k −X
y,j
k |

pq
) 1
q

+ Ce−
p
16λk4E

[
I{τ̄≤[ k2 ]}E

(
|Xx,i

τ̄ −X
y,j
τ̄ |p

)]
≤Ce

− p0−p
2(p+p0)

γ̄k4
(
E|Xx,i

k −X
y,j
k |

p+p0
2

) 2p
p+p0

+ Ce−
p
16λk4E

(∣∣Xx,i

τ̄∧[ k2 ]
−Xy,j

τ̄∧[ k2 ]

∣∣p),

(3.33)
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where [x] represents the integer part of x for any x ∈ R. Applying the elementary
inequality (a + b)p ≤ 2p(ap + bp) for all a, b > 0, by (3.20), yields that

(
E|Xx,i

k −
Xy,j
k |

p+p0
2

) 2p
p+p0 ≤ C(1 + |x|p + |y|p), and

E
(
|Xx,i

τ̄∧[ k2 ]
−Xy,j

τ̄∧[ k2 ]
|p
)
≤E
(
|Xx,i

τ̄∧[ k2 ]
|p
)

+ E
(
|Xy,j

τ̄∧[ k2 ]
|p
)

=E
( [ k2 ]∑
l=0

|Xx,i
l |

pI{τ̄∧[ k2 ]=l}(ω)
)

+ E
( [ k2 ]∑
l=0

|Xy,j
l |

pI{τ̄∧[ k2 ]=l}(ω)
)

≤
[ k2 ]∑
l=0

[
E
(
|Xx,i

l |
p
)

+ E
(
|Xy,j

l |
p
)]
≤ C(1 + |x|p + |y|p)(k + 2).

The desired assertion (3.21) follows by using (3.33).
Next we give the existence and uniqueness of the numerical invariant measure for

SDE (2.2) of BEM method.
Theorem 3.5. Under the conditions of Theorem 2.2, there is a positive 4∗

sufficiently small such that for any 4 ∈ (0,4∗), the solutions of the BEM method
(3.1) converge to a unique invariant measure π∆ ∈ P(Rn × S) with some exponential
rate ξ4 > 0 in the Wasserstein distance.

Proof. For any initial data (x, i), by (3.4) and Chebyshev’s inequality, we derive

that {δ(x,i)P4k4} is tight, then one can extract a subsequence which converges weakly

to an invariant measure denoted by π∆ ∈ P(Rn × S). It follows from (3.32) that

P(rik 6= rjk) = P(τ̄ > k) ≤ e−γ̄k4(3.34)

for any k > 0. Therefore, we derive from (3.21) and (3.34) that

Wp(δ(x,i)P
4
k4, δ(y,j)P

4
k4) ≤E|Xx,i

k −X
y,j
k |

p + P(rik 6= rjk)

≤C(1 + |x|p + |y|p)e−ξ4k4.
(3.35)

where ξ4 := ς ∧ γ̄ > 0. Due to the Kolmogorov-Chapman equation and Lemma 3.3
one observes that for any k, l > 0,

Wp(δ(x,i)P
4
k4, δ(x,i)P

4
(k+l)4) =Wp(δ(x,i)P

4
k4, δ(x,i)P

4
l4P

4
k4)

≤
∫
Rn×S

Wp(δ(x,i)P
4
k4, δ(y,j)P

4
k4)P4l4(x, i; dy, j)

≤
∑
j∈S

∫
Rn
C(1 + |x|p + |y|p)e−ξ4k4P4l4(x, i; dy, j)

=C(1 + |x|p + E|Xx,i
l |

p)e−ξ4k4 ≤ Ce−ξ4k4.

Thus, taking l→∞ implies

(3.36) Wp(δ(x,i)P
4
k4, π

∆) ≤ Ce−ξ4k4 → 0, k →∞,

namely, π∆ is the unique invariant measure of {δ(x,i)P4k4}. Assume ν41 , ν
4
2 ∈ P(Rn×

S) are the invariant measures of (Xx,i
k , rik) and (Xy,j

k , rjk), respectively, we have

Wp(ν
4
1 , ν

4
2 ) ≤

∫
(Rn×S)×(Rn×S)

Wp(δ(x,i)P
4
k4, δ(y,j)P

4
k4)π(dx× di, dy × dj),
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where π is a coupling of ν41 and ν42 . Therefore, the uniqueness of invariant measures
follows from (3.35) immediately.

The following theorem reveals that numerical invariant measure π4 converges in
the Wassertein distance to the underlying one π.

Theorem 3.6. Under the conditions of Theorem 2.2, lim4→0Wp(π, π
4) = 0.

Furthermore, if the drift term satisfies the polynomial growth condition, that is,

|f(x, i)− f(y, i)|2 ≤ ci(1 + |x|q + |y|q)|x− y|2, ∀x, y ∈ Rn, i ∈ S,

then Wp(π, π
4) ≤ C4γ for some γ ∈ (0, p/2), where ci, q are positive constants.

Proof. Under Assumptions 2.1 and 2.2, by Theorem 2.2, Remark 2.3 and (3.36),
for any 4 ∈ (0,4∗) and any ε > 0, there is a k > 0 sufficiently large such that

Wp(δ(x,i)Pk4, π) +Wp(δ(x,i)P
4
k4, π

4) ≤ Ce−ξ
∗k4 <

ε

2
(3.37)

where 4∗ is given by Theorem 3.5 and ξ∗ := ξ ∧ ξ4. Moreover, for the fixed k by the

convergence of finite time when 4 is sufficiently small, Wp(δ(x,i)Pk4, δ(x,i)P
4
k4) < ε

2 .
Therefore the first desired assertion follows.

Furthermore, under the polynomial growth condition of f , by the similar way to
[6], we can obtain that Wp(δ(x,i)Pk4, δ(x,i)P

4
k4) ≤ Ceνk44p/2, for some positive con-

stant ν. Let K̄ be the integer part of constant −p ln4/[2(ν + ξ∗)4], obviously, K̄ →
∞ as 4 → 0. One observes that eνK̄44p/2 ≤ 4

pξ
2(ν+ξ∗) , e−ξK̄4 ≤ eξ

∗4∗4
pξ

2(ν+ξ∗) .

Therefore, Wp(π, π
4) ≤ C4

pξ
2(ν+ξ∗) =: C4γ .

Remark 3.2. In Theorem 3.6 we not only give the convergence of invariant mea-
sures but also reveal the rate of the convergence is γ under the polynomial growth
condition imposed on f . We also notice that Meyn and Tweedie’s work [18] reveals the
relationship of tightness, Harris recurrence and ergodicity for discrete-time Markov
chains, they gave the generalization of Lyapunov-Foster criteria for the various ergod-
icity. However, these criteria are not applicable for (Xk, rk) owing to the switching
effects. Precisely, it is impossible from (3.14) to find a constant 0 < λ ≤ 1 such that
E
(
(1 + |Xk+1|2)

p
2 |Ftk

)
≤ λ(1 + |Xk|2)

p
2 + C4 holds due to the changeable sign of

βrk + 7λ/8.

Remark 3.3. By the virtue of Theorem 3.5, (Xk, rk) is ergodic, moreover, the
transition probability of (Xk, rk) decays into its invariant measure exponentially under
Wasserstein distance, see (3.36).

Remark 3.4. Comparing with the convergence result of the EM scheme for SDE
in [28], we release the restriction of the global Lipschitz continuity of the coefficients
and deal with the convergence of invariant measures for nonlinear SDE with regime
switching.

Remark 3.5. Although many works pay attention to the approximation of in-
variant measures for SDEs, for example, [11, 16, 28], there are few works focusing
on the approximation of invariant measures for switching diffusion processes, espe-
cially described by nonlinear systems. On the other hand, compared with the fast
development of the finite-time numerical analysis for SPDEs, for examples, [9, 29],
the results on long-time approximations for SPDEs are few. The methods developed
in this paper provide ideas to deal with the invariant measure approximations for
nonlinear SPDEs or SPDEs with regime switching. Owing to the importance this will
be considered in our future work.
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4. Examples. In this section, we consider two examples of nonlinear hybrid
stochastic systems and provide simulations to illustrate the efficiency of the BEM
method (3.1). We first consider a two-dimensional SDE with Markovian switching.

Example 4.1. Consider (2.2) with r(t) taking values in S = {1, 2} with generator

Q =

 −5 5

1 −1

 . The system is regarded as the Markovian switching between

 dY1(t) =
[
2Y1(t)− Y 3

1 (t)− Y1(t)Y 2
2 (t)

]
dt− 3dB1(t) + dB2(t),

dY2(t) =
[
1 + Y2(t)− Y 3

2 (t)− Y2(t)Y 2
1 (t)

]
dt+ 4dB1(t),

(4.1)

and 

dY1(t) =
(
Y1(t)− 2Y1(t)

√
Y 2

1 (t) + Y 2
2 (t) + 1

)
dt

+ (2Y1(t)− Y2(t) + 2)dB1(t) + (Y1(t)− Y2(t))dB2(t),

dY2(t) =
(

0.5Y2(t)− 2Y2(t)
√
Y 2

1 (t) + Y 2
2 (t) + 2

)
dt

+ (Y1(t) + 2Y2(t))dB1(t) + (Y1(t) + Y2(t)− 4)dB2(t),

(4.2)

with the initial data Y (0) = 1, r(0) = 1, where B(t) = (B1(t), B2(t))T is a two-
dimensional Brownian motion. Obviously, the diffusion coefficient g is global Lipschitz
continuous with h = 7. Note that the drift coefficient f is neither the global Lipschitz
continuous nor the linear growth, but we can derive that

(u− v)T (f(u, 1)− f(v, 1)) ≤ 2|u− v|2 − 1

4
(|u| − |v|)4 ≤ 2|u− v|2,

and

(u− v)T (f(u, 2)− f(v, 2)) ≤ |u− v|2 − 2(|u|+ |v|)(|u| − |v|)2 ≤ |u− v|2,

i.e. Assumption 2.1 is satisfied with α1 = 2 and α2 = 1 for all u, v ∈ R2. We
furthermore observe that

|u− v|2|g(u, j)− g(v, j)|2 − 2|(u− v)T (g(u, j)− g(v, j))|2 ≤ hj |u− v|4, ∀j ∈ S,

holds with h1 = 0 and h2 = −3 for all u, v ∈ R2. Direct calculation leads to β1 =
2α1 +h1 = 4, β2 = 2α2 +h2 = −1. By solving the linear equation (2.1) we obtain the
unique stationary distribution of r(t), µ = (µ1, µ2) = (1/6, 5/6) , then µβ = µ1β1 +
µ2β2 = −1/6 < 0. It follows from Theorem 2.2 that the exact solution (Y (t), r(t)) of
(2.2) admits a unique invariant measure π ∈ P(Rn × S). By virtue of Theorems 3.5
and 3.6, for a given stepsize 4 the numerical solution of BEM scheme has a unique
invariant measure π4 ∈ P(Rn × S) approximating π in the Wasserstein metric. We
apply the BEM scheme for numerical experiments. Since it is impossible to get the
closed form of the solutions of the stochastic system with random switching between
(4.1) and (4.2), we approximate the underlying solution by the numerical solution of
BEM scheme (3.1). We regard the numerical solution with4 = 2−17 as a more precise
approximation comparing it with the numerical solution with stepsize 4 = 0.002, see
Figure 4.1.
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Fig. 4.1. Example 4.1. (a) Computer simulation of a single path of Markov chain r(t). (b)
A sample path of exact solution Y (t) in 3D settings. (c) A sample path of numerical solution X(t)
in 3D settings. The red line represents the exact solution (i.e. the BEM numerical solution with
4 = 2−17) while the blue line represents the BEM numerical solution with 4 = 0.002.
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Fig. 4.2. Example 4.1. (a) The ECDF for Y1(t). (b) The ECDF for Y2(t). The red solid
line represents the exact solution of the switching system while the blue dashed line represents the
numerical solution of the switching system.

We simulate one path with 13107200 iterations and plot the empirical cumulative
distribution function (ECDF) of numerical solution with 4 = 0.002 in blue dashed
line in Figure 4.2. The ECDF of exact solution is plotted on the same figure in a red
solid line. The similarity of those two distributions is clearly seen, which indicates that
the numerical stationary distribution is a good approximation to the theoretical one.
To measure the similarity quantitatively, we use the Kolmogorov-Smirnov test [17] to
test the alternative hypothesis that the numerical solution and exact solution are from
different distributions against the null hypothesis that they are from the same distri-
bution for both Y1(t) and Y2(t). With 3% significance level, the Kolmogorov-Smirnov
test indicates that we cannot reject the null hypothesis. This example illustrates that
numerical invariant measure converges to the underlying invariant measure.

In order to illustrate the validity, we consider the scalar hybrid cubic SDE (c.f.
the stochastic Ginzburg-Laudau equation (4.52) in [10, p.125] ) which drift coefficient
isn’t global Lipschitz continuous.

Example 4.2. Let r(t) be a Markov chain with the state space S = {1, 2} and
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the generator Q =

 −q q

3 −3

 for some q > 0. It is easy to see that its unique

stationary distribution µ = (µ1, µ2) ∈ R1×2 is given by µ1 = 3
3+q , µ2 = q

3+q . Consider
the scalar hybrid cubic SDE

dY (t) = (b(r(t))Y (t) + a(r(t))Y 3(t))dt+ ρ(r(t))Y (t)dB(t),(4.3)

with the initial data Y (0) = 0.5, r(0) = 2, where

b(1) = 1, a(1) = −1, ρ(1) = 2, b(2) = 2, a(2) = −3, ρ(2) = −1,

and B(t) is a scalar Brownian motion. There exists a unique continuous solution Y (t)
to SDE (4.3) for any Y (0) > 0, which is global and represented by

Y (t) =

0.5 exp
{∫ t

0

[
b(r(s))− 1

2
ρ2(r(s))

]
ds+ ρ(r(s))dB(s)

}
√

1− 0.5

∫ t

0

a(r(s)) exp
{∫ s

0

[
2b(r(u))− ρ2(r(u))

]
du+ 2ρ(r(u))dB(u)

}
ds

.

It is straightforward to see that α1 = 1, α2 = 2, h1 = −4, and h2 = −1. Direct
calculation leads to β1 = −2, β2 = 3, then

µβ = µ1β1 + µ2β2 < 0

holds with q ∈ (0, 2). It follows from Theorem 2.2 that the exact solution (Y (t), r(t))
of (2.2) admits a unique invariant measure π ∈ P(Rn × S). By virtue of Theorems
3.5 and 3.6 the numerical solution of BEM scheme has a unique invariant measure
π4 ∈ P(Rn × S) approximating π in the Wasserstein metric.
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Fig. 4.3. Example 4.2. Six trajectories of the BEM numerical solution with 104 iterations,
Y (0) = 0.5, r(0) = 2 and stepsize 4 = 0.001.

We apply the BEM scheme to do numerical experiments. Choose q = 1.5 and
stepsize 4 = 0.001, we simulate 100 paths, each of which has 104 iterations. Figure
4.3 depicts six trajectories of the numerical solution of BEM scheme (3.1). Intu-
itively, some stationary behaviours display. Figure 4.4 (a) depicts the trajectory of
the Markov chain. From this figure we find that the time the Markov chain staying
on state 1 is more than on that of state 2. Figure 4.4(b) further depicts the trajecto-
ries of the exact solution Y (t) and the corresponding BEM solution X(t), and Figure
4.4(c) depicts the ECDFs of the exact solution and the BEM solution. The similarity
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of those two distributions is clear, which reveals that the numerical stationary dis-
tribution is a good approximation to the underlying one. Moreover, This example
illustrates the existence of the stationary distribution as time goes to infinity. Thus
instead of using numerous paths, we could just use few paths to picture the stationary
distribution.
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Fig. 4.4. Example 4.2. (a) Computer simulation of a single path of Markov chain r(t). (b)
Sample paths of the exact solution and the BEM solution. (c) ECDFs for the exact solution and the
BEM solution. The red solid line represents exact solution of the switching system while the blue
dashed line represents the numerical solution.
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