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Abstract

A collection of hybrid projection approaches are proposed for approximating the response of stochastic partial
differential equations which describe structural dynamic systems. In this study, an optimal basis for the approx-
imation of the response of a stochastically parametrized structural dynamic system has been computed from its
generalized eigenmodes. By applying appropriate approximations in conjunction with a reduced set of modal basis
functions, a collection of hybrid projection methods are obtained. These methods have been further improved by
the implementation of a sample based Galerkin error minimization approach. In total six methods are presented
and compared for numerical accuracy and computational efficiency. Expressions for the lower order statistical
moments of the hybrid projection methods have been derived and discussed. The proposed methods have been
implemented to solve two numerical examples: the bending of a Euler-Bernoulli cantilever beam and the bending
of a Kirchhoff-Love plate where both structures have stochastic elastic parameters. The response and accuracy
of the proposed methods are subsequently discussed and compared with the benchmark solution obtained using
an expensive Monte Carlo method.

c© 2018 Published by Elsevier Ltd.

Keywords: Stochastic differential equations; eigenfunctions; Galerkin; finite element; eigendecomposition;
projection methods; reduced methods.

1. Introduction

The analysis of complex stochastically parametrized engineering structures has re-

cently received significant interest. One of the main factors affecting the analysis is the

computational cost associated with computing the response of a system. This can be

mainly attributed to the dimension of the structure under consideration. In order address
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Email address: 656060@swansea.ac.uk (S E Pryse)
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this issue, this paper proposes and compares a set of projection methods that approxi-

mates the response of dynamic structures with stochastic parameters.

In this work, stochastic linear damped structural dynamic systems are considered. The

stochastic parameter associated with our governing hyperbolic partial differential equation

can be characterized by a random parameter a(x, θ) on a bounded domain on Rd and a

probability space (Θ,F , P ), where θ ∈ Θ is a sample point from the sampling space Θ,

F is the complete σ-algebra over the subsets of Θ and P is the probability measure.

The displacement function of the system is given by u(x, t, θ). x ∈ Rd represents a

spatial position vector where d is the number of spatial dimensions and t ∈ R+ represents

the time. Through the use of well established stochastic finite element methods, a set of

discretized linear equations can be obtained to represent the partial differential equations.

Numerous methods have been suggested in order to solve or approximate the solution of

the discretized set of equations.

Direct Monte Carlo simulation has been widely used in collaboration with stochastic

finite element methods to generate the system response at an arbitrarily large number of

sample points covering the input parameter space, following which the lower order sta-

tistical moments of the quantities of interest are calculated [1, 2]. However this method

is not favoured for the simulation of large systems. This is due to the convergence of

the direct Monte Carlo simulation being slow with increasing dimension and associated

variance of the input stochastic space. In addition to this, computing the exact solution of

a high resolution finite element model at every sample point render the method extremely

expensive. Several approaches have been proposed to reduce the computational effort.

These include centroidal Voronoi tessellations [3], quasi Monte Carlo [4, 5], Latin hyper-

cube sampling [6], multilevel Monte Carlo [7], derivative-driven Monte Carlo estimators

[8] and subset simulation [9].

Expansion based methods have been explored for approximating the response of the

discretized set of equations. The perturbation method expands the stiffness and mass

matrices, the forcing vector, and the response vector associated with the stochastic finite

element method in terms of a truncated Taylor expansion [10, 11]. However, the mag-

nitude of the coefficient of variation associated with this method must be restricted [1].
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If the coefficient of variation is increased, additional error may be induced. It has been

shown that by combining a Taylor expansion with component mode synthesis, an efficient

and accurate representation of the modes of a dynamic stochastic finite element structure

can be obtained [12]. A method which is computationally competitive with respect to the

perturbation method has been suggested by [13]. The proposed Approximate Principal

Deformation Mode (APDM) approach utilises the fact that a systems’ stiffness matrix can

be expressed as a linear function of the uncertain parameters. Consequently, the APDM

method can produce more accurate results for higher values of the coefficient of variation.

This method has subsequently been used as a foundation for other uncertainty analysis

methods [14, 15]. The Neumann expansion method has also been applied to approximate

the response vector [16]. This is achieved by expanding the inverse of the random matrix

in a binomial type series. Numerous methods have been proposed based upon the Neu-

mann expansion. [17] utilises the Neumann expansion to invert complex valued stiffness

matrices whilst [18] proposes an acceleration technique in conjunction with the Neumann

expansion. By utilising partial bivariate decomposition and successive matrix inversions

[19], Ref. [20] has proposed a method to improve the computational efficiency of the

Neumann expansion method.

Another class of methods for solving such problems are projection schemes. By util-

ising Wiener’s 1938 work [21], [22] proposed a polynomial chaos expansion (PCE) for

stochastic finite elements. This method produces a linear combination of Hermite poly-

nomials and undetermined deterministic coefficients. A generalised form for the PCE

was subsequently published by utilising functions from the Askey family of polynomials

[23, 24]. The PCE approach has been widely used in numerous fields including structural

dynamics [25], heat transfer [26] and fluid dynamics [27]. Due to the large computational

cost associated with the PCE, numerous cost saving approaches have been suggested

[28, 29]. Sparse polynomial chaos expansions have been wildly used as a surrogate for

full models [30, 31]. A stepwise regression method has recently been suggested to build a

spare polynomial chaos [32]. The PCE approach has influenced many other recent works.

Ref. [33] has analysed the compressive sampling of polynomial chaos expansions, whilst

a random discrete L2 projection on polynomial spaces has also been proposed [34].
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Model order reduction techniques, which include proper orthogonal decomposition

[35, 36], balanced model reduction [37] and reduced basis [38, 39] have received attention

in recent years. Comprehensive reviews of these techniques have been conducted in [40,

41]. Ref. [42] and [43] have suggested adaptive reduced basis strategies in order to

ensure a prescribed level of accuracy for a given output. These adaptive reduced basis

methods have embedded a goal-oriented error assessment within their proposed methods.

Techniques based upon stochastic response surfaces, where the quantities of interest are

computed for certain θ ∈ Θ, have also received significant interest in recent years [44–

46]. We refer the reader to [47–49] for a more comprehensive review of the field and the

literature.

The random eigenfunction expansion method has been utilised in [17] to formulate a

reduced random basis. In turn, Galerkin methods have been used in conjunction with

eigenfunction projections to analyse the response of structures which are subjected to

both a static load [50] and a dynamic load [51]. However questions still exist regarding

the exact nature of these projections. As a result, this study proposes a set of novel hybrid

forward uncertainty propagation methods to perform a harmonic analysis of structural

systems. Novel improved hybrid solution techniques have been proposed as an extension

to the projection methods. These approaches have been incorporated by applying a mul-

tiplicative sample based Galerkin method. This addition aims to lower the induced error.

All the proposed methods have been applied to two example problems i) the bending of

a cantilever beam ii) the bending of a Kirchhoff-Love plate. Both structures have been

discretized and include random parameters. The proposed methods are subsequently dis-

cussed and compared through the use of lower order statistical moments and appropriate

relative error estimates. Through the use of the relative error estimates, the open ques-

tions that surround the hybrid uncertainty propagation methods can be addressed by

identifying an optimal reduced projection.

A short overview of the stochastic finite element method is given in Section 2 and three

projection methods are presented in Section 3. Methods for reducing the computational

effort associated with the proposed methods are discussed in the proceeding sections.

Section 4 discusses a method for approximating the random eigensolutions associated
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with the methods, whilst Section 5 discusses a modal reduction. A sample based Galerkin

error minimising technique is presented in Section 6 for each of the proposed methods.

Expressions for the response moments of the different projection methods are discussed

in Section 7. Section 8 provides a summary of the proposed methods. The approaches are

then compared by applying the methods to a one dimensional stochastic Euler-Bernoulli

cantilever beam and to a stochastic Kirchhoff-Love plate in Section 9. A summary of the

results and the major findings are presented in Section 10.

2. The stochastic finite element method

2.1. Discretization of the random field

In order to proceed with the stochastic finite element method, it is necessary to dis-

cretize the random field that is associated with the governing equation. We consider the

stochastic parameter a(x, θ) to be a Gaussian random field with a covariance function

Ca : D × D → R defined on the domain D. The covariance function is positive definite,

symmetric and square bounded. The random field a(x, θ) can be expressed by a truncated

Karhunen-Loève series expansion. This expansion is achieved by performing a spectral

decomposition of the covariance function of the field

a(x, θ) = a0(x) +
M∑

i=1

√
λ̃iξ̃i(θ)φ̃i(x) (1)

where a0(x) corresponds to the mean function of the random field and ξ̃i are uncorrelated

standard random variables. As the random field under consideration is Gaussian, the

random variables are deemed as uncorrelated standard normal random variables with zero

mean and an unit variance. λ̃i and φ̃i(x) correspond to the eigenvalues and eigenvectors

satisfying the following Fredholm integral equation of the second kind

∫

D

Ca(x1,x2)φ̃j(x1) dx1 = λ̃jφ̃j(x2) ∀ j = 1, 2, ... (2)

If the eigenvalues rapidly decay, the value of M could be kept relatively small in order

to obtain an accurate depiction of the Gaussian random field. However as the correlation

length of the process tends to zero, the number of terms required to obtain an accurate

representation would increase.
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2.2. Formulating dynamic systems in the frequency domain through finite element mod-
elling

The methods of obtaining the discretized random form of the governing partial differ-

ential equations are well-established in stochastic finite element literature. By utilising the

finite element method the equations of motion for a multiple-degrees-of-freedom structural

vibration problem can be expressed as

M(θ)ü(t) + C0u̇(t) + K(θ)u(t) = f0(t) (3)

with the initial conditions set as

u(0) = 0 ∈ RN and u̇(0) = 0 ∈ RN (4)

In Equation (3) M(θ) and K(θ) denote the random mass and stiffness matrices respec-

tively. C0 and f0(t) denote the deterministic damping matrix and the deterministic applied

force whilst t represents the time. The displacement is represented by u(t) and the first

and second derivatives of the displacement with respect to time are represented by u̇(t)

and ü(t) respectively. The random mass and stiffness matrices can be expressed as follows

M(θ) = M0 +

p1∑

j=1

µj(θ)Mj (5)

K(θ) = K0 +

p2∑

j=1

νj(θ)Kj (6)

In the above expressions, M0 corresponds to the deterministic mass matrix and K0 to

the deterministic stiffness matrix. Mi and Ki are symmetric matrices which contribute

towards the random components of M(θ) and K(θ). The random mass matrix has been

modelled with p1 random variables whilst the random stiffness matrix contains p2 random

variables. µi(θ) represents the random variables associated with the random mass matrix,

and νi(θ) represents the random variables associated with the random stiffness matrix. ζ

denotes a diagonal matrix which contains modal damping factors, thus

ζ = diag[ζ1, ζ2, . . . ζN ] ∈ RN×N (7)
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It it assumed that the all the diagonal entries are equal, therefore ζ1 = ζ2 = · · · = ζN . In

order to satisfy this condition, the damping matrix C0 takes the following form [52]

C0 = 2ζM0

√
M−1

0 K0 (8)

We have made the assumption that the deterministic damping matrix belongs to the class

of proportional damping matrices [52]. Therefore, the deterministic damping matrix has

been simultaneously diagonalized with the mass and stiffness matrices by utilising the

deterministic undamped eigenmodes. The detailed discussion of general non-proportional

damping is beyind the scope of the present paper. In order to compute the dynamic

response in the frequency domain, the Laplace transform of Equation (3) is considered.

Taking the Fourier transform of Equation (3) results in

[−ω2M(θ) + iωC0 + K(θ)]ũ(ω, θ) = f̃0(ω) (9)

Here ũ and f̃0 are the dynamic response and the forcing in the frequency domain. The

random variables associated with both the random mass and the stiffness matrices can be

grouped so that ξj(θ) = µj(θ) for j = 1, 2, . . . p1 and ξj+p1(θ) = νj(θ) for j = 1, 2, . . . p2.

In turn, Equation (9) can be re-written and expressed as
(

D0(ω) +
M∑

j=1

ξj(θ)Dj(ω)

)
ũ(ω, θ) = f̃0(ω) (10)

where D0(ω) ∈ CN×N represents the complex deterministic part of the system and

Dj(ω) ∈ RN×N the random components. The total number of random variables, M ,

can be computed through summing p1 and p2. For the given configuration, the expres-

sions for D0 and Dj are as follows

D0(ω) = −ω2M0 + iωC0 + K0 (11)

Dj(ω) = −ω2Mj for j = 1, 2, . . . , p1

Dj(ω) = Kj−p1 for j = p1 + 1, p1 + 2, . . . , p1 + p2

(12)

Therefore by combining the definitions of D0(ω) and Dj(ω) with Equation (10), all

the necessary components have been obtained in order to solve the discretized system
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of equations in the frequency domain. In the subsequent sections, different projection

methods for efficiently approximating the response are compared. This is done for θ ∈ Θ

and for every frequency value ω ∈ Ω. We refer the reader to [53] for a discussion regarding

certain issues that incur during the application of the stochastic finite element method.

3. Derivation of the projection methods

We will initially consider three different projection methods. In order to compare the

accuracy and effectiveness of the three proposed methods, a benchmark solution can be

obtained by implementing a direct Monte Carlo approach [DMCS]

ũDMCS(ω, θ) = [−ω2M(θ) + iωC0 + K(θ)]−1f̃0(ω) (13)

for each frequency and realisation.

We aim to propose a set of methods which computes the response vector by projecting

onto a basis with scalar coefficients. The rationale behind proposing different methods is

to analyse the effect of the nature of the coefficients and their associated vectors. The

first three methods under consideration have the following characteristics:

• Projecting onto a stochastic basis with stochastic coefficients

• Projecting onto a deterministic basis with stochastic coefficients

• Projecting onto a deterministic basis with deterministic coefficients

For all methods, we aim to keep the basis vector independent of the frequency. This

is done in an attempt to reduce the computational effort if more than one frequency

value were to be analysed. We initially consider the case which incorporates the whole

stochastic nature of Equation (10). For this method, we aim to represent the response by

projecting onto a stochastic basis with stochastic coefficients

ũ1(ω, θ) =
N∑

j=1

αj(ω, θ)aj(θ) (14)

where αj(ω, θ) ∈ C denotes the random scalars which are contained in α(ω, θ) ∈ CN , and

aj(θ) ∈ CN denotes the stochastic basis. These basis are contained within the matrix
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a(θ) ∈ CN×N . The values of αj(ω, θ) and aj(θ) can be obtained through numerous

approaches. One such approach is by solving the following multi-objective optimisation

problem

α̂(ω, θ) = arg min
α∈CN

||ũDMCS(ω, θ)−
N∑

j=1

αj(ω, θ)1âj(θ)||L2(Θ)×RN (15)

â(θ) = arg min
a∈CN×N

||ũDMCS(ω, θ)−
N∑

j=1

α̂j(θ)aj(ω, θ)||L2(Θ)×RN (16)

While the above approach gives the generic framework for the evaluation of the α(ω, θ) and

a(θ), the process can be computationally expensive due to the method’s slow convergence

rate. Furthermore the method could be numerically unstable as the solution may not be

unique. In order to avoid calculating ũDMCS(ω, θ), an expression for the above L2 relative

error can be obtained by observing the residual and by noting that the approximate error

of the solution obtained when using Equation (14) is

ε̂(ω, θ) = ũ1(ω, θ)− ũDMCS(ω, θ) (17)

Here the error measure is defined by using the DMCS approach as a benchmark solution.

A closed form of the error in the domain space of D(ω, θ) can be obtained. The residual

can be re-written as

r(ω, θ) = D(ω, θ)ũ1(ω, θ)− f̃0(ω) = D(ω, θ) [ũ1(ω, θ)− ũ∗(ω, θ)] (18)

where ũ∗(ω, θ) is the true solution of the system which can not be evaluated exactly. We

can treat the solution of the DMCS approach, ũDMCS(ω, θ), as the benchmark solution.

It is assumed the DMCS approach gives a better approximation of the true solution

compared to ũ1(ω, θ). Using e(ω, θ) = ũ1(ω, θ) − ũ∗(ω, θ) as the true error, we write

following Equation (18)

D(ω, θ)e(ω, θ) = r(ω, θ) (19)

Thus the resulting true error vector is obtained as

e(ω, θ) = D−1(ω, θ)r(ω, θ) (20)
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But e(ω, θ) can not be computed exactly and we have to resort to the approximate error

indicator. We can define a bilinear form as D̄(a,b) = 〈D(ω, θ)a(ω, θ),b(ω, θ)〉 where 〈·, ·〉
denotes an inner product in L2(Θ)× RN . Hence, from Equation (20) we can deduce

D̄(e, ε̂) = Rε̂ where Rε̂ = 〈r(ω, θ), ε̂(ω, θ)〉 (21)

Using Cauchy-Schwarz inequality, we have

∣∣D̄(e, ε̂)
∣∣2 ≤ D̄(e, e) D̄(ε̂, ε̂) = ||e||E ||ε̂||E (22)

where || · ||E denotes the norm consistent with the bilinear form D̄(·, ·) on L2(Θ) × RN

(analogous to the elastic potential energy norm for structural dynamic systems). Com-

bining Equations (21) and (22) we obtain

|Rε̂|2
||ε̂||E

≤ ||e||E (23)

which indicates a lower bound for the true error e(ω, θ) in terms of the approximate

error indicator ε̂(ω, θ). The equality holds only under special circumstances which have

been detailed in [54]. However as the computation capacity required to implement such

an approach is vastly higher than that required for the benchmark solution, a different

approach is needed.

3.1. Projecting onto a stochastic basis with stochastic coefficients (M1)

In order to implement a different approach, the generalised eigenvalue problem for the

undamped case is initially considered

K(θ)φk(θ) = λk(θ)M(θ)φk(θ); k = 1, 2, . . . N (24)

where λk(θ) and φk(θ) are the kth undamped random eigenvalue and eigenvector. For

convenience, matrices that contain the whole set of random eigenvalues and eigenvectors

are defined as follows

Ω2(θ) = diag [λ1(θ), λ2(θ), . . . , λn(θ)] ∈ RN×N and

Φ(θ) = [φ1(θ),φ2(θ), . . . ,φn(θ)] ∈ RN×N
(25)
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The eigenvalues are arranged in ascending order so λ1(θ) < λ2(θ) < . . . < λn(θ) and their

corresponding eigenvectors are mass normalised and arranged in the same order. It is

apparent that

ΦT (θ)M(θ)Φ(θ) = I

ΦT (θ)K(θ)Φ(θ) = Ω2(θ)
(26)

As the undamped eigenvectors from a complete basis, it is possible to obtain the response

of Equation (10) through projecting on the undamped eigenvectors. This can be done

through using the above identities. The Laplace transform of Equation (3) is initially

reconsidered

[−ω2M(θ) + iωC0 + K(θ)]ũ(ω, θ) = f̃0(ω) (27)

The modal damping matrix is defined as follows

C′(θ) = ΦT (θ)C0Φ(θ) = 2ζΩ(θ) (28)

where ζ corresponds to the diagonal modal damping matrix introduced in Equation

(7). By using the following modal transformation ũ(ω, θ) = Φ(θ)ȳ(ω, θ) and by pre-

multiplying Equation (27) with ΦT (θ), we obtain

ΦT (θ)
{

[−ω2M(θ) + iωC0 + K(θ)]Φ(θ)
}

ȳ(ω, θ) = ΦT (θ)̃f0(ω) (29)

By combining the modal damping matrix and the orthogonality relationships defined

above, it can be shown that

[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
ȳ(ω, θ) = ΦT (θ)̃f0(ω) (30)

Then by inverting
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
, one has

ȳ(ω, θ) =
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT f̃0(ω) (31)

As
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]
is a diagonal matrix, its inverse is easy to compute and

computationally inexpensive. By pre-multiplying both sides of the above equation with

Φ(θ), we have

Φ(θ)ȳ(ω, θ) = Φ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT (θ)̃f0(ω) (32)
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By reintroducing ũ(ω, θ) for Φ(θ)ȳ(ω, θ) a dynamic response in the frequency domain can

be obtained

ũ1(ω, θ) = Φ(θ)
[
−ω2I + 2iωζΩ(θ) + Ω2(θ)

]−1
ΦT (θ)̃f0(ω) (33)

This expression can then be rewritten as a summation, where N corresponds to the

number of degrees of freedom associated with the dynamic structure

ũ1(ω, θ) =
N∑

j=1

αj(ω, θ)aj(θ) =
N∑

j=1

(
φT
j (θ)̃f0(ω)

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φj(θ) (34)

The response of the dynamic stochastic system under consideration has been represented

in the same form as Equation (14). The random scalars, αj(ω, θ), correspond to the result

of
φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

. In turn, these random scalars are projected onto the space spanned

by φj(θ).

3.2. Projecting onto a deterministic basis with stochastic coefficients (M2)

Thus far one projection method has been proposed through Equation (34) where both

the basis and the projection coefficients are stochastic in nature. If the value of N is large,

the computational effort associated with computing the undamped random eigenvalues

and eigenvectors can be considered very high. This is especially true if we sample for

every θ ∈ Θ. In an attempt to lower the computational effort, we will consider a method

that projects random scalars onto a deterministic basis

ũ2(ω, θ) =
N∑

j=1

βj(ω, θ)bj (35)

The polynomial chaos approach is a method which projects onto a deterministic basis

with stochastic coefficients

ũ2(ω, θ) =
P∑

k=1

Hk(ξ(θ))uk(ω) (36)

where where Hk(ξ(θ)) represents the polynomial chaoses (corresponding to the random

scalars) and uk represents unknown deterministic vectors that need to be determined.

The value of P is governed by the value of M and by the order of the polynomial chaos

expansion. However the polynomial chaos approach is a notoriously costly method if the
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value of P or N is high. More importantly the basis uk is a function of ω, thus this

method does not comply with the desired form stated earlier in this section.

Although mathematically erroneous, this paper proposes a method that combines un-

damped random eigenvalues with undamped deterministic eigenvectors. By exchanging

the undamped random eigenvectors seen in Equation (34) for their deterministic counter-

parts, the response vector for this new method can be expressed as

ũ2(ω, θ) =
N∑

j=1

(
φT

0j
f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φ0j

(37)

where φ0j
denotes the jth deterministic undamped eigenvector. Therefore we aim to see

if the vast majority of the stochastic nature of the system can be incorporated by only

using the undamped random eigenvalues.

3.3. Projecting onto a deterministic basis with deterministic coefficients (M3)

As a worst-case scenario we consider the case of when all the eigensolutions are deemed

deterministic. For this case, the response vector takes the following form

ũ3(ω, θ) =
N∑

j=1

γ0j(ω)cj (38)

where γ0j(ω) ∈ C and cj ∈ CN are deterministic scalars and basis respectively. If both

the undamped random eigenvalues and eigenvectors seen in Equation (34) are exchanged

for their deterministic counterpart, the response vector can be expressed as

ũ3(ω) =
N∑

j=1

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
φ0j

(39)

where λ0j and φ0j
denote the jth undamped deterministic eigenvalue and eigenvector

respectively. Due to all the terms in Equation (39) being deterministic, the stochastic

nature of the system is not at all incorporated into the response vector. It can be deduced

that Equation (39) provides the deterministic solution and therefore can be established as

a worst case scenario. However if the coefficient of variation associated with the stochastic

process is low, this method could provide an adequate approximation of the mean of the

true solution.



Pryse, Kundu and Adhikari / Comput. Methods Appl. Mech. Engrg. 00 (2018) 1–46 14

If the matrices UDMCS ∈ CN×m and U3 ∈ CN×m contain the solution vectors for all

realisations of a given frequency for the benchmark and M3 methods, the Frobenius norm

of the relative error is given by

||UDMCS −U3||F =

√√√√
N∑

i=1

m∑

j=1

|{UDMCS −U3}ij|2 (40)

where m corresponds to the number of realisations. If the matrices U1 ∈ CN×m and

U2 ∈ CN×m are similarly defined for the M1 and M2 methods the following propositions

can be made

||UDMCS −U1||F ≤ ||UDMCS −U2||F ≤ ||UDMCS −U3||F (41)

Due to both the eigenvalues and the eigenvectors retaining their stochastic properties in

M1 method, it is intuitively expected that the M1 method would induce the least amount

of error. As the entire stochasticity of the response vector is expected to be captured by

the stochastic eigenvalues in the M2 method, this method is not expected to outperform

the M1 method. In a similar manner, as the M3 is deemed to be a worst-case scenario,

naturally this method will not outperform both the M1 and M2 methods.

At present, the computational time associated with both the M1 and M2 methods

can be considered quite high, especially for a high degree of freedom finite element system.

This is due to two reasons. The first being the large number of terms in the summations

seen in Equations (34) and (37). At present, the number of terms in the series corresponds

to the number of degrees of freedom. Secondly, calculating the random eiegnsolutions

is computationally expensive. Combining these reasons with the need to simulate the

methods for each θ ∈ Θ accumulates to a high computational effort. These issues have

been addressed in the following section where approximation and truncation techniques

are introduced.

4. Approximating the undamped eigensolutions

Calculating the exact undamped random eigensolutions can be extremely expensive,

especially if the number of degrees of freedom is large. Thus a sensitivity approach to

approximate the eigensolutions could computationally be a better option. The set of exact
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undamped random eigensolutions can be obtained through combining direct Monte Carlo

simulations with the eigenvalue problem of the undamped system expressed by Equation

(24). The set of random eigenvalues could consequently be used to obtain the natural

frequencies of the system

ωk(θ) =
√
λk(θ) (42)

where ωk(θ) represents the kth random natural frequency of a realisation. Due to the low

computational effort associated with the first order perturbation method, this method

has been used to approximate both the undamped random eigenvalues and eigenvectors.

The random eigenvalues can be approximated by the following equation

λj ≈ λj0 +
M∑

k=1

(
∂λj
∂ξk

)
dξk(θ) (43)

where λj0 is the jth deterministic undamped eigenvalue and dξk(θ) a set of Gaussian

random variables with mean zero and unit variance. The derivative of the undamped

random eigenvalues with respect to ξk can be obtained through differentiating and ma-

nipulating the eigenvalue equation denoted by Equation (24) [55]. This results in the

following equation

∂λj
∂ξk

=
φT

0j

[
∂K
∂ξk
− λ0j

∂M
∂ξk

]
φ0j

φT
0j

M0φ0j

(44)

where λ0j and φ0j correspond to the deterministic undamped eigenvalues and eigenvectors.

As the deterministic undamped eigenvectors are mass normalised, the denominator in the

above equation equates to one i.e. φT
0j

M0φ0j
= 1, thus resulting in

∂λ0j

∂ξk
= φT

0j

[
∂K

∂ξk
− λ0j

∂M

∂ξk

]
φ0j

(45)

In the instance of Equation (45), the values of both ∂M
∂ξk

and ∂K
∂ξk

are as follows

∂M

∂ξk
=





Mk, for j = 1, 2, . . . , p1

0, otherwise

∂K

∂ξk
=





Kk−p1 , for k = p1 + 1, p1 + 2, . . . , p1 + p2

0, otherwise

(46)
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where Mk and Kk − p1 correspond to the random components of M(θ) and K(θ) intro-

duced through Equations (5) and (6).

In a similar manner, the random undamped eigenvectors can also be expressed by a

first-order perturbation

φj ≈ φj0 +
M∑

k=1

(
∂φj

∂ξk

)
dξk(θ) (47)

where φj0 is the jth deterministic undamped eigenvector and dξk(θ) a set of Gaussian

random variables with mean zero and unit variance. It is possible to obtain the derivative

of the jth undamped random eigenvector with respect to ξk by expressing the result as a

linear combination of deterministic eigenvectors. This can be illustrated by

∂φj

∂ξk
=

N∑

r=1

αjrφ0r (48)

The full algebraic detail of obtaining the derivative can be found in [55]. The final

expression for
∂φj

∂ξk
is given by

∂φj

∂ξk
= −1

2

(
φT
j0

∂M

∂ξk
φj0

)
+

N∑

i=16=j

φT
k0

[
∂K
∂ξk
− λj0 ∂M∂ξk

]
φj0

λj0 − λk0
φk0 (49)

The values of both ∂M
∂ξk

and ∂K
∂ξk

are identical to those given in Equation (46). This method

requires all the deterministic eigenvalues and eigenvectors to be known. Furthermore the

eigenvalues are required to be unique. For the case of repeated eigenvalues the proposed

methods would still be valid, however a different method would be required to approximate

the eigenvectors [56].

Thus by approximating the random eigensolutions it can be categorically concluded

that the computational effort associated with each of the proposed methods are as follows

CM1 > CM2 > CM3 (50)

where C represents the computational effort. Providing that the proposed methods for

approximating the eigensolutions are accurate, by comparing Equations (41) and (50) it

is apparent that a trade-off between the error and the computational effort is present.

M1 provides the most accurate representation of the response vector however it’s com-
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putational effort is the highest. M3 provides the least accurate response, however this is

achieved with a considerably lower computational effort.

5. Modal basis reduction

At present all the methods described in Section 3 require the calculation and sum-

mation of N terms. In cooperation with the approximations seen in Section 4, these

methods can be deemed rather inexpensive in comparison with the polynmoial chaos ap-

proach. The polynomial chaos approach requires a set of NP algebraic equations to be

solved where P corresponds to the number of polynomial chaoses. However, we aim to

lower the computational effort of our proposed methods even further.

Through revisiting the ordering of the eigenvalues seen in Equation (25) it can be

deduced that

λ1 < λ2 < . . . < λN (51)

where λj corresponds to the jth eigenvalue. From the scalar terms αj(ω, θ), βj(ω, θ) and

γ0j(ω) seen Equations (34), (37) and (39), it can be observed that the eigenvalues appear

in the denominator. The scalar αj is shown for illustration

αj(ω, θ) =
φT
j (θ)̃f0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

(52)

For the values of j satisfying λj(θ) + 2i
√
λj(θ)ωζ > ω2, it is apparent that the value

of the denominator increases as the value of j increases. The value of the numerator

depends on the deterministic force f̃0 and the undamped eigenvectors. The numerator

can not be ordered in terms of magnitude for different values of j, however due to the

mass normalisation of the undamped eigenvectors, it can be deduced that the value of

the numerator does not vary significantly. Therefore it is established that the value of

αj(ω, θ) generally decreases as the value of j increases. Consequently the upper limits

of the summations seen in Equations (34), (37) and (39) can be lowered. In turn, these

equations can be expressed as

ũ1(ω, θ) ≈
nr∑

j=1

(
φT
j (θ)̃f0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φj(θ) (53)
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ũ2(ω, θ) ≈
nr∑

j=1

(
φT

0j
f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φ0j

(54)

ũ3(ω) ≈
nr∑

j=1

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
φ0j

(55)

respectively, where nr < N � NP . The value of nr can be defined in two ways (a) the

value can be predefined depending on the system under consideration (b) by selecting a

value for ε which is sufficiently small, nr can be selected such that λ0(nr)
is the largest

deterministic eigenvalue that satisfies
λ01
λ0(nr)

> ε. If the accuracy of the truncated series is

not sufficient, the accuracy can be improved by increasing the predefined value of nr or

selecting a lower value for ε.

6. Sample based Galerkin error minimisation

Three different projection methods have been proposed in Section 3. The first projects

random scalars onto a stochastic basis whilst the second projects random scalars onto a

deterministic basis. The third method projects deterministic scalars onto a deterministic

basis. We have shown that it’s possible to approximate the random eigensolutions that

arise in the proposed methods in order to lower the computational effort. However these

approximations, in addition to the modal reduction introduced in Section 5 introduces

error into the calculation. This has motivated an error minimisation technique through

applying a sample based Galerkin approach. As a result, in addition to the three pro-

jection methods introduced in in Section 3, the following three projection methods are

proposed:

• Galerkin approach with projecting onto a stochastic basis with stochastic coefficients

(M1G)

• Galerkin approach with projecting onto a stochastic basis with deterministic coeffi-

cients (M2G)

• Galerkin approach with projecting onto a deterministic basis with deterministic

coefficients (M3G)
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The case of incorporating a sample based Galerkin approach with projecting onto a

stochastic basis with stochastic coefficients is initially considered.

6.1. Galerkin approach with projecting onto a stochastic basis with stochastic coefficients
(M1G)

The response vector for the given case is modified to take the following series repre-

sentation

ũ1G(ω, θ) ≈
nr∑

j=1

cj(ω, θ)

(
φT
j (θ)̃f0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φj(θ)

=
nr∑

j=1

cj (ω, θ)αj (ω, θ)φj (θ)

(56)

Here αj(ω, θ) and φj(θ) correspond to the random scalars and random eigenvectors seen

in Equation (34) whilst cj (ω, θ) ∈ C are constants which need to be obtained for each

realisation. This can be done by applying a sample based Galerkin approach. We initially

consider the following residual

r(ω, θ) =

(
M∑

i=0

Di(ω)ξi(θ)

)(
nr∑

j=1

cj(ω, θ)αj(ω, θ)φj(θ)

)
− f̃0(ω) ∈ CN (57)

where ξ0 = 1 is used in order to simplify the summation. Di(ω), ξi(θ) and f̃0(ω) correspond

to the terms arising in Equations (9) and (10). By making the residual orthogonal to a

basis function, the unknown cj(ω, θ) can be computed. As Equation (56) can be viewed

as a projection onto a stochastic basis, the residual is made orthogonal to the undamped

random eigenvectors

r(ω, θ) ⊥ φk(θ) ∀ k = 1, 2, . . . nr (58)

As a sample based Galerkin approach is considered, applying the orthogonality condition

results in

φT
k (θ)

[(
M∑

i=0

Di(ω)ξi(θ)

)(
nr∑

j=1

cj(ω, θ)αj(ω, θ)φj(θ)

)
− φT

k (θ)̃f0(ω)

]
= 0 (59)

Through manipulating Equation (59) it is possible to re-write the equation in the following

form
nr∑

j=1

(
M∑

i=0

[
φT
k (θ)Di(ω)φj(θ)

]
[ξi(θ)αj(ω, θ)]

)

︸ ︷︷ ︸
Z1(ω,θ)

cj(ω, θ)︸ ︷︷ ︸
c1(ω,θ)

= φT
k (θ)̃f0(ω)︸ ︷︷ ︸

y1(ω)

(60)
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By defining the vector c1 (ω, θ) = [c1 (ω, θ) c2 (ω, θ) . . . cnr (ω, θ)]T , Equation (60) can be

re-written as

Z1(ω, θ)c1(ω, θ) = y1(ω, θ) j, k = 1, 2, . . . , nr (61)

where Z1kj(ω, θ) =
∑M

i=0

[
φT
k (θ)Di(ω)φj(θ)

]
[ξi(θ)αj(ω, θ)] ; ∀j, k = 1, 2, . . . nr and y1(ω, θ) =

φT
k (θ)̃f0(ω). The number of equations that need to be solved in order to calculate the

unknown vector c(ω, θ) corresponds to the value of nr. By increasing the number of terms

from nr to nr + 1, the number of terms in Z1(ω, θ) increases by 2n + 1. Therefore the

lower the dimension of the reduced system, the fewer the number of equations that need

to be solved. This is of importance as the given procedure needs to be repeated for every

realisation and for every frequency under consideration.

6.2. Galerkin approach with projecting onto a stochastic basis with deterministic coeffi-
cients (M2G)

A similar approach can be implemented for the case containing undamped random

eigenvalues and deterministic eigenvectors. The response vector for this given approach

takes the following form

ũ2G(ω, θ) ≈
nr∑

j=1

cj(ω, θ)

(
φT

0j
f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)
φ0j

=
nr∑

j=1

cj (ω, θ) βj (ω, θ)φ0j

(62)

Here βj(ω, θ) corresponds to the scalars introduced in Equation (37) and φ0j
to the de-

terministic eigenvectors also introduced in Equation (37). cj (ω, θ) ∈ C are the unknown

constants that need to obtained for each realisation of each frequency. A similar sample

based Galerkin method can be implemented to compute the unknown constants. In order

to mimic the projection seen in Equation (37), the residual is projected onto determin-

istic eigenvectors rather than the random eigenvectors seen in Section 6.1. By following

a similar approach to that seen in Section 6.1, the unknown constants cj(ω, θ) can be

computed by solving the following set of linear equations.

Z2(ω, θ)c2(ω, θ) = y2(ω) j, k = 1, 2, . . . , nr (63)
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where Z2kj(ω, θ) =
M∑

i=0

[
φT

0k
Di(ω)φ0j

]
[ξi(θ)βj(ω, θ)] ;

βj(ω, θ) =
nr∑

j=1

(
φT

0j
f̃0

λj(θ)− ω2 + 2i
√
λj(θ)ωζ

)

y2(ω) = φT
k (θ)̃f0(ω) ∀ j, k = 1, 2, . . . nr

and c2(ω, θ) is a vector that contains the unknown constants cj(ω, θ)

The number of equations that need to be solved to compute the unknown coefficients

corresponds to the number of modes retained in the reduced models in Section 5. Similarly

to the the method described in Section 6.1, this procedure needs to be repeated for every

realisation and for every ω ∈ Ω.

6.3. Galerkin approach with projecting onto a deterministic basis with deterministic coef-
ficients (M3G)

A Galerkin approach can also be considered for the case that contains undamped

deterministic eigenvalues and eigenvectors. For this case, the response vector is defined

as follows

ũ3G(ω, θ) ≈
nr∑

j=1

cj(ω, θ)

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)
φ0j

=
nr∑

j=1

cj (ω, θ) γ0j (ω)φ0j

(64)

where γ0j(ω) and φ0j
correspond to the deterministic scalars and the undamped determin-

istic eigenvector introduced in Equation (39). cj (ω, θ) ∈ C are unknown constants which

need to obtained for each realisation of each frequency. Similarly to the two preceding

methods, by applying a sample based Galerkin approach the unknown constants can be

computed. Sequentially, the following set of equations is required to be solved for every

realisation in each considered frequency

Z3(ω, θ)c3(ω, θ) = y3(ω, θ) j, k = 1, 2, . . . , nr (65)
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where Z3kj(ω, θ) =
M∑

i=0

[
φT

0k
Di(ω)φ0j

] [
ξi(θ)γ0j(ω)

]
;

γ0j(ω) =
nr∑

j=1

(
φT

0j
f̃0

λ0j − ω2 + 2i
√
λ0jωζ

)

y3(ω) = φT
0k

f̃0(ω) ∀ j, k = 1, 2, . . . nr

and c3(ω, θ) is the vector that contains the unknown constants cj(ω, θ)

The computational effort associated with this method is considerably lower than the

other Galerkin methods as the scalars γ0j only need to be calculated once for each given

frequency. The aim of this method is to incorporate the whole stochastic nature of system

within the unknown scalars cj(ω, θ). However it is not known if the Galerkin approach can

substantially lower the error as all the eigensolutions used are deterministic. This method

is of significant interest as it is known that the behaviour of deterministic and stochastic

systems can differ substantially especially if the coefficient of variation is significantly

large.

7. Calculation of the response statistics

Calculating response statistics such as the mean and covariance matrices can be

deemed fundamental during analysing practical examples. The response statistics given

in this section can be computed through implementing the methods described in the

previous sections.

The response vector ũ(ω, θ) is a complex valued random process. The complete sta-

tistical characterization of the response is not only computationally expensive but also

difficult to interpellate physically. For this reason we’re only interested in the modulus of

this quantity. From an engineering point of view, this quantity is of significant interest.

The mean of the modulus of the response vector for a given frequency is defined as

ū(ω) = E [|ũ(ω, θ)|] (66)

Similarly the covariance matrix of a given frequency can be defined as follows

Cũ(ω) = E
[(
|ũ(ω, θ)| − E [|ũ(ω, θ)|]

)(
|ũ(ω, θ)| − E [|ũ(ω, θ)|]

)T]
∈ RN×N (67)
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where ū corresponds to the mean of the response vector and (?)T denotes the transpose

of ?.

7.1. Response statistics for the M1 and M1G methods

The case of a stochastic projection incorporated with stochastic eigensolutions and a

Galerkin error minimisation approach (M1G) is initially considered. For this case, the

response vector can take the following form

ũ1G(ω, θ) =
nr∑

j=1

cj(ω, θ)αj(ω, θ)φj(θ) (68)

where αj(ω, θ) corresponds to the random scalars seen in Equation (56). Defining ũ1G(ω, θ)

in such a way supports neatness whilst calculating response statistics. When analysing

the displacement of structures, the modulus of the response corresponds to the maximum

displacement or the amplitude seen at each node. The mean vector of the amplitude can

be expressed as

ū1G(ω) =
nr∑

j=1

E
[∣∣cj(ω, θ)αj(ω, θ)φj(θ)

∣∣] (69)

where |?| denotes the absolute value of ?. By using the expression from Equation (69),

it is possible to define the covariance matrix of the amplitude. In the expression below,

rather than using the standard sigma notation, the covariance matrix is defined by C in

order to clarify between the covariance matrix and the summations

Cũ1G
(ω) = E

[( nr∑

j=1

∣∣cj(ω, θ)αj(ω, θ)φj(θ)
∣∣−

nr∑

j=1

E
[∣∣cj(ω, θ)αj(ω, θ)φj(θ)

∣∣]
)

( nr∑

k=1

|ck(ω, θ)αk(ω, θ)φk(θ)| −
nr∑

k=1

E [|ck(ω, θ)αk(ω, θ)φk(θ)|]
)T
] (70)

Due to the stochastic nature of this approach, the expression for the covariance matrix can

not be simplified. The mean and covariance matrix of the M1 method takes a similar form

to Equations (69) and (70). All the terms are retained, however cj = 1 ∀ j = 1, 2, . . . nr

and ck = 1 ∀ k = 1, 2, . . . nr.

7.2. Response statistics for the M2 and M2G methods

Similarly to the previous case, the method which incorporates the undamped random

eigenvalues, undamped deterministic eigenvector and the Galerkin error minimisation
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approach (M2G) is initially considered. We will consider the method’s response vector in

following form

ũ2G(ω, θ) =
nr∑

j=1

cj (ω, θ) βj (ω, θ)φ0j
(71)

where βj(ω, θ) corresponds to the random scalars seen in Equation (62). Due to the

undamped deterministic eigenvectors, the mean vector of the amplitude can be expressed

as

ū2G(ω) =
nr∑

j=1

E [|cj(ω, θ)αj(ω, θ)|]
∣∣φj0

∣∣ (72)

In a similar manner to the previous case, the covariance matrix of the amplitude can be

expressed by

Cũ2G
(ω) =

nr∑

j=1

nr∑

k=1

Ψ2G(ω, θ)
∣∣∣φ0j

φT
0k

∣∣∣ (73)

where the stochastic terms arising in the covariance matrix are given by

Ψ2G(ω, θ) = E
[(
|βj(ω, θ)cj(ω, θ)| − E [|βj(ω, θ)cj(ω, θ)|]

)

(
|βk(ω, θ)ck(ω, θ)| − E [|βk(ω, θ)ck(ω, θ)|]

)] (74)

Due to the undamped eigenvectors being deterministic, less computational effort is needed

to compute the expected values arising in the above expression in comparison to that given

by Equation (70). The mean and covariance matrix of the M2 method takes a similar

form to Equations (72) and (73). The only difference is that cj = 1 ∀ j = 1, 2, . . . nr

and ck = 1 ∀ k = 1, 2, . . . nr.

7.3. Response statistics for the M3 and M3G methods

When analysing the corresponding mean and covariance matrix arising from the M3

and M3G methods, substantial computational reduction can be seen due to the intro-

duction of additional deterministic terms. The response vector of the M3G method is

initially considered in the following form

ũ3G(ω, θ) =
nr∑

j=1

cj(ω, θ)γ0j(ω)φ0j
(75)
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where γ0j(ω) corresponds to the deterministic scalars seen in Equation (64). The mean

vector of the amplitude can be expressed as

ū3G(ω) =
nr∑

j=1

E [|cj(ω, θ)|]
∣∣∣γ0j(ω)φ0j

∣∣∣ (76)

where the only expected value arising is that of the scalars cj(ω, θ). The same is true

when considering the covariance matrix of the amplitude

Cũ3G
(ω) =

nr∑

j=1

nr∑

k=1

∣∣γ0j(ω)γ0k(ω)
∣∣Ψ3G(ω, θ)

∣∣∣φ0j
φT

0k

∣∣∣ (77)

where in this instance, the elements of the stochastic term Ψ3G only contain the scalar

terms cj(ω, θ) and ck(ω, θ).

Ψ3G(ω, θ) = E
[(
|cj(ω, θ)| − E [|cj(ω, θ)|]

)(
|ck(ω, θ)| − E [|ck(ω, θ)|]

)]
(78)

As there are no stochastic terms arising in the response when using the M3 method, it

can be easily deduced that ū3G(ω) = ũ3G(ω). Consequently, the covariance matrix would

take the form of the zero matrix.

8. Summary of the proposed methods

Thus far six projection methods have been proposed in order to analyse the response of

stochastically parametrized structural dynamic systems. The first three methods analyse

the effect of altering the nature of the coefficients and their associated vectors. In addi-

tion to altering the nature of the coefficients and their associated vectors, the remaining

three methods implement a sample based Galerkin error minimisation technique. A table

summarising the proposed methods is given below
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Method
Form of the

Coefficient Basis
Vector of

response Galerkin
vector coefficients

M1
∑nr

j=1 αj(ω, θ)aj(θ)
φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

φj(θ) -

M2
∑nr

j=1 βj(ω, θ)bj
φT

j0

˜f0
λj(θ)−ω2+2i

√
λj(θ)ωζ

φj0 -

M3
∑N

j=1 γj(ω)cj
φT

j0

˜f0
λj0−ω2+2i

√
λj0ωζ

φj0 -

M1G
∑nr

j=1 cj(ω, θ)αj(ω, θ)aj(θ)
φT

j (θ)
˜f0

λj(θ)−ω2+2i
√
λj(θ)ωζ

φj(θ) Z−1
1 (θ, ω)y1(θ, ω)

M2G
∑nr

j=1 cj(ω, θ)βj(ω, θ)bj
φT

j0

˜f0
λj(θ)−ω2+2i

√
λj(θ)ωζ

φj0 Z−1
2 (θ, ω)y2(ω)

M3G
∑nr

j=1 cj(ω, θ)γj(ω)cj
φT

j0

˜f0
λj0−ω2+2i

√
λj0ωζ

φj0 Z−1
3 (θ, ω)y3(ω)

Table 1: Summary of the proposed methods

where the values of Z1(θ, ω),Z2(θ, ω),Z3(θ, ω) and y1(θ, ω),y2(ω),y3(ω) are given in

Section 6. The values of cj(θ, ω) are subsequently located within the vectors containing

the Galerkin coefficients. Thus the main difference between the M1,M2,M3 methods

and the M1G,M2G,M3G methods are the Galerkin coefficients cj(θ, ω). It is hoped

that by computing these Galerkin coefficients the induced errors will be significantly

reduced. Although the values of the Galerkin coefficients need to computed for each

θ ∈ Θ and ω ∈ Ω, this size of the linear system which needs to be solved is much lower

than the size of the linear system associated with the direct Monte Carlo approach. The

computational complexity associated with inversions for θ ∈ Θ and ω ∈ Ω are O(n3
r) and

O(N3) respectively where nr < N . In the subsequent section, the proposed methods are

utilised to analyse two case systems.

9. Case studies

The six methods proposed in Sections 3 and 6 are applied to two classical structural

dynamic systems. The first being an Euler-Bernoulli cantilever beam, and the second

being a Kirchhoff-Love plate. Both of the analysed structures have stochastic properties.

The stochastic finite element method has been applied in order to discretize both systems.

Although two clamped-free systems are examined, the proposed methods can easily be
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utilised to analyse clamped-clamped systems. This would be executed by adapting the

stochastic finite element method.

9.1. Euler-Bernoulli cantilever beam

We initially apply the proposed methods to a cantilever beam. Therefore, the dis-

placement and rotational degrees of freedom at the clamped end of the beam are zero.

The length of the beam under consideration is 1.00 m and its cross-section is a rectangle

of length 0.03 m and height 0.003 m. A harmonic point load is applied at the free tip of

the beam. Figure 1 illustrates the configuration. The uncertainty is introduced through

the beam’s bending rigidity, EI. It is assumed that the bending rigidity is a stationary

Gaussian random field of the following form

EI(x, θ) = EI(1 + a(x, θ)) (79)

where EI denotes the deterministic value of the bending rigidity. The function a(x, ω)

represents a stationary Gaussian field with zero mean, where x is the coordinate direction

along the length of the beam. The covariance function is given by

Ca(x1, x2) = σ2
ae

(|x1−x2|)/µa (80)

where µa is the correlation length and σa is the standard deviation. The random field

a(x, ω) can be expressed by the Karhunen-Loeve expansion given by Equation (1). The

number of terms considered to represent the discretised random field is given by M = 4.

For the deterministic case, the Young’s modulus is E = 69 × 109 Nm−2 thus corre-

sponding to an aluminium beam. The deterministic second moment of area (moment

of inertia) of the beam is I = 6.75 × 10−11 m4. Hence EI = 4.66 Nm2. The correlation

length µa is set as 0.50 m thus corresponding to half of the length of the beam. The system

has been discretized into a 100 elements by using the stochastic finite element method.

Consequently, after applying the appropriate boundary conditions, the dimension of the

corresponding discretized system is 200× 200.

The case of an unit amplitude harmonic point load acting on the free tip of the beam

is considered for the frequency range 0− 450 Hz at an interval of 2 Hz. This corresponds

to considering 226 frequency values. For the given beam, this allows for the first eight
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resequence frequencies to be studied. The chosen constant modal damping model has a

2% damping factor for all the modes.

10, 000 Monte Carlo simulation samples are considered for each frequency step and for

two different values of the standard deviation of the bending rigidity.

σa = {0.05, 0.20} (81)

This allows for the methods to be compared under different levels of uncertainty. It has

been numerically verified that using 10, 000 Monte Carlo samples gives a satisfactory level

of convergence for the first two moments of the quantities of interest.

Based on the reasoning given in Section 5, for each of the proposed methods only

twelve terms have been used in the summations, hence nr = 12. This is a vast reduction

as 188 terms have been discarded from each method. For the deterministic case, the

distribution of the natural frequencies of the cantilever beam is given in Figure 1. The

analytical natural frequencies have been computed by using the methodology given in

[57] whilst the finite element solution is computed by solving Equation (42). As to the

values obtained by using the finite element method technique match the analytical values,

the finite element method technique has been used for the reminder of this study. The

twelve natural frequencies used in the comparison methods are highlighted in Figure 1.

As we are only considering the first twelve terms in each of the summations, the methods

implementing the sample based Galerkin error minimisation technique requires a linear

set of 12× 12 equations to solved for each sample.

The mean vertical amplitude of the displacement at the tip of the beam is shown in

Figure 2. Barring the M3 method, all the projection methods seem to mimic the results

obtained by using the DMCS approach. The M3 method seems to over estimate the

mean vertical amplitude at both the resonance and the antiresonance frequencies of the

system. The disparity between the M3 and DMCS methods is most prominent when

σa = 0.20. This is due to the M3 method being deterministic. When the methods are

stochastic, the peak responses are distributed around the corresponding resonance values.

The peak responses for a deterministic system is concentrated at the resonance values,

hence explaining the unsuitability of the M3 method in comparison with the DMCS

method.
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(a) The configuration of the stochastic
cantilever beam with a harmonic point load

asserted on the free end
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Fig. 1: A diagram of the cantilever beam system under a harmonic point load applied at the
free end of the beam. The first 12 natural frequencies are depicted. These have been obtained
using an analytical approach and the finite element method. It is apparent that the range of
the natural frequencies covers over twice the frequency range under consideration (450 Hz).
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(b) σa = 0.20

Fig. 2: The mean vertical amplitude of the displacement at the tip of the beam under an
unit harmonic point load at the free end. The response is shown for two different values of the
standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20.

.

Figure 3 illustrates the standard deviation of the of the vertical amplitude of the

displacement at the tip of the beam. Due to the M3 method being deterministic, the

standard deviation associated with this method has not been illustrated. The peaks

and troths of the responses seen in Figure 3 are in agreement with those seen in Figure
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2. A decent agreement is seen between the standard deviation obtained through the

DMCS method and the other projection methods. However when the Galerkin error

minimisation method is not implemented, a little discrepancy can be seen between the

projection methods and the DMCS method at high frequency values.
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(b) σa = 0.20

Fig. 3: The standard deviation of the vertical amplitude of the displacement at the tip of the
beam under an unit harmonic point load at the free end. The response is shown for two different
values of the standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.20.

Figure 4 illustrates the probability density function of the vertical amplitude at the

tip of the beam. The M3 method has been omitted due to the lack of stochasticity. The

probability density function has been computed for both values of the standard deviations

at a frequency of 84 Hz. This frequency value corresponds to the fourth resonance value.

All methods seem to mimic that of the DMCS pretty well when σa = 0.05, however a

disparity between the different methods is seen when σa = 0.20. For the higher standard

deviation value, both the M1 and M2 methods do not match the DMCS method as well

as the Galerkin methods. All three of the Galerkin methods seem to match the DMCS

method equally as well.

The approximate L2 relative error of the mean of the response vector for each frequency

step can be defined as follows

ε̂
µ
L2

(ω) =
||µDMCS(ω)− µCM(ω)||L2

||µDMCS(ω)||L2

(82)

where µDMCS denotes the mean of the response vector obtained by using the DMCS

method and µCM denotes the mean of the response vector obtained by using a comparable
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(b) σa = 0.20

Fig. 4: The probability density function of the vertical amplitude of the displacement at the
tip of the beam under an unit harmonic point load at the free end at 84 Hz. The response is
shown for two different values of the standard deviation of the bending rigidity: (a) σa = 0.05
(b) σa = 0.20.

.

method. This method ensures that the error arising from each of the projection methods

can be characterised by a single value for each ω ∈ Ω. Figures 5 and 6 depict the log of

the approximate L2 relative error of the mean of the response vector for different values

of nr. This is depicted for each of the frequencies under consideration and for both values

of σa.

It can be easily deduced that the M3 method introduces considerably more error than

the other methods at the resonance frequencies for both values of σa. The visible troths

seen in the relative error arising from the M1, M2, M1G, M2G and M3G methods corre-

spond to the resonance frequencies. For a given value of nr the trend of the approximate

relative error increases with the frequency. This is to be expected as the higher order

terms in the summations become more important as the frequency increases. The relative

errors induced by the three sample based Galerkin methods are identical. This suggests

that computing the stochastic eigensolutions is non-essential if a sample based Galerkin

method is used.
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Fig. 5: The log of the approximate L2 relative error of the mean of the response vector when
σa = 0.05. The contour plots depict the log of the approximate L2 relative error for different
values of nr at each frequency step.

.
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Fig. 6: The log of the approximate L2 relative error of the mean of the response vector when
σa = 0.20. The contour plots depict the log of the approximate L2 relative error for different
values of nr at each frequency step.

.

The expression for the approximate L2 relative error of the standard deviation takes

a similar form

ε̂σL2
(ω) =

||σDMCS(ω)− σCM(ω)||L2

||σDMCS(ω)||L2

(83)

where σDMCS denotes the standard deviation of the response vector obtained by using the

DMCS method and σCM denotes the standard deviation of the response vector obtained

by using a comparable method. Figures 7 and 8 depict the log of the approximate L2

relative error of the standard deviation of the response vector for different values of nr.

This is depicted for both values of σa at each frequency step.

It is apparent that neither the M2 or the M3 methods capture the standard deviation

of the DMCS very well. The same is true regarding the M1 method, especially if the

coefficient of variation is high. All three sample based Galerkin methods capture the

necessary standard deviation very well, especially when the frequency value corresponds

to a resonance frequency. Similarly to the case of the approximate L2 relative error

of the mean of the response vector, the approximate L2 relative error of the standard
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deviation of the response vector are extremely similar for the three Galerkin methods

under consideration.
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Fig. 7: The log of the approximate L2 relative error of the standard deviation of the response
vector when σa = 0.05. The contour plots depict the log of the approximate L2 relative error
for different values of nr at each frequency step.

.
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Fig. 8: The log of the L2 relative error of the standard deviation of the response vector when
σa = 0.20. The contour plots depict the log of the approximate L2 relative error for different
values of nr at each frequency step.

The effect of truncating all the projection methods is further explored in Table 2 and

Table 3. The approximate L2 relative error of the mean and standard deviation is explored

for different values of nr at a frequency of 42 Hz. This frequency corresponds to the third

resonance value.

Number
M1 M2 M3 M1G M2G M3G

of modes

σa = 0.05

6 0.0071 0.0075 0.3126 0.0064 0.0064 0.0064
9 0.0042 0.0048 0.3136 0.0024 0.0024 0.0024
12 0.0038 0.0044 0.3139 0.0012 0.0012 0.0012
15 0.0037 0.0044 0.3140 0.0007 0.0007 0.0007
18 0.0037 0.0043 0.3141 0.0004 0.0004 0.0004

σa = 0.20

6 0.0193 0.0197 1.7920 0.0152 0.0152 0.0152
9 0.0159 0.0154 1.7942 0.0054 0.0054 0.0054
12 0.0158 0.0151 1.7942 0.0027 0.0027 0.0027
15 0.0158 0.0151 1.7949 0.0016 0.0016 0.0016
18 0.0158 0.0151 1.7952 0.0010 0.0100 0.0010

Table 2: The approximate L2 relative error of the mean of the response vector obtained by
using the six reduced order methods for different values of nr. The approximate L2 relative error
is shown for two different values of the standard deviation of the bending rigidity: (a) σa = 0.05
(b) σa = 0.20 at a frequency of 42 Hz.
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Number
M1 M2 M3 M1G M2G M3G

of modes

σa = 0.05

6 0.0149 0.0166 1.0000 0.0004 0.0004 0.0004
9 0.0147 0.0166 1.0000 0.0001 0.0001 0.0001
12 0.0147 0.0166 1.0000 4× 10−5 4× 10−5 4× 10−5

15 0.0147 0.0166 1.0000 1× 10−5 1× 10−5 1× 10−5

18 0.0147 0.0166 1.0000 1× 10−5 1× 10−5 1× 10−5

σa = 0.20

6 0.0134 0.0214 1.0000 0.0005 0.0005 0.0005
9 0.0132 0.0213 1.0000 0.0002 0.0002 0.0002
12 0.0132 0.0213 1.0000 0.0001 0.0001 0.0001
15 0.0132 0.0213 1.0000 0.0001 0.0001 0.0001
18 0.0132 0.0213 1.0000 3× 10−5 3× 10−5 3× 10−5

Table 3: The approximate L2 relative error of the standard deviation of the response vector
obtained by using the six reduced order methods for different values of nr. The approximate L2

relative error is shown for two different values of the standard deviation of the bending rigidity:
(a) σa = 0.05 (b) σa = 0.20 at a frequency of 42 Hz.

It is again apparent from Tables 2 and 3 that the approximate relative errors generally

decrease as additional modes are introduced. It is evident that the M3 method is con-

siderably worse than the other methods. The M1 method generally outperforms the M2

method, but this is to be expected due to the M1 method incorporating stochasticity in

both the eigenvalues and eigenvectors; the stochasticity is only incorporated through the

eigenvalues in the M2 method. All three Galerkin approaches (M1G, M2G and M3G)

perform equally as well, however additional computational effort is incurred whilst com-

puting the random eigensolution associated with methods M1G and M2G in comparison

to the M3G method.

9.2. Kirchhoff-Love plate

The comparative methods are applied to analyse the bending of a thin plate which is

governed by the Kirchhoff-Love plate theory. The rectangular plate under consideration

has a length (L) of 1.00 m and a width (W ) of 0.56 m. The centre of the plate has

coordinates (0.00, 0.00). The plate is clamped along its width (x = −0.50 m), thus the

displacement and rotational degrees of freedom along the clamped edge are zero.

Similarly to the previous case, the bending rigidity has been assumed to be the only

stochastic parameter. The bending rigidity of the plate, D, is assumed to be a stationary

Gaussian random field of the form

D(x, y, θ) = D(1 + a(x, y, θ)) (84)
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Fig. 9: The configuration of the stochastic Kirchhoff-Love plate with a harmonic point load
asserted at coordinate (0.42, 0.00).

where a(x, y, θ) is a stationary Gaussian field with zero mean and x, y are the coordinate

directions of the length and width of the plate. D corresponds to the deterministic value of

the bending rigidity of the plate. The correlation function of the random field is assumed

to take the following form

Ca(x1, x2, y1, y2) = σ2
ae
−(|x1−x2|)/µxe−(|y1−y2|)/µy (85)

where σa is the standard deviation of the bending rigidity, and µx and µy are the corre-

lation lengths for both the x and y directions respectively. The forcing vector is again

deemed deterministic with an unit norm. This is applied as a harmonic point load at co-

ordinate (0.42, 0.00). The deterministic modal damping matrix consists of a 2% damping

factor for each mode. Figure 9 illustrates the configuration of the plate.

For the given example, the parameters of the plate are as follows: thickness h = 0.003

m, mass density ρ = 7860 kgm−3 and a Young’s modulus of E = 200 × 109 Nm−2 thus

resulting in D0 = 494.51 Nm. The values used imply that the thin plate is made of steel.

The correlation length is set at µx = L
5

i.e. a fifth of respective length in the x direction,

and set at µy = W
5

in the y direction.

By using a structured grid with linear rectangular elements, the thin plate has been

divided into 25 elements in the x direction and 14 elements in the y direction. This leads

to the system containing 1,125 degrees of freedom. Three terms have been retained in the

KL expansion introduced in Equation (1) along both the x and y axis. By using a tensor

product of the eigenfunctions associated with the KL expansion, a total of 9 random

variables are used to represent the discretized Kirchhoff-Love plate. The response of the
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plate has been analysed for two different values of standard deviation

σa = {0.05, 0.15} (86)

The frequency range of the harmonic point load under consideration is 0− 200 Hz at

an interval of 2 Hz. This corresponds to considering 101 different frequency values. 5,000

samples have been considered for each frequency step. 5,000 samples gives a satisfactory

convergence for the first two moments of the quantities of interest. For each of the

proposed methods, thirty terms have been retained in their respective summations, hence

nr = 30. If all the terms were retained, all the summations would contain 1,125 terms.

The methods implementing the Galerkin error minimisation technique require a linear set

of 30× 30 equations to be solved for each sample.

The mean and the standard deviation of the vertical deflection amplitude of the plate

is further analysed at one of the free corners (0.50,−0.28). This coordinate is labelled P

in Figure 9. The mean of the vertical deflection amplitude at point P is illustrated in

Figure 10. When σa is set to 0.05, a good agreement between the DMCS method and

all the projection methods is visible. However when σa is increased to 0.15, an agreement

between the M3 and DMCS methods is no longer seen.
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Fig. 10: The mean vertical amplitude of the displacement at the corner of the plate (0.50,−0.28)
is observed. The response is shown for two different values of the standard deviation of the
bending rigidity (a) σa = 0.05 (b) σa = 0.15.

.
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Figure 11 shows the standard deviation of the vertical amplitude of the plate at point

P . Due to the M3 method being deterministic, the standard deviation of this method

has not been illustrated. Barring the M2 method, a good agreement can be seen between

the DMCS method and the other projection methods. Therefore it can be deemed that

only the M1 method or Galerkin methods can incorporate the true standard deviation of

the amplitude at point P .
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Fig. 11: The standard deviation of the vertical amplitude of the displacement at the corner
of the plate (0.50,−0.28) is observed. The response is shown for two different values of the
standard deviation of the bending rigidity (a) σa = 0.05 (b) σa = 0.15.

.

The approximate L2 relative error of the mean of the response vector is given by

Figure 12 for all the proposed methods. Similarly to the cantilever beam example, the

M3 method is extremely erroneous in comparison to the other methods. This is especially

true when σa = 0.15. The approximate relative error seems to amplify as the frequency

increases. If the value of nr were to be increased, it is expected that the relative error at

the higher frequencies would decrease. However increasing the value of nr would increase

the computational effort.

Figure 13 depicts the approximate L2 relative error of the standard deviation for all

methods barring the M3 method. In conjunction with Figure 11, it is again apparent

that the M2 method does not capture the standard deviation of the system. It is now

apparent that the M1 method is not as effective as the sample based Galerkin methods at
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Fig. 12: The approximate L2 relative error of the mean of the response vector at each fre-
quency step. The approximate L2 relative error is shown for two different values of the standard
deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.15.

.

mimicking the standard deviation obtained through the DMCS method. By examining

the sample based Galerkin methods in more detail, all the methods produce an extremely

similar value of relative error. This is the case for both the relative error of the mean and

the standard deviation. Therefore it can be deduced that calculating or approximating

the random eigensolutions is not necessary in order to obtain the lowest relative errors

for the mean and standard deviation. Combining deterministic eigensolutions and the

sample based Galerkin approach is sufficient.

The probability density function of the vertical amplitude of the point P is given in

Figure 14. This has been calculated for both values of σa at 168 Hz. This frequency value

corresponds to the 16th deterministic resonance value. Due to the deterministic nature of

the M3 method, its probability density function has been omitted. A decent agreement

can be seen between all the methods at the lower σa value, however a greater discrepancy

is seen between the methods at the largest value of σa. When σa = 0.15 a good agreement

is seen between the Galerkin methods and the DMCS method, however the M1 and M2

methods are less successful at mimicking the probability density function of the DMCS

method.
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Fig. 13: The approximate L2 relative error of the standard deviation of the response vector at
each frequency step. The approximate L2 relative error is shown for two different values of the
standard deviation of the bending rigidity: (a) σa = 0.05 (b) σa = 0.15.
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Fig. 14: The probability density function of the vertical amplitude of the displacement at the
corner of the plate (0.50,−0.28) when the unit harmonic point load at (0.42, 0.00) is at 168 Hz.
The response is shown for two different values of the standard deviation of the bending rigidity:
(a) σa = 0.05 (b) σa = 0.15.

.

10. Summary and Conclusion

10.1. Summary

A summary of the proposed methods is given below:
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• A set of hybrid projection methods to calculate the response of stochastic dynamic

structural systems has been proposed. The different methods analyse the effect of

altering the nature of the coefficients and their associated basis.

• Both the coefficients and their corresponding basis have been computed by utilising

the stochastic and deterministic eigensolutions of the structural system.

• The computational effort is reduced by approximating the stochastic eigensolutions

and by reducing the modal basis.

• To compensate for the error induced by the proposed hybrid model order reduction

technique, a sample based Galerkin error minimization approach is presented.

• If the sample based Galerkin error minimization approach is omitted it is necessary

for both the coefficients and their associated bases to be stochastic in order to

capture an accurate response for a system.

• If the Galerkin error minimization approach is applied calculating the stochastic

eigensolutions is unwarranted. The Galerkin method compensates for the error

induced while utilising the baseline eigenmodes. Therefore, a Monte Carlo type

sample-based method to evaluate the coefficients and their associate basis can be

avoided.

• The application of the Galerkin error minimization approach in conjunction with

projecting onto a deterministic basis with deterministic coefficients (M3G) produces

a level of accuracy comparable to any of the other proposed methods. Our study

leads us to suggest that this simple approach has significant potential for analysing

stochastic structural systems.

10.2. Conclusion

A comprehensive set of hybrid projection methods has been proposed in order to

solve a stochastic partial differential equation for structural dynamic systems. Following

the implementation of a stochastic finite element method, three projection methods have

been developed by utilising the random eigenvalue problem. The first method utilises both
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random eigenvalues and eigenvectors, the second random eigenvalues and deterministic

eigenvectors and the third only uses deterministic eigensolutions. In order to reduce the

computational effort associated with each of these methods, the random eigensolutions

have been approximated by a first order perturbation and only the dominant projection

terms have been retained. Due to the approximations and the reduced modal basis, three

additional projection methods have been proposed. These methods utilise a sample based

Galerkin error minimization approach in order to lower the error.

The proposed methods have been applied to a Euler-Bernoulli cantilever beam and

to a Kirchhoff-Love plate with stochastic properties described with a random field. It is

apparent that if the sample based Galerkin error minimization approach were not to be

implemented the stochastic elastic properties of the random eigenvalues and eigenvectors

must be retained in order to capture the stochasticity of the governing equation. The

application of the sample based Galerkin method compensates the error incurred when

only the baseline eigenmodes are utilized. Thus the significant computational overhead

associated with a Monte Carlo type sample-based basis evaluation is avoided when using

the proposed Galerkin error minimization technique. Future research needs to verify

these conclusions for larger real-life structures and different models of uncertainties. One

of the main difficulties that needs to be addressed is the elicitation of uncertainties in

stochastic parameters for real-life structures. This might require complex hierarchical

probabilistic uncertainty descriptors which then must be translated into parametrized

coefficient matrices. Additionally, the consideration of non-proportional damping matrices

and projection in the space of complex eigenmodes [52] will be a fruitful generalisation of

the proposed framework.
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