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L. M. I., McGinnity, P., Verspoor, E. 2017. A microsatellite baseline for genetic stock identification of European Atlantic salmon (Salmo salar L.).
– ICES Journal of Marine Science, doi:10.1093/icesjms/fsx184.

Received 6 April 2017; revised 17 August 2017; accepted 18 August 2017.

Atlantic salmon (Salmo salar L.) populations from different river origins mix in the North Atlantic during the marine life stage. To facilitate
marine stock identification, we developed a genetic baseline covering the European component of the species’ range excluding the Baltic Sea,
from the Russian River Megra in the north-east, the Icelandic Ellidaar in the west, and the Spanish Ulla in the south, spanning 3737 km North
to South and 2717 km East to West. The baseline encompasses data for 14 microsatellites for 26 822 individual fish from 13 countries, 282 riv-
ers, and 467 sampling sites. A hierarchy of regional genetic assignment units was defined using a combination of distance-based and Bayesian
clustering. At the top level, three assignment units were identified comprising northern, southern, and Icelandic regions. A second assignment
level was also defined, comprising eighteen and twenty-nine regional units for accurate individual assignment and mixed stock estimates re-
spectively. The baseline provides the most comprehensive geographical coverage for an Atlantic salmon genetic data-set, and a unique re-
source for the conservation and management of the species in Europe. It is freely available to researchers to facilitate identification of the
natal origin of European salmon.

Keywords: Atlantic salmon, genetic stock identification, individual assignment, marine ecology, microsatellites.

Introduction
Homing of Atlantic salmon to natal rivers, in combination with

factors such as founder effects, isolation, selection, and genetic

drift, and broad scale phylogeographic processes, has resulted sig-

nificant population structuring at a hierarchy of levels from intra-

river to inter-continental (King et al., 2001) and locally adapted

populations (Garcia de Leaniz et al., 2007) including variations in

marine migratory patterns amongst populations from different

parts of the species range (Webb et al., 2007). However, the full

extent of differences in migratory patterns amongst populations

and how this may be changing in response to shifting environ-

mental conditions remains to be resolved (Jonsson et al., 2016).

Advancing understanding of population and stock-specific mi-

gration, distribution and feeding patterns, and their implications

for marine mortality rates, and the impact of climate change, is

hampered by a lack of information relating to the marine-phase

of the lifecycle (Crozier et al., 2004). This situation makes it diffi-

cult to appropriately target actions to mitigate anthropogenic in-

fluences on different stock components, e.g. the impacts of

mixed-stock fisheries and bycatches. Thus a tool that allows the

accurate identification of genetically distinct populations and re-

gional entities (MacKenzie et al., 2011) and discrimination of the

stock origins of fish in mixed feeding aggregations or during mi-

gratory phases would be invaluable in species’ and North Atlantic

marine ecosystem management.

DNA profiling methods for identifying the region or river/trib-

utary of origin of salmonids have advanced over recent decades

and are widely applied to Pacific salmon (Oncorhynchus spp.)

stock management (e.g. Shaklee et al., 1999; Beacham et al., 2004,

2006; Shedd et al., 2016). Their application to Atlantic salmon

stock management has provided valuable insights into stock mix-

ing at several spatial scales, including intercontinental (e.g. North

American and European stocks in the West Greenland fishery:

Gauthier-Ouellet et al., 2009), regional (e.g. stock composition in

Canadian gill-net fisheries: Bradbury et al., 2016), and river level

(e.g. population structuring in the River Teno/Tana: Vähä et al.,

2016). However, overall, its use has been more limited due to the

lack of useful genetic baselines for many parts of the species

range.

Genetic baselines are available for the western side of the

Atlantic (e.g. Sheehan et al., 2010; Bradbury et al., 2015), includ-

ing a recently developed fine scale range-wide North American

microsatellite baseline (Bradbury et al., 2016), that facilitate

within-region identification of fish originating from Western

Atlantic populations at high geographic resolution. In contrast,

only partial baselines have been developed for the eastern side of

the Atlantic (e.g. Griffiths et al., 2010; Verspoor et al., 2012;

Ensing et al., 2013; Gilbey et al., 2016a; Vähä et al., 2016) and no

high-resolution baseline exists for the species’ non-Baltic, eastern

Atlantic range. Such a baseline would allow a DNA-based ap-

proach to the genetic stock identification (GSI) of marine samples

from the Eastern Atlantic and, in conjunction with ecological

studies, would help to provide a more detailed understanding of

variations in the North Atlantic migration and distribution pat-

terns of different European Atlantic salmon stocks. Such insight

could improve understanding of the factors conditioning marine

mortality, and facilitate the implementation of more effective

management programmes (Crozier et al., 2004).

GSI has been carried out using various genetic markers, with

early work successfully using allozymes (Koljonen and McKinnell,

1996) and mitochondrial DNA (Moriya et al., 2007) for salmonid

species in some contexts, including for Atlantic salmon. However,

higher levels of resolution and more widespread application has

been subsequently achieved using microsatellite loci and they be-

came the genetic marker most widely used in studies of Atlantic sal-

mon stock differentiation. Even though, more recently, attention

has turned to Single Nucleotide Polymorphisms (SNPs), the existing

large body of microsatellite data available remains a unique and

powerful resource that can be exploited for GSI in Atlantic salmon.

However, it also has limitations (reviewed in Moran et al., 2006) re-

lated to laboratories using different sets of markers, variations in

allele-calling with different size markers or allele-size bins, different

screening platforms, differences in chemistry, differences in the fluo-

rophore markers across loci and whether the forward or reverse pri-

mer is labelled as well as differences in primer sizes. All of these can

result in inconsistent allele-size designations across data sets gener-

ated by different laboratories. Nevertheless, evidence from large-

scale standardization projects for salmonid species such as
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Oncorhynchus mykiss (Stephenson et al., 2009) and Oncorhynchus

tshawytscha (Seeb et al., 2007), as well as Atlantic salmon (e.g. Ellis

et al., 2011), indicate these issues can be addressed and comprehen-

sive, large scale integrated genetic baselines constructed (Moran

et al., 2006).

Described here is a trans-European GSI baseline for Atlantic sal-

mon (excluding Baltic salmon stocks which do not migrate to the

North Atlantic) constructed by linking existing national and inter-

national microsatellite screening programmes. Baltic salmon popu-

lations are excluded from the baseline, as they do not migrate

outside the Baltic Sea (Karlsson and Karlstrom, 1994; Torniainen

et al., 2013). Data were integrated for a common set of 14 microsat-

ellite loci for a geographically representative set of rivers spanning

the species’ Eastern Atlantic European range from the Russian River

Megra in the north-east (66.151N 41.484W), to the Icelandic

Ellidaar in the west (64.117N 21.833E), and the Spanish Ulla in the

south (42.639N 8.761E). Baseline samples encompassed rivers re-

sponsible for about �85% of wild-salmon production in the study

region (based on rod-catch data derived from numerous sources).

Existing and new data supplied by partners in a multi-laboratory

trans-European consortium were calibrated (Ellis et al., 2011), sub-

jected to stringent quality control and integrated to produce the

new baseline. A hierarchical assignment unit approach was used and

the baseline resolved into genetically distinctive regional assignment

units. Assignment power and accuracy to these units were assessed,

using both simulations and test samples, the latter constructed by

removing fish from the dataset, to establish the utility of the baseline

for regional assignment of marine-phase European origin salmon in

the North Atlantic.

Material and methods
Baseline samples
Samples were collected from 32 888 Atlantic salmon from 551

sites representing 325 rivers in 13 countries across Europe

[Denmark, England, Finland (two rivers with outlets in Norway),

France, Iceland, Ireland, Northern Ireland, Norway, Russia,

Scotland, Spain, Sweden, and Wales; Figure 1, Table 1,

Supplementary Data S1 and S2], including the Baltic River Torne

to act as a genetic out-group. Sampled sites spanned the species’

entire eastern Atlantic range and spanned 3737 km from North to

South and 2717 km from East to West.

Samples were collected from 1994 to 2010, with the majority

collected in 2008–2009. Mainly juvenile fish were sampled, mostly

parr and fry, but in some cases tissues from smolts or mature sal-

mon returning to fresh water to spawn were sampled. Numbers

sampled at a site ranged from 11 to 300 with a mean of 58, and

rivers were characterized by 1–12 sites, depending largely on river

size, with a mean number of sample sites per river of 1.7. Full de-

tails of sites are given in the Supplementary Data S1 and S2.

Genotyping
Microsatellite data were obtained from DNA extracted from tis-

sue samples (typically fin clips or scales) screened by a consor-

tium of 11 laboratories located across Europe (Table 1) for 14 of

the 15 loci identified by a consortium of researchers and de-

scribed by Olafsson et al. (2010). SsaD486 (King et al., 2005) was

excluded from the analysis due to its lack of variation over much

of the European range. The panel of 14 loci used here were

SsaF43 (Sanchez et al., 1996), Ssa14, Ssa289 (McConnell et al.,

1995), Ssa171, Ssa197, Ssa202 (O’Reilly et al., 1996), SSsp1605,

SSsp2201, SSsp2210, SSsp2216, SSspG7 (Paterson et al., 2004),

SsaD144, SsaD157 (King et al., 2005), and SSsp3016 (unpublished,

GenBank number AY37820).

PCR conditions, thermocyclers and multiplexes varied across

laboratories, as did genotyping platforms, size standards and

other chemistry employed. Genotyping details and standardiza-

tion of genotype assignments amongst laboratories appear in Ellis

et al. (2011). In summary, two 96-well “control plates” were pre-

pared (Matis, Iceland) containing template DNA extracted from

samples representing the widest coverage of the range of Salmo

salar as was practicable and which covered sites from both the

Eastern and Western Atlantic. These were subsampled and typed

by each laboratory. Genotypes were submitted by each member

of the consortium to a single depository (Exeter University)

where conversion algorithms and standardized nomenclature

were applied. For each locus, lists of allele counts and sizes for

each laboratory were aligned and cross-referenced for the sample

genotypes in the control plates. Standard allele scores were desig-

nated for each locus and size differences between allele lists from

each laboratory were determined, which allowed laboratory spe-

cific standardization rules to be defined. It should be noted that

using this approach not every possible allele was screened, but the

approach did allow the individual microsatellite bin ladders to be

defined at each location. It cannot be ruled out therefore that rare

alleles or alleles affected by regional indels may be have been

missed using such an approach, although the coherence of the

reference baseline produced (see below) suggests this is unlikely

to have been a major influencing factor.

On the basis of the standardization rules, all data generated for

baseline sites were converted to the standard size ranges and

stored in a single bespoke database for further analysis (see Ellis

et al., 2011 for full details). Sib-ship analysis amongst individuals

in each sample was investigated using the pedigree-likelihood ap-

proach implemented within the program COLONY (Jones and

Wang, 2010) and used to exclude all but one fish from each full-

sib family in each sample prior to inclusion in the database. Fish

with <10 loci genotyped were removed from further analysis due

to concerns with DNA and genotype quality. Sites with more

than half of the loci out of Hardy–Weinberg equilibrium (exam-

ined in GENEPOP 4.2.2; Rousset, 2008; potentially not represen-

tative of a single population), those that had <70% of fish scored

at all loci (potentially poor quality DNA and genotypes), and

those consisting of <30 individuals after quality control checks

listed above (potential failure to provide accurate estimates of al-

lele frequencies), were also removed. We estimated descriptive

statistics with GenAlEx 6 (Peakall and Smouse, 2006).

Assignment units
Assignment units were defined in an iterative way similar to that

employed by Gilbey et al. (2016a). Units were first defined by a

combination of distance-based and Bayesian clustering. Individual

assignment accuracies using these units were then examined and

units where accuracies did not meet a pre-defined threshold were

combined with units that saw reciprocal misassignments, until all

units had accuracies at or above the threshold level.

The distance-based approach was based on a neighbour-

joining tree (Saitou and Nei, 1987) constructed using Nei’s ge-

netic distance DA (Nei et al., 1983) calculated in POPTREE2

(Takezaki et al., 2010) and visualized in MEGA7 (Kumar et al.,

2016). The clustering approach was carried out in STRUCTURE
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(Pritchard et al., 2000), using a burn-in of 100 000 and a run

phase of 300 000 iterations during each application. Three repli-

cates for each cluster number (K) were run with values of K from

1 to 10. K¼ 10 emerged as an upper limit after monitoring of the

results of the runs while they were underway. In each case stable

estimates of true K at the level under analysis had been identified

by this point (see results). Prior site information was incorpo-

rated into the analysis using the LOCPRIOR option. The smallest

K capturing the major structure in the dataset was defined by the

DK method of Evanno et al. (2005), which was calculated using

STRUCTURE HARVESTER (Earl and vonHoldt, 2012). Replicate

membership coefficients were combined with CLUMPP

(Jakobsson and Rosenberg, 2007) using the Full Search method.

The Bayesian clustering was carried out using a hierarchical

approach, starting with the full dataset. Evanno et al. (2005)

showed that STRUCTURE tends to capture the major structure

in a reference dataset but that more fine scale structure may be-

come evident if a hierarchical analysis is performed. In the cur-

rent analysis, at each hierarchical level a STRUCTURE analysis

was performed and the minimum best K identified. The data

were then split up into the cluster units and further STRUCTURE

analysis performed on each one independently. This was repeated

at each hierarchical split until either single-river structuring was

observed or geographical coherence of the clusters was lost.

Once both the distance-based and clustering analysis had been

performed, the degree to which the assignment units identified by

each technique corresponded was examined. Where the same

units were identified these were incorporated into the initial as-

signment unit panel. Where the two approaches had identified

different units the smallest unit from either approach was incor-

porated into the initial assignment unit panel, for example in a

situation where one technique had identified a single unit and an-

other had identified sub-units the sub-units were added to the

initial assignment panel. In this way, the smallest units identified

by one or both technique were incorporated into the initial as-

signment unit test panel.

Once the initial assignment unit panel had been identified, individ-

ual assignment accuracy was calculated for each of these units (see be-

low). If the assessed accuracy to a unit was at or above 80% the unit

was retained in the panel. If accuracy was below this level the unit was

Figure 1. Map of sampling region. Points represent sample sites and/or river mouths. Full site information is contained in Supplementary
Data S1 and an expanded map with all rivers identified is in Supplementary Data S2. Regions noted are all those referred to in the text. The
Level 1 assignment units (see text) are delineated by the dashed line and the initial Level 2 units by coloured points.
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combined with other units to which reciprocal misassignments were

occurring. Accuracies were tested again and the process repeated until

all units in the panel had individual assignment accuracies at or above

the 80% level. Nei’s genetic distance DA (Nei et al., 1983) was again

calculated for all pairwise final assignment combinations using the

POPULATIONS 1.2.3 software package (Langella, 1999).

Assignment analysis
Individual assignment
Individual assignment accuracy was calculated using maximum

likelihood-based mixture analyses carried out using ONCOR

(Kalinowski et al., 2007) with mixture proportions estimated us-

ing the EM algorithm and genotype probabilities calculated by

the method of Rannala and Mountain (1997). In order to esti-

mate unbiased assignment accuracies using fish not represented

in the baseline, assignment tests were based on fish randomly re-

moved from the reference baseline and combined into a mixture

file. A randomly selected 10% of fish were removed from each of

the three top level assignment units identified (see results) result-

ing in a total of 2682 fish in the mixture file. For each fish the

most likely assignment unit of origin and associated assignment

probability was calculated. Fish with assignment probabilities be-

low 0.8 were classified as unassigned and excluded from the anal-

ysis. Accuracy to the assignment units was then calculated with

the remaining fish. Using such a cut-off meant that fish whose or-

igin was difficult to determine (low probability) were removed

from the analysis and so potential accuracy could be increased

(Bekkevold et al., 2015; Gilbey et al., 2016a). However, the appli-

cation of cut-off scores also increased the proportion of unas-

signed fish (Gilbey et al., 2016a) and can thus influence apparent

stock proportions if calculated from the individual assignments.

As such, this should not be performed for this purpose and so, in

order to estimate accurate stock proportions a Mixed Stock

Analysis (MSA) approach was utilized (see below).

100% simulations
Simulated fishery mixtures were analysed in ONCOR and com-

prised sets of 100% simulated samples of fish from each assign-

ment unit. Genotypic frequencies for each locus in each unit were

re-sampled following Anderson et al. (2008). The 100% simula-

tions were based on 1000 simulations of 200 fish per hierarchical

assignment unit and the same simulated reference sample sizes as

in the actual dataset.

Mixed Stock Analysis
Mixed stock proportions were calculated for each assignment

unit. The same set of 2682 randomly selected fish used for the in-

dividual assignments was used and mixture proportions esti-

mated in ONCOR using conditional maximum likelihood

(Millar, 1987) with confidence intervals calculated based on 1000

bootstraps.

Equal proportions
Mixed stock proportions were calculated for each assignment

unit using simulated fishery mixtures with equal proportions of

fish at each assignment unit in ONCOR. One hundred fish were

simulated for each unit and confidence intervals of the estimates

calculated using 1000 bootstraps.

Baseline coverage analysis—river removal
A baseline rarely covers all possible source populations com-

pletely, and so some fish in real fishery mixtures may be from

populations not included in the baseline. Hence, simulation anal-

ysis may overestimate the success rates of assignments of fish in

an actual fishery due to being based only on samples from sites

and rivers contained in the baseline (Anderson et al., 2008). This

issue was addressed using a further test panel and associated test

baseline. A random 10% of the rivers in each assignment unit

were removed from the baseline and used as test mixtures that

were then assigned back to the reconstructed baseline. All assign-

ment units comprising more than one river had at least one river

randomly removed (see Supplementary Data S1 for details of sites

and rivers removed). Fish in these “unrepresented” mixture pan-

els were thus from sites and rivers not included in the recon-

structed baseline. In this way, we tested the capability of the

baseline to reflect the regional signal of each assignment unit and

to assign fish from sites and rivers not included in the baseline

but from the assignment unit. This procedure was repeated at

both assignment unit levels, again using ONCOR, with confi-

dence intervals calculated based on 1000 bootstraps.

Results
Baseline QC
From a total of 551 sites sampled, 84 sites were removed, leaving

467 sites containing 26 822 fish representing 282 rivers in the final

baseline (Table 1). From those removed, 17 sites were not in H-W

proportions, 51 had <70% of fish screened at all loci, and 15 had

<30 individuals representing the site after correction for full-siblings

and individual fish for which <10 loci could be reliably genotyped.

A further site (a sample of adult rod-caught fish from the

Norwegian River Flekkeelva in 2007) was removed due to extreme

outlier behaviour in the STRUCTURE analysis (data not shown).

Full site details are contained in Figure 1, Table 1, and

Supplementary Data S1 and S2. Across sites most loci were highly

variable, with allele numbers ranging from 10 for Ssa14 to 46 for

Table 1. Sample baseline coverage pre- and post-genotype quality
control (see text for details).

Country

Pre-QC Post-QC

Rivers Sites Fish Rivers Sites Fish

Denmarka 3 6 253 2 4 189
Englandb,c 24 38 1 652 23 35 1 498
Finlandd 2 5 395 2 5 393
Franceb,c,e,f 13 16 759 9 9 450
Icelandg 17 25 2 352 16 22 1 986
Irelandh 29 45 2 345 29 40 2 053
Northern Irelandi 9 20 1 469 7 18 1 302
Norwayd,j,k 90 109 7 749 81 99 7 008
Russiad,j,l 33 36 2 506 30 33 2 350
Scotlandc 87 230 11 625 69 185 8 884
Spainf 7 7 342 4 4 190
Swedena,d 4 4 180 4 4 172
Walesb 7 10 375 6 9 347
Total 325 551 32 002 282 467 26 822

Institutions contributing data: aDanish Institute for Fisheries Research,
Denmark; bUniversity of Exeter, England; cMarine Scotland Science, Scotland;
dUniversity of Turku, Finland; eGeneindex, France; fUniversity of Oviedo,
Spain; gMarine and Freshwater Research Institute, Iceland; hUniversity College
Cork, Ireland; iQueen’s University Belfast & Agri-Food and Biosciences
Institute Northern Ireland, Northern Ireland; jInstitute of Marine Research,
Norway; kNorwegian Institute for Nature Research, Norway, lKnipovich Polar
Research Institute of Marine Fisheries & Oceanography, Russia.
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SsaD157 (mean 29.9). Additional descriptive and diversity estimates

for each locus and site are presented in Supplementary Data S3.

Definition of initial assignment regions
A neighbour-joining tree of Nei’s DA is summarized in Figure 2

with an expanded version detailed in Supplementary Data S4 and

full site level DA matrix in Supplementary Data S5. A plot of DK,

and a map showing the geographic positioning of the clusters at

each hierarchical STRUCTURE level are shown in Figure 3.

Assignment units as defined by POPTREE and STRUCTURE are

compared in Supplementary Data S6.

Both distance-based N-J tree and Bayesian STRUCTURE

approaches identified three large regional groupings of sites cov-

ering the northern, southern and Icelandic regions and these will

henceforth be referred to as the Level 1 assignment units. There

was in general a good agreement between the two population

structuring techniques at the lowest level units identified. Indeed,

of the 26 and 22 units defined by the NJ Tree and Bayesian

clustering methods, respectively, 17 units were identical

(Supplementary Data S6). Using the lowest level divisions pro-

duced from each technique resulted in a total of 29 units identi-

fied for the initial Level 2 assignment accuracy testing (column 1

in Table 2, Supplementary Data S6). The assignment units at

both initial levels are mapped in Figure 1, with DA matrixes de-

tailed in Supplementary Data S8.

Assignment analysis
Initial assignment accuracy
Using the 2682 fish removed from the baseline, individual assign-

ments were performed at Level 1 and at the initially defined Level

2 assignment units. At Level 1, the assignment accuracy of all fish

to the northern, southern, and Icelandic unit respectively was

90.8, 92.7, and 99.5% respectively. Using a probability cut-off

score� 0.8 this increased to 94.2, 95.5, and 100% with 86.8, 90.2,

and 99.5% of fish in the mixture being assigned.

Assignment accuracy of fish with probability scores� 0.8 to the

Level 2 units was� 80% in 19 of the 29 units (Table 2; for full

breakdown of assignments at each Level 2 iterative level see

Supplementary Data S7). After combining assignment units based

on reciprocal misassignments, 21 assignment units remained with

recalculated accuracies� 80%. A final round of assignment unit

combination resulted in 18 assignment units for which assignment

accuracies were all� 80% (Table 2, Supplementary Data S7).

100% simulations
The 100% simulations for each assignment unit showed robust

estimates of stock proportions at both assignment levels

(Figure 4). At Level 1, the mean estimates matched the actual

proportions extremely well with a maximum difference of just

0.3% between the actual and estimated values and all upper CI at

100%. The initial Level 2 assignment units again showed relatively

Figure 2. Neighbour-joining phylogenetic tree of sample sites based on DA with major clusters coloured and named. Expanded tree with all
sites identified is detailed in Supplementary Data S4.
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accurate estimates with an average difference between the esti-

mated and actual mean proportions of 4.5%. The West and

Central Scotland level, however, showed a difference of 17.6% be-

tween estimated and actual proportions. At the first round of as-

signment unit combinations accuracies were seen to improve, as

expected, with average and maximum differences between the es-

timated and actual mean proportions of 4.5 and 9.0%. These lev-

els reduced to 1.9 and 8.0% respectively at the final Level 2

assignment unit combination round.

Mixed Stock Analysis
The results of the MSA using the 2682 fish removed from the

baseline and used as a fishery mixture are shown in Figure 5a. For

all assignment units, within both assignment levels, apart from a

single unit in Level 2, South France/Spain, where the upper CI

was 0.19 below the actual value, the estimated proportions of fish

in the unit mixtures matched actual proportions (i.e. were within

the CI bands). The estimates were also very precise with average

CI bands of just 2.2 and a maximum of 4.7. Considering the high

accuracy of the mixed stock estimates at this initial assignment

unit composition, no further assignment unit amalgamations

were deemed necessary for MSA.

Equal proportions
As with the previous analysis the equal proportion simulation

showed excellent agreement between the actual and estimated

proportions in the mixture (Figure 5b). At Level 1, there was an

average difference between actual and estimated of just 0.06%

and a maximum of 0.09% (southern unit) and at Level 2 these

two differences only rise to a mean difference of 0.4 and a maxi-

mum of 1.1% (North Ireland unit).

Baseline coverage analysis—river removal
The most demanding test of assignment capabilities of the base-

line was the “river removal” test in which entire river systems

were removed from the baseline and their fish assigned to region

of origin using the remainder of the rivers in the reference base-

line. However, even here relatively high levels of assignment accu-

racy were obtained (Figure 5c). Average differences between

actual and estimated mixture proportions were 1.9% with a maxi-

mum of 2.3% (southern unit) at Level 1 and 1.3 and 2.9%

(Central Scotland/North England) respectively at Level 2. At no

time were significant proportions assigned to any of the six

single-river assignment units which were not represented in the

mixture file (lower CI at zero in these units).

Discussion
The study, encompassing the largest analysis of Atlantic salmon

population structure in the Eastern Atlantic, for the first time,

provides a genetic framework to exploit the power of microsatel-

lite variation to assign Atlantic salmon from this part of the spe-

cies’ range to smaller scale regional stock groups. As such, the

Figure 3. Hierarchical STRUCTURE based clustering analysis of sites. Each cluster analysis is described using three components. Firstly the
results of the STRUCTURE analysis are shown with vertical bars representing individual sites and colours relating to cluster membership of
that site. A plot of the DK values (Earl and vonHoldt, 2012) associated with the analysis is also shown defining the K identified in that cluster
analyses. Finally, a map is shown detailing the geographic location of the clusters identified. Cluster names in italics refer to clusters for which
further hierarchical analysis was performed. Cluster names in regular text refer to final cluster assignment groups.
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reported genetic baseline provides a powerful resource that can

be used to increase understanding of the biology of European

Atlantic salmon stocks in the North Atlantic marine environ-

ment. Enhanced understanding of stock-specific marine migra-

tion, distribution, feeding patterns, exploitation, and mortality

rates, will help to provide guidance towards a more efficient man-

agement of Atlantic salmon in a changing environment (Crozier

et al., 2004).

Distance-based and Bayesian cluster based analyses both reveal

hierarchical structuring of river populations of European and

Icelandic salmon into regional groups. At the highest level, this

structure encompasses large-scale geographical discontinuities be-

tween northern (Scandinavia-Russia), Icelandic, and southern re-

gions (Britain-Ireland-France-Denmark-Spain). Such differences

have been identified in previous analyses of Atlantic salmon

population structure. For example, King et al. (2001) showed

with microsatellites an unambiguous separation of Iceland,

Norway, and Scotland-Ireland-Spain (their Figure 3), and

Verspoor et al. (2005) identified an Icelandic group together with

a southern British Isles-Northern France group using allozymes,

although a more complex pattern was apparent in their analysis

amongst the more central range groups.

At the next highest level, two assignment units shared the largest

average degree of distinctiveness from other units, the two also be-

ing on opposite extremes of the neighbour-joining tree (Figure 2).

The Baltic unit had a mean DA of 0.236 to other units

(Supplementary Data S8), a level of differentiation to other

European rivers seen in previous studies (Bourret et al., 2013) and

consistent with the restricted migration of Baltic stocks (Karlsson

and Karlstrom, 1994) and their long history of geographical

Figure 4. Proportion estimates from independent 100% simulation studies of the genetic baseline at Level 1 and all stages of the iterative
formation of the Level 2 assignment unit levels. Points represent mean estimates with bars showing 95% confidence intervals.
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isolation (Bourret et al., 2013). A second assignment unit, the

English Chalk streams, also shared a similarly high mean DA of

0.236. Griffiths et al. (2010) and Ikediashi et al. (2018) also re-

ported these rivers in southern England to be highly differentiated

from others in the southern part of the European range. However,

it is unexpected in the context of the entire European and Icelandic

range, that the degree of differentiation matches that of the Baltic.

Within Iceland the salmon populations segregate into northern

and western Icelandic units as was also reported by Olafsson et al.

(2014) which is thought may reflect the patterns of recolonization

after the Last Glacial Maximum.

Initially, the northern Level 2 unit subdivided into eleven geo-

graphically coherent genetic clusters that matched well with pre-

viously reported structure in this region. Bourret et al. (2013),

Figure 5. (a) Mixed stock fishery estimates using fish removed from the baseline and used as fishery mixtures. (b) Mixed stock fishery
estimates using simulated equal proportions of fish from each assignment unit in the mixture. (c) Mixed stock fishery estimates using entire
rivers removed from the baseline and used as fishery mixtures. Dark bars represent actual proportions in the mixture files and grey bars
ONCOR estimates. Bars represent mean estimates with 95% confidence intervals around these estimates. NOTE change of Y-axis scale for the
Levels 1 and 2 assignment levels.
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using SNP markers, found separation of northern Norway and

Russian rivers from the Norwegian and Swedish Atlantic coast

rivers, and Kjærner-Semb et al. (2016) found separation of north-

ern and southern Norwegian groupings. Within the northern

Norway-Russian complex, Ozerov et al. (2017) also found the

same North Kola, northern Norway, and Russia-White sea units

as reported here. However, their use of 33 microsatellites and a

more comprehensive geographical coverage allowed them to de-

fine structure at further hierarchical levels within these groups

unresolved in the present study using only 14 microsatellites and

more limited population coverage.

The population structuring of rivers from across the part of

the range covered by the Level 1 southern unit into an initial six-

teen Level 2 units accords well with that reported by Griffiths

et al. (2010) based on 12 microsatellites, 11 of which form part of

in the panel used in the present study. Their study encompassed

fish from 57 rivers across the southern region but excluded rivers

from the East coast of Scotland and northern Ireland an showed

similar geographic patterns of genetic structure (their Figure 2).

Similar assignment units in France and northern Spain appeared

in both analyses and also broadly reflected allozyme-based re-

gional differentiation (Verspoor et al., 2005). However, some dif-

ferences were seen with some of the units between the two

methods used to resolve assignment units. Griffiths et al. (2010)

identified groupings stretching across both Scotland and Ireland

(see their Figure 2) and similar groups were identified here using

the STRUCTURE based approach (Figure 3). In contrast, using

the distance-based approach the various Scottish and Irish units

were clearly separated (Figure 2) to which generally good assign-

ments of fish could be made. Nevertheless, some reciprocal misas-

signment was still evident (Supplementary Data S7) suggesting a

degree of homology between the units. Further, finer-scale inves-

tigation is perhaps required to disentangle completely the com-

plex patterns of population grouping within these regions.

Accurate assignments to the initial Level 2 units was not possi-

ble at the individual level but was achieved for mixed stock fishery

estimates. Acceptable levels of individual assignments could be

made to some defined units using the initial split but some areas

proved problematic at this scale particularly for Britain and

Ireland. This difference reflects the differing power of the two IA

and MSA techniques (Manel et al., 2005) and suggests that, when

using the baseline for a particular purpose, the required levels of

both accuracy and resolution should be defined a priori. In turn,

this will depend on the specific questions being examined and the

tools being utilized.

Overall, the two levels of genetic structure are geographically

consistent and in basic agreement with major regional phylogeo-

graphic groups previously reported using a variety of markers, sug-

gesting the higher level regional structuring is geographically and

temporally robust. In contrast, differentiation between regional

units identified at the finer geographic scales may in part be condi-

tioned by human activities, such as the transport and escape of fish

from aquaculture facilities, stocking, habitat alteration, fisheries-

induced evolution, and indirect genetic changes from disease and

ecological disturbances. Such genetic structuring, if defined by

such contemporary influences, may not have temporal stability

and such lower level units thus will need to be monitored to deter-

mine if they are stable. Encouragingly, in a previous assessment of

temporal stability on assignment of Atlantic salmon in the species’

southern European range (Griffiths et al., 2010), test samples col-

lected 20 years before the baseline samples still showed pre-

dominant allocation back to region of origin. This finding suggests,

at least at the larger scale, regional level units are likely to be tem-

porarily stable. However, this should not be assumed to always be

the case and a program of resampling should be incorporated if

the baseline is exploited in the future.

For the Level 1 and the final Level 2 regional units, all tests of

power suggest high accuracies can be achieved with both individ-

ual assignments and MSA. Accuracies are improved by use of a

probability cut-off of 0.8 for individual assignments, which may

be useful in some contexts. However, this will reduce the propor-

tion of fish assigned. Thus in application, the best cut-off will de-

pend on the question address and will need to be decided by each

individual user. This will also apply to the assignment units used;

if reduced accuracies to some of the combined units are accept-

able these may also be used in specific circumstances.

The assignment tests carried out indicate that the described

baseline can be exploited to help investigate patterns of ocean uti-

lization and associated differences in marine mortality operating

at the regional stock level. However, important quantitative varia-

tion linked to how individual population components use the

ocean, which may affect mortality rates, also exists at the level of

individual rivers within regions and amongst river tributaries

(Barson et al., 2015). Evaluation of river-specific problems, likely

to exist in some contexts, will require assignments at the individ-

ual river level, for which the current baseline appears to have lim-

ited usefulness. Nevertheless, even if river-level identification is

problematic, identification of region of origin may allow finer

scale analysis using higher resolution region-specific baselines.

Resolution of intra-regional population contributions in mixed

oceanic samples, including within-river contribution assessments,

would be facilitated by further increases in the coverage and resolu-

tion of the baseline. Higher resolution is already being achieved in

selected areas covered by the baseline reported here (Gilbey et al.,

2016a; Vähä et al., 2016; Ozerov et al., 2017). Ideally, future work

will likely increase baseline coverage to include most of the esti-

mated 2000 rivers in the North-East Atlantic Commission area.

However, this will involve diminishing returns given that the rivers

currently in the baseline represent an estimated�85% of the non-

Baltic European adult salmon production. Nevertheless, genetic

characterization of as many populations as possible will be impor-

tant for biodiversity inventory and assessment. Considerable value

could also be added by combining the European baseline reported

here with North American information to provide a trans-ocean

baseline and thus enable oceanic scale investigations. This has al-

ready started using a reduced set of microsatellite markers and

shows promise in the ability to assign fish from the entire species’

range (Gilbey et al., 2016b).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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