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Summary

This work proposes a novel finite volume paradigm, the face-centred finite volume
(FCFV) method. Contrary to the popular vertex (VCFV) and cell (CCFV) centred
finite volume methods, the novel FCFV defines the solution on the mesh faces (edges
in 2D) to construct locally-conservative numerical schemes. The idea of the FCFV
method stems from a hybridisable discontinuous Galerkin (HDG) formulation with
constant degree of approximation, thus inheriting the convergence properties of the
classical HDG. The resulting FCFV features a global problem in terms of a piecewise
constant function defined on the faces of the mesh. The solution and its gradient in
each element are then recovered by solving a set of independent element-by-element
problems. The mathematical formulation of FCFV for Poisson and Stokes equation
is derived and numerical evidence of optimal convergence in 2D and 3D is pro-
vided. Numerical examples are presented to illustrate the accuracy, efficiency and
robustness of the proposed methodology. The results show that, contrary to other
FV methods, the accuracy of the FCFV method is not sensitive to mesh distortion
and stretching. In addition, the FCFV method shows its better performance, accu-
racy and robustness using simplicial elements, facilitating its application to problems
involving complex geometries in 3D.

KEYWORDS:
finite volume method, face-centred, hybridisable discontinuous Galerkin, lowest-order approximation

1 INTRODUCTION

Starting from its first appearance in the 1960s, the finite volume method (FVM) has experienced a growing success, especially
within the computational fluid dynamics (CFD) community. Stemming from the fundamental work of Godunov1, Varga2 and
Preissmann3, the FVM made its official appearance in4,5, where the authors considered its application to hyperbolic systems of
conservation laws. Nowadays, the FVM is the most widely spread methodology implemented in open-source, commercial and
industrial CFD solvers.
Over the years, several variations of the original FVMhave been proposed. For a complete introduction, the interested reader is

referred to classical textbooks6,7 and to the review papers8,9,10,11. The twomost popular approaches are the so-called cell-centred
finite volume (CCFV) method and the vertex-centred finite volume (VCFV) method.

†Contract/grant sponsor: the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement, the Span-
ish Ministry of Economy and Competitiveness, and the Generalitat de Catalunya; contract/grant numbers: MSCA ITN-ETN 675919, DPI2017-85139-C2-2-R, and
2017SGR1278
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The CCFV approach defines the solution at the centre of the mesh elements (i.e. cells) such that their values represent cell
averages of the unknown quantities. Several techniques to accurately compute the gradient of the solution at the element faces,
based on node averaging or least squares, have been proposed and compared12,13. In all cases, a reconstruction of the gradient
of the solution is required to guarantee second-order convergence of the solution error. This is crucial to guarantee a first-order
convergence of the solution gradient, which is required to accurately compute engineering quantities of interest (e.g. lift and
drag). The accuracy of the reconstruction is heavily dependent on the quality of the mesh and some approaches fail to provide
a second-order scheme on highly stretched and deformed grids.
The VCFV strategy defines the solution at the mesh nodes. A control volume is constructed around each node by using the

centroid of the mesh elements and mid-edge points (and face centroids in three dimensions). The control volumes form a non-
overlapping set of subdomains that cover the whole domain and form the so-called dual mesh. The resulting approximation is
locally piecewise constant on each dual element where the values of the unknowns represent control volume averages. Similarly
to CCFV scheme, the VCFV method requires the reconstruction of the gradient of the solution at each dual face. A first order
accurate reconstruction scheme is required to provide a second-order VCFV method12,13.
In parallel to the development of FV schemes, a great effort was dedicated during the 1970s to the application of finite element

methods to CFD problems14. The difficulties encountered due to the convection dominated nature of many fluid flow problems
prompted the development of the so-called stabilised finite element techniques15 and discontinuous Galerkin methods16.
More recently, a great effort has been dedicated to reinterpret finite volume schemes within continuous and discontinuous

finite element frameworks. In8, Morton and Sonar motivate their exposition of finite volume schemes as Petrov-Galerkin finite
element methods owing to the flexibility the latter approaches show in terms of approximation using unstructured meshes and
the solid theoretical framework developed for their analysis. In17, Vohralík exploits similar ideas to develop a unified theory
of a posteriori error estimators valid for both finite volume and finite element approximations. Within this context, the CCFV
scheme may be interpreted as a discontinuous Galerkin method with piecewise constant degree of approximation within each
element10,18. In a similar fashion, a VCFV scheme on simplicial meshes may be interpreted as a conforming piecewise linear
continuous finite element method19,20.
In this paper, an alternative to the discussed finite volume strategies is proposed by defining the unknowns over the faces of

the mesh. Other authors have also considered finite volume approaches where the unknowns are defined over the faces of the
elements21,22,23,24. As for CCFV and VCFV, the resulting face-centred finite volume (FCFV) method may be interpreted as a
lowest-order finite element method. More precisely, FCFV is derived from the recently proposed hybridisable discontinuous
Galerkin (HDG) method by Cockburn and co-workers25,26,27,28 by imposing a constant degree of approximation. As such, the
method requires the solution of a global system of equations equal to the total number of element faces. The solution and its
gradient in each element are then recovered by solving a set of independent element-by-element problems.
Contrary to classical CCFV and VCFV approaches, the proposed FCFV method provides first-order accuracy of the solution

and its gradient without any reconstruction. Therefore, the accuracy of the FCFV method is not compromised in the presence of
highly stretched or distorted elements. In addition, due to the definition of the unknowns on the element faces, the global system
of equations that must be solved, provides a less degree of coupling of the information when compared to other finite volume
schemes. The application to scalar and vector second-order elliptic problems is considered, namely the Poisson and the Stokes
problems respectively. For the solution of Stokes flow problems, the FCFV method does not require the solution of a Poisson
problem for computing the pressure, as required by segregated schemes such as the semi-implicit method for pressure-linked
equations (SIMPLE) algorithm29. In addition, contrary to other mixed finite element methods, with the FCFV it is possible to use
the same space of approximation for both velocity and pressure, circumventing the so-called Ladyzhenskaya-Babuška-Brezzi
(LBB) condition15.
The rest of this paper is organised as follows. Section 2 presents the proposed FCFV method for the solution of the Poisson

equation. The extension to Stokes flow problems is described in Section 3. Section 4 discusses some computational aspects of
the FCFV rationale and recalls its theoretical convergence properties. An exhaustive set of numerical studies is presented in
Section 5. These studies include mesh convergence tests, a comparison in terms of the computational cost and the influence of
the stabilisation parameter, the mesh distortion and the element stretching. The studies consider both the Poisson and Stokes
equations, using different element types and in two and three dimensional domains. In Section 6 large three dimensional examples
are considered to show the potential of the proposed methodology. Finally, section 7 summarises the conclusions of the work
that has been presented.
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2 FCFV FOR THE POISSON EQUATION

2.1 Problem statement and mixed formulation
LetΩ ∈ ℝn

sd be an open bounded domain with boundary )Ω = ΓD∪ΓN , ΓD∩ΓN = ∅ and n
sd
the number of spatial dimensions.

The strong form for the second-order elliptic problem can be written as
⎧

⎪

⎨

⎪

⎩

−( ⋅ (u = s in Ω,
u = uD on ΓD,

n ⋅ (u = t on ΓN ,
(1)

where s ∈ 2(Ω) is a source term, n is the outward unit normal vector to )Ω and uD and t respectively are the Dirichlet
and Neumann data imposed on the external boundary. Other boundary conditions may also be considered but, for the sake of
simplicity (and without any loss of generality), solely the Dirichlet-Neumann case will be detailed.
Let us assume that Ω is partitioned in n

el
disjoint subdomains Ωe

Ω =
n
el

⋃

e=1
Ωe, Ωe ∩ Ωl = ∅ for e ≠ l, (2)

with boundaries )Ωe, which define an internal interface Γ

Γ ∶=
[

n
el

⋃

e=1
)Ωe

]

⧵ )Ω (3)

Moreover, it is also convenient to write the boundary of each element as the union of the individual element faces (edges in two
dimensions), namely

)Ωe ∶=
n
e
fa

⋃

j=1
Γe,j , (4)

where ne
fa

denotes the number of faces of the element Ωe.
Following the definition in30, the jump J⋅K operator is introduced. That is, along each portion of the interface Γ it sums the

values from the left and right of say, Ωe and Ωl, namely

J⊙K = ⊙e +⊙l. (5)

It is important to observe that this definition always requires the normal vector n in the argument and always produces functions
in the same space as the argument.
The second-order elliptic problem (1) can thus be written in mixed form in the broken computational domain as a system of

first-order equations, namely
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

q + (u = 0 in Ωe, and for e = 1,… , n
el
,

( ⋅ q = s in Ωe, and for e = 1,… , n
el
,

u = uD on ΓD,
n ⋅ q = −t on ΓN ,
JunK = 0 on Γ,

Jn ⋅ qK = 0 on Γ,

(6)

where the two last equations correspond to the imposition of the continuity of respectively the primal variable u and the normal
fluxes along the internal interface Γ.

2.2 Strong form of the local and global problems
In this subsection, the classical formulation of the hybridisable discontinuous Galerkin method is recalled. The HDGmethod for
second-order elliptic problems has been studied in a series of papers by Cockburn and co-workers28,31,32 and relies on rewriting
Equation (6) as two equivalent problems. First, the local (element-by-element) problem with Dirichlet boundary conditions is
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defined, namely
⎧

⎪

⎪

⎨

⎪

⎪

⎩

qe + (ue = 0 in Ωe,
( ⋅ qe = s in Ωe,

ue = uD on )Ωe ∩ ΓD,
ue = û on )Ωe ⧵ ΓD,

(7)

for e = 1,… , n
el
. In each element Ωe this problem produces an element-by-element solution qe and ue as a function of the

unknown û ∈ 2(Γ ∪ ΓN ). Note that these problems can be solved independently element-by-element.
Second, a global problem is defined to determine û. It corresponds to the imposition of the Neumann boundary condition and

the so-called transmission conditions, see28.
⎧

⎪

⎨

⎪

⎩

JunK = 0 on Γ,
Jn ⋅ qK = 0 on Γ,
n ⋅ q = −t on ΓN .

(8)

These transmission conditions were introduced in (6) to ensure inter-element continuity when the broken computational domain
formulation was presented. Note that the first equation in (8) imposes continuity of u across Γ. Owing to the Dirichlet boundary
condition u = û on Γ as imposed by the local problems (7) and the uniqueness of the hybrid variable û, the continuity of the
primal variable, JûnK = 0, is automatically verified. Hence, the global problem reduces to the second and third equation in (8).

2.3 Weak form of the local and global problems
First, following the notation in33, the discrete functional spaces are introduced:

ℎ(Ω) ∶= {v ∈ 2(Ω) ∶ v|Ωe ∈ k(Ωe) ∀Ωe , e = 1,… , n
el
}, (9a)

̂ℎ(S) ∶= {v̂ ∈ 2(S) ∶ v̂|Γi ∈ k(Γi) ∀Γi ⊂ S ⊆ Γ ∪ )Ω}, (9b)

wherek(Ωe) andk(Γi) stand for the spaces of polynomial functions of complete degree at most k inΩe and on Γi respectively.
Moreover, recall the notation for the classical internal products of scalar functions in 2(Ωe) and 2(Γi)

(p, q)Ωe ∶= ∫
Ωe

pq dΩ, ⟨p̂, q̂⟩)Ωe ∶=
∑

Γi⊂)Ωe
∫
Γi

p̂q̂ dΓ (10)

and the internal product of vector valued functions in [2(Ω)]nsd

(p, q)Ωe ∶= ∫
Ωe

p ⋅ q dΩ (11)

The discrete weak formulation of the previously introduced local problems is obtained by multiplying the problems by a test
function in an appropriate discrete functional space and integrating by parts. For e = 1,… , n

el
, seek (qℎe , u

ℎ
e ) ∈ [

ℎ(Ωe)]nsd ×
ℎ(Ωe) such that for all (w, v) ∈ [ℎ(Ωe)]nsd × ℎ(Ωe) it holds

−(w, qℎe )Ωe + (( ⋅w, u
ℎ
e )Ωe = ⟨ne ⋅w, uD⟩)Ωe∩ΓD + ⟨ne ⋅w, ûℎ⟩)Ωe⧵ΓD ,

−((v, qℎe )Ωe + ⟨v,ne ⋅ q̂
ℎ
e ⟩)Ωe = (v, s)Ωe ,

The traces of the numerical fluxes q̂ℎe have to be properly defined in order to guarantee the stability of the method28. More
precisely, they are defined element-by-element (i.e. for e = 1,… , n

el
) as

ne ⋅ q̂
ℎ
e ∶=

{

ne ⋅ qℎe + �e(u
ℎ
e − uD) on )Ωe ∩ ΓD,

ne ⋅ qℎe + �e(u
ℎ
e − û

ℎ) elsewhere,
(12)

with �e being a stabilisation parameter which may take different values on each face of the boundary )Ωe and whose selection
has an important effect on the stability, accuracy and convergence properties of the resulting HDG method. The influence of the
stabilisation parameter has been studied extensively by Cockburn and co-workers, see for instance28,34.
By exploiting the definition of the numerical fluxes given by (12) and integrating by parts again the left-hand side of the second
equation in order to retrieve a symmetric formulation, the discrete weak problem becomes: for e = 1,… , n

el
, seek (qℎe , u

ℎ
e ) ∈
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[ℎ(Ωe)]nsd × ℎ(Ωe) that for all (w, v) ∈ [ℎ(Ωe)]nsd × ℎ(Ωe) satisfies

−(w, qℎe )Ωe + (( ⋅w, u
ℎ
e )Ωe = ⟨ne ⋅w, uD⟩)Ωe∩ΓD + ⟨ne ⋅w, ûℎ⟩)Ωe⧵ΓD , (13a)

(v,( ⋅ qℎe )Ωe + ⟨v, �e u
ℎ
e ⟩)Ωe = (v, s)Ωe + ⟨v, �e uD⟩)Ωe∩ΓD + ⟨v, �e û

ℎ
⟩)Ωe⧵ΓD . (13b)

In a similar fashion, the following discrete formulation is derived for the global problem: seek ûℎ ∈ ̂ℎ(Γ ∪ ΓN ) such that for
all v̂ ∈ ̂ℎ(Γ ∪ ΓN ) it holds

n
el

∑

e=1
⟨v̂,ne ⋅ q̂

ℎ
e ⟩)Ωe⧵)Ω +

n
el

∑

e=1
⟨v̂,ne ⋅ q̂

ℎ
e + t⟩)Ωe∩ΓN = 0, (14)

or, equivalently,
n
el

∑

e=1

{

⟨v̂,ne ⋅ qℎe ⟩)Ωe⧵ΓD + ⟨v̂, �e u
ℎ
e ⟩)Ωe⧵ΓD − ⟨v̂, �e û

ℎ
⟩)Ωe⧵ΓD

}

= −
n
el

∑

e=1
⟨v̂, t⟩)Ωe∩ΓN . (15)

Henceforth, to simplify the notation the superindex ℎ expressing the discrete approximations will be dropped, unless needed
in order to follow the development.

2.4 FCFV discretisation
For the sake of readability, let us introduce the following notation for the sets of faces: e ∶= {1,… , ne

fa
} is the set of indices

for all the faces of element Ωe; e ∶= {j ∈ e | Γe,j ∩ ΓD ≠ ∅} is the set of indices for all the faces of element Ωe on the
Dirichlet boundary ΓD; e ∶= {j ∈ e | Γe,j ∩ ΓN ≠ ∅} is the set of indices for all the faces of element Ωe on the Neumann
boundary ΓN ;e ∶= e ⧵e = {j ∈ e | Γe,j ∩ΓD = ∅} is the set of indices for all the faces of elementΩe not on the Dirichlet
boundary ΓD.
The discretisation of the local problems given by Equation (13) with a degree of approximation k = 0 in each element for

both qe and ue and also a degree of approximation k = 0 in each face/edge for û leads to

−|Ωe|qe =
∑

j∈e

|Γe,j|njuD,j +
∑

j∈e

|Γe,j|nj ûj , (16a)

∑

j∈e

|Γe,j|�jue = |Ωe|se +
∑

j∈e

|Γe,j|�juD,j +
∑

j∈e

|Γe,j|�j ûj (16b)

where �j is the value of the stabilisation parameter on the j-th face of the element.

Remark 1. The local problem of Equation (16) assumes that the integrals in the weak formulation are computed with a numerical
quadrature with a single integration point in each element and each face/edge. It is worth noting that this is exact for some of the
integrals but in other cases it introduces an error of order (ℎ), where ℎ is the characteristic element size. The two situations
where the integral with one integration point is not exact are when the data (source term, Dirichlet and Neumann data) that is
not constant per element or face/edge and when the outward unit normal to the face changes within the face (i.e. when elements
with non-planar quadrilateral faces are considered in three dimensions).

In general, the HDG local problem requires the solution of a small system of equations to obtain q and u in terms of û.
However, for the particular choice of a constant interpolation in each element, Equations (16) are uncoupled and provide the
following explicit expressions of qe and ue in terms of û:

qe = −|Ωe|−1ze − |Ωe|−1
∑

j∈e

|Γe,j|nj ûj (17a)

ue = �−1e �e + �
−1
e

∑

j∈e

|Γe,j|�j ûj , (17b)

where
�e ∶=

∑

j∈e

|Γe,j|�j , �e ∶= |Ωe|se +
∑

j∈e

|Γe,j|�juD,j , ze ∶=
∑

j∈e

|Γe,j|njuD,j . (18)

Similarly, the discretisation of the global problem given by Equation (15) with a degree of approximation k = 0 for û leads to
n
el

∑

e=1

{

|Γe,i|ni ⋅ qe + |Γe,i|�iue − |Γe,i|�iûi
}

= −
n
el

∑

e=1

{

|Γe,i|ti �e
(i)
}

for i ∈ e, (19)
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where �e
is the indicator function of the sete, i.e.

�e
(i) =

{

1 if i ∈e
0 otherwise . (20)

By plugging (17a) and (17b) into (19), the following system of equations containing only û as an unknown is obtained:

K̂û = f̂ , (21)

where the global matrix K̂ and right hand side vector f̂ are computed by assembling the contributions given by

K̂e
i,j ∶= |Γe,i|

(

�−1e |Γe,j|�i�j − |Ωe|−1|Γe,j|ni ⋅ nj − �i�ij
)

, (22a)

f̂ ei ∶= |Γe,i|
(

|Ωe|−1ni ⋅ ze − ti �e
(i) − �−1e �e�i

)

, (22b)

for i, j ∈ e, being �ij the classical Kronecker delta.

3 FCFV FOR THE STOKES EQUATION

3.1 Problem statement and mixed formulation
Following the above rationale, the formulation of the face-centred finite volume method for the approximation of Stokes flows
is derived next. The strong form of the velocity-pressure formulation of the Stokes equation can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−( ⋅ (�(u − pI
n
sd

) = s in Ω,
( ⋅ u = 0 in Ω,

u = uD on ΓD,
n ⋅

(

�(u − pI
n
sd

)

= t on ΓN ,

(23)

where the couple (u, p) represents the velocity and pressure field, � > 0 is the viscosity coefficient and s, uD and t respectively
are the volumetric source term, the Dirichlet boundary datum to impose the value of the velocity on ΓD and the pseudo-traction
applied on the Neumann boundary ΓN .
Assuming that Ω is partitioned in n

el
disjoint subdomains and splitting the second-order momentum conservation equation

in two first-order equations, Equation (23) can be written in the broken computational domain as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

L +
√

�(u = 0 in Ωe, and for e = 1,… , n
el
,

( ⋅
(
√

�L + pI
n
sd

)

= s in Ωe, and for e = 1,… , n
el
,

( ⋅ u = 0 in Ωe, and for e = 1,… , n
el
,

u = uD on ΓD,

n ⋅
(
√

�L + pI
n
sd

)

= −t on ΓN ,
Ju⊗ nK = 0 on Γ,

Jn ⋅
(
√

�L + pI
n
sd

)

K = 0 on Γ.

(24)

where, as for the Poisson equation, the last two equations enforce the continuity of respectively the primal variable and the
normal trace of the flux across the interface Γ.

3.2 Strong form of the local and global problems
The HDG formulation for the Stokes equation has been developed in a series of publications by Cockburn and co-
workers35,36,37,38. As previously discussed, the hybridisable discontinuous Galerkin method relies on writing Equation (24) as a
set of n

el
local problems defined element-by-element and featuring purely Dirichlet boundary conditions and a global problem

to compute the hybrid variable defined on the mesh skeleton. First, for e = 1,… , n
el
a solution (Le, ue, pe) is sought as a function
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of the unknown hybrid variable û, namely
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Le +
√

�(ue = 0 in Ωe,

( ⋅
(
√

�Le + peIn
sd

)

= s in Ωe,
( ⋅ ue = 0 in Ωe

ue = uD on )Ωe ∩ ΓD,
ue = û on )Ωe ⧵ ΓD.

(25)

It is worth noting that Equation (25) features a problemwith only Dirichlet boundary conditions, hence the pressure is determined
up to a constant. An additional constraint (e.g. setting the mean value of the pressure on the element boundary) is added to avoid
the indeterminacy, namely

1
|)Ωe|

⟨pe, 1⟩)Ωe = �e, (26)

where �e denotes the mean pressure on the boundary of element Ωe.
In addition, the free divergence condition in Equation (25) induces the compatibility condition

⟨û ⋅ ne, 1⟩)Ωe⧵ΓD + ⟨uD ⋅ ne, 1⟩)Ωe∩ΓD = 0. (27)

A global problem is defined to determine the trace of the velocity on the mesh skeleton, û, and the mean pressure in each
element, �e, namely

⎧

⎪

⎨

⎪

⎩

Ju⊗ nK = 0 on Γ,

Jn ⋅
(
√

�L + pI
n
sd

)

K = 0 on Γ.

n ⋅
(
√

�L + pI
n
sd

)

= −t on ΓN .

(28)

As previously discussed, the first condition in Equation (28) is automatically satisfied due to the unique definition of the hybrid
variable û on each face and the Dirichlet boundary condition ue = û imposed in the local problems.

3.3 Weak form of the local and global problems
In addition to the internal products introduced in Equations (10) and (11), the following internal products are defined

(P ,Q)Ωe ∶= ∫
Ωe

P ∶ Q dΩ, ⟨p̂, q̂⟩)Ωe ∶=
∑

Γi⊂)Ωe
∫
Γi

p̂ ⋅ q̂ dΓ (29)

for tensor valued functions in [2(Ω)]nsd×nsd and vector valued functions in [2(Γi)]nsd respectively.
The discrete weak formulation of the local problems reads as follows: for e = 1,… n

el
, find (Lℎe , u

ℎ
e , p

ℎ
e ) ∈ [

ℎ(Ωe)]nsd×nsd ×
[ℎ(Ωe)]nsd × ℎ(Ωe) such that

− (G,Lℎe )Ωe + (( ⋅
(
√

�G
)

, uℎe )Ωe = ⟨ne ⋅
√

�G, uD⟩)Ωe∩ΓD + ⟨ne ⋅
√

�G, ûℎ⟩)Ωe⧵ΓD , (30a)

− ((w,
√

�Lℎe )Ωe − (( ⋅w, p
ℎ
e )Ωe + ⟨w,ne ⋅

( ̂√

�Lℎe + pℎe Insd
)

⟩)Ωe = (w, s)Ωe , (30b)

((q, uℎe )Ωe = ⟨q, uD ⋅ ne⟩)Ωe∩ΓD + ⟨q, ûℎ ⋅ ne⟩)Ωe⧵ΓD , (30c)
1

|)Ωe|
⟨pℎe , 1⟩)Ωe = �e, (30d)

for all (G,w, q) ∈ [ℎ(Ωe)]nsd×nsd × [ℎ(Ωe)]nsd × ℎ(Ωe).
Integrating by parts Equation (30b) and introducing the definition of the trace of the numerical normal flux

ne ⋅
( ̂√

�Lℎe + pℎe Insd
)

∶=

{

ne ⋅
(√

�Lℎe + p
ℎ
e Insd

)

+ �e(uℎe − uD) on )Ωe ∩ ΓD,
ne ⋅

(√

�Lℎe + p
ℎ
e Insd

)

+ �e(uℎe − û
ℎ) elsewhere.

(31)
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leads to the following local problem:

− (G,Lℎe )Ωe + (( ⋅
(
√

�G
)

, uℎe )Ωe = ⟨ne ⋅
√

�G, uD⟩)Ωe∩ΓD + ⟨ne ⋅
√

�G, ûℎ⟩)Ωe⧵ΓD , (32a)

(w,( ⋅
(
√

�Lℎe
)

)Ωe + ⟨w, �euℎe ⟩)Ωe + (w,(p
ℎ
e )Ωe = (w, s)Ωe + ⟨w, �euD⟩)Ωe∩ΓD + ⟨w, �eû

ℎ
⟩)Ωe⧵ΓD , (32b)

((q, uℎe )Ωe = ⟨q, uD ⋅ ne⟩)Ωe∩ΓD + ⟨q, ûℎ ⋅ ne⟩)Ωe⧵ΓD , (32c)
1

|)Ωe|
⟨pℎe , 1⟩)Ωe = �e, (32d)

In a similar fashion, the following global problem accounting for the transmission conditions and the Neumann boundary
condition given in Equation (28) is: find ûℎ ∈ [̂ℎ(Γ ∪ ΓN )]nsd and � ∈ ℝn

el

n
el

∑

e=1

{

⟨ŵ,ne ⋅
√

�Lℎe ⟩)Ωe⧵ΓD + ⟨ŵ, pℎene⟩)Ωe⧵ΓD + ⟨ŵ, �e uℎe ⟩)Ωe⧵ΓD − ⟨ŵ, �e û
ℎ
⟩)Ωe⧵ΓD

}

= −
n
el

∑

e=1
⟨ŵ, t⟩)Ωe∩ΓN , (33a)

⟨ûℎ ⋅ ne, 1⟩)Ωe⧵ΓD = −⟨uD ⋅ ne, 1⟩)Ωe∩ΓD for e = 1,… , n
el
, (33b)

for all ŵ ∈ [̂ℎ(Γ ∪ ΓN )]nsd .
Henceforth, to simplify the notation, the superindex ℎ expressing the discrete approximations will be dropped, unless needed

in order to follow the development.

3.4 FCFV discretisation
For the sake of simplicity, henceforth the viscosity � is assumed to be constant. The discretisation of the local problems given by
Equation (32) with a degree of approximation k = 0 in each element for both Le, ue and pe and also a degree of approximation
k = 0 in each face/edge for û leads to

− |Ωe|Le =
√

�
∑

j∈e

|Γe,j|nj ⊗ uD,j +
√

�
∑

j∈e

|Γe,j|nj ⊗ ûj , (34a)

∑

j∈e

|Γe,j|�jue = |Ωe|se +
∑

j∈e

|Γe,j|�juD,j +
∑

j∈e

|Γe,j|�j ûj , (34b)

0 =
∑

j∈e

|Γe,j|uD,j ⋅ nj +
∑

j∈e

|Γe,j|ûj ⋅ nj , (34c)

pe = �e, (34d)

for e = 1,… , n
el
.

It is important to note that Equation (34c) coincides with the discretised version of the global compatibility condition of
Equation (33b), thus it may be neglected in the local computations and be imposed solely in the global problem. The three
remaining equations are uncoupled and provide the following expressions of Le, ue and pe as functions of the global unknowns
û and �e:

Le = −
√

�|Ωe|−1Ze −
√

�|Ωe|−1
∑

j∈e

|Γe,j|nj ⊗ ûj , (35a)

ue = �−1e �e + �
−1
e

∑

j∈e

|Γe,j|�j ûj , (35b)

pe = �e, (35c)

where the following quantities only depend upon the data of the problem and may be precomputed:

�e ∶=
∑

j∈e

|Γe,j|�j , �e ∶= |Ωe|se +
∑

j∈e

|Γe,j|�juD,j , Ze ∶=
∑

j∈e

|Γe,j|nj ⊗ uD,j . (36)

In a similar fashion, the global problem of Equation (33), particularised for a constant degree of approximation k = 0, leads to
n
el

∑

e=1

{

√

�|Γe,i|ni ⋅ Le + |Γe,i|peni + |Γe,i|�iue − |Γe,i|�iûi
}

= −
n
el

∑

e=1
|Γe,i|ti �e

(i) for i ∈ e, (37a)
∑

j∈e

|Γe,j|ûj ⋅ nj = −
∑

j∈e

|Γe,j|uD,j ⋅ nj for e = 1,… , n
el
. (37b)
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By plugging Equation (35a), (35b) and (35c) into Equation (37), the global problem can be written in terms of the global
unknowns û and �. That is, being û the vector containing the value of the hybrid variable on the faces on Γ∪ΓN and � the vector
containing the values of the mean pressure on each element Ωe, the following linear system is obtained:

[

K̂ûû K̂û�

K̂T
û� 0

n
el

]

{

û
�

}

=
{

f̂û
f̂�

}

, (38)

where the blocks composing the matrices and the vectors of the previous linear system are computed by assembling the
contributions given by

(K̂ûû)ei,j ∶= |Γe,i|
(

�−1e �i�j|Γe,j| − �|Ωe|
−1
|Γe,j|ni ⋅ nj − �i�ij

)

I
n
sd

, (39a)

(K̂û�)ei ∶= |Γe,i|ni, (39b)
(f̂û)ei ∶= |Γe,i|

(

�|Ωe|−1ni ⋅ Ze − ti �e
(i) − �−1e �i�e

)

, (39c)

(f̂�)e ∶= −
∑

j∈e

|Γe,j|uD,j ⋅ nj , (39d)

for i, j ∈ e. It is important to emphasise that (K̂ûû)ei,j denotes a matrix, (K̂û�)ei and (f̂û)
e
i are vectors and (f̂�)

e is a scalar.

Remark 2. When Dirichlet boundary conditions are imposed in the whole boundary (i.e. ΓD = )Ω and ΓN = ∅) an additional
constraint must be imposed to avoid the indeterminacy of the pressure. It is common39,36 to impose zero mean pressure on the
domain, namely

n
el

∑

e=1
|Ωe|�e = 0. (40)

In this case, the global system of Equation (39) must be modified to account for the extra constraint on the pressure.

4 COMPUTATIONAL ASPECTS

In a series of papers by Cockburn and co-workers28,39,40,41,42,43, the optimal rate of convergence of HDG has been proved and
numerically verified for a wide class of problems. More precisely, for Poisson and Stokes equations using constant degree of
approximation, both the primal variables (u in the Poisson equation and velocity u and pressure p in Stokes equation) and the
dual variables representing the fluxes (q = −(u in Poisson equation and L = −

√

�(u in Stokes equation) converge with first-
order accuracy. The FCFV method inherits the convergence properties of HDG, that is, it guarantees first-order convergence for
both the primal variables and their fluxes. The most distinctive feature of the proposed FCFV method, compared to other finite
volume methods (VCFV and CCFV) is that first-order convergence is also achieved for the gradient of the solution without any
reconstruction.
For the solution of Stokes flow problems, the proposed FCFV method does not require the solution of a Poisson problem

for computing the pressure, as required by segregated schemes such as the semi-implicit method for pressure-linked equations
(SIMPLE) algorithm29. In addition, contrary to other mixed finite element methods, with the FCFV it is possible to use the
same space of approximation for both velocity and pressure, circumventing the so-called LBB condition15.
A remarkable property of the proposed FCFV method, inherited from the HDG method, is the uncoupled nature of the

variables appearing in the local problems. More precisely, an analytical closed form of the primal and dual variables, (qe, ue)
and (Le, ue, pe) for Poisson and Stokes respectively is given in terms of the global variables, û and (û, �) for Poisson and Stokes
respectively.
A drawback of the FCFVmethod with respect to other finite volume strategies is represented by the higher number of degrees

of freedom. This issue is due to the higher number of faces with respect to the elements and the vertices for a given cardinality
of the mesh (cf. tables 1 and 2 for two and three dimensional meshes respectively). Nevertheless, a detailed comparison of
the computational costs induced by CCFV, VCFV and FCFV strategies to compute a solution for a given precision should be
performed in order to state any final conclusion on the advantages and disadvantages of the method concerning its computational
cost. Note for instance that CCFV and FCFV, in contrast to VCFV, have, even for unstructured meshes, a fixed connectivity,
which has major influences in the computability costs.
Despite the increased number of degrees of freedom compared to the VCFV, the proposed FCFV method requires a signifi-

cantly low number of operations to construct the global system of equations. For solving the Poisson problem, the computation
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Type Vertices Cells Edges
Triangles n 2n 3n
Quadrilaterals n n 2n

TABLE 1 Number of vertices, cells and edges for meshes in two dimensions.

Type Vertices Cells Faces
Tetrahedrons n 5n 10n
Hexahedrons n n 3n
Prisms n 2n 5n∕3
Pyramids n 8n∕5 4n

TABLE 2 Number of vertices, cells and faces for meshes in three dimensions.

of the elemental matrix and right hand side vector in Equation (22) only requires a total of 4n
sd
+ 12 operations. For the

Stokes problem, the computation of the elemental matrices and right hand side vectors in Equation (39) only requires a total
of 2n2

sd
+ (|e| + 6)nsd + 2|e| + 9 operations. The operation counts does not include the operations required to compute the

terms in Equations (18) and (36) as these scalars and vectors can usually be computed once and stored without incurring in a
significant memory consumption. For instance, the memory required for storing the terms in Equation (18) is equal to 8(n

sd
+2)

MB per million elements. Similarly, the memory required for storing the terms in Equation (36) is equal to (n2
sd
+ n

sd
+ 1) MB

per million elements.
It is also worth noting that the expressions appearing in Equations (22) and (39) may be further simplified under some

assumptions on the nature of the mesh. That is, some of the terms involving the outward unit normals to the element faces vanish
and result in simpler expressions exploiting the orthogonality properties of Cartesian grids.

5 NUMERICAL STUDIES

This Section presents a set of numerical studies to verify the optimal convergence properties of the proposed approach, to
compare the performance for different element types and to study the influence of numerical parameters and mesh distortion
and stretching on the accuracy of the approximation. Two and three dimensional examples are considered for both the Poisson
and the Stokes equations.

5.1 Optimal convergence of the FCFV scheme for Poisson equation
The model problem of Equation (1) is solved in two dimensions to test the optimal convergence of the proposed FCFV solver.
The computational domain is Ω = [0, 1]2. The source term is selected so that the analytical solution is

u(x, y) = exp
(

� sin(ax + cy) + � cos(bx + dy)
)

, (41)

with � = 0.1, � = 0.3, a = 5.1, b = 4.3, c = −6.2 and d = 3.4. Neumann boundary conditions, corresponding to the analytical
normal flux, are imposed in ΓN = {(x, y) ∈ ℝ2

| y = 0} and Dirichlet boundary conditions, corresponding to the analytical
solution, are imposed in ΓD = )Ω ⧵ ΓN .
Quadrilateral and triangular uniform meshes are considered to perform an ℎ-convergence study. The first four quadrilateral

and triangular meshes are shown in Figure 1 .
The numerical solution obtained with the proposed FCFV scheme for selected quadrilateral and triangular meshes is depicted

in Figure 2 . The results clearly illustrate the constant degree of approximation used within each element and the increased
accuracy obtained as the mesh is refined.
The convergence of the error of the primal variable u, measured in the 2(Ω) norm, as a function of the characteristic element

size ℎ is depicted in Figure 3 (a) for both triangular and quadrilateral elements. Similarly, the convergence of the error of the
dual variable q, measured in the 2(Ω) norm, as a function of the characteristic element size ℎ is depicted in Figure 3 (b)
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(a) Mesh 3 (b) Mesh 5 (c) Mesh 3 (d) Mesh 5

FIGURE 1 Quadrilateral and triangular meshes of Ω = [0, 1]2 for the mesh convergence analysis in 2D.

(a) Quadrilateral mesh 3 (b) Quadrilateral mesh 5 (c) Triangular mesh 3 (d) Triangular mesh 5

FIGURE 2 Solution of the 2D Poisson problem using (a)-(b) quadrilateral and (c)-(d) triangular meshes.
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FIGURE 3 Mesh convergence of the error of the solution and its gradient in the 2(Ω) norm for the 2D Poisson problem.

for both triangular and quadrilateral elements. In all the examples the characteristic element size is defined as the maximum
diameter of all elements,

ℎ = max
e

{

diam(Ωe)
}

. (42)

For the regular meshes considered here, ℎ corresponds to the diagonal of a quadrilateral element or the largest edge of a triangle.
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(a) Hexahedrons (b) Tetrahedrons (c) Prisms (d) Pyramids

FIGURE 4 Third level of mesh refinement for the meshes of Ω = [0, 1]3 employed to test the optimal convergence in 3D.
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FIGURE 5 Mesh convergence of the error of the solution and its gradient in the 2(Ω) norm for the 3D Poisson problem.

The results confirm the expected linear rate of convergence for both variables and by using triangular and quadrilateral
elements.
Next, a three dimensional test case is considered. The computational domain is Ω = [0, 1]3 and the source term is selected so

that the analytical solution is

u(x, y) = exp
(

� sin(ax + cy + ez) + � cos(bx + dy + fz)
)

, (43)

with � = 0.1, � = 0.3, a = 5.1, b = 4.3, c = −6.2, d = 3.4, e = 1.8 and f = 1.7. Neumann boundary conditions, corresponding
to the analytical normal flux, are imposed in ΓN = {(x, y, z) ∈ ℝ3

| z = 0} and Dirichlet boundary conditions, corresponding
to the analytical solution, are imposed in ΓD = )Ω ⧵ ΓN .
The convergence study is performed for regular meshes of hexahedral, tetrahedral, prismatic and pyramidal elements. A cut

through the meshes corresponding to the third level of refinement is represented in Figure 4 for all element types. Tetrahedral
meshes are obtained from the corresponding hexahedral mesh by subdividing each hexahedron into 24 tetrahedrons. Similarly,
prismaticmeshes are obtained by subdividing each hexahedron into six prisms and pyramidalmeshes are obtained by subdividing
each hexahedron into four pyramids.
The convergence of the error of the primal and dual variables, measured in the 2(Ω) norm, as a function of the characteristic

element size ℎ is depicted in Figure 5 . The results show a linear rate of convergence for both the dual and primal variables and
using all the different types of elements.
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(a) Quadrilateral mesh 3 (b) Quadrilateral mesh 5 (c) Triangular mesh 3 (d) Triangular mesh 5

(e) Quadrilateral mesh 3 (f) Quadrilateral mesh 5 (g) Triangular mesh 3 (h) Triangular mesh 5

FIGURE 6 Solution of the 2D Stokes problem. First row: magnitude of the velocity using (a)-(b) quadrilateral and (c)-(d)
triangular meshes. Second row: pressure field using (e)-(f) quadrilateral and (g)-(h) triangular meshes.

5.2 Optimal convergence of the FCFV scheme for Stokes equation
The Stokes problem given in Equation (23) is considered in two dimensions to verify the optimal convergence properties of
the FCFV method for saddle-point problems. The convergence analysis for a classical benchmark case of 3D Stokes solvers is
presented in Section 6.3, not only analysing the convergence of the primal and dual variables but also the convergence of the
drag force as the mesh is refined.
A two dimensional synthetic problem, taken from 15, is considered in the domain Ω = [0, 1]2. The boundary )Ω is split into

two disjoint parts, namely ΓN = {(x, y) ∈ ℝ2
| y = 0}where a pseudo-traction t is imposed and ΓD = )Ω⧵ΓN where a velocity

profile uD is set. The viscosity parameter is set to � = 1 and the source term s and the boundary data t and uD are chosen such
that the analytical solution is

⎧

⎪

⎨

⎪

⎩

u1(x, y) = x2(1 − x)2(2y − 6y2 + 4y3),
u2(x, y) = −y2(1 − y)2(2x − 6x2 + 4x3),
p(x, y) = x(1 − x),

(44)

where u1 and u2 are the two components of the velocity field vector u.
The same meshes used in the two dimensional verification example of Section 5.1 are considered. Figure 6 shows the

numerical solutions computed using the FCFV method on quadrilateral and triangular meshes for different levels of mesh
refinement. Once more, the piecewise constant nature of the FCFV approximation is clearly observed as well as the improved
resolution as the mesh is refined.
The convergence of the error of the pressure, velocity and velocity gradient, measured in the 2(Ω) norm, as a function of the

characteristic element size ℎ is depicted in Figure 7 for both triangular and quadrilateral elements. The expected linear rate of
convergence is observed for the primal, u, p and for the dual, L, variables using both triangular and quadrilateral meshes. It is
worth noting that for quadrilateral meshes both u and L converge with the optimal linear rate whereas the pressure converges
with a slightly lower rate, 0.9 in this example. This loss of accuracy of the pressure and the gradient of the velocity in the Stokes
equation is experienced by the hybridisable discontinuous Galerkin method also in its high-order version, when using quadrilat-
eral meshes. Cockburn and Shi44 showed that for general polygonal and polyhedral meshes, provable orders of convergence for
HDG are optimal for velocity whereas pressure and gradient of velocity are suboptimal by half order. The optimality is retrieved
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(a) p (b) u (c) L

FIGURE 7 Mesh convergence of the error of the pressure, the velocity and the velocity gradient in the 2(Ω) norm for the 2D
Stokes problem.
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FIGURE 8 Error of the solution and its gradient in the 2(Ω) norm as a function of the number of degrees of freedom of the
global system for the 2D Poisson problem.

using simplicial elements or enriching the discrete spaces via the introduction of additional basis functions. Numerical experi-
ments using high-order HDG discretisations (cf. e.g. 45 ) confirm that quadrilateral meshes experience a slight loss of accuracy
in the approximation of pressure and gradient of velocity. Nevertheless, it is worth noting that the convergence order always
deteriorates less than the predicted value 1/2.

5.3 Computational cost for different element types
The results in Figures 3 and 7 show that, for the same level of mesh refinement, the FCFV method with triangular meshes
provides more accurate results than using quadrilateral meshes, for the solution of both Poisson and Stokes problems. This is
mainly because, for the same level of mesh refinement, triangular meshes have four times more internal faces than the corre-
sponding quadrilateral meshes. This means that the second quadrilateral mesh has exactly the same number of internal faces
as the first triangular mesh. Therefore, a fair comparison between triangular and quadrilateral meshes shows that for the same
number of degrees of freedom (n

dof
) of the global problem (i.e. number of internal faces plus number of faces on the Neumann

boundary), triangular and quadrilateral meshes provide similar accuracy for both the primal and the dual variables. This can be
observed in Figure 8 , where the evolution of the error of the primal and dual variables is represented as a function of the num-
ber of degrees of freedom of the global system of equations. From the results in Figure 8 , it can be observed that triangular and
quadrilateral elements provide almost the same accuracy for a given number of degrees of freedom, with triangular elements
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FIGURE 9 Error of the solution and its gradient in the 2(Ω) norm as a function of the CPU time for the 2D Poisson problem.
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FIGURE 10 Error of the solution and its gradient in the 2(Ω) norm as a function of the number of degrees of freedom of the
global system for the 3D Poisson problem.

providing a marginal extra accuracy for the primal variable and with quadrilateral elements providing a marginal extra accuracy
for the dual variable.
To further study the performance of the FCFVmethodwith triangular and quadrilateral meshes, Figure 9 shows a comparison

of triangular and quadrilateral elements in terms of the CPU time. The CPU time is measured as the time required to assemble
and solve the global system of equations. As described in Sections 2 and 3, the cost associated to the global problem is the
dominant cost of the proposed FCFV scheme because the solution of the local problems involves the evaluation of an explicit
expression and can be performed element-by-element. It is clear that the slight superiority in terms of number of degrees of
freedom directly translates in a marginal better performance in terms of CPU time. The analysis also indicates the efficiency of
the method as solving a problem with more than one million degrees of freedom takes under 100 seconds.
Similarly, for the three dimensional Poisson problem, Figure 5 shows that for a given element size, tetrahedral elements

provide the maximum accuracy but this is simply due to the higher number of internal faces (i.e. degrees of freedom of the
global problem) compared to meshes of other element types.
Figure 10 shows the evolution of the error of the primal and dual variables as a function of the number of degrees of freedom

of the global problem. The results show that tetrahedral elements are able to attain a given error with slightly less degrees of
freedom than other element types whereas hexahedral elements require the maximum number of degrees of freedom. It is worth
noting that when the error on the dual variable is of interest, the advantages of tetrahedral elements can be better appreciated.
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FIGURE 11 Error of the solution and its gradient in the2(Ω) norm as a function of the CPU time for the 3D Poisson problem.

(a) p (b) u (c) L

FIGURE 12 Error of the pressure, the velocity and its gradient in the 2(Ω) norm as a function of the number of degrees of
freedom of the global problem for the 2D Stokes problem.

For instance, tetrahedral elements provide an error of 0.0192 in the sixth mesh, with 1,564,672 degrees of freedom, whereas
hexahedral elements require 50,200,576 in order to provide a similar error, 0.0176 in this example.
To study if the reduction of degrees of freedom also translates in more efficient computations, Figure 11 shows a comparison

of the different types of elements in terms of the CPU time. The results show that a similar performance is obtained by the
FCFV scheme with tetrahedrons, prisms and pyramids. The worst performance is observed for hexahedral elements, especially
if a low error in the dual variable is required.
To study if the same conclusions are obtained for other problems, a similar analysis is performed for the solution of the Stokes

equation in two dimensions. Figure 12 shows the evolution of the error of the pressure, velocity and velocity gradient, measured
in the 2(Ω) norm, as a function of the number of degrees of freedom. It is worth remarking that for the Stokes problem the
size of the global system of equations corresponds to the number of internal and Neumann faces times the number of spatial
dimensions plus the total number of elements, as described in Section 3.4. The results show that triangular elements offer an extra
accuracy compared to quadrilateral elements when the error of the pressure and the velocity is considered, whereas quadrilateral
elements provide a slightly more accurate representation of the gradient of the velocity, corroborating the conclusions obtained
for the Poisson problem. The more sizeable difference is observed in the pressure when fine meshes are considered.
The comparison in terms of CPU time is shown in Figure 13 . The study shows, oncemore, that the slight superiority observed

in terms of number of degrees of freedom also translates in a marginal better performance in terms of CPU time. It is important
to note that the conclusions obtained for the Stokes problem are consistent with the observations made for the Poisson problem.
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(a) p (b) u (c) L

FIGURE 13 Error of the pressure, the velocity and its gradient in the 2(Ω) norm as a function of the CPU time for the 2D
Stokes problem.

5.4 Influence of the stabilisation parameter
In all the examples shown in previous Sections, the stabilisation parameter � has been fixed to a constant value to perform the
mesh convergence studies. Next, the influence of the stabilisation parameter � is studied for the solution of Poisson and Stokes
problems and for different element types.
Figure 14 shows the evolution of the error of the solution and its gradient in the 2(Ω) norm as a function of the stabilisation

parameter � for a three dimensional Poisson problem using four different element types. The simulation is performed using two
different meshes and the value of � varies from 0.1 to 10. The results suggest that there is a value of � that provides the minimum
error on the primal solution. In this example, the FCFV scheme provides the minimum error in the primal solution for a value
of � ≈ 3. The same conclusions are also obtained for the Poisson problem in two dimensions (the results are not presented for
brevity).
It can be observed that the error of the gradient of the solution q is less sensitive to the value of the stabilisation parameter.

For triangular, tetrahedral, prisms and pyramids, a value of � between 0.1 and 3 does not induce a significant variation on the
accuracy whereas a higher value induces an increase in the error of q. For quadrilateral and hexahedral elements the minimum
error is obtained for the value � ≈ 3 whereas lower or higher values induce a loss of accuracy in q.
A similar study has also been performed for the Stokes problem. The results represented in Figure 15 correspond to a two

dimensional Stokes problem and they show that the influence of � is similar for both Poisson and Stokes problems. For both
triangular and quadrilateral meshes a value of � ≈ 10 provides the maximum accuracy for the velocity. When the error on the
velocity gradient is of interest, the conclusions are identical to the ones discussed for the Poisson problem. In terms of the error
in pressure, a different behaviour is observed for triangular and quadrilateral meshes. For triangular meshes, the accuracy on
the pressure is not affected by the stabilisation parameter if a value of � ≤ 10 is selected. For higher values of �, the error in
pressure increases with a significant impact in the accuracy.With quadrilateral elements the behaviour of the error on the pressure
is different as higher values of the stabilisation parameter provide a lower error. It is interesting to observe that the accuracy
obtained for the velocity and its gradient in two different meshes is almost identical when a large value of the stabilisation
parameter is considered (e.g. � ≈ 1, 000). This means that all the error is controlled by the value of � and not by the level of mesh
refinement. This behaviour is attributed to the definition of the numerical fluxes in Equation (31). A large value of � implies that
the numerical normal flux receives a negligible contribution from the physical normal flux.
Finally, it is worth noting that the the optimal value for the stabilisation parameter slightly depends upon the element type

but it is independent on the level of mesh refinement. More important, the value of the optimal stabilisation is found to be not
dependent on the problem (e.g. Poisson and Stokes), despite for the Stokes flow problem a value that provides accurate results
not only for the primal and mixed variable but also for the pressure must be considered.

5.5 Influence of the element distortion
The next numerical study involves exploring the influence of the element distortion on the accuracy of the proposed FCFV
scheme. To this end, a new set of meshes is produced by perturbing the position of the interior nodes of the regular meshes
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FIGURE 14 Error of the solution and its gradient in the 2(Ω) norm as a function of the stabilisation parameter � for a 3D
Poisson problem.

(a) Triangles (b) Quadrilaterals

FIGURE 15 Error of the solution and its gradient in the 2(Ω) norm as a function of the stabilisation parameter � for a 2D
Stokes problem.

employed in Sections 5.1 and 5.2. In all cases the new position of the i-th node is simply defined as x̃i = xi + ri, where ri is
a vector of dimension n

sd
where each component is a randomly generated number within the interval [−lmin∕3,lmin∕3] and
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(a) Mesh 3 (b) Mesh 5 (c) Mesh 3 (d) Mesh 5

FIGURE 16 Irregular quadrilateral and triangular meshes of Ω = [0, 1]2.

log10(h)
-3 -2 -1 0

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Triangles
Quadrilaterals

(a) u

log10(h)
-3 -2 -1 0

lo
g
1
0
(|
|E

||
L
2
(Ω

))

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Triangles
Quadrilaterals

(b) q

FIGURE 17 Mesh convergence of the error of the solution and its gradient in the 2(Ω) norm for the 2D Poisson problem with
irregular meshes.

lmin denote the minimum edge length of the regular mesh. Two of the resulting irregular quadrilateral and triangular meshes
are represented in Figure 16 .
The Poisson solver is considered first. The convergence of the error of the primal variable u, measured in the 2(Ω) norm,

as a function of the characteristic element size ℎ is depicted in Figure 17 (a) for both triangular and quadrilateral elements.
Similarly, the convergence of the error of the dual variable q, measured in the 2(Ω) norm, as a function of the characteristic
element size ℎ is depicted in Figure 17 (b) for both triangular and quadrilateral elements. The results show the optimal order
of convergence in the primal and dual variables and for both elements. By comparing the results obtained in irregular meshes
with the results for regular meshes presented in Section 5.1, it can be concluded that the accuracy of the FCFV method is not
heavily dependent upon the distortion of the elements.
The results of the mesh convergence study for the two dimensional Stokes solver are presented in Figure 18 . It can be

observed that all variables converge with the optimal rate of convergence with triangular elements whereas the error in the
pressure suffers a slight loss of accuracy for finer quadrilateral meshes.
To verify that the same behaviour is obtained for irregular three dimensional meshes, a new set of irregular three dimen-

sional meshes is considered. A cut through the irregular meshes corresponding to the third level of refinement is represented in
Figure 19 for all element types.
The results of the mesh convergence study for the three dimensional Poisson solver are presented in Figure 20 . All element

types are able to provide the optimal rate of convergence for both the primal and dual variables, but a loss of accuracy is
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(a) p (b) u (c) L

FIGURE 18 Mesh convergence of the error of the pressure, the velocity and the velocity gradient in the 2(Ω) norm for the
2D Stokes with irregular meshes.

(a) Hexahedrons (b) Tetrahedrons (c) Prisms (d) Pyramids

FIGURE 19 Third level of mesh refinement for the irregular meshes of Ω = [0, 1]3.
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FIGURE 20 Mesh convergence of the error of the solution and its gradient in the 2(Ω) norm for the 3D Poisson problem with
irregular meshes.

observed for the last pyramidal mesh. This is attributed to the non-polynomial basis employed in pyramidal elements and the
large deformation introduced for the inner nodes.
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(a) Mesh 3 (b) Mesh 5 (c) Mesh 3 (d) Mesh 5

FIGURE 21 Stretched quadrilateral and triangular meshes of Ω = [0, 1]2.

(a) p (b) u (c) L

FIGURE 22 Mesh convergence of the error of the solution and its gradient in the 2(Ω) norm for the 2D Stokes problem with
stretched meshes with stretching factor s = 100 and s = 1, 000.

5.6 Influence of the mesh stretching
The last numerical study considers the influence of the mesh stretching on the accuracy and rate of convergence of the FCFV
method. The regular meshes used in Sections 5.1 and 5.2 are modified to achieve a maximum given stretching s near the bottom
boundary. To construct the meshes in two dimensions, the vertical coordinate of the first layer is fixed to guarantee the desired
stretching. The vertical coordinate of the subsequent layers is defined as

yk = yk−1 + (ℎ∕s)�k−2, for k = 2,… , Ny + 1 (45)

where ℎ is the maximum edge length of the regular mesh,Ny is the number of elements in the vertical direction and the stretching
factor � is computed by imposing that the vertical coordinate of the last layer is one, that is finding the roots of

(ℎ∕s)�Ny − � + 1 − (ℎ∕s) = 0. (46)

Two of the resulting stretched quadrilateral and triangular meshes are represented in Figure 21 , corresponding to a stretching
s = 100.
The convergence study on two dimensional stretched meshes is performed for the Stokes problem. Figure 22 depicts the

convergence of the error of the pressure, velocity and gradient of the velocity for two different levels of stretching corresponding
to s = 100 and s = 1, 000 and for both triangular and quadrilateral elements. The results demonstrate the optimal convergence
on highly stretched meshes. In addition, the results show that the accuracy of the FCFV method is not sensitive to the the level
of stretching. In this example, the accuracy obtained with s = 100 and s = 1, 000 is almost identical and comparable to the
accuracy obtained in regular meshes in Section 5.2.
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(a) Geometry (b) Temperature (c) Heat flux

FIGURE 23 a) Geometry of a heat sink, (b) temperature distribution and (c) magnitude of the heat flux vector on the surface
of the heat sink.

6 NUMERICAL EXAMPLES

This section presents a series of large scale three dimensional examples to show the potential of the proposed FCFVmethodology.
The examples include the solution of the Poisson and the Stokes equations in 3D using tetrahedral meshes.

6.1 Temperature distribution in a heat sink
The first example considers the solution of the Poisson problem in a complex heat sink geometry. The analysis of such devices
is of interest when designing and optimising heat sink modules that are fitted in many powerful electronic devices46,47. The
geometry of the heat sink is shown in Figure 23 (a). The geometry is defined by 198 NURBS surfaces and the generated mesh
has 5,354,353 tetrahedral elements, 21,417,412 nodes, 10,490,943 internal faces and 435,526 external faces. A fixed temperature
is imposed on the bottom part of the domain and a Neumann boundary condition corresponding to a negative heat flux in the
rest of the boundary. The temperature distribution and the magnitude of the heat flux vector over the external faces of the mesh
is represented in Figures 23 (b) and (c) respectively.

6.2 Irrotational flow past complex aerodynamic configurations
Next, the irrotational flow around two complex three dimensional configurations is considered. The Poisson problem is solved
with Neumann boundary conditions, corresponding to an imposed normal velocity. The potential function is imposed at one
arbitrary point on the boundary to remove the indeterminacy of the potential.
First, the flow around a full aircraft configuration is considered. The computational domain is meshed with 5,125,998 tetrahe-

dral elements. The mesh contains 9,220,701 internal faces and 2,062,412 faces on the Neumann boundary, so the total number of
unknowns of the global problem is 11,283,113. The magnitude of the velocity computed using the dual variable (i.e. v = ‖q‖2)
and the pressure distribution computed from Bernoulli equation are represented in Figure 24 on the surface of the aircraft. The
computation took 3.7 minutes for the assembly of the global system of equations (computation of the elemental matrices plus
assembly of the global matrix) and 5.7 minutes to solve the global problem using a direct solver. The developed code is written
in Matlab and the computation was performed in an Intel R© Xeon R© CPU@ 3.70GHz and 32GB main memory available.
The second configuration considers a more challenging geometry corresponding to a generic drone represented in Figure 25

(a), where the 376 NURBS surfaces that define half of the geometry are highlighted. The computational domain is meshed with
4,093,200 tetrahedral elements. The mesh contains 7,312,154 internal faces and 1,743,273 faces on the Neumann boundary,
so the total number of unknowns of the global problem is 9,055,427. The magnitude of the velocity, computed using the dual
variable and the pressure distribution are also represented in Figure 25 on the surface of the drone. The computation took 2.8
minutes for the assembly of the global system of equations (computation of the elemental matrices plus assembly of the global
matrix) and 5.4 minutes to solve the global problem using a direct solver.
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(a) Geometry (b) Velocity (c) Pressure

FIGURE 24 Magnitude of the velocity and pressure distribution for the irrotational flow around a full aircraft configuration.

(a) Geometry (b) Velocity (c) Pressure

FIGURE 25 (a) Geometry of a generic drone, (b) magnitude of the velocity and streamlines and (c) pressure field over the
surface of the drone.

6.3 Stokes flow past a sphere
The next example considers a classical test case for three dimensional Stokes solvers, the flow around a sphere. Using the known
analytical solution48, this problem is used to show the optimal convergence of the FCFV for a three dimensional Stokes flow
and to illustrate the accuracy of the proposed technique when evaluating quantities of interest such as the drag force.
The domain is defined as Ω = ([−7, 15] × [−5, 5] × [−5, 5]) ⧵ 1,0, where 1,0 denotes a ball of unit radius centred at the

origin. Seven tetrahedral meshes of the domain are considered with the number of elements, nodes, faces, characteristic element
size (ℎ) and induced number of degrees of freedom (n

dof
) detailed in Table 3 .

Elements Nodes Faces ℎ n
dof

3,107 12,428 6,560 2.2552 20,711
10,680 42,720 22,197 1.5424 72,249
43,682 174,728 89,530 1.0095 299,276
204,099 816,396 414,457 0.6528 1,409,916
686,853 2,747,412 1,387,771 0.4523 4,765,776
2,516,099 10,064,396 5,065,404 0.3097 17,513,075
7,604,928 30,419,712 15,279,422 0.2172 53,025,798

TABLE 3 Details of the seven tetrahedral meshes to study the Stokes flow past a sphere.

The magnitude of the velocity and the pressure field are represented in Figure 26 over the surface of the sphere and the
symmetry planes. The evolution of the error in pressure, velocity and the gradient of the velocity, measured in the2(Ω) norm is
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(a) Velocity (b) Pressure

FIGURE 26 Magnitude of the velocity and pressure distribution for the Stokes flow past a sphere.
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FIGURE 27 (a) Mesh convergence of the error of the pressure, the velocity and the velocity gradient in the 2(Ω) norm for
the Stokes flow around a sphere and (b) convergence of the drag as a function of the number of degrees of freedom.

represented in Figure 27 (a). Similar to previous examples, the FCFV shows significantly more accurate results on the velocity
than in the pressure and the gradient of the velocity. The rate of convergence observed for the velocity corresponds to the higher
than optimal (quadratic in this example), whereas in the pressure and the gradient of the velocity the expected linear rate is
obtained.
The results in Figure 27 (b) show the convergence of the drag force as the number of degrees of freedom is increased.

Using the sixth mesh, with approximately 2.5 million elements, an error on the drag force below 0.2% is obtained, showing the
potential of the proposed FCFV approach. The simulation took 10 minutes for the computation of all elemental matrices and 3
minutes for the assembly of the global system. The solution of the global system was performed using the biconjugate gradient
method in a single processor and without pre-conditioner, taking less than 5 hours. The developed code is written in Matlab and
the computation was performed in an Intel R© Xeon R© CPU@ 3.20GHz and 70GB main memory available.
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(a) (b)

FIGURE 28 Arrangement of spherical particles corresponding to n = 3, R = 1, � = 1∕7 and � = 0.2�. The colours in (b) are
used to help the visualisation of the particles in each one of the three layers.

6.4 Stokes flow past a porous sphere
The last example, inspired by the results presented in49, considers the Stokes flow past a porous sphere that is formed by a
cluster of solid spherical particles. This problem is of great interest in a variety of chemical engineering applications50,49 (e.g.
flow through catalysts) and natural processes (e.g. sedimentation).
The domain is defined as Ω = ([−5, 10] × [−5, 5] × [−5, 5]) ⧵

⋃Ns
i=1�,xi , where �,xi denotes a ball of radius � centred at

xi and Ns is the total number of balls. In the present simulation, the arrangement of spherical particles is constructed so that
no overlap between the spheres is possible. Given the number of spherical layers n, the radius of the spherical particles �, the
radius of the spherical regionR containing all the particles and the minimum allowed gap between the particles �, the procedure
devised to compute the centre of the spheres and the number of spheres to be generated within each layer is described next.
First, the radius of each spherical region that will be used to place the spheres of each layer is computed asRi = i(R−�)∕n, for

i = 1,… , n. On each layer, a sphere is initially placed on the south pole of the spherical region with radiusRi and the number of
parallel arcs is computed as ai = ⌊�Ri∕d⌋, where d = 2�+ �. The radius of the parallel arc is computed as ri,j = Ri sin(jd∕Ri)
for j = 1,… , ai. Finally, the centres of the spheres are equally-spaced along each parallel arc.
Figure 28 (a) shows the arrangement ofNs = 126 spherical particles corresponding to n = 3, R = 1, � = 1∕7 and � = 0.2�.

Figure 28 (b) shows the same distribution of particles using different colours to distinguish the particles in each one of the
three spherical layers. The arrangement of particles considered leads to a porosity of 0.6327, computed as 1−Ns(�∕R)3, which
is within the range of experiments considered in49.
A tetrahedral mesh with 9,646,810 elements and 38,587,240 nodes is utilised to compute the Stokes flow past the porous

sphere formed by 126 spherical particles. The mesh contains a total of 17,816,283 internal faces and 2,954,674 external faces,
leading to a global problem with 63,095,659 degrees of freedom when Dirichlet boundary conditions are considered in the
whole domain.
The magnitude of the velocity and the pressure field are represented in Figure 29 over the surface of the spherical particles

and two sections of the computational domain. The results clearly show macroscopic behaviour of the flow around the spherical
particles is very similar to the flow pattern obtained for the flow around a single sphere studied in Section 6.3. The pressure
over the spherical particles in Figure 29 (b) has been amplified by a factor of 104 to enable distinguish the high pressure over
the first layer of spheres from the pressure over the inner layers. This phenomenon can be better observed in Figure 30 (a),
where the pressure field over the spherical particles is depicted. A cut through the domain has been performed to enable the
visualisation of some particles from the inner layers and therefore appreciate the high difference of pressure over the spheres in
the outer layer compared to the pressure over the spheres in the inner layers. Finally, Figure 30 (b) shows the velocity in the
spherical particles together with some streamlines coloured according to the magnitude of the velocity.
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(a) Velocity (b) Pressure

FIGURE 29 Magnitude of the velocity and pressure distribution for the Stokes flow past a porous sphere.

(a) Pressure (b) Velocity and streamlines

FIGURE 30 (a) Pressure distribution over some spherical particles and (b) velocity and streamlines.

7 CONCLUDING REMARKS

This papers proposes a new finite volume paradigm, called face-centred finite volume (FCFV), based on a hybridisable dis-
continuous Galerkin (HDG) method with constant degree of approximation. As any other HDG method, the FCFV technique
requires the solution of a global system of equations whose size is equal to the total number of element faces. The solution
and its gradient in each element are then recovered by solving a set of independent element-by-element problems. First order
convergence on both the solution and its gradient is obtained without a reconstruction of the gradients. Therefore, contrary to
other finite volume methodologies, the accuracy of the FCFV method is not compromised in the presence of highly stretched or
distorted elements.
The application of the proposed method to scalar and vector second-order elliptic problems is considered, namely the Poisson

and the Stokes equations. For the solution of Stokes flow problems, the FCFV method does not require the solution of a Poisson
problem for computing the pressure, as required by segregated schemes, and does not require the use of different approximation
spaces to satisfy the LBB condition, as required by other mixed finite element methods.
An exhaustive set of numerical studies has been presented to verify the optimal approximation properties of the method, to

study the influence of the HDG stabilisation parameter, to analyse and compare the computational cost for different element
types and to check the robustness of the method when using distorted and stretched meshes. The studies compromise two and
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three dimensional cases for both the Poisson and Stokes problems. The results show that, contrary to other FV methods, the
accuracy of the FCFV method is not sensitive to mesh distortion and stretching. In addition, the FCFV method shows its better
performance, accuracy and robustness using simplicial elements, facilitating its application to problems involving complex
geometries in three dimensions. To illustrate the potential of the FCFV method, a set of more challenging three dimensional
examples are used to illustrate the potential and efficiency of the methodology.
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APPENDIX

A FCFV METHODWITH NEUMANN LOCAL PROBLEMS

As described in33, a minor modification of a classical HDG formulation can be devised to obtain a smaller global problem. This
modification consists of prescribing the Neumann boundary conditions in the local problem, rather than in the global problem,
as done in Sections 2 and 3. This section presents the changes induced by this modification for the FCFV method applied to the
Poisson problem. The derivation for the Stokes problem follows the same rationale.

A.1 Strong form of the local and global problems
First, the local (element-by-element) problem with both Dirichlet and Neumann boundary conditions is defined, namely

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

qe + (ue = 0 in Ωe, and for e = 1,… n
el

( ⋅ qe = s in Ωe, and for e = 1,… n
el

ue = uD on )Ωe ∩ ΓD,
ne ⋅ qe = −t on )Ωe ∩ ΓN ,

ue = û on )Ωe ⧵ )Ω,

(A1)
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for e = 1,… n
el
. In each element, Ωe, this problem produces an element-by-element solution qe and ue as a function of the

unknown û ∈ 2(Γ).
Second, a global problem is defined to determine û. It corresponds to the imposition of the transmission condition,

Jn ⋅ qK = 0 on Γ. (A2)

A.2 Weak form of the local and global problems
The discrete weak formulation of the previously introduced local problems is obtained by multiplying the problems by a test
function in an appropriate discrete functional space and integrating by parts. For e = 1,… n

el
, seek (qℎe , u

ℎ
e ) ∈ [ℎ(Ωe)]nsd ×

ℎ(Ωe) such that, for all (w, v) ∈ [ℎ(Ωe)]nsd × ℎ(Ωe)

(( ⋅w, uℎe )Ωe − ⟨n ⋅w, uℎe ⟩)Ωe∩ΓN − (w, q
ℎ
e )Ωe = ⟨n ⋅w, uD⟩)Ωe∩ΓD + ⟨n ⋅w, ûℎ⟩)Ωe⧵)Ω, (A3a)

⟨v, �e u
ℎ
e ⟩)Ωe⧵ΓN + (v,( ⋅ q

ℎ
e )Ωe − ⟨v,ne ⋅ qℎe ⟩)Ωe∩ΓN = (v, s)Ωe + ⟨v, t⟩)Ωe∩ΓN + ⟨v, �e uD⟩)Ωe∩ΓD + ⟨v, �e û

ℎ
⟩)Ωe⧵)Ω. (A3b)

It is worth noting that ûℎ ∈ ̂ℎ(Γ) is not defined along ΓN and, consequently, uℎe is left along )Ωe ∩ ΓN . In addition, a new
definition for the numerical traces of the normal fluxes has been introduced. They are defined element-by-element (i.e. for
e = 1,… n

el
) as

ne ⋅ q̂
ℎ
e ∶=

⎧

⎪

⎨

⎪

⎩

ne ⋅ qℎe + �e(u
ℎ
e − uD) on )Ωe ∩ ΓD,

ne ⋅ qℎe + �e(u
ℎ
e − û

ℎ) on )Ωe ∩ Γ,
−t on )Ωe ∩ ΓN .

(A4)

For the global problem, continuity of the fluxes is now only imposed along the internal faces, see (A2). Hence, the global
weak problem is: find ûℎ ∈ ̂ℎ(Γ) for all v̂ ∈ ̂ℎ(Γ) such that

n
el

∑

e=1
⟨v̂,

[

ne ⋅ qℎe + �e(u
ℎ
e − û

ℎ)
]

⟩)Ωe⧵)Ω = 0, (A5)

where the definition of the numerical normal flux in Equation (A4) has already been used.

A.3 FCFV discretisation
The discretisation of the local problem given by equations (A3) with a degree of approximation k = 0 in each element for both
qe and ue and also a degree of approximation k = 0 in each face/edge for û leads to the following system of equations for the
local problem, for each element e = 1,… , n

el
,

[

|Ωe|In
sd

we
wT
e �e

]{

qe
ue

}

=
{

ze
�e

}

+
∑

j∈e

|Γe,j|
{

nj
�j

}

ûj , (A6)

where

�e =
∑

j∈e

|Γe,j|�j , �e = se|Ωe|+
∑

j∈e

|Γe,j|�juD,j +
∑

j∈e

|Γe,j|tj , we =
∑

j∈e

|Γe,j|nj , ze =
∑

j∈e

|Γe,j|njuD,j , (A7)

and e =
{

j ∈ e | Γe,j ∩ )Ω = ∅
}

is the set of indices corresponding to the interior faces of element Ωe.
It is worth noting that, contrary to the FCFV formulation presented in Section 2, the formulation with Neumann local problems

leads to a set of local problems coupling the degrees of freedom of the solution and its gradient. However, the particular structure
of the matrix appearing in the local problem of Equation (A6) can be exploited to obtain an explicit formula for its inverse,
namely

[

|Ωe|In
sd

we
wT
e �e

]−1

= 1
|Ωe|#e

[

#eIn
sd

− we ⊗ we |Ωe|we
|Ωe|wT

e −|Ωe|2

]

, (A8)

where #e = ‖we‖
2
2 − |Ωe|�e.

Therefore, the following explicit expressions of qe and ue in terms of û are obtained

qe = |Ωe|−1ze − |Ωe|−1#−1e
(

we ⊗ we
)

⋅ ze + #−1e �ewe +
∑

j∈e

|Γe,j|
(

|Ωe|−1nj − |Ωe|−1#−1e
(

we ⊗ we
)

⋅ nj + #−1e �jwe

)

ûj , (A9a)
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ue = #−1e ze ⋅ we − |Ωe|#−1e �e +
∑

j∈e

|Γe,j|
(

#−1e we ⋅ nj − |Ωe|#−1e �j
)

ûj . (A9b)

Similarly, the discretisation of the global problem given by Equation (A5) with a degree of approximation k = 0 leads to
n
el

∑

e=1

{

|Γe,i|ni ⋅ qe + |Γe,i|�iue − |Γe,i|�iûi
}

= 0, for i ∈e. (A10)

By inserting (A9a) and (A9b) into (A10), the following system of equations containing only û as an unknown, on the internal
faces, is obtained:

K̃û = f̃ , (A11)
where the global matrix K̃ and right hand side vector f̃ are computed by assembling the contributions given by

K̂e
i,j ∶= |Γe,i|

[

|Ωe|−1|Γe,j|ni ⋅ nj + #−1e |Γe,j|(ni ⋅ we)
(

�j − |Ωe|(nj ⋅ we)
)

+ �i#−1e |Γe,j|(nj ⋅ we) − |Ωe|#−1e �j − �i�ij
]

, (A12a)

f̂ ei ∶= |Γe,i|
[

#−1e (ni ⋅ we)
(

|Ωe|(ze ⋅ we) − �e
)

− |Ωe|−1ni ⋅ ze − #−1e �i(ze ⋅ we) + |Ωe|#−1e �i�e
]

. (A12b)

It is important to note that the formulation with Neumann local problems described here induces a higher computational cost
compared to the formulation with Dirichlet local problems described in Section 2.


