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Report  1 

A homozygous activating ATAD1 mutation impairs postsynaptic AMPA receptor trafficking 2 

and causes a lethal encephalopathy with congenital stiffness  3 

Running title: ATAD1 and lethal encephalopathy  4 
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Abstract 55 

Members of the AAA+ superfamily of ATPases are involved in the unfolding of proteins and 56 

disassembly of protein complexes and aggregates. ATAD1 encoding the ATPase family, AAA+ 57 

domain containing 1-protein Thorase plays an important role in the function and integrity of 58 

mitochondria and peroxisomes. Postsynaptically, Thorase controls the internalization of 59 

excitatory, glutamatergic AMPA receptors (AMPAR) by disassembling complexes between the 60 

AMPAR-binding protein, GRIP1, and the AMPAR subunit GluA2. Using whole-exome 61 

sequencing, we identified a homozygous frameshift mutation in the last exon of ATAD1 62 

[c.1070_1071delAT; p.(His357Argfs*15)] in three siblings who presented with a severe, lethal 63 

encephalopathy associated with stiffness and arthrogryposis. Biochemical and cellular 64 

analyses show that the C-terminal end of Thorase mutant gained a novel function which 65 

strongly impacts its oligomeric state, reduces stability or expression of a set of Golgi, 66 

peroxisomal and mitochondrial proteins and affects disassembly of GluA2AMPAR and Thorase 67 

oligomer complexes. Atad1-/- neurons expressing Thorase mutantHis357Argfs*15 display reduced 68 

amount of GluA2 at the cell surface suggesting that the Thorase mutant may inhibit the 69 

recycling back and/or reinsertion of AMPARs to the plasma membrane. Taken together, our 70 

molecular and functional analyses identify an activating ATAD1 mutation as a new cause of 71 

severe encephalopathy and congenital stiffness.  72 

Key words: ATAD1, encephalopathy, AMPA receptor trafficking 73 

74 
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Introduction 75 

Early-infantile onset encephalopathies come with an urgent need for a proper diagnosis as 76 

immediate therapeutic decisions have to be made. The majority of these disorders has a 77 

genetic etiology and follows a Mendelian inheritance pattern. Thus, whole-exome sequencing 78 

(WES) is the method of choice to elucidate the related gene in extremely rare forms of early-79 

onset encephalopathies that can lead to early death (Cartault et al., 2012, Kevelam et al., 80 

2013). 81 

The AAA+ family is a large enzymatic group of ATPases associated with various cellular 82 

activities that induce conformational changes in a wide range of substrate proteins. These 83 

ATPases have been involved in various human diseases such as peroxisome biogenesis 84 

disorders, early-onset torsion dystonia linked to DYT1, SPG4- and SPG7-related hereditary 85 

spastic paraplegia and a specific form of inclusion-body myopathy (Hanson and Whiteheart, 86 

2005). One of them, the AAA+ ATPase Thorase encoded by ATAD1 plays a critical role in 87 

regulating the surface-expression of AMPARs (alpha-amino-3-hydroxy-5-methylisoxazole-4-88 

proprionate receptors), thus regulating synaptic plasticity, learning and memory (Ahrens-89 

Nicklas et al., 2017). Here, we report the genotype-phenotype relationship in three infants 90 

exhibiting severe lethal encephalopathy with neonatal stiffness and arthrogryposis resulting 91 

from a homozygous activating ATAD1 mutation. 92 

 93 

Material and Methods 94 

Exome sequencing and sequence data analysis  95 

Written informed consent was received from participants prior to inclusion in the study. 96 

Targeted enrichment and massively parallel sequencing were performed on genomic DNA. 97 
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Enrichment of the whole exome was performed according to the manufacturer’s protocols 98 

using the Nextera Enrichment Kit (62 Mb) (Illumina) for patients 1 and 2 and their mother 99 

(Kortüm et al., 2015). Captured libraries were then loaded onto the 2500 platform (Illumina). 100 

Trimmomatic was employed to remove adapters, low quality (phred quality score < 5) bases 101 

from the 3' ends of sequence reads (Bolger et al., 2014). Reads shorter than 36 bp were 102 

subsequently removed. Further processing was performed following the Genome Analysis 103 

Toolkit's (GATK) best practice recommendations. Briefly, trimmed reads were aligned to the 104 

human reference genome (UCSC GRCh37/hg19) using the Burrows-Wheeler Aligner (BWA 105 

mem v0.7.12). Duplicate reads were marked with Picard tools (v1.141). GATK (v3.4) was 106 

employed for indel realignment, base quality score recalibration, calling variants using the 107 

HaplotypeCaller, joint genotyping, and variant quality score recalibration. AnnoVar (v2015-03-108 

22) was used to functionally annotate and filter alterations against public databases 109 

(dbSNP138, 1000 Genomes Project, and ExAC Browser). Exonic variants and intronic 110 

alterations at exon-intron boundaries ranging from -10 to +10, which were clinically associated 111 

and with allele frequencies <0.5% without homozygous carriers in public databases, were 112 

retained.  113 

 114 

Variant validation  115 

Sequence validation and segregation analysis for all candidate variants were performed by 116 

Sanger-sequencing. Primer pairs designed to amplify selected coding exons and exon-intron 117 

boundaries of candidate genes and PCR conditions are available on request. Amplicons were 118 

directly sequenced using the ABI BigDye Terminator Sequencing Kit (Applied Biosystems) and 119 

an automated capillary sequencer (ABI 3500; Applied Biosystems). Sequence 120 



6 

 

electropherograms were analyzed using the Sequence Pilot SeqPatient software (JSI medical 121 

systems).  122 

 123 

RNA isolation, cDNA synthesis and sequencing 124 

Total RNA was extracted (RNeasy Mini kit, Qiagen) from cultured primary fibroblasts obtained 125 

from patient 1 and a control individual. 1 µg total RNA was reverse transcribed (SuperscriptTM 126 

III RT, ThermoFisher) using random hexamers as primers, and 1 μl of the reverse transcription 127 

reaction was utilized to amplify a 669-bp ATAD1 cDNA fragment encompassing the 128 

c.1070_1701delAT variant (forward primer 5′-ATGATGAAAGCTCAGTTTATGAGTC-3′, reverse 129 

primer 5′-GGAACAGTTGAATCCAGCCT-3′). The PCR product was directly sequenced. 130 

 131 

Antibodies and plasmids 132 

All antibodies were acquired commercially: Thorase (mAb, Neuromab, RRID: AB_2564836), 133 

GluA2-N/C (mAb, Millipore-Chemicon, RRID: AB_2113875 and RRID: AB_2247874) and GRIP1 134 

(pAb, Millipore-Chemicon, RRID: AB_11210079), Tomm20, Cox 4, Hexokinase 1, GOS28, PEX26 135 

and VDAC1 (Cell Signaling Tech.), actin-HRP were purchased from GE healthcare (Amersham). 136 

N-Methyl-D-aspartate (NMDA) was purchased from Sigma-Aldrich. Plasmids are described in 137 

“Recombinant protein expression and ATPase activity assays”.  138 

 139 

Protein expression and measurement of oxygen consumption rate in patient cells 140 

Patient-derived and control fibroblast cells were maintained in Dulbecco's Modified Eagle 141 

Medium (DMEM, Corning Cellgro) plus 10% (v/v) bovine serum (FBS) and 1% (v/v) Penicillin-142 

Streptomycin (Corning Cellgro), at 37oC with a 5% CO2 atmosphere in a humidified incubator. 143 
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Thorase expression and comparative immunoblot analyses were performed using cell lysates 144 

from patient and control fibroblasts. Protein concentrations were determined by BCA protein 145 

assay (PierceTM, Thermo Scientific) and 20 μg were resolved on SDS-PAGE. The immunoblot 146 

membranes were stained with Ponceau stain to assess loading of proteins. Immunoblot 147 

analyses were performed using antibodies to COX 4, Hexokinase 1 (HXK1), PEX26, VDAC1 and 148 

actin (GE Healthcare) as control for loading. Band intensities were quantified using ImageJ 149 

(NIH) and normalized to actin. The values obtained from ImageJ were further analyzed to 150 

determine significant differences using GraphPad Prism software (GraphPad). 151 

The patient-derived and control fibroblast cells cultured on glass coverslips were fixed by 152 

replacing the media with PBS containing 4% PFA and incubated for 10 mins. The cells were 153 

washed three times with PBS and then were permeabilized with 0.5% Triton X-100 in blocking 154 

buffer (5% goat serum in PBS) for 30 mins. The blocking buffer was replaced with PBS 155 

containing Tomm20, GOS28 or PEX26 antibodies (1:1000 dilution) at 4oC overnight. Cells were 156 

washed three times with PBS, and incubated with fluorescent secondary antibodies (Alexa 157 

Fluor 488, Life Technologies) for 2 hr. Coverslips were washed twice follow by 5 mins 158 

incubation with PBS containing DAPI to stain the nuclei and then washed three times with PBS. 159 

The coverslips were mounted on glass slides with Immu-mount (Thermo Scientific) and 160 

imaged using Zeiss LSM Confocal microscope. 161 

Mitochondrial oxygen consumption rate (OCR) was assessed in patient-derived and control 162 

fibroblast cells in an XF24 Extracellular Flux Analyzer (Seahorse Bioscience), as described 163 

previously (Chen et al., 2014). Fibroblast cells (~0.5 X 106 per well) culture media was replaced 164 

with XF24 Dulbecco's Modified Eagle Medium (DMEM) containing 10 mM glucose, 2 mM L-165 

glutamine (Life Technologies) and 2 mM sodium pyruvate (Life Technologies). OCR was 166 
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measured at 37°C with 1-min mix, 1-min wait, and 5-min measurement. The OCR was then 167 

analyzed in the presence of oligomycin, carbonilcyanide m-cholorophenylhydrazone (CCCP) 168 

and rotenone after 30 mins incubation in a CO2 free incubator to assess coupling of respiratory 169 

chain and mitochondrial respiratory capacity. The OCRs were normalized relative to cell 170 

number and basal respiration in each well and is presented as % change. The significant 171 

differences in values obtained were analyzed using GraphPad Prism software (GraphPad). 172 

 173 

3D structure modeling 174 

The C-terminus of Thorase wildtype (Gln259-Asp361) and mutantHis357Argfs*15 (Gln259-Gln370) 175 

was modeled using the SWISS-MODEL (Arnold et al., 2006) and confirmed by Phyre2 (Kelley 176 

et al., 2015) protein modeling, prediction and analysis software. All images obtained were 177 

viewed and labeled with pdb viewer, Pymol. The 3D models are shown as obtained from the 178 

SWISS-MODEL software without any modification. 179 

 180 

Recombinant protein expression and ATPase activity assays 181 

GST-Thorase was generated by cloning the coding sequence of ATAD1 wildtype or 182 

mutantHis357Argfs*15 into pGEX6P1 (GE Healthcare) between BamHI and XhoI. Thorase wildtype 183 

or mutantHis357Argfs*15 coding sequence were also cloned into FUGW (Adgene) between AgeI 184 

and BamHI to generate GFP-tagged Thorase. GST-tagged fusion proteins were expressed in 185 

Escherichia coli strain BL21-CodonPlus (DE3)-RIPL (Stratagene) and purified by using GSTrap 186 

(GE Healthcare), respectively following the manufacturer’s instructions. To obtain non-tagged 187 

Thorase proteins, GST-Thorase bound to beads were treated with PreScission protease (GE 188 

Healthcare) to cleave Thorase from GST. The eluted Thorase was further purified by size 189 
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exclusion chromatography using Superdex 200 10/300GL column (GE Healthcare). The purity 190 

of the recombinant proteins was assessed by SDS-PAGE followed by Coomassie blue staining. 191 

Immunoblotting was used to confirm the presence of proteins in the purified samples. 192 

The ATPase activities of Thorase wildtype and mutantHis357Argfs*15 were assessed by measuring 193 

ATP hydrolysis and [α-32P]-ATP binding. ATP hydrolysis measurements were carried out using 194 

an ADP colorimetric assay kit (BioVision) according to the instructions from the manufacturer. 195 

Approximately, 1.0 mg of purified non-tagged Thorase recombinant proteins were incubated 196 

with 20, 40, 60, 80, 100 and 120 μM ATP in 0.5 ml of ADP assay buffer (supplemented with 2 197 

mM MgCl2) at 37°C for 30 min. The amount of ADP formed due to ATP hydrolysis was then 198 

determined to assess the ATPase activity of Thorase mutantHis357Argfs*15 compared to wildtype. 199 

The ATP binding was evaluated by a photo-labeling technique as described by Babst et al. 200 

(Babst et al., 1998). Approximately 2.0 mg of purified non-tagged Thorase proteins in 0.1 ml 201 

nucleotide binding buffer (50mM Tris.Cl pH 7.5, 150 mM NaCl, 2 mM MgCl2, 5% glycerol) 202 

containing 0.1 mM [α-32P]ATP were incubated at 4oC for 1 hr. The mixtures were exposed to 203 

UV light to cross-link the bound [α-32P]ATP to Thorase, and SDS-PAGE sample buffer was 204 

added to stop the reaction. The samples were resolved on SDS-PAGE, and then exposed to a 205 

phosphor screen (Perkin Elmer). A scanning densitometer was used to quantify the amount of 206 

32P protein labeling in the samples. 207 

 208 

GST-Thorase pull-down of GluA2-GRIP1 complex 209 

For the pull-down assay, purified GST-tagged Thorase proteins immobilized on glutathione 210 

Sepharose beads were incubated with 1 mg of Atad1 knockout whole brain lysates 211 

(homogenized in nucleotide binding buffer with 1% Triton X-100) in the presence of 2 mM 212 
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ADP, ATP or non-hydrolyzable ATPS for two hrs at 4oC followed by 30 mins at 37oC. The beads 213 

were thoroughly washed four times and the bound proteins were eluted in 1X SDS-PAGE 214 

sample loading buffer followed by immunoblot analysis with mouse anti-Thorase, anti-GluA2 215 

and anti-GRIP1 antibodies.  216 

 217 

Thorase oligomer assembling and disassembling assays 218 

Thorase mutantHis357Argfs*15 oligomer formation was evaluated by chemical cross-linking using 219 

glutaraldehyde as previously described (Babst et al., 1998). Approximately 1.0 mg purified 220 

Thorase proteins in nucleotide binding buffer with 2 mM ATP or non-hydrolyzable ATPS were 221 

incubated at 4oC for 2 hrs (to allow oligomer assembling) followed by incubation at 37oC for 222 

30 mins (to allow oligomer disassembling). The cross-linking reaction was stopped by addition 223 

of glycine to a final concentration of 10 mM and samples were mixed with SDS-PAGE sample 224 

loading buffer. The samples were resolved on 4-20% gradient SDS-PAGE (Invitrogen) and 225 

immunoblotted with anti-Thorase antibody to evaluate the presence of Thorase oligomer 226 

complex. 227 

 228 

Surface expression and NMDA-induced endocytosis of GluA2 assays 229 

The effects of the ATAD1 mutation p.(His357Argfs*15) on AMPARs (GluA2) GluA2 (encoded 230 

by GRIA2) surface expression surface were examined in primary cortical neuron cultures 231 

prepared from embryonic day 15 embryos obtained from Atad1 (+/-) x (+/-) breeding as 232 

previously described (Zhang et al., 2011, Prendergast et al., 2014). The neurons were infected 233 

with Thorase-GFP viruses 12 days after plating. To estimate surface GluA2 surface expression 234 

in non-treated (control) and NMDA-induced endocytosis, live neurons were incubated with 2 235 
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mg of mouse-monoclonal anti-N-terminal GluA2 antibodies at 37oC for 1 hr in neuronal growth 236 

media. The neurons were washed twice with fresh growth medium and then replaced with 237 

media containing Tyrodes’ buffer (119 mM NaCl, 5 mM KCl, 25 mM HEPES, 2 mM CaCl2, 2 mM 238 

MgCl2, 1 M TTX + 100 M LY34195) with 20 M CNQX followed by treatment with or without 239 

100 M NMDA for 5 min at 37oC in Tyrodes’ buffer containing 300 M MgCl2 and 10 M 240 

glycine. The media was replaced with 4% paraformaldehyde and 4% sucrose in PBS for 15 mins 241 

to fix the neurons. The neurons were washed three times with PBS followed by treatment with 242 

5% goat serum, 0.3% Triton X-100 in PBS for 1 hr at 4oC and overnight incubation with rabbit-243 

monoclonal anti-C-terminal GluA2 antibody. The neurons were incubated with mouse-Alexa 244 

555-conjugated and rabbit-Alexa 350-conjugated secondary antibodies (Invitrogen) for 2 hrs 245 

after three washes with PBS followed by three washes with PBS before imaging. Images were 246 

acquired by using a Zeiss LSM 710 laser-scanning confocal microscope. The fluorescence 247 

intensities were measured and the internalization index was calculated by intracellular 248 

fluorescence divided by total fluorescence normalized to untreated neurons.  249 

AMPAR surface expression was also evaluated using surface protein-crosslinking assay. 250 

Primary cortical neuron cultures infected with Thorase-GFP viruses treated with/without 251 

NMDA as described above (Zhang et al., 2011, Prendergast et al., 2014). Immediately after 252 

NMDA treatment the medium was replaced with ice-cold artificial cerebrospinal fluid (ACSF) 253 

containing 2 mM membrane-impermeant crosslinking agents, Bis(sulphosuccinimidyl)-254 

suberate [BS3, (Pierce Biotechnology)] (Conrad et al., 2008) to selectively crosslink cell surface 255 

proteins for 30 mins. The reaction was quenched by replacing the BS3 solution with ACSF 256 

containing 0.1 M glycine (with 10 mins incubation) followed by three washes with ACSF 257 

containing 0.1 M glycine. The neurons were suspended in lysis buffer (nucleotide binding 258 
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buffer with 1% triton X-100, and protease inhibitors) and the total protein concentrations 259 

were determined. Equal amount of proteins were resuspended in 1X SDS-PAGE loading buffer, 260 

resolved on 4-12% gradient SDS-PAGE and western immunoblotting were performed to 261 

analyze the surface and intracellular pools of AMPA receptors using anti-GluA2, anti-Thorase 262 

antibodies. 263 

 264 

Data analyses and statistics  265 

All experiments were repeated at least three times and quantitative data are presented as the 266 

mean ± standard error of the mean (SEM) performed by GraphPad prism6 software (Instat, 267 

GraphPad Software). Statistical significance was assessed by one-way ANOVA. The significant 268 

differences were identified by post-hoc analysis using the Tukey-Kramer post-hoc method for 269 

multiple comparisons. Assessments were considered significant with as p<0.05. Power 270 

analysis and sample size calculation for all experiments were determined using G*Power 3.1 271 

statistics software. 272 

 273 

Results and Discussion 274 

Three siblings with severe encephalopathy and a homozygous ATAD1 mutation 275 

The three siblings were born at term by cesarean section for feto-pelvic disproportion with 276 

normal growth parameters. Pregnancies were marked by maternal diabetes. Healthy parents 277 

are first cousins and originated from southern Tunisia. The first patient (subject 1; IV:1; Fig. 278 

1A) was a male who presented at birth with respiratory distress requiring assisted ventilation. 279 

Generalized hypertonia with an exaggerated startle reflex, adducted thumbs, spontaneous 280 

tremor and clonic movements were observed from day 1. EEG showed altered background 281 
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with slow and disorganized activity and multiple multifocal epileptic discharges. Examination 282 

at two months showed major stiffness and distal arthrogryposis with fixed prone position of 283 

upper limbs and bilateral camptodactyly. Deep tendon reflexes were brisk with extensor 284 

plantar reflex. Visual contact was absent and narrow miosis unresponsive to light was noted. 285 

Facial distinctive features including inexpressive facies, anteverted nares, high arched palate 286 

and brachycephaly were observed. Kyphoscoliosis and benign umbilical hernia were also 287 

noted. He had several episodes of pneumonia and died after multiple organ failure at the age 288 

of 5 months. Abdominal ultrasound, eye fundus, spinal cord and brain MRI were normal. 289 

Skeletal X-rays indicated dorsal scoliosis. A large metabolic screening and array CGH did not 290 

show any abnormality. A muscle biopsy was performed and showed focal atrophy of both fiber 291 

types with grouping suggesting an underlying neurogenic disorder. His younger brother 292 

(subject 2; IV:2; Fig. 1A) presented at birth with respiratory distress, poor spontaneous 293 

mobility and no visual contact. Examination showed generalized hypertonia with transient 294 

tremor, bilateral adducted thumbs and clenched toes. He underwent surgery for bilateral 295 

inguinal hernia at 2 months. Regular swallowing difficulties resulted in food misrouting 296 

accidents with subsequent pneumonia. In contrast to his brother, a few intentional smiles 297 

were noted before death, after a novel episode of aspiration pneumonia at the age of 3 298 

months. The ultrasound follow-up of the third pregnancy indicated decreased fetal 299 

movements during the third trimester. The girl (subject 3; IV:3; Fig. 1A) presented at birth with 300 

transient respiratory distress requiring assisted ventilation. In her case, axial hypotonia 301 

contrasted with limb hypertonia. Examination showed poor spontaneous mobility, distal 302 

arthrogryposis with adducted thumbs, ulnar deviation and bilateral clubfoot. Eye contact was 303 

present. She had gastro-esophageal reflux. Brain MRI performed at day 1 showed myelination 304 
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delay and a periventricular white matter hypersignal. EEGs were normal. She died at the age 305 

of 6 months. The common clinical features of the siblings can be summarized as onset of 306 

rigidity at birth, no achievement of developmental milestones and death within the first 307 

months of life. Array CGH and Sanger-sequencing of GLRA1 and SLC6A5 mutated in 308 

hyperekplexia (Tijssen and Rees, 1993, Carta et al., 2012) and SCN4A mutated in congenital 309 

paramyotonia (Koch et al., 1991) did not identify any molecular alteration in the oldest sibling 310 

(patient 1) (data not shown). The severe encephalopathy in the index patient remained thus 311 

unexplained. Next, we performed WES in two affected siblings (subject 1/IV:1 and 3/IV:3) and 312 

their healthy mother (III:3; Fig. 1A, B). Given parental consanguinity, analysis of WES data was 313 

performed according to an autosomal recessive inheritance model. We identified five rare 314 

homozygous variants [with an allele frequency <0.5% in population databases (dbSNP138, 315 

1000 Genomes Project, Exome Variant Server, ExAC and gnomAD browsers) and no 316 

homozygous carriers in the ExAC and gnomAD browsers] shared by the two affected siblings 317 

and present in the heterozygous state in their healthy mother (Supplementary Table 1). 318 

Segregation analysis excluded two of the variants (Supplementary Table 2), while the 319 

remaining variants in RNLS, CDH8 and ATAD1 are not located within a region of significant 320 

homozygosity as assessed by homozygosity mapper (Seelow et al., 2009). However, RNLS and 321 

ATAD1 are located in a homozygous region of ~1.3 Mb on chromosome 10 (data not shown). 322 

In silico pathogenicity assessment and splice-site tools predicted no deleterious effect on 323 

protein function for the missense variant p.(Ile114Val) in RNLS (Supplementary Table 3) and 324 

no pre-mRNA splicing alteration for the synonymous variant c.726T>C in CDH8 325 

(Supplementary Table 4). In contrast, the 2-bp deletion c.1070_1071delAT in the last exon of 326 

ATAD1 was predicted to result in a frameshift with deletion of five amino acids and addition 327 
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of 14 unrelated ATAD1 residues at the C-terminus [p.(His357Argfs*15)], possibly altering 328 

protein function (Fig. 1C, Supplementary Table 3 and Supplementary Fig. 1). The 329 

c.1070_1071delAT variant represents a very rare ATAD1 allele, as it has an allele frequency of 330 

0.00001221 in the gnomAD browser (3 heterozygotes in 245,646 alleles; Supplementary Table 331 

1), in accordance with the rarity of the signs and symptoms presented by the three siblings. 332 

ATAD1 mRNA analysis from patient-derived fibroblasts demonstrated the presence of 333 

transcripts harboring the -2 frameshift at codon 357 and 14 novel codons followed by the stop 334 

codon TGA at their 3’ end (Fig. 1C). This data indicates that mutated ATAD1 mRNAs escape 335 

nonsense-mediated mRNA decay.  336 

ATAD1 encodes the ATPase family, AAA+ domain-containing, member 1, also named 337 

Thorase that is highly expressed in mouse brain and testis (Zhang et al., 2011). Members of 338 

the AAA+ superfamily of ATPases are involved in the unfolding of proteins and disassembly of 339 

protein complexes and aggregates (Hanson and Whiteheart, 2005). In addition, Thorase is able 340 

to maintain mitochondrial function through degradation of mislocalized tail-anchored 341 

proteins to the outer mitochondrial membrane, thus playing an important role in 342 

maintainance of mitochondrial function and integrity (Chen et al., 2014, Okreglak and Walter, 343 

2014). A similar caretaker function of Thorase has also been proposed for peroxisomes 344 

(Grimm et al., 2016). In addition, postsynaptically, Thorase controls the internalization of 345 

excitatory, glutamatergic AMPARs by disassembling complexes between glutamate receptor 346 

interacting protein (GRIP1) and the AMPAR subunit GluA2. Therefore, Thorase deficiency is 347 

expected to impair function of mitochondria and peroxisomes and alter neurotransmission. 348 

Accordingly, Thorase deficiency in mice leads to enhanced AMPAR density at the cell surface 349 

that results in enhanced excitatory postsynaptic currents and impaired adaption to excitatory 350 
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stimuli. Although homozygous Atad1 knockout mice are viable and do not show any obvious 351 

gross malformation, approximately 80% die of a seizure-like syndrome (Zhang et al., 2011). 352 

The C-terminus of Thorase is evolutionarily highly conserved (Supplementary Fig. 1) and 353 

involved in intra- and intermolecular contacts of oligomerized AAA+ ATPase complexes 354 

(Grimm et al., 2016). The ATAD1 mutation identified here causes a deletion of the last five 355 

residues of the C-terminus with addition of 14 novel amino acids (Fig. 1C and Supplementary 356 

Fig. 1). To identify additional ATAD1 variants in individuals with a phenotype similar to that of 357 

the three siblings, two different patient cohorts were studied. First, we analyzed WES datasets 358 

of 2,000 patients with epileptic encephalopathies and hereditary hyperekplexia. Second, 27 359 

cases of glycinergic-negative hyperekplexia with parental consanguinity or atypical 360 

degenerative phenotype with severe developmental outcomes were screened by Sanger-361 

sequencing. No further deleterious variant in ATAD1 emerged from either datasets (data not 362 

shown), suggesting that ATAD1-related congenital encephalopathy with hypertonic stiffness 363 

is an extremely rare condition. 364 

 365 

Altered protein levels but functional mitochondria in fibroblasts from patients with the 366 

ATAD1 mutation p.(His357Argfs*15) 367 

ATAD1 mRNA analysis from patient-derived fibroblasts suggested that the mutated ATAD1 368 

mRNAs produce a protein with an altered C-terminal end. We examined the amount of ATAD1 369 

protein in patient fibroblasts via immunoblotting, which confirmed that the C-terminally 370 

altered ATAD1 mutant is expressed in the patient cells (Fig. 2). Previous studies showed that 371 

the deletion of ATAD1 causes accumulation of peroxisomal biogenesis factor 26 (PEX26) and 372 

Golgi SNARE 28 kDa (GOS28) in human cell lines (Chen et al., 2014). In patient cells expressing 373 
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mutant Thorase, protein level of PEX26 was slightly lower compared to control cells (Fig. 3A, 374 

B), however, we noticed variable expression of this and other proteins in control fibroblast 375 

cells (Fig. 3A, B). In addition, cytochrome c oxidase subunit 4 (COX4), hexokinase 1 (HXK1), and 376 

voltage-dependent anion channel 1 (VDAC1) were also reduced in patient fibroblasts (Fig. 3A, 377 

B). Staining of patient and control cells for GOS28 and PEX26 to evaluate the distribution of 378 

Golgi and peroxisomal proteins, respectively, showed that their levels were decreased in 379 

patient cells when compared to healthy controls (Fig. 3C). Thus, the frameshift mutation in 380 

ATAD1 affects the stability or expression of GOS28 and PEX26. Interestingly, patient 381 

fibroblasts exhibited normal tubular mitochondrial morphology when stained for the 382 

mitochondrial protein TOMM20 (Fig. 3C). The patient fibroblasts also exhibited efficient 383 

mitochondrial respiration (Cooper et al., 2012, Chen et al., 2014), similar to wild-type cells 384 

(Supplementary Fig. 2). These results suggest that the ATAD1 mutation has no significant 385 

effect on mitochondrial function, despite reduction in the level of some mitochondrial 386 

proteins. 387 

 388 

ATAD1 mutation p.(His357Argfs*15) affects the oligomeric state of Thorase but causes no 389 

defects in its ATPase activity  390 

The predicted 3D model of Thorase suggests that the ATAD1 mutation p.(His357Argfs*15) 391 

results in changes in the secondary structure at the C-terminus of Thorase (Fig. 3D). The wild-392 

type C-terminus (Ala349-Asp361) is predicted to form a helix, while in the Thorase 393 

mutantHis357Argfs*15 the helix is shortened and sandwiched by two loops to form a loop-helix-394 

loop (LHL) structure (Fig. 3D). To further examine the activity of the Thorase 395 

mutantHis357Argfs*15, a recombinant expression vector encoding for it was generated. Purified 396 
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wild-type Thorase elutes as 70 kDa (dimer) on a size-exclusion column, while the 397 

mutantHis357Argfs*15 elutes at a higher molecular weight >400 kDa (Fig. 3E). Thus, the 398 

p.(His357Argfs*15) mutation seems to lock the Thorase mutant in an oligomeric state. Both 399 

wildtype and mutant migrated at ~36 kDa in SDS-PAGE as indicated by Coomassie staining and 400 

immunoblot analysis, however, the mutant migrated higher than the wildtype due to the 401 

elongated C-terminus (Fig. 3F). ATP binding assessment using UV light-induced cross-linking 402 

(Harvey et al., 2008) of radiolabeled [α-P32]ATP bound to purified recombinant proteins 403 

suggested that the Thorase mutant binds ATP similar to wildtype (Supplementary Fig. 2). 404 

Similarly, ATP hydrolysis was not significantly affected in the mutant (Supplementary Fig. 2). 405 

These results indicate that the p.(His357Argfs*15) mutation does not affect ATPase activity of 406 

Thorase but strongly impacts its oligomeric state, most likely as a result of the LHL formation 407 

at the C-terminus. 408 

 409 

The Thorase mutantHis357Argfs*15 shows defects in the disassembly of AMPAR-GRIP1 and 410 

Thorase oligomer complexes 411 

Since Thorase regulates AMPAR trafficking (Zhang et al., 2011, Prendergast et al., 2014), we 412 

examined Thorase mutantHis357Argfs*15 interactions with GluA2-GRIP1 complex and particularly 413 

its disassembly. Purified GST-Thorase wildtype and mutant were immobilized on beads and 414 

mixed with Thorase knockout (Atad1-/-) whole brain lysates in the presence of ADP, ATP or 415 

ATPS (Fig. 4A, B, C, D). Both wildtype and mutant bound efficiently to the GluA2-GRIP1 416 

complex in the presence of non-hydrolyzable ATPS, which maintains Thorase in the 417 

oligomeric substrate-bound state (Fig. 4A, B, C). However, in the presence of ATP, which can 418 

be hydrolyzed and is required for the proper disassembly of protein complexes by Thorase, 419 
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wild-type Thorase disassembled the complex, whereas the disassembly was significantly 420 

impaired by the Thorase mutantHis357Argfs*15 (Fig. 4D). These data suggest that the 421 

p.(His357Argfs*15) mutation affects Thorase-mediated AMPAR trafficking, likely by impairing 422 

its transition from oligomeric to monomeric state. The formation of oligomeric complexes by 423 

Thorase and other AAA+ ATPases is critical for their proper assembly and disassembly of 424 

protein complexes (Fujiki et al., 2008). Therefore, we attempted at determining whether the 425 

defect in AMPAR complex disassembly by the mutantHis357Argfs*15 results from improper 426 

Thorase oligomer disassembly. Oligomeric formation and disassembly were evaluated by ATP 427 

binding and glutaraldehyde cross-linking of protein complexes (Babst et al., 1998). Purified 428 

Thorase samples were mixed with ATP (at 4°C to prevent its hydrolysis or at 37°C to allow for 429 

its hydrolysis) or non-hydrolysable ATPS (Supplementary Fig. 2). In the presence of either ATP 430 

at 4°C (ATP-4) or ATPS Thorase formed large oligomeric complexes of molecular weights 431 

greater than 250 kDa (Supplementary Fig. 2). While 71 ± 4.7% of Thorase wildtype formed 432 

oligomers, 89 ± 6.3% of the mutants were found in the oligomeric state (ATP-4 in 433 

Supplementary Fig 2). Upon ATP hydrolysis (ATP-37), 75.5 ± 4.4% of Thorase wildtype and 57.6 434 

± 7.6% of mutant disassembled oligomeric complexes (Supplementary Fig. 2). These results 435 

indicate and further confirm that the p.(His357Argfs*15) mutation impairs normal 436 

disassembly of Thorase oligomers. Although we observed a defect of 14-18% in oligomeric 437 

disassembly in the Thorase mutantHis357Argfs*15 compared to wildtype, this may be significant 438 

enough to cause severe consequences in terms of clinical phenotype. 439 

 440 

Atad1-/- neurons expressing the Thorase mutantHis357Argfs*15 display reduced GluA2 surface 441 

expression 442 
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Since Thorase regulates surface expression of AMPARs the effects of the p.(His357Argfs*15) 443 

mutation on AMPARs trafficking was evaluated. An antibody-feeding assay for endocytosis of 444 

surface GluA2 receptors (Zhang et al., 2011, Prendergast et al., 2014) was performed in Atad1-445 

/- primary cortical neurons expressing GFP-tagged Thorase wildtype or mutantHis357Argfs*15. Live 446 

neurons were incubated with an anti-GluA2 N-terminal antibody followed by induction of 447 

GluA2 endocytosis with N-methyl-D-aspartate (NMDA) (20 µM) and glycine (10 µM). In control 448 

unstimulated Thorase mutantHis357Argfs*15 cultures there was decreased surface expression of 449 

GluA2 compared to Thorase wildtype cultures (Fig. 4E, F). In contrast, the ratio of surface 450 

GluA2/intracellular GluA2 in NMDA- and glycine-stimulated Thorase mutant cortical cultures 451 

remained similar to that of stimulated Thorase wildtype cultures (Fig. 4G, H). Thus, the 452 

mutantHis357Argfs*15-expressing neurons exhibited significantly reduced surface GluA2 only 453 

under unstimulated conditions. To further evaluate the effects of the p.(His357Argfs*15) 454 

mutation in Thorase on AMPAR trafficking, GluA2 surface expression was assessed by a 455 

bis(sulfosuccinimidyl)-suberate (BS3) cross-linking assay that allows for the quantification of 456 

both surface and intracellular receptor pools (Conrad et al., 2008). The results suggested 457 

decreased levels of surface GluA2 in unstimulated mutantHis357Argfs*15-expressing cultures 458 

compared to wildtype-expressing cultures (Fig. 4I, J). In response to NMDA, there was no 459 

significant difference in internalization of surface GluA2 in the two cultures (Fig. 4I, J). 460 

Together, the data suggest that the Thorase mutantHis357Argfs*15 may inhibit the recycling back 461 

and/or reinsertion of AMPARs to the surface following endocytosis resulting in a decrease in 462 

the steady-state levels of these receptors at the cell surface. 463 

 Taken together, these results demonstrate that a homozygous frameshift mutation at 464 

the 3’ end of ATAD1 leads to the production of Thorase protein with a novel function of its C-465 
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terminal end. Interestingly, through a gain-of-function effect, an unusual mechanism in 466 

autosomal recessive disease, the ATAD1 mutation causes a congenital severe and lethal 467 

encephalopathy associated with stiffness and arthrogryposis. Previously, we reported a 468 

homozygous loss-of-function mutation (p.Glu276*) in ATAD1 that underlies a neurological 469 

disorder with remarkable clinical overlap to the phenotype reported here: patients showed 470 

hypertonia, seizures, respiratory failure and early death (Ahrens-Nicklas et al., 2017). In the 471 

affected neonates, movement was precluded due to extreme hypertonia. Thus, stiffness was 472 

common to both families (this report and (Ahrens-Nicklas et al., 2017)), while clinical seizures 473 

starting at birth were only present in infants with ATAD1 nonsense mutation (Ahrens-Nicklas 474 

et al., 2017). Given that different ATAD1 mutations have been identified in two separate 475 

families with critical neurological phenotypes in neonates, ATAD1 can be considered as an 476 

important human disease gene. Our functional assays showed deficiency in AMPAR recycling 477 

as the molecular mechanism associated with the disease. The gain-of-function mutation in 478 

ATAD1 decreases the population of excitatory postsynaptic AMPA receptors. However, 479 

mitochondrial function does not seem to be affected by the ATAD1 p.(His357Argfs*15) 480 

mutation as patient-derived fibroblasts show normal mitochondrial morphology and 481 

respiratory chain performance. In contrast, Atad1 loss-of-function causes a decrease of many 482 

mitochondrial proteins in mouse brain in which the Golgi protein GOS28 ectopically 483 

accumulated. In addition, Atad1-deficient mouse embryonic fibroblasts show decreased basal 484 

and mitochondrial respiration, severely fragmented mitochondria and mislocalization of 485 

GOS28 and PEX26 in mitochondria suggesting significant mitochondrial impairment in this 486 

mouse mutant (Chen et al., 2014). These findings together with impaired AMPAR 487 

internalization resulting in increased GluA1 and GluA2 surface levels in Atad1 knockout 488 
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neurons suggest a combined effect of defects in both AMPAR trafficking and mitochondrial 489 

function that might have contributed to the phenotype in Atad1-/- mice (Zhang et al., 2011, 490 

Chen et al., 2014). Similarly, we speculate that the distinct combination of functional 491 

alterations arising from either gain- or loss-of-function ATAD1 mutations may provide an 492 

explanation for the discrete although overlapping phenotypes observed in the siblings 493 

reported here and the previously described family.  494 

 Changes in AMPAR receptor surface expression is a known pathogenic mechanism in 495 

encephalopathy; for example, a decrease in extrasynaptic AMPAR expression impairs synaptic 496 

plasticity in a model of hepatic encephalopathy (Schroeter et al., 2015). This disrupts the 497 

efficacy of synaptic transmission and the fine balance between inhibitory and excitatory 498 

signaling, which accounts, at least partially, for the encephalopathy. There are additional 499 

possible targets of Thorase that contribute to the encephalopathy and neurologic phenotype 500 

of patients with mutations in ATAD1. Consistent with this notion is the observation that the 501 

AMPAR antagonist, perampanel, only partially rescued the phenotype of patients with a loss-502 

of-function mutation in ATAD1 (Ahrens-Nicklas et al., 2017). The findings from our study 503 

establish an important avenue for clinicians to examine the role of ATAD1 mutations in several 504 

neurological diseases due to unknown cause. 505 
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 575 

Figure legends 576 

Figure 1 DNA and RNA analysis in the family with three siblings carrying the homozygous 577 

ATAD1 mutation. (A) Pedigree of the family. (B) Partial sequence electropherograms 578 

demonstrating the ATAD1 c.1070_1071delAT [p.(His357Argfs*15)] mutation in the 579 
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homozygous state in leukocyte-derived DNA of the affected siblings (Subjects 1, 2 and 3). Their 580 

healthy parents (Father and Mother) are heterozygous carriers of the mutation. (C) Partial 581 

sequence electropherograms show the 2-bp deletion in ATAD1 in fibroblast-derived cDNA of 582 

one sibling (Mutant) in comparison to the cDNA sequence of a healthy individual (Wild-type). 583 

Deleted bases are marked by parenthesis in the normal sequence. The encoded amino acid 584 

residues are depicted below each sequence in the three-letter code and show the 14 novel 585 

amino acid residues at the C-terminus of ATAD1 (highlighted in bold). *: stop codon. 586 

 587 

Figure 2 Mutant Thorase is expressed in patient-derived fibroblasts. (A) Immunoblot of lysates 588 

obtained from patient and control fibroblasts. Expression of Thorase was monitored by using 589 

anti-Thorase antibody, and anti-actin antibody was used to control for equal loading. As the 590 

anti-Thorase antibody was generated against the C-terminus and this region contains a new 591 

amino acid composition in the mutant, detection of Thorase in patient cells was difficult 592 

(compare the clear band in control and the diffuse band in patient cells). (B) Optical 593 

densitometry quantification of (A). Values represent the mean±SEM (n=3, n.s. p>0.05, Tukey’s 594 

multiple comparison tests). 595 

 596 

Figure 3 The ATAD1 mutation p.(His357Argfs*15) leads to reduced amount of some 597 

mitochondrial proteins in patient-derived fibroblasts and locks Thorase in the oligomeric state. 598 

(A) Immunoblots of lysates obtained from patient and control fibroblasts. COX1, cytochrome 599 

c oxidase subunit 1; HXK1, hexokinase 1; PEX26, peroxisomal biogenesis factor 26; VDAC1, 600 

voltage dependent anion channel 1. (B) Optical densitometry quantification of (A). Values 601 

represent the mean+SEM (n=3, n.s. p>0.05, * p<0.05, two-way ANOVA, Tukey’s multiple 602 
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comparison tests). (C) Representative immunofluorescence images of the mitochondrial 603 

morphology (TOMM20 staining) in control and patient fibroblasts. The cells were also stained 604 

for Golgi (GOS28), peroxisomes (PEX26) and the nuclei with DAPI (blue). (D) Predicted 3D 605 

structure of Thorase wildtype (green) and mutantHis357Argfs*15 (red). (E) Size exclusive 606 

chromatograph profile of purified recombinant Thorase. Wild-type Thorase appears as a 607 

dimer (~70 kDa), whereas the Thorase mutantHis357Argfs*15 appears as oligomer (>400 kDa). (F) 608 

Purified proteins resolved on 10% SDS-PAGE stained with coomassie (left) and immunoblotted 609 

with anti-Thorase antibody (right). 610 

 611 

Figure 4 ATAD1 mutation p.(His357Argfs*15) affects GluA2-GRIP1 complex disassembly and 612 

GluA2 surface expression. (A) Immunoblot analyses of GST-Thorase pulldown of the GluA2-613 

GRIP1 complex from Thorase knockout whole brain lysate in the presence of different 614 

nucleotides (ADP, hydrolysable ATP; ATPγS, non-hydrolysable ATP). The samples were 615 

incubated at 4oC for binding and then at 37oC for ATP hydrolysis to trigger the disassembly of 616 

the protein complex. (B-C) The graphs represent normalized percent bound GluA2 (B) and 617 

GRIP1 (C) in the GST-Thorase pulldown samples for (A). (D) Normalized percentage of GluA2 618 

and GRIP1 disassembled from Thorase-GluA2-GRIP1 complex in (A). (E-F) Representative 619 

immunofluorescence images of unstimulated and NMDA-induced endocytosis of GluA2 in 620 

Atad1-/- neurons expressing Thorase-GFP wildtype (WT) or the mutantHis357Argfs*15 (Mutant). (G) 621 

Normalized ratio of surface GluA2 (sGluA2) to internalized GluA2 (iGluA2) for (E-F). (H) GluA2 622 

internalization index measured as the ratio of iGluA2 to the total GluA2 (iGluA2 plus sGluA2) 623 

fluorescence intensities. (I) Immunoblot analyses of BS3-crosslinking of sGluA2 in Atad1-/- 624 

neurons expressing Thorase-GFP wildtype or mutantHis357Argfs*15. (J) The normalized optical 625 
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densitometry quantification of sGluA2 for (I). (mean±SEM of three experiments performed in 626 

triplicate. n=3, ** p<0.05, * p<0.10, n.s p>0.10, ANOVA with Tukey-Kramer post-hoc test when 627 

compared with wildtype).  628 


