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Abstract We use the incremental harmonic balance
(IHB) method to analyse the dynamic stability prob-
lem of a nonlinearmultiple-nanobeam system (MNBS)
within the framework of Eringen’s nonlocal elastic-
ity theory. The nonlinear dynamic system under con-
sideration includes MNBS embedded in a viscoelas-
tic medium as clamped chain system, where every
nanobeam in the system is subjected to time-dependent
axial loads. By assuming the von Karman type of geo-
metric nonlinearity, a system of m nonlinear partial
differential equations of motion is derived based on the
Euler–Bernoulli beam theory andD’Alembert’s princi-
ple. All nanobeams in MNBS are considered with sim-
ply supported boundary conditions. Semi-analytical
solutions for time response functions of the nonlinear
MNBS are obtained by using the single-mode Galerkin
discretization and IHB method, which are then vali-
dated byusing the numerical integrationmethod.More-
over, Floquet theory is employed to determine the sta-
bility of obtained periodic solutions for different con-
figurations of the nonlinear MNBS. Using the IHB
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method, we obtain an incremental relationship with the
frequency and amplitude of time-varying axial load,
which defines stability boundaries. Numerical exam-
ples show the effects of different physical and material
parameters such as the nonlocal parameter, stiffness
of viscoelastic medium and number of nanobeams on
Floquet multipliers, instability regions and nonlinear
amplitude–frequency response curves of MNBS. The
presented results can be useful as a first step in the study
and design of complex micro/nanoelectromechanical
systems.

Keywords Multiple-nanobeam system · Geometric
nonlinearity · Nonlocal elasticity · Instability regions ·
IHB method · Floquet theory

1 Introduction

Most dynamic stability studies in the literature are con-
sidering single or double-micro/nanostructure-based
systems [1–4]. Investigation of the nonlinear dynamic
behaviour of such systems has been an exciting per-
spective in the last decade due to possible applications
in designprocedures of differentmicro/nanoengineering
systems [5], especially when these systems are aimed
to be exploited as vibrating nanodevices such as res-
onators, nanosensors, or other nanoelectromechanical
systems. However, it has been shown that organized
nanostructure architectures made of vertically aligned
forests, yarns, and sheets of carbon nanotubes (CNTs)
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give an exciting perspective to scale up the proper-
ties of individual CNTs and realize new functionali-
ties [6]. The lack of reliable nonlinear dynamic mod-
els of multiple-nanostructure-based systems makes a
future investigation in this field as an attractive task for
researchers. A seminal idea of this work is to fill this
gap in the literature and propose newmodels and proce-
dures of a solution to investigate the dynamic stability
of the geometrically nonlinear multiple-nanobeam sys-
tem (MNBS). The presented model of MNBS consists
of multiple individual simply supported nanobeams
that are parallel to each other and placed into a vis-
coelasticmedium. In general, suchmodel can represent
some nanocomposite material composed of vertically
alignedCNTs array placed in somepolymer. Therefore,
the presented model of the nonlinear MNBS might be
important to investigate the aligned arrays of CNTs [7]
and CNT/polymer composites [8], especially stability
of CNTs embedded in the polymer matrix. In addition,
due to their remarkable physical and chemical charac-
teristics, various applications and mathematical mod-
els of CNTs are suggested in the literature [9]. Based
on experimental results, it is shown that small-scale
effects play a significant role in the static and dynamic
behaviour ofmicro/nanostructures. Sincemodels based
on classical continuum theory are scale-free, they need
to be modified introducing some new assumptions in
order to take into account size effects that are present
at small scales. Eringen [10,11] extended the classical
continuum theory by introducing integral and differen-
tial forms of constitutive equations with a single mate-
rial parameter, such that it takes into account forces
between atoms and internal length scale. Moreover,
it has been shown that the results obtained by using
the nonlocal continuum models are in good agreement
with the results obtained via molecular dynamics sim-
ulations. Many authors have analysed the mechanical
behaviour of different types of nanostructures within
the framework of nonlocal continuum mechanics.

A pioneering study where nonlocal elasticity the-
ory is proposed to model micro/nanostructures is the
work by Pedinson et al. [12]. They analysed the static
and dynamic behaviour of a simple micro/nanobeam
and proposed a possible application to real MEMS
and NEMS. Reddy [13–15] has derived new equations
of motion for Euler–Bernoulli, Timoshenko, Reddy
and Levinson beam theories based on the Eringen’s
nonlocal elasticity theory and then obtained analyt-
ical solutions for bending, vibrations, and buckling

response of beams for simply supported boundary con-
ditions. The new shear deformation beam theory pro-
posed by Huu-Tai [16] is used to analyse the free vibra-
tion and stability of short nanobeams using Eringen’s
nonlocal elasticity theory. Aydogdu [17] employed
the Euler–Bernoulli, Timoshenko, Levinson, Reddy,
and Aydogdu beam theories to analyse the bending,
buckling, and vibration of nanobeams in an analyt-
ical manner. Ansari et al. [18,19] compared results
obtained from nonlocal continuum mechanics with
the results obtained by molecular dynamic simula-
tions for simple models of nanostructures and con-
cluded that the results obtained from both theories are
in good agreement. More complex nanoscale systems
consist of two and more organized nanostructures such
as rods, beams, and plates, which are usually cou-
pled through some medium. The dynamic behaviour
of such systems is interesting to observe and it is
still not fully explored in the literature. A double-
nanostructure-based system is the simplest model of a
coupled multiple-nanostructure systems, which can be
composed of two nanobeams, nanorods or nanoplates
coupled through a medium with elastic or viscoelas-
tic properties. Murmu and Adhikari conducted detailed
vibration studies of a double-nanorod, nanobeam, and
nanoplate systems [20–23], where partial differential
equations of motion are obtained based on the D’
Alembert’s principle and nonlocal elasticity theory and
solved by using analytical methods. They investigated
the influence of small-scale effects and other physical
parameters on natural frequencies and critical buck-
ling loads and compared analytical results with results
obtained by molecular dynamics simulations. One of
the first dynamic behaviour studies of multi-layered
graphene sheet system is the paper by He et al. [24]
and Liew et al. [25], where the authors derived an
explicit formula for natural frequencies by utilizing
the classical elasticity model. Using the methodology
that was proposed for chain-like mechanical systems
by Rašković [26] and multiple coupled structural ele-
ments by Hedrih [27], Karličić et al. [28] presented a
straightforward method to obtain analytical solutions
for natural frequencies and critical buckling loads of
multiple nanorods, nanobeams, and nanoplates sys-
tems based on the Eringen’s nonlocal elasticity theory
and trigonometricmethod. To this time, themechanical
behaviour of different nanostructures such as the longi-
tudinal vibration of nanorods [29], transverse vibration
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of nanobeams [30–32], nanoplates [33] and nanoshells
[34] with elastic properties are given in the literature.

Forced and parametric vibration problems of com-
plex coupled nanostructure-based systems such as cou-
pled nanobeams, nanorods, nanoplates have attracted
much attention of the scientific community. Simsek
[35] investigated the influence of a moving load on
different types of single-walled carbon nanotubes.
Karaoglu and Aydogdu [36] investigated the forced
vibration of carbon nanotubes via nonlocal Euler–
Bernoulli beam model. Ansari et al. [37,38] analysed
the forced vibration of nanobeams as mechanical mod-
els of carbon nanotubes by using different numerical
technics and compared the results with those obtained
by the molecular dynamic simulations. In addition,
Kiani [39–42] has examined the influence of differ-
ent physical fields and shear effects on the free and
forced vibration response of nanoscale systems com-
posed of multiple nanobeams coupled in membrane
and forest configurations. Also, Kiani [43–45] con-
ducted several studies on the influence of moving loads
on double-carbon nanotube system based on the non-
local elasticity theory. Arani et al. [46] investigated
the nonlinear dynamic stability of a double-graphene
sheet with integrated actuators and sensors based on the
Gurtin–Murdoch elasticity theory. Further, in series of
papers Wang et al. [47,48] investigated the nonlinear
behaviours of double-nanoplate systems for forced and
parametric excitations. Recently, Pavlović et al. [49]
observed the stochastic stability problem by determin-
ing the stability boundaries and regions of almost sure
stability of a linear multi-nanobeam system embedded
in a viscoelastic medium by using the Monte Carlo
simulation method.

In general, dynamic stability analysis of nanobeam-
like structures can play a significant role in design
procedures of future nanodevices. For axially loaded
nanobeams, where loads are time-dependent harmonic
functions, a failure due to dynamic instability might
occur formuch smaller amplitudes of load than the fail-
ure induced by static buckling. These instability condi-
tions usually lead to the failure of micro/nanodevices.
Based on that fact, authors usually intend to analyse sta-
bility regions caused by primary parametric resonance,
where the frequency of excitation is two times larger
than the first natural frequencies of MNBS [50, p. 23].
Therefore, the main aim of this paper is to extend the
previous studies by investigating the dynamic stability
of more complex systems such as the nonlinear MNBS

and to explore its primary resonance state. In addition,
investigation of the influence of small-scale parame-
ter on the stability of periodic solutions and instability
regions is a very important task for the design of dif-
ferent types of micro/nanodevices.

It is well known that CNT/polymer composites can
be observed as materials with viscoelastic properties
[51–53]. Based on experiments and complex modu-
lus characterization results [52], one can obtain unique
properties of composite materials with aligned carbon
nanotubes embedded in the polymer matrix. Knowing
storage and loss modules is the first step in the identi-
fication of parameters of chosen viscoelasticity model
to represent such materials. In addition, it is confirmed
that in CNT/polymer composites, relaxation time and
viscosity of polymers are temperature-dependent quan-
tities [53], which can be easily obtained from complex
modulus under the assumption of isothermal deforma-
tion [54]. On the other side, a model of MNBS embed-
ded in the elastic medium is suitable to describe the van
der Waals interactions between adjacent nanobeams,
where values of the stiffness coefficient of the elastic
medium can be determined from van der Waals forces
using the methodology from the literature [39–42].

Up to this point, no investigation of the dynamic
stability of the nonlinear MNBS has been carried out
within the framework of nonlocal elasticity theory. In
the present paper, we carry out the semi-analytical
procedure based on the incremental harmonic balance
(IHB) method to find periodic solutions and instabil-
ity regions of the axially loaded system of m cou-
pled nonlinear nanobeams embedded in the viscoelas-
tic medium. We assume that nanobeams are having
the same material and geometric properties as well
as boundary conditions. By considering the Euler–
Bernoulli beam theory, nonlocal constitutive relation
and von Karman nonlinear strains, we obtain a sys-
tem of m nonlinear partial differential equations of
motion. Single-mode Galerkin discretization will be
employed to obtain a system of m nonlinear differen-
tial equations that will be solved using the IHBmethod
in order to obtain semi-analytical periodic solutions
of the nonlinear MNBS for different configurations.
Moreover, the stability of periodic solutions will be
examined by introducing the Floquet theory. The para-
metric study will be conducted to study the influence of
different parameters on the regions of instability, non-
linear amplitude–frequency response curve and Flo-
quet multipliers. This study can be a starting point for
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Fig. 1 The mechanical
model of MNBS

investigation of more complex behaviour such as chaos
in nonlinear MNBS.

2 Problem formulation

2.1 Formulation of the dynamic equations of motion

Let us consider the system formed by the set of straight
and parallel nanobeams with geometric nonlinearity,
which are embedded in a viscoelastic medium and
subjected to time-dependent axial compressive loads
F1 (t) = F2 (t) = · · · = Fm (t) = F (t), Fig. 1.
All nanobeams in MNBS are having the same mate-

rial and geometric properties such as elastic modulus
E , mass density ρ, uniform cross sections of area A
and moments of inertia I . Nanobeams in MNBS are
referred to as nanobeam 1, nanobeam 2 and so on until
the m-th nanobeam. The transverse displacement of
the i-th nanobeam is wi (x, t) , i = 1, 2, 3 . . .m. This
study is limited to the case of the Euler-Bernoulli’s
beam model with simply supported boundary condi-
tions (see Fig. 1). It considers only MNBS coupled in
the clamped chain system, where the first and the last
nanobeam in the system are coupled with a fixed base
through a viscoelastic medium of stiffness k and vis-
cosity b. Other nanobeams in MNBS are also coupled
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through the viscoelastic medium of stiffness per length
k and viscosity b.

In order to explore thedynamic stability of nanoscale
structures, we first need to consider size effects that
might significantly change dynamic properties of non-
linear dynamic systems. For this purposes, modified
continuum theories shown to be a reliable tool for mod-
elling of nanoscale systems [13–15]. Eringen [10,11]
derived a new constitutive relation in the integral form
and later on in the differential form, based on the
assumption that the stress at some point of an elas-
tic body is a function of strains at all other points of
that body. The aforementioned differential form of the
nonlocal constitutive relation for one-dimensional case
is given as

σxx − μ
∂2σxx

∂x2
= Eεxx , (1)

where E is Young’s modulus of the nanobeam, μ =
(e0a)2 is the nonlocal parameter (length scale) with a
denoting the internal characteristic length and e0 denot-
ing the dimensionless material constant. Further, σxx
is the normal nonlocal stress, whereas the von Karman
nonlinear strain–displacements relation is given as fol-
lows:

εxx = ∂u

∂x
− z

∂2w

∂x2
+ 1

2

(
∂w

∂x

)2

. (2)

In the literature, it is shown that the exact value of the
nonlocal parameter is scattered and depends on applied
boundary conditions,material andgeometric properties
of nanostructures.

The most common method for determination of the
nonlocal parameter for simple nanostructures is the fit-
ting procedure based on molecular dynamics simula-
tions. Asmentioned previously, the nonlocal parameter
μ = (e0a)2 is determined by the internal characteris-
tic length a (lattice parameter, granular size or distance
between C–C bounds that is for SWCNT a =1.42 (Å),
e.g. see [55]) and constant e0, whose value is differ-
ent for each material. Eringen [10] obtained the value
of nonlocal parameter by comparing the dispersion
curves of plane waves from nonlocal model with those
obtained by the atomic Born–Karman model of lat-
tice dynamics. The author has found that the maximum
difference of 6% is obtained for the value of constant
e0 = 0.39. Furthermore, the value of key parameter
e0 can be found by comparing the results for frequen-

cies found by the nonlocal elasticity model with those
from theMD simulations. In order to analyse themulti-
wall carbon nanotube-based system, Sudak [56] pro-
posed that e0 = 112.7, for the case when the, nonlocal
parameter is (e0a) = 1.50 × 10−8 (cm) and a = 1.42
(Å). In the paper proposed by Zhang et al. [57], the
authors have estimated the value of material constant
e0 ≈ 0.82 by matching the results from nonlocal con-
tinuum model with the results from molecular dynam-
ics simulations given in Sears and Batra [58]. Ansari et
al. [19,59,60] published a series of paperswhere values
of nonlocal parameter are calibrated based on molec-
ular dynamic simulations. The authors have employed
the NanoHive simulator to perform quasi-static molec-
ular dynamics simulations on SWCNTs with different
chirality, aspect ratios, and boundary conditions. By
using the nonlinear least-square fitting procedure, fun-
damental frequencies are obtained for different nonlo-
cal beam theories and matched with those calculated
from MD simulations, where (e0a) is set as the opti-
mization variable for each nonlocal beam model. They
obtained the values of nonlocal parameter (e0a) from
the fitting procedure for both, armchair and zigzag
SWCNTs, taking into account different boundary con-
ditions. It is shown that values of nonlocal parameter
are ranging from 0.13 to 1.42 for different nanobeam
theories and boundary conditions. Based on previous
results, in this study we adopted that the values of non-
local parameter goes in the range (e0a) = 0 − 2 (nm).

The equations ofmotion can be expressed in terms of
displacements wi (x, t), where by taking into account
nonlocal constitutive relation (1) and von Karman non-
linear strain–displacements relation (2) in theD’Alem-
bert’s principle, we obtain the following equation of
motion for the i-th nanobeam [59],(
1 − μ

∂2

∂x2

)[
ρA

∂2wi

∂t2
+ (F0 + F1 cos 2�t)

∂2wi

∂x2

− E A

2L

∂2wi

∂x2

∫ L

0

(
∂wi

∂x

)2

dx + k (wi − wi+1)

+ k (wi − wi−1) + b

(
∂wi

∂t
− ∂wi+1

∂t

)

+ b

(
∂wi

∂t
− ∂wi−1

∂t

)]

+ E I
∂4wi

∂x4
= 0, i = 1, 2, . . .m (3)

and clamped chain conditions as follows:

w0 (x, t) = 0 and wm+1 (x, t) = 0 (4)
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where the axial load is F = F0 + F1 cos 2�t with
amplitudes of static F0 and dynamic part F1 of axial
load, while � is the frequency of the dynamic part of
axial load.

FromEqs. (3) and (4),we obtain equations ofmotion
of the clamped chain system, shown in Fig. 1, as:(
1 − μ

∂2

∂x2

)[
ρA

∂2w1

∂t2
+ (F0 + F1 cos 2�t)

∂2w1

∂x2

− E A

2L

∂2w1

∂x2

∫ L

0

(
∂w1

∂x

)2

dx

+ 2kw1 + 2b
∂w1

∂t
− kw2 − bw2

]

+ E I
∂4w1

∂x4
= 0, i = 1, (5a)

(
1 − μ

∂2

∂x2

)[
ρA

∂2wi

∂t2
+ (F0 + F1 cos 2�t)

∂2wi

∂x2

− E A

2L

∂2wi

∂x2

∫ L

0

(
∂wi

∂x

)2

dx + ki (wi − wi+1)

+ ki−1 (wi − wi−1)

+ bi

(
∂wi

∂t
− ∂wi+1

∂t

)
+ bi−1

(
∂wi

∂t
− ∂wi−1

∂t

)]

+ E I
∂4wi

∂x4
= 0, i = 2, . . .m − 1 (5b)

(
1 − μ

∂2

∂x2

)[
ρA

∂2wm

∂t2
+ (F0 + F1 cos 2�t)

∂2wm

∂x2

− E A

2L

∂2wm

∂x2

∫ L

0

(
∂wm

∂x

)2

dx

+ 2kwm + 2b
∂wm

∂t
− kwm−1 − bwm−1

]

+ E I
∂4w1

∂x4
= 0, i = m. (5c)

Mathematical expressions for initial and boundary con-
ditions of simply supported Euler-Bernoulli
nanobeams, of the same length L , are given as follows:
*initial conditions

wi (x, 0) = wi0 (x) ,
∂wi (x, 0)

∂t
= vi0 (x) , (6a)

*boundary conditions for simply supported (S–S)
nanobeams

wi (0, t) = wi (L , t) = 0, M f i (0, t)

= M f i (L , t) = 0, i = 1, 2, 3, ..,m. (6b)

3 Galerkin discretization method

Now, we can reduce the system of m nonlinear partial
differential equations of motion (5) to the system of

m nonlinear ordinary differential equations by using
the Galerkin discretization, where obtained equations
represent only the time-varying part of the solution.
The first mode of approximation is assumed to be in
the following form:

wi (x, t) = r fi (t) φ (x) , (7)

in which r =
√

I
A is the radius of gyration of the

cross section, fi (t) is the corresponding time function
and φ (x) is the linear mode shape function determined
from the boundary conditions. The mode shape func-
tion for corresponding boundary conditions of MNBS
is given as follows:

φ (x) = sin (αx) , α = π

L
, (8)

Inserting Eq. (7) into (5), multiplying the results by cor-
responding linearmode shape functionEq. (8), and then
integrating them over the length of the nanobeam, we
obtain a set of m nonlinear ordinary differential equa-
tions expressed in terms of corresponding time func-
tions fi (t) as follows:

f̈1 +
(
ω2
F + 2ω2

K + ω2
L + 2� cos 2�t

)
f1

+ 2υ ḟ1 − γ f 31 − ω2
K f2 − υ ḟ2 = 0,

f̈2 +
(
ω2
F + 2ω2

K + ω2
L + 2� cos 2�t

)
f2

+ 2υ ḟ2 − γ f 32 − ω2
K f1 − υ ḟ1 − ω2

K f3 − υ ḟ3 = 0,

f̈3 +
(
ω2
F + 2ω2

K + ω2
L + 2� cos 2�t

)
f3

+ 2υ ḟ3 − γ f 33 − ω2
K f2 − υ ḟ2 − ω2

K f4 − υ ḟ4 = 0,

...

f̈i +
(
ω2
F + 2ω2

K + ω2
L + 2� cos 2�t

)
fi

+ 2υ ḟi − γ f 3i − ω2
K fi−1 − υ ḟi−1

−ω2
K fi+1 − υ ḟi+1 = 0,

...

f̈m−1 +
(
ω2
F + 2ω2

K + ω2
L + 2� cos 2�t

)
fm−1

+ 2υ ḟm−1 − γ f 3m−1 − ω2
K fm−2 − υ ḟm−2

−ω2
K fm − υ ḟm = 0,

f̈m +
(
ω2
F + 2ω2

K + ω2
L + 2� cos 2�t

)
fm

+ 2υ ḟm − γ f 3m − ω2
K fm−1 − υ ḟm−1 = 0,

(9)

whereωL is the natural frequency of corresponding lin-
ear system,υ is the damping ratio and γ is the nonlinear
stiffness
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ω2
L = E Ia3

ρA (a1 − μa2)
, υ = b

ρA
,

γ = E Ar2a4 (a2 − μa3)

2LρA (a1 − μa2)
, (10a)

and ω2
K , ω2

F and � are reduced constants given as fol-
lows:

ω2
F = F0 (a2 − μa3)

ρA (a1 − μa2)
, ω2

K = k

ρA
,

� = F1 (a2 − μa3)

2ρA (a1 − μa2)
, (10b)

{a1, a2, a3, a4} =
∫ L

0

{
φ2, φ · φ′′, φ · φ I V , (φ′)2

}
dx,

(10c)

In the following, we introduce the IHBmethod to deter-
mine the periodic solutions of the presented system of
m nonlinear ordinary differential equations, instability
regions of the nonlinear MNBS and Floquet multipli-
ers. It should be noted that stability of determined peri-
odic solutions of the nonlinear MNBS is studied by
using the Floquet stability theory.

4 Instability regions and periodic solution: IHB
method

Lau et al. [61] developed the methodology for the IHB
method which is later on applied to different problems
[62–66]. In general, IHB is the semi-analytical method
that can be used for finding the solutions of differential
equations appearing inmathematical models of various
problems in mechanics. In order to obtain instability
regions and periodic solutions of the system of non-
linear ordinary differential equations (9), we use the
IHB method to obtain iterative relationships with fre-
quency, response amplitudes and excitation amplitude
of time-varying axial load. First, one should introduce
a new time scale τ = �t into Eq. (9) to obtain the sys-
tem of nonlinear ordinary differential equations in the
following form:

�2 d
2 fi
dτ 2

+
(
ω2
F + 2ω2

K + ω2
L + 2� cos 2�t

)
fi

+ 2υ�
d fi
dτ

− γ f 3i

−ω2
K fi−1 − υ�

d fi−1

dτ
− ω2

K fi+1

−υ�
d fi+1

dτ
= 0, i = 1, 2, . . . ,m, (11)

Dividing Eq. (15) with ω2
L , one can obtain a new form

of Eq. (11) as follows:(
�

ωL

)2 d2 fi
dτ 2

+
(

ω2
F + 2ω2

K

ω2
L

+ 1 + 2 �̃ cos 2τ

)
fi

+ 2υ
�

ω2
L

d fi
dτ

− γ

ω2
L

f 3i

−
(

ωK

ωL

)2

ω2
K fi−1 − υ

�

ω2
L

d fi−1

dτ
−

(
ωK

ωL

)2

fi+1

−υ
�

ω2
L

d fi+1

dτ
= 0, i = 1, 2, . . . ,m, (12)

where the values of the frequency � depends on
the configuration of the nonlinear MNBS and �̃ =
�

ω2
L
. Now, we introduce the incremental relations for

fi (τ ) ,�, and �̃, where fi0 (τ ), �0 and �̃0 denotes a
known vibration state, and � fi (τ ), �� and ��̃ are
corresponding increments of amplitude, frequency and
amplitude of excitation load, respectively, for neigh-
bouring vibration state, which is given as follows:

fi (τ ) = fi0 (τ ) + � fi (τ ) , � = �0 + ��,

�̃ = �̃0 + ��̃, i = 1, 2, . . . ,m. (13)

Substituting relations (13) into Eq. (12) and neglecting
higher-order terms, a linearized incremental relation
can be expressed as

−
[(

ωK

ωL

)2

� fi−1 + υ
�0

ω2
L

d� fi−1

dτ

]

−
[(

ωK

ωL

)2

� fi+1 + υ
�0

ω2
L

d� fi+1

dτ

]

+
[(

�0

ωL

)2 d2� fi
dτ 2

+
(

ω2
F + 2ω2

K

ω2
L

+ 1

+ 2�̃0 cos 2τ
)

� fi + 2υ
�0

ω2
L

d� fi
dτ

− 3
γ

ω2
L

f 2i0� fi

]

= −
[(

�0

ωL

)2 d2 fi0
dτ 2

+
(

ω2
F + 2ω2

K

ω2
L

+ 1

+ 2�̃0 cos 2τ
)
fi0 + 2υ

�0

ω2
L

d fi0
dτ

− γ

ω2
L

f 3i0

]

+
[(

ωK

ωL

)2

fi−10 + υ
�0

ω2
L

d fi−10

dτ

]

+
[(

ωK

ωL

)2

fi+10 + υ
�0

ω2
L

d fi+10

dτ

]

−
(
2
�0

ω2
L

d2 fi0
dτ 2

+ 2
υ

ω2
L

d fi0
dτ

)
��
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− 2 fi0 cos 2τ ��̃ + υ

ω2
L

d fi−10

dτ
��

+ υ

ω2
L

d fi+10

dτ
��, i = 1, 2, . . . ,m. (14)

Assuming the periodic solutions of Eq. (14), the func-
tions fi0 (τ ) and � fi (τ ) can be taken as Fourier series
in the following forms:

fi0 (τ ) =
Nh∑
k=1

{aik cos (kτ) + bik sin (kτ)}

= C · Ai , i = 1, 2, . . . ,m,

� fi (τ ) =
Nh∑
k=1

{�aik cos (kτ) + �bik sin (kτ)}

= C · �Ai , i = 1, 2, . . . ,m, (15)

where

C = [ cos τ cos2τ cos3τ . . . cos Nhτ

sin τ sin2τ sin 3τ . . . sin Nhτ ] ,

Ai = [
ai1 ai2 ai3 . . . aiNh bi1 bi2 bi3 . . . biNh

]T
,

�Ai = [�ai1 �ai2 �ai3 . . .

�aiNh �bi1 �bi2 �bi3 . . . �biNh

]T
. (16)

Inserting Eq. (15) into the systemof Eq. (14) and apply-
ing the Galerkin procedure presented in [61–68], we
obtain the system of linear algebraic equations in terms
of unknown increments of amplitudes �Ai in the fol-
lowing form:

⎡
⎢⎢⎢⎢⎢⎣

K11 K12 0 0 0 0
K21 K22 K23 0 0 0
0 K32 K33 K34 . . . 0

0 0 0 . . .
. . . 0

0 0 0 0 Km−1m Kmm

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�A1
�A2
�A3

...

�Am−1
�Am

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

R11 R12 0 0 0 0
R21 R22 R23 0 0 0
0 R32 R33 R34 . . . 0

0 0 0 . . .
. . . 0

0 0 0 0 Rm−1m Rmm

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1
A2
A3
...

Am−1
Am

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎣

P11 P12 0 0 0 0
P21 P22 P23 0 0 0
0 P32 P33 P34 . . . 0

0 0 0 . . .
. . . 0

0 0 0 0 Pm−1m Pmm

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1
A2
A3
...

Am−1
Am

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

��

+

⎡
⎢⎢⎢⎢⎢⎣

Q11 0 0 0 0 0
0 Q22 0 0 0 0
0 0 Q33 0 . . . 0

0 0 0 . . .
. . . 0

0 0 0 0 0 Qmm

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1
A2
A3
...

Am−1
Am

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

��̃

(17)

where

[Kii] = 1

π

∫ 2π

0

[(
�0

ωL

)2

CT d
2C
dτ 2

+
(

ω2
F + 2ω2

K

ω2
L

+ 1 + 2�̃0 cos 2τ

)
CTC

+ 2υ
�0

ω2
L

CT dC
dτ

− 3
γ

ω2
L

f 2i0C
TC

]
dτ,

[
Kij

] = − 1

π

∫ 2π

0

[(
ωK

ωL

)2

CTC + υ
�0

ω2
L

CT dC
dτ

]
dτ,

[Rii] = − 1

π

∫ 2π

0

[(
�0

ωL

)2

CT d
2C
dτ 2

+
(

ω2
F + 2ω2

K

ω2
L

+ 1

+2�̃0 cos 2τ
)
CTC + 2υ

�0

ω2
L

CT dC
dτ

− γ

ω2
L

f 2i0C
TC

]
dτ,

[
Rij

] = 1

π

∫ 2π

0

[(
ωK

ωL

)2

CTC + υ
�0

ω2
L

CT dC
dτ

]
dτ,

[Pii] = − 1

π

∫ 2π

0

[
2
�0

ω2
L

CT d
2C
dτ 2

+ 2
υ

ω2
L

CT dC
dτ

]
dτ,

[
Pij

] = 1

π

∫ 2π

0

[
υ

ω2
L

CT dC
dτ

]
dτ,

[
Qij

] = − 1

π

∫ 2π

0

[
2 cos 2τCTC

]
dτ,

(i, j) = 1, 2, . . . ,m, . (18)

In Eq. (17), corrective vector term [R] {A} tends to
zero when the values of fi0 (τ ) ,�0 and �̃0 tends
to exact solutions. Set of linearized algebraic equa-
tions presented in Eq. (17) can be solved incremen-
tally by starting from any known linear solution using
�̃-incrementation procedure.

Since the systemof Eq. (17) has twomore unknowns
than the number of equations in the system, we need
to set one value of Fourier coefficients in Eq. (15)
to be constant and corresponding increment equal to
zero. In the �̃-incrementation process, the ��̃ is an
active increment whereby giving the initial values of
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Ai , �0 and �̃0 one can obtain principal instability
regions that are bounded by two boundaries. When
using the Newton–Raphson method for solving the
system (17), we need to do the following two steps.
First, we determine the initial values of Ai , �0 and
�̃0, set ai1 = Const., bi1 = Const., �ai1 = 0,
�bi1 = 0 and consider ��̃ as an active increment
during simulation to obtain the same number of equa-
tions and unknowns in Eq. (17). Second, by using the
iterative Newton–Raphson method, we solve the incre-
mental relation (17), where the results for �Ai and
�� are obtained iteratively until the residue Euclid-
ian norm | [R] {A} | is smaller than a preset toler-
ance for {Ai }p+1 = {Ai }p + {�Ai }p+1 and �

p+1
0 =

�
p
0 + �p+1. In the next step, the initial value of �̃—

incrementation procedure is �̃0 + ��̃, and we repeat
an iterative procedure until the residue Euclidian norm
| [R] {A} | is smaller then a preset tolerance. The pro-
cess is repeated until �̃0 reaches the set value.

In order to obtain periodic solutions of the system
of nonlinear ordinary differential equations (12), we
reduce the incremental relations to

fi (τ ) = fi0 (τ ) + � fi (τ ) , i = 1, 2, . . . ,m,

(19a)

and for a periodic solution we obtain

fi0 (τ ) =
Nh∑
k=0

{aik cos (kτ) + bik sin (kτ)}

= C · Ai , i = 1, 2, . . . ,m,

� fi (τ ) =
Nh∑
k=0

{�aik cos (kτ) + �bik sin (kτ)}

= C · �Ai , i = 1, 2, . . . ,m, (19b)

where

C = [1 cos τ cos2τ cos3τ . . . cos Nhτ

sin τ sin2τ sin 3τ . . . sin Nhτ ] ,

Ai = [
ai0 ai1 ai2 ai3 . . . aiNh bi1 bi2 bi3 . . . biNh

]T
,

�Ai = [
�ai0 �ai1 �ai2 �ai3 . . . �aiNh

�bi1 �bi2 �bi3 . . . �biNh

]T (19c)

Then, the incremental relation (17) becomes

⎡
⎢⎢⎢⎢⎢⎣

K11 K12 0 0 0 0
K21 K22 K23 0 0 0
0 K32 K33 K34 . . . 0

0 0 0 . . .
. . . 0

0 0 0 0 Km−1m Kmm

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�A1

�A2

�A3
...

�Am−1

�Am

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

R11 R12 0 0 0 0
R21 R22 R23 0 0 0
0 R32 R33 R34 . . . 0

0 0 0 . . .
. . . 0

0 0 0 0 Rm−1m Rmm

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A1

A2

A3
...

Am−1

Am

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

(20)

5 Stability of the periodic solution: Floquet theory

In order to analyse the stability of periodic solutions
of the system of nonlinear ordinary differential equa-
tions (9), we consider the Floquet theory in R

N . Now,
we write the system of nonlinear ordinary differential
equations for nonlinear MNBS in general form as fol-
lows:
F

(
f ′′, f ′, f ,�, τ

) = 0, (21)

where f = [ f1 (τ ) , f2 (τ ) , . . . fN (τ )] is N -dimen-
sional displacement vector and f ′ = df /dτ .

Introducing small perturbations �f (τ ) in a neigh-
bourhood of the periodic solution f 0 (τ ), i.e. by
letting

f (τ ) = f 0 (τ ) + �f (τ ) , (22)

we can analyse the stability of periodic solutions by
analysing the system of linear equations with variable
coefficients in terms of small perturbations �f (τ ).
Introducing Eq. (22) into the system of Eq. (21) and
after linearization, we obtain the system of linear dif-
ferential equations as follows:(

∂F
∂f ′′

)
0
�f ′′ +

(
∂F
∂f ′

)
0
�f ′+

(
∂F
∂f

)
0
�f = 0, (23)

where f 0 (τ ) is the periodic solution determined by
considering the IHB method. It should be noted that
Eq. (23) represents the system of perturbed equations
around known solutions f 0 (τ ). The stability charac-
teristics of known periodic solutions are found through
the multi-variable Floquet theory.
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We introduce state-space variables where

dY
dτ

= G (τ )Y, (24)

for Y (τ ) = [
�f ,�f ′]T and G (τ ) denoting the peri-

odic matrix.
Based on the Floquet theory [68–70], the stability

criteria for determined periodic solutions of MNBS is
related to eigenvalues of the matrix M (Floquet multi-
pliers), which is the transition matrix and the real parts
of characteristic exponents (Floquet exponents). In the
case when all values of Floquet multipliers are located

inside the unit circle centered at the origin of the com-
plex plane, the periodic solutions are stable or asymp-
totically stable. However, when the values of Floquet
multipliers are out of the unit circle, then the periodic
solutions are unstable [68–70].

In order to numerically determine the Floquet mul-
tipliers, we assume that period T = 2π of f 0 (τ ) is
divided into Nk subintervals, in which the k-th interval
is�k = τk −τk−1 for τk = kT/Nk . Moreover,G (τ ) is
the continuous matrix with respect to τ , so in the k-th
interval it can be replaced by the constant matrix pro-
vided in the case when Nk is chosen to be sufficiently
large

Gk = 1

�k

∫ τk

τk−1

G (τ ) dτ. (25)

Now,we canwrite the transitionmatrix in the following
form:

M =
Nk∏
i=1

eAi�i =
Nk∏
i=1

⎛
⎝I +

N j∑
j=1

(Gi�i )
j

j !

⎞
⎠ , (26)

where N j denotes the number of terms in the approx-
imation of the constant matrix Gk . From the transition
matrixM, one can obtain Floquet multipliers as eigen-
values of Eq. (26) in the following form:

det (M − σ I) = 0. (27)

For the nonlinear MNBS consisting of m nanobeams,
the periodic matrix G (τ ) has the following form:

G (τ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0
−P1 −2R T R 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
T R −P2 −2R T R 0 0 0 0

0 0 0 0 0
. . . . . . 0 0 0

0 0
...

...
. . .

. . . . . . R 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 T R −Pm−1 −2R T R
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 T R −Pm −2R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2m × 2m

, (28)

where Pi , (i = 1, 2, . . .m), R and T are defined as

Pi =
(ωL

�

)2 (ω2
F + 2ω2

K

ω2
L

+ 1 + 2
�

ω2
L

cos 2τ

− 3
γ

ω2
L

f 2i0

)
, R = υ

�
, T =

(ωK

�

)2
,

fi0 (τ ) =
Nh∑
k=0

{aik cos (kτ)

+ bik sin (kτ)} , i = 1, 2, . . . ,m. (29)

From the relation (28), it is easy to obtain a system
matrix for a specific configuration of the nonlinear
MNBS.

6 Numerical results

This section is divided into four parts. First, we show
a comparative study where results for periodic solu-
tions of the system of nonlinear differential equations
obtained by employing the IHB method are validated
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Fig. 2 Periodic solution of a single nanobeam system as a special case of MNBS. a time functions of the nanobeam, b periodic orbit
of the nanobeam

with the results from the Runge–Kutta method (ode45-
Matlab). Afterwards, we analyse the stability of peri-
odic motions of the nonlinear MNBS by employing
the Floquet stability theory. In that context, we show
Floquet multipliers as functions of different physical
parameters. In the second part of this section, we show
the stability boundaries and instability regions deter-
mined by the IHB method for different configurations
of the nonlinear MNBS. The free nonlinear vibrations
of MNBS are analysed in the third part, where fre-
quency response curves are shown for different num-
bers of nanobeams in the system. The validation study
is presented in the last subsection.

The system of m nonlinear differential equations
(9) represents a mathematical model of the nonlinear
MNBS that is vibrating under the influence of time-
varying axial loads with considered initial conditions.
In the case of larger systems, such as the nonlinear
MNBS, it is difficult to find system responses using
only analytical methods. In addition, in a large num-
ber of nanoengineering applications, the amplitude of
vibration is not small and for such systems, we can only
use numerical or approximate technics. It should be
noted that IHB method has several advantages in com-
parison with classical approximated methods. First,
there are no limitations such as small exciting param-
eters or weak nonlinearities and second, it is easy for
computer implementation. Because of these facts, we
determine periodic solutions of the nonlinear MNBS

without introducing any limitations such as the book-
keeping parameter.

6.1 Periodic solutions and stability

In this study, we consider several different cases of
MNBS with m = 1, 3, 5 nanobeams and for differ-
ent initial conditions. We adopted the material and
geometric properties for nanobeams in MNBS cor-
responding to the properties of single-walled carbon
nanotubes as: Young’s modulus E = 1.1 TPa, density
ρ = 1300 kg

m3 , length L = 45 nm, inner d1 = 3 nm
and outer d0 = 2.32 nm diameters of the nanotube.
For the numerical purposes, we use the value of elastic
coefficient of the medium as k = 108 (N/m2), while
influence of damping coefficient is almost neglected
and small value of b = 10−6 (Ns/m2) is adopted.

In order to illustrate the accuracy of the proposed
IHB methodology, we compare the obtained results
with the results from the Runge–Kutta method in
Figs. 2, 3 and 4, where a fine agreement of the results
is achieved. These figures show time response func-
tions of the first nanobeam and periodic orbits of each
nanobeam for different configurations of the nonlin-
ear MNBS. Figure 2 shows periodic orbits of the spe-
cial case of the nonlinear MNBS consisting of a single
nanobeam, which is the case very often analysed in the
literature. However, in Figs. 3 and 4, one can observe
periodic orbits of the nonlinear MNBS consisting of
three- and five-coupled nanobeams. We can notice that
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Fig. 3 Periodic solutions ofMNBSwith three nanobeams, a time functions of the first nanobeam, b periodic orbit of the first nanobeam,
c periodic orbit of the second nanobeam and d periodic orbit of the third nanobeam in MNBS

the periodic solutions strongly depend on initial condi-
tions.

Now, we can investigate the stability of determined
periodic solutions of the nonlinear MNBS subjected to
axial time-dependent loads (Figs. 5, 6, 7). By consider-
ing the Floquet theory, we can obtain Floquet multipli-
ers for different configurations of the nonlinear MNBS
consisting of one, three and five nanobeams in the sys-
tem. By calculating the Floquet multipliers and trac-
ing their evaluation, we predict the stability or identify
bifurcations of the presented system. For stability of
the periodic solution, Floquet multipliers must be cen-
tred within the unit circle with the origin in the centre
of the complex plane. However, if the values of Flo-
quet multipliers leave the unit circle, we can predict

bifurcation according to [71]. For particular values of
material parameters and initial conditions, we consider
the iterative equation (20) and obtain the following sta-
ble periodic solutions wherein the stability of the tra-
jectory is confirmed by using the Floquet theory and
above-described iterative procedure [69,70].We set the
values of Nk = 104 and N j = 5 in the relation (26)
showing Floquet multipliers as functions of amplitudes
of axial loads and nonlocal parameter, Figs. 5, 6 and 7,
for different configurations of the nonlinear MNBS.

The influence of axial load amplitude on the Floquet
multipliers for the special case of MNBS consisting of
a single nanobeam is shown in Fig. 5. Moreover, we
get Floquetmultipliers as complex numbers, where real
parts are shown inFig. 5a and imaginaryparts inFig. 5b.
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Fig. 4 Periodic solutions for five nanobeams in MNBS, a time
functions of the first nanobeam, b periodic orbit of the first
nanobeam, c periodic orbit of the second nanobeam, d peri-

odic orbit of the third nanobeam, e periodic orbit of the fourth
nanobeam and f periodic orbit of the fifth nanobeam in MNBS
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Fig. 5 Floquet multiplier for one nanobeam in MNBS

Fig. 6 Floquet multipliers for three nanobeams in MNBS
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Fig. 7 Floquet multipliers for five nanobeams in MNBS
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By increasing the value of axial load �̃, both parts of
the Floquet multipliers remain within the unit circle of
the complex plane, as shown in Fig. 5c. Based on that
fact, we can conclude that obtained periodic solutions
for the nonlinear system are stable for both values of
the nonlocal parameter. It should be noted that the real
parts of Floquet multipliers decrease for an increase
in the nonlocal parameter, while the imaginary parts
increases.

Figure 6 shows three values of Floquetmultipliers as
functions of the nonlocal parameter and amplitude of
axial load for the nonlinear MNBS consisting of three
nanobeams. From obtained curves, it can be observed
that the influence of the amplitude of axial load on the
Floquet multipliers is not a smooth function coming
out of the unit circle in the complex plane, as shown in
Fig. 6g, i. Based on that fact, we can conclude that the
periodic solution of the third nanobeam in MNBS is
unstable. For the Floquet multipliers regarding the first
and the second nanobeam,we can observe that obtained
periodic solutions are stable, as shown in Fig. 6c, f.
It should be noted that the nonlocal parameter has a
significant influence on the first two Floquetmultipliers
while for the third one it almost vanishes, as shown in
Fig. 6i.

The Floquet multipliers determining the stability
of the nonlinear MNBS composed of five nanobeams
are shown in Fig. 7. We can observe a very interest-
ing behaviour of Floquet multipliers with a significant
dependence on the nonlocal parameter. From obtained
results, we can notice that only the fourth and the fifth
nanobeam in MNBS are having stable periodic solu-
tions with the values of Floquet multipliers remaining
within the unit circle of the complex plane, as shown in
Fig. 7l, p. However, other periodic solutions of MNBS
are unstable, where the values of the Floquet multipli-
ers are out of the unit circle, as shown in Fig. 7c, f, i.
From the physical point of view, we can conclude that
the number of nanobeams decreases the overall stiff-
ness of the MNBS and this fact lead to the reduction of
the system stability.

6.2 Instability regions

Figures 8, 9 and 10 show instability regions of the
nonlinear MNBS obtained by using the IHB method.
It should be noted that boundary curves of instability
regions are determined by using the λ-incrementation,

where the value of the increment is �λ = 0.001, with
five cosine and five sine harmonic terms. The bound-
ary lines leaning to the left are determined by using
the sine terms, while boundary lines leaning to the
right are defined by the cosine terms only. When con-
sidering incremental relations to determine instability
regions, we can examine cases with small and large
initial amplitudes as well. Small initial amplitudes lead
to the linear case while large values of initial ampli-
tudes lead to the nonlinear case, for the same values of
the excitation force amplitude. Both cases are explored,
where amplitudes are shown as functions of the ampli-
tude of axial load, a number of nanobeams and differ-
ent physical parameters such as stiffness coefficients
(Fig. 8), the nonlocal parameter (Fig. 9) and the ampli-
tude of static axial load (Fig. 10). The values of initial
amplitudes for the incremental equation (17) are given
as ai1 = 0.1 and bi1 = 0.1 for the linear case and
ai1 = 3 and bi1 = 3 for the nonlinear case. Applying
theNewton–Raphsonprocedure,where incrementation
process starts from λ = 0 to λ = 1, we can investi-
gate the instability region of the nonlinear MNBS. For
the present analysis, we adopted the same material and
geometrical properties of nanobeams as in the previ-
ous case. The instability regions are represented by the
areas that are surrounded by two stability boundaries.

Figure 8 shows the influence of stiffness coefficient k
and the number of nanobeams on the instability regions
of the linear and nonlinear cases. It can be concluded
that an increase in stiffness coefficient k leads to nar-
rowing of instability regions while an increase in the
number of nanobeams in MNBS leads to an increase
in instability regions. From the physical point of view,
an increase in the number of nanobeams decreases the
overall stiffness of the system and dynamic system
is becoming more unstable. From the nonlinear case
(Fig. 8b), we can notice that different configurations
of MNBS shifts the instability regions, which is the
consequence of the system’s nonlinearity.

The influence of the nonlocal parameter on insta-
bility regions of MNBS for different configurations is
shown in Fig. 9. One can observe that the influence of
the nonlocal parameter on instability regions is small
for small values of the amplitude of axial load in the
linear case. However, in the nonlinear case, the non-
local parameter has a significant influence on instabil-
ity regions. As expected, we have shifts of instability
regions of MNBS for a different number of nanobeams
in the system. The amplitudes of nonlinearity and over-
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Fig. 8 Instability regions of MNBS for different values of stiffness coefficients, a linear and b nonlinear case

Fig. 9 Instability regions of MNBS for different values of the nonlocal parameter, a linear and b nonlinear case

all stiffness of MNBS will dictate shifts of instability
regions.

The last Fig. 10 illustrates the effects of the ampli-
tude of static axial load on instability regions of
MNBS. An increase in the amplitude of static axial
load increases the instability regions. This increase is
smaller for the nonlinear case than for the linear one.
In addition, this effect occurs as a result of an increase
in the overall stiffness of the system. For all the pre-
sented cases, an increase in the amplitude of axial load

�̃ leads to an increase in instability regions and the
system becomes more unstable.

In a general case, we can conclude that change of
a number of nanobeams in MNBS affects its insta-
bility regions in such a manner that these regions are
expanding for an increase in the parameterm and small
initial amplitudes. On the other side, for larger initial
amplitudes, we can notice that the effect of a number
of nanobeams goes in two directions. First, the insta-
bility regions are shifted relative to the case of small
initial amplitudes and second, instability regions are
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Fig. 10 Instability regions of MNBS for different values of amplitude of the static part of axial load, a linear and b nonlinear case

increasing for a change of a number of nanobeams in
the system. From the mechanical point of view, we can
conclude that the overall stiffness of MNBS is reduced
when increasing the number of nanobeams, which con-
sequently results in reduced stability of the system.

6.3 The free nonlinear vibration of MNBS

In order to analyse the free nonlinear vibration of
MNBS, amplitude–frequency responses for different
configurations of MNBS obtained by using the IHB
method are presented in Figs. 11 and 12. It should be
noted that nonlinear amplitude–frequency curves are
determined by using the �b1-incrementation, where
the value of the increment is �b1 = 0.001, using the
five odd cosine terms [67]. In this subsection, we will
neglect the influence of the axial load and damping
coefficient in Eq. (5) to obtain the governing equation
for the free vibration of the nonlinearMNBS embedded
in the elastic medium.

Figure 11 shows the influence of the stiffness
coefficient of the elastic medium on the nonlinear
amplitude–frequency response curve of MNBS con-
sisting of one-, three- and five-coupled nanobeams.
It can be observed that an increase in the stiffness
coefficient tends to decrease nonlinear effects visible
on amplitude–frequency response curves, while these
effects almost vanish for the highest values of stiff-
ness coefficient. Moreover, in the case of the larger

stiffness of the elastic medium, nonlinear frequencies
are approaching the linear ones. On the other hand, an
increase in the number of nanobeams inMNBS leads to
a decrease in overall stiffness and nonlinearity becomes
more prominent.

The effects of the nonlocal parameter and a number
of nanobeams on the nonlinear amplitude–frequency
response curves for each case of nanobeams in the sys-
tem are shown in Fig. 12. It can be noticed that for
given amplitudes and for an increase in the nonlocal
parameter, the frequency ratio increases but the fre-
quency decreases. This fact leads to the conclusion that
the nonlocal parameter softens the system, i.e. reduces
the overall stiffness. Moreover, one can observe that
the influence of nonlocal effects is larger for a higher
number of nanobeams and larger vibration amplitudes.

6.4 Validation study

In this work, results are obtained for MNBS embedded
in the viscoelastic medium and the authors did not find
a similar mechanical model in the literature that can be
used for the validation study. However, for the special
case of MNBS, i.e. the case with a single nanobeam on
elastic foundation, we use the paper by Fu et al. [67].
Figure 13 shows the nonlinear amplitude–frequency
response of MNBS consisting of one, three and five
nanobeams and the amplitude–frequency response of
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Fig. 11 Amplitude–
frequency curves for
different values of stiffness
coefficient of the elastic
medium, (e0a) = 1 nm

Fig. 12 Amplitude–
frequency curve for
different values of the
nonlocal parameter
k = 107 (N/m2)
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Fig. 13 Amplitude–
frequency responses of
present MNBS and Fu et al.
[67] for (e0a) = 1 nm

the system with a single nanobeam resting on the elas-
tic foundation presented in Fu et al. [67]. It should be
noted that our model of MNBS is coupled in clamped
chain system, i.e. for the case of a single nanobeam it is
coupled with the fixed base through the elastic medium
on both sides. This leads to higher values of the overall
stiffness and such system is more constrained than the
model proposed by Fu et al. [67].

7 Scope and limitations of the presented model

The given nonlinear MNBS is based on the nonlocal
Euler–Bernoulli beam model and von Karman nonlin-
ear deformations and does not take into account shear
deformations. However, in order to consider this effect,
one should consider Timoshenko or higher-order shear
deformation beam theories. From the literature [18],
we can see that the effect of transverse shear defor-
mation leads to lower vibration frequencies compar-
ing to the case with Euler–Bernoulli beam. This effect
is more prominent in higher vibration modes. There-
fore, the consideration of transverse shear deformation
leads to a decrease in stability of the presented system,
i.e. it leads to widening of instability regions [72]. It
should be noted that applied axial loads are smaller than
the critical buckling load, and MNBS is not buckled.
However, the nonlinear vibration behaviour of buckled

MNBS is also a very important issue and should be
studied in some future works.

The second limitation refers to the fact that presented
MNBS model consider amplitudes of nanobeams that
are bounded by the surrounding viscoelastic medium.
Based on that, we analysed only small nonlinear defor-
mations by using the von Karman theory. It should be
emphasized that we employed the phenomenological
viscoelastic model based on simple mechanical anal-
ogy to describe the rheological behaviour of the vis-
coelastic medium in MNBS. Since the applied force–
displacement relation is a phenomenological model
of Kelvin–Voight’s viscoelastic stress–strain constitu-
tive relation and reaction force of viscoelastic medium
is distributed over nanobeam’s length, it can be rep-
resented by parallelly connected springs and dash-
pots with corresponding elasticity and viscosity coef-
ficients. An interested reader can find more on experi-
mental works and dynamic behaviour of CNT/polymer
nanocomposites in [51–53,75].

In the literature, the authors have found a series of
papers [61,67,73,74] where linear mode shape func-
tions are used for a nonlinear vibration analysis of
classical and scale-dependent beam models. However,
we should mention two interesting papers by El-Borgi
et al. [73] and Nayfeh and Lacarbonara [74], where
the authors concluded that the Galerkin single-mode
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method is suitable for the discretization of governing
equations of nonlinear vibration of simply supported
beams, especially for the primary resonance state and
the first vibration mode. According to this, the authors
of the present paper employed only a single-mode
Galerkin method for discretization of the governing
equations of given MNBS. One should know that each
nanobeam in MNBS has the same simply supported
boundary conditions and therefore, same linear mode
shape functions are considered in the assumed solu-
tions of the system of governing equations. Moreover,
in the absence of internal resonances, the steady-state
response contains only the directly excited modes. The
mathematical model of MNBS with considered inter-
actions between modes, internal and combined reso-
nances, is interesting to be analysed in some future
study.

8 Conclusions

The present analysis describes the dynamic stabil-
ity problem of the nonlinear MNBS embedded in a
viscoelastic medium, where each nanobeam in the
system is simply supported and subjected to axial
time-dependent loads. A mathematical model of the
nonlinear MNBS is based on the system of nonlin-
ear partial differential equations of motion derived
by using the Eringen’s nonlocal elasticity theory,
Euler–Bernoulli’s beam theory and nonlinear von Kar-
man strain–displacement relation. By employing the
Galerkin discretization technique and IHB method, we
determined the stability boundaries and periodic solu-
tions of the system of nonlinear ordinary differential
equations. For such determined periodic solutions, we
introduced a Floquet theory to analyse their stability.
In the numerical study, we have shown the influence
of different material and geometric parameters on the
stability behaviour of the presented nonlinear MNBS.
A few novelties are proposed in this paper:

• The Floquet multipliers are obtained as functions
of different parameters of the stiffness coeffi-
cient, amplitude of the axial load and number of
nanobeams.

• The stability boundaries are obtained for different
configurations of the nonlinear MNBS.

• Coupled influence of nonlocal and nonlinear effect
in the context of the stability behaviour of the non-
linear MNBS.

• Semi-analytical periodic solutions are obtained for
nonlinearMNBSby using the IHBmethod,without
introducing small parameter.

It can be concluded that the analysis of periodic
solutions of the nonlinear MNBS without taking into
account nonlocal effectsmight lead to large errorswhen
investigating the dynamic behaviour of such complex
systems. It is well known that a very small variation
in amplitudes of axial loads can cause structural col-
lapse and the values of amplitudes should be cho-
sen carefully. Information based on reliable models
are important for the design of future nanostructure-
based devices; therefore, this study besides theoretical
could also have practical applications in nanoengineer-
ing fields. In addition, this study might be important
for future theoretical analyses of the nonlinear dynamic
behaviour of MNBS such as internal resonance, com-
bined resonance conditions, and chaos.
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