

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Science of Computer Programming

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa39384

Paper:

Thimbleby, H. & Williams, D. (2018). A tool for publishing reproducible algorithms & A reproducible, elegant algorithm

for sequential experiments. Science of Computer Programming, 156, 45-67.

http://dx.doi.org/10.1016/j.scico.2017.12.010

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa39384
http://dx.doi.org/10.1016/j.scico.2017.12.010
http://www.swansea.ac.uk/library/researchsupport/ris-support/

A tool for publishing reproducible algorithms
&

A reproducible, elegant algorithm for
sequential experiments

Harold Thimblebya,∗, Dave Williamsa

aSwansea University, Wales, SA2 8PP

Cite as: H. Thimbleby & D. Williams, “A tool for publishing reproducible algorithms
& A reproducible, elegant algorithm for sequential experiments,” Science of

Computer Programming, 2017. DOI: 10.1016/j.scico.2017.12.010

Abstract

Tools to ease the burden of reproducibility are important so computer science does
not fall into the trap of “cargo cult” science: particularly publishing discussions of
algorithms that look like algorithms but which do not work properly when they are
copied from the paper.

This paper introduces a tool, called relit, which makes it very easy to write about
and publish correct algorithms, yet without restricting the author’s style. In fact, relit
can be used with any material: mathematics, proofs, algorithms or programs. It can be
used in papers, in reports and books and, with analogous advantages, in student work
— where examiners may wish to automatically check what the student claims to have
written is actually correct.

To demonstrate relit, this paper presents a new, elegant algorithm for the design of
sequential experiments to efficiently control bias, drift, random error, carry-over and
other effects. The algorithm is written in C, in a clear style to simplify porting to other
languages.

We developed relit because it was impossible to find simple reproducible code for
this problem, and we wanted to do better. Thanks to relit, the published algorithm is
reproducible and works exactly as published in the present paper. This paper also in-
cludes discussion of the problems and opportunities of reproducibility and the essential
contributions of relit-style approaches to improving the reliability of computer science
publications.

∗Corresponding author
Email addresses: harold@thimbleby.net (Harold Thimbleby), drdjwilliams67@gmail.com

(Dave Williams)
URL: harold.thimbleby.net (Harold Thimbleby)

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Keywords: Reproducibility, Publishing algorithms, Literate programming, Euler
cycle algorithm, de Bruijn sequence, Combinatorics, Experimental design

1. Introduction

When we needed a standard “off the shelf” algorithm for the design of sequen-
tial experiments, we found it was quicker to invent a new one from scratch than get
published algorithms to work. It was hard to find a working solution for the problem
in the literature — even when we had searched both peer reviewed publications and
textbooks.

Reproducibility, or rather, lack of reproducibility is a widespread problem affecting
many algorithms, especially long, complex or unusual algorithms. Often such algo-
rithms are left as “exercises for the reader” or are merely analysed for their properties,
rather than presented with correct code.

This paper introduces our elegant new algorithm for sequential experiments and its
use and application for sequential experiment design (specifically, it generates (N, 2)
de Bruijn sequences). The algorithm is much briefer than theoretically faster algo-
rithms that have been outlined in the literature though not so reproducibly described.
The algorithm will be useful for experimental scientists (who can parameterise it for
their specific research) — exactly the sort of people who need working algorithms but
rarely have the time or resources to invent correct algorithms from the far-too-often
inadequate descriptions in the literature.

We use our reproducible presentation of the algorithm as a full and thorough case
study of a new tool-based approach for easily and rigorously explaining and document-
ing reproducible algorithms in published papers. A key contribution of the paper, then,
is our tool-based approach to reproducibility and our discussion around reproducibility.

Finally, this paper relates our new, lightweight tool-based approach to Richard
Feynman’s exhortation to avoid what he calls “cargo cult science” [10]: when we have
the right tools to help us, his challenge becomes easy. We show how our approach
makes publishing correct working software easier and more likely. It helps improve
the quality not just of publications but also of the underlying algorithms themselves:
authors can now easily improve their algorithms and their papers in a tightly integrated,
even enjoyable, process.

1.1. Reproducible research versus reproducible publication
Science is based on reproducibility: if an idea or theory is not reproducible, it is not

science, or at least the lack of reproducibility uncovers a boundary case that refines the
science. A common reason for lack of reproducibility is that a published paper does
not disclose enough details or contains mistakes: what is published is inadequate for
another scientist to reproduce the work. (Fraud and multiple publication are further
reasons — papers may deliberately fail to disclose enough to reproduce the work.)

Algorithms and programming more generally have the interesting property that in
principle everything is reproducible: programs run on computers, and programs are
text that can be fully disclosed. There has been recent increasing interest in making
reproducibility a criterion for accepting papers in the field, such as the ACM Artifact

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Review and Badging policy [1] and its use in conferences such as the ACM Multimedia
Systems Conference [49] (see also the discussion in Part III).

We further make the distinction between reproducible research and reproducible
papers:

Reproducible research A paper discloses enough for a reader of the paper to
reproduce the research. For example, everything in this paper is available on
GitHub, at github.com/haroldthimbleby/relit1

Some journals and conferences (such as the ACM Symposium on Principles of
Programming Languages since 2015, popl.mpi-sws.org/2015) have started
asking or requiring authors for “artifacts,” documents and other evidence
intended to support the scientific claims made in a paper. Papers with quality
artifacts are badged, so that the additional value can be recognised by the
community.

Reproducible paper A paper as published discloses enough for a reader to reproduce
the claims of the paper, with essentially no further effort than copying the
details. For example, this paper introduces a new algorithm and that algorithm
is completely disclosed in this paper, in fact as source code in standard
programming language that can be copied directly from Part I of the paper.

Semi-reproducible paper A paper as published discloses enough for a reader to
reproduce the claims of the paper, but perhaps to reproduce it exactly will
involve substantial further work. For example, this paper introduces a new
approach to reproducibility that is thoroughly disclosed in this paper. However
none of the code to implement the approach is disclosed in the paper itself,
although the idea can be copied from Part II of the paper. (As it happens, the
documentation and complete source code of relit are available on GitHub, so
the research is reproducible.)

To be complete, one should also add papers that are not intended to be reproducible
or fully reproducible. While there is an important place for non-reproducible research
(for instance in inspirational writing or in papers that expound new research challenges)
a serious problem is non-reproducible research seeming to be reproducible. In particu-
lar, many papers present algorithms for analysis, which may be reproducible, but as the
papers look like they are also presenting actual alogithms they are misleading. Such
papers look like they solve problems, but they do not. A reader may want to run an
algorithm to solve a problem; in this case, an algorithm as shown may not run correctly.
A concrete example would be an algorithm implemented using arrays: most analysis
of its behaviour will not depend on exact subscript values, and out-by-one errors would
probably be irrelevant, but in implementing it, the subscripts and array bounds need to
be correct. There are many papers that provide code listings of algorithms that do not
work as printed [41].

1Note: See supplementary material at DOI 10.1016/j.scico.2017.12.010.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Sometimes this problem may result from bad practice or even deliberate fraud;
maybe the author wants to achieve another publication with some withheld details?
Sometimes there may be commercial or intellectual property concerns, as the author
may be unwilling to disclose the correct algorithm because their business depends on
its remaining proprietary.

One would hope that simple, easy-to-use tools that facilitate and promote repro-
ducibility will ease some of these problems.

1.2. Relit: A tool for reproducibile papers
We built a tool relit, so called because it implements “reverse literate program-

ming.” Relit helps write clearly about any algorithm or algorithms, and is intended to
be particularly useful to help write reliable, reproducible papers about algorithms.

In conventional literate programming, the literate program source file drives the
entire process and generates a program and structured documentation for it; in reverse
literate programming the main relationship is reversed, being driven by a paper (such as
the one you are currently reading) from which source code is derived. Another contrast
is that conventional literate programming aims to produce a program and full internal
documentation; reverse literate programming aims to produce a paper (or book or other
publication) that describes algorithms or program code, at the same time providing
assurance that the code is correct. Figure 1 explains the “reversed” concept further,
and how it turns the conventional literate programming approach around.

Here is a small but complete, self-contained example:

The Java for loop for(int i = 0; i <= 9; i++) System.out.print(i) will
print 0123456789.

The reverse literate programming approach does not impose any formatting or style
conventions on the author, so — to try and emphasise the flexibility — we typeset this
example in a gray box to help make it stand out as an example. Code does not have
to be syntactically complete, and can be written however best suits the author’s needs;
for instance, in this example, we chose to omit the final semicolon strictly required by
Java. Indeed, this paper has several unrelated concrete examples in it (in several pro-
gramming languages) and relit imposed no conventions or restrictions on the authors
to achieve this.

Our tool relit extracted the actual code shown above from the LATEX [23] source for
this paper, and inserted it into a complete Java program (which also provided the hidden
semicolon) that was also in the LATEX source file. The makefile [25], also defined in
this paper’s LATEX source file, compiled and ran the Java program, saving its output to
a temporary file, which was input into the paragraph above. Hence the output of the
program shown above really is the output of running the actual Java code shown. In
fact, the complete source code for the Java program (as well as the makefile) is in the
single LATEX source file for this paper, though the rest of it is hidden from sight beyond
the end of the published paper. (It appears after LATEX’s \end{document}, though
relit could have extracted it from a separate file just as easily.) As an option, relit can
summarise all the invisible (or otherwise) code to help check that nothing critical to the
paper has been accidentally hidden from the reader.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

As a test, the authors edited the for loop and the example changed as expected;
this reassured us that the example above is accurate and not broken by typesetting
(e.g., by some idiosyncracy in LATEX). In other words, both the authors of this paper
and therefore the readers of this paper have assurance that the code above does exactly
what we say it does.

In a more critical situation than publishing code in a paper, it would be desirable to
design the makefile (or other run time script) to ensure that any errors in the program
result in visible warnings, perhaps no paper at all, until all errors are corrected — in our
simple example, if we introduced a syntax error in the Java code, the compiler would
generate no code at all, so the last successful executable file would be used instead.
Running it would then misleadingly generate obsolete output from some earlier suc-
cessful compilation. Tools like expect [24] can help assure that the right code is used
reliability in a systematic way. However, both Java and LATEX are powerful program-
ming tools, so an author so intent could program any effect they want, but which might
accidentally end up being misleading regardless of safeguards like expect; thus it is
critical that tools like relit are very simple and elegant so that the author is not tempted
into trying complex, possibly unreliable, tricks to get the effects they want.

Using relit, there is no notation at all to get going, and very little notation to learn to
start using features as they are needed. Even when all the features are used, everything
can be done with only two simple commands that are LATEX comments, so they have
no unintended interaction or side-effects on the meaning of the original document. No
writing needs to be structured or re-structured to make use of it (e.g., into an outline
or set of sections as in conventional literate programming [19; 31] and in systems like
Mathematica [48], org-mode [33], etc).

Another important difference between conventional literate programming and re-
verse literate programming is that literate programming is motivated by documenting
programs or algorithms (even if they end up being book length) whereas reverse liter-
ate programming is motivated by helping write reproducible papers (which are usually
brief) about programs or algorithms. One focuses on the program, the other focuses on
the publication.

We used relit throughout the present paper: the new algorithm we present in this
paper works exactly as shown. The discussion about the new algorithm therefore com-
bines three roles: its intrinsic interest as a useful algorithm, the discussion about the
algorithm literature, and the algorithm as a complete worked example presented repro-
ducibly using relit. Apart from our assurances that the code shown is real, there is
nothing unusual in the style or format of the present paper: while giving many advan-
tages to authors, reverse literate programming is invisible to the reader.

It is notable that with the relit approach we advocate, an ordinary, conventionally-
written, paper gradually morphed into the present paper that now accurately generates
the code it talks about. The original paper was written conventionally, but relit features
were incrementally introduced to “pull out” the existing code embedded in the paper’s
LATEX source document. Additionally, in the same file, but hidden from the reader as
the details are not relevant to the paper, are the the full run-time resources to make
the code work. In other words, the code and program results shown in this paper has
been generated from the paper itself, and it works as described — this is reproducible
research. All other related approaches to improving reproducibility of which we are

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Special

structured

document Normal document

(a) Literate programming (b) Reversed

wc.nw

wc.c

wc.tex

wc.c
File 2
File 3
File 4
etc…

wc.tex

Editable files driving the process are shown shaded

Generated files are white, and crossed out to emphasise they are not editable

Figure 1: Conventional literate programming tools work as illustrated in Figure 1(a), which is based on a
diagram in the paper on the literate programming tool noweb [31]: as shown, the author edits a source file
(e.g., wc.nw) and the tool generates two files: a compilable program (wc.c) and a stylised LATEX documen-
tation file (wc.tex). Contrast this with Figure 1(b), which shows the comparable diagram for relit. With
relit, the author edits a file (now wc.tex) from which relit can generate many files, including wc.c, which
is compilable. Additional files generated by relit can be used for any purpose; for instance, in the present pa-
per one of the generated files is a makefile so generated files were compiled and executed with their outputs
inserted back into this paper.

aware require either some sort of special notation or structure for files, or they generate
the paper from a specification. Furthermore, most impose typographic and stylistic
constraints on the papers that can be published.

1.2.1. Relit: Basic use
Here is an illustrative and basic development cycle using relit:

1. Write the initial paper as usual. (Of course, anticipating using relit one can do
better than just writing an ordinary paper.)

• In conventional literate programming, one has to start with a special
“web” file. No web files are in formats suitable for conventional
publication.

2. Edit the paper so program code snippets are preceded by simple relit
commands, written as comments so they do not affect the published paper at all.

• In conventional literate programming, the code has to be structured to
make it possible to document. The structuring decisions are hard to
change later.

3. Optionally, somewhere that is ignored — in another file, or beyond the LATEX
\end{document} — add relit commands to add any support code or
housekeeping that is needed.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

• Conventional literate programming has no way to hide code that is
distracting or needs no explanation.

4. Running relit now generates the specified files from the contents in the paper.
Compile and run or otherwise test the generated files.

5. Concurrently edit the original paper to improve the code so it works better and
edit the text of the paper so it more accurately describes the code.

• You cannot edit the original paper in literate programming; you have to
edit the structured web file that generates the paper. This is made
clear in Figure 1.

6. Repeat until everything works as intended. At all times, the submitted versions
can be used to automatically reconstruct the algorithms to ensure they work
correctly.

7. Submit to a journal or conference.

• If the publishers have stylistic or formatting requirements, conventional
literate programming hits a wall — the paper will require substantial
editing, which undermines one of the key advantages that the code
should be correct and coherent with the description. Editing the
submitted paper will introduce inconsistencies with the original
documents, and hence will compromise reproducibility.

1.2.2. Relit: An example of its real use
At the last moment while writing this paper, our colleague Paul Cairns pointed out

a worked example we had used explaining our algorithm erroneously confused wine
regions (e.g., Chianti) for grape varieties (e.g., Pinotage and Merlot).

In the conventional approach to writing about algorithms, we would probably have
edited the paper alone to fix the error . . . and the paper and the programs we had
written about would have diverged, or at least we would have needed to edit several
files and do a lot of careful cross-checking — if we could be bothered to do it. We
might have decided it was not worth the trouble. We might have fooled ourselves: the
original program works even if it has the names mixed up; we would probably have
persuaded ourselves that, surely, the program used to work, and then we would edit
the paper alone to fix the errors. It is then but a short step to justifying to ourselves
not doing the cross-checking properly because it more easily imagined than done. If
we had gone down this route, the paper and the program would have been different.
If we had corrected any other errors or polished — which is always very tempting —
any aspect of the paper, potentially the published paper and the algorithm would have
become very different. If we made any clerical slips editing the paper, the paper and
the program could be critically different. Worse, neither we the authors nor the readers
would be aware of the bugs and inconsistencies introduced by these well-intentioned
“corrections.”

Instead, because we were using relit, to fix the wine naming issues we did a very
trivial edit in just one place in a single file, that is, in one place in the paper you are
reading right now. With no further editing, thanks to using relit, we then automatically
had a new C program that correctly used Shiraz, and the output from running the

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

actual program was then inserted back into this paper. The example output (used in
Section 2.5 below) also, of course, was automatically updated to say varieties instead
of regions.

Everything remained consistent with negligible effort. There was no need for any
tedious or error-prone double-checking, because all the necessary edits needed were in
exactly one place — the program code that is explicit in the source text of this paper.
If there is only one object, it is necessarily consistent! And, finally, everything (all the
code examples and the outputs from running the code) is obviously consistent with the
code published in the paper because it was generated by running exactly the code in
the paper you are now reading.

In fact, doing the change was much easier than explaining how easy it was to do!

Part I

Case study & The problems of finding reproducible algorithms

2. Algorithms for sequential experiments

In a sequential experiment, such as generation of sensor calibration curves, a num-
ber of random and systematic errors may occur. Errors can include: bias, drift of
sensor readings with time, and carry-over effect where the previous reading influences
the next reading. Good experimental design therefore uses a sequence of calibration
values arranged in such a way that the sequence will normalise and cancel out random
and systematic errors. Ideally the sequence will be as short as possible in order to
minimise unnecessary work and expense in the collection of data.

The problem may be illustrated by a familiar example. We might want to know
which of N types of wine tastes best, but, as is well known, the flavour of a wine is af-
fected by the last wine just tasted. We therefore want to design a systematic experiment
for wine tasting that tries every sequential combination of pairs of the set of N wine
types available in our cellar, and of course we want the shortest such cycle, because
experiments with wine are expensive.

For the sake of concreteness, suppose we have N = 3 types of wine in our cellar,
specifically, say, Merlot, Pinotage and Shiraz. If we have just drunk Pinotage, then
there are three possible experiments to do next: to drink Merlot next, Shiraz next, or of
course to drink Pinotage again. If we drink Pinotage, then the next experiment should
probably be to assess Merlot or Shiraz, since we already know what Pinotage after
Pinotage tastes like.

With only three wines, the best sequence of experiments is not too hard to work out
by hand, but in general with lots of wine it becomes much harder, especially if we start
the wine tasting before we have finished working out the right sequence.

For simple cases the problem can be solved by hand by drawing a graph with one
vertex for each of the N types of experiment (e.g., testing a type of wine) with N2

arrows to represent each possible sequence of two experiments. This creates a complete
graph, usually denoted KN . Figure 2 (on page 13) shows the complete graph for N = 3.
(The background in graph theory is explained in Section 2.1 below.)

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

A sequence of several experiments forms a path following arrows in this graph. In
our problem we want to find a shortest path that follows every arrow at least once. It is
a standard graph theory result for a complete graph that a shortest such path exists and
only needs to follow each arrow exactly once, and it will also end up where it started —
obviously, if it followed any arrow more than once, it would be repeating an experiment
and take longer. An optimal sequence is called an Euler cycle, after Leonard Euler who
first studied paths in graphs (but not sequential experiments). Our problem therefore
reduces to finding an Euler cycle algorithm.

Our problem, then, is to write a computer program to generate an efficient sequence
of experiments for the general case. Fortunately, finding Euler cycles is a well-known
programming problem, which has been solved many times. Unfortunately, it turns out
that programming textbooks typically leave this problem as an exercise for the reader,
and that does not help if your aim is to do a sequential experiment, rather than learn the
hard way how to program algorithms!

The definitive algorithms textbook by Cormen, Leiserson, Rivest and Stein just
says:

Exercise 22-3 [. . .] Describe an O(E)-time algorithm to find an Euler
tour of G if one exists. (Hint: Merge edge-disjoint cycles.) [5]

Elsewhere Cormen estimates that writing up the solutions to the book’s exercises
would run to between 2,000 and 3,000 pages [4]: it is just not going to happen. Other
books do not show answers to exercises in case students might cheat.

But worse than not providing an algorithm, in many textbooks and published pa-
pers, the Euler cycle algorithm — if presented at all — is described in high-level En-
glish, as a sketch, or in a simplifying pseudo-language. It is also easy to find numerous
lecture notes online that describe the Euler cycle algorithm in pictures with English
annotations. Aguably, this is all cargo cult science — they look deceptively like pro-
grams, but are not.

We will return to the general problems of reproducibility in Part III, but here we
now focus on the computer science problems — and solutions.

While English may be sufficient to explain some principles or to estimate the time
complexity of the algorithm or other properties, and to do other things programmers
are interested in, it is completely inadequate to convert into a working program in a
real, executable, language such as C or Java. To get a working program, a lot of detail
needs careful consideration: how should a graph be represented in a language with type
checking, for instance? If vertices are numbered, are they numbered starting from 0 or
1? Or should you use a standard package, and then have to convert the pseudo-program
into the programming conventions of that package? Unfortunately, the necessary detail
to get anything to work makes explanations unwieldy. In the worst case, the detail
never existed, and the presented algorithm is not even an abstraction of anything that
was ever executable.

Furthermore, Euler cycle programs assume the graph is arbitrary, and there are dif-
ferent algorithms for directed, undirected and mixed graphs. In our case, the graph
happens to be both directed and complete, and we discovered that these facts can be
used to greatly simplify the problem. In fact, inventing and implementing a new al-

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

gorithm for our special case took less time than correctly implementing a standard
algorithm.

Our complete working program exactly as described reproducibly in this paper is
21 lines of code; moreover, the core algorithm is only 11 lines, including comments.
(The code is given in Section 3.3.) This compares favourably to a quality reference
algorithm [36] that is 22 lines of code (plus 49 lines of test code), though it will not
work “out of the box” without also finding and compiling it with the various files it
depends on — the total code needed runs to 493 lines, about 23 times longer.2

This reference code also requires further work to edit the Java and local Java envi-
ronment to compile it, as well as code to define a complete graph and print the desired
solution (details that are already included in our algorithm). Furthermore, while Java
may be a fine language, it is hard to translate algorithms written in it into other lan-
guages; whereas our code, written in basic C, is easy to translate into any language that
has arrays (Fortran, PHP, JavaScript, Mathematica, Matlab, Java itself . . .), which will
be a considerable advantage for experimenters who are not familiar with Java.

The Java reference algorithm is sophisticated and no doubt ideal for teaching pur-
poses, but there is an evident separation of the published book text [35] from the pub-
lished program [36], a separation that allowed the code to develop into a sophisticated
program independently of the published book. Unsurprisingly, the book omits the code
altogether: it has to be downloaded from the web instead. Of course, this is entirely
defensible as the code available on the web has many details that go far beyond what
is needed in a book — the code includes unit tests and examples, which would be te-
dious and distracting to explain in a book. Even when code from a working program is
published, unknown details in the support code that is not published may be critical to
getting it to work properly.

It is interesting to note the polarising force of positive feedback when writing about
algorithms:

• When code cannot be seen by the reader, the author (as a good programmer) is
under pressure to add features so it can do anything that a reader might be
anticipated to want. There is thus a natural tendency to add features, which
tends to make the code more complex, which further justifies keeping it out of
sight . . .

• When code is brief and visible, the reader can adapt what they can see
themselves: the author has no pressure to add features. When code is visible,
there is a natural tendency to improve and clarify it, which further justifies
keeping it visible . . .

• The third possibility is that the author manages the complexity by abstracting
the algorithm: this makes the book or paper concise, which conceals details the
author finds irrelevant to their immediate goals.3 Unfortunately, as

2Line counts are based on the actual code extracted from this paper by our tool relit (they were calculated
by the Unix utility wc on the program source files and then input in the LATEX for this paper). Line counts
ignore comments and blank lines. No attempt has been made to “squash” code to save lines.

3Few papers talk about more than one of: complexity, correctness, implementation, security, usability . . .

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

“irrelevance” is abstracted away, the author thinks less and less about the
reader’s possible wider needs.

It is clear that normal writing and publishing practices combined with the intrica-
cies of managing working programs do not align well with the goal of readers finding
reproducible algorithms. The goals and priorities of publishing are not the same as
the goals of science; the pressures of publishing, whether papers or books, conspire to
compromise reproducibility.

2.1. Graph theory background and applications

Leonard Euler effectively invented graph theory in 1736 with his solution to the
famous Königsberg4 bridge problem [9; 17]: is it possible to walk a cycle across each
of the seven bridges in Königsberg exactly once? In modern graph terminology, a
bridge is an edge and the land a bridge ends on is a vertex; if bridges are one-way to
traffic, then the graph is a directed graph as opposed to an undirected graph. An Euler
(or Eulerian) cycle is a walk that traverses each edge of a graph exactly once, starting
and ending at the same vertex.

The example algorithm in this paper is concerned specifically with directed graphs.
A complete directed graph is a graph in which each ordered pair of vertices (including
repetitions) is connected by a directed edge. In other words, every pair of distinct
vertices is connected by two edges, one in each direction, and each vertex has a single
self-edge from itself back to itself. A complete graph of 3 vertices is shown in Figure 2.

Notation. We use u→ v for the directed edge (arrow) connecting vertex u
to vertex v, and u v for a directed path, consisting of one or more
edges connecting u to v. For example, if u→ v, v→ w and w→ x (also
written u→ v→ w→ x) then u v, u w, u x and v x, etc.

A cycle is a path that starts and ends at the same vertex.
A directed graph is (strongly) connected if it contains a directed path u v and a

directed path v u for every pair of vertices u, v. Since edges are paths of length 1,
complete graphs are strongly connected.

A bridge in graph theory is an edge that if it was deleted then the graph would no
longer be connected.

A (k, n) de Bruijn sequence is a cyclical list of length kn which contains k unique
symbols, arranged so that every permutation of overlapping sublists of length n oc-
curs exactly once. For example, 0011 is a (2, 2) de Bruijn sequence using 0 and 1 as
the 2 symbols, and where all the length 2 sublists, namely 00, 01, 11, and 10 (wrap-
ping around), each occur exactly once, and in this order. Although the sequences were
named after Dutch mathematician Nicolaas Govert de Bruijn [6], they had been previ-
ously described in the 19th century [12; 32]. In fact, the Sanskrit poet Pingala employed
a (2, 3) de Bruijn sequence over 1, 000 years ago to permute poetic meters and drum
rhythms [14; 21].

4Königsberg was in Prussia and is now Kaliningrad in Russia.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Modern applications of de Bruijn sequences include: magic tricks, optimal strate-
gies for opening combination locks, and cryptography (including generation of one-
time pads, and the Data Encryption Standard algorithm). They have been used in
gene-sequencing to construct genomes from billions of short sequences [3]. Two-
dimensional de Bruijn arrays may be used to identify the position of industrial robots
on a warehouse floor, or the position of an infrared-sensing pen on specially marked pa-
per [7]. Randomised de Bruijn sequences have applications in experimental design in
many areas of scientific and statistical research, and have been used in signal process-
ing to improve the signal to noise ratio, for instance in Magnetic Resonance Imaging
(MRI) scanning [2].

Fisher proposed the application of randomised Latin Squares to balance and equalise
sampling error and bias in the design of experiments into soil fertility [11]. In a similar
way, if a sequence of experimental tests is prescribed by a randomised (N, 2) de Bruijn
sequence, every element in the series will be tested N times in random order, and will
be immediately preceded by every other element in the series in the set exactly once.
This approach allows the most efficient means of testing multiple items, balancing and
equalising the effects of systematic bias, drift, serial carry-over effects, hysteresis and
random error. We ourselves used de Bruijn sequences for experimentally evaluating
automatic drug administration data from syringes [8].

de Bruijn sequences can be generated from Eulerian cycles [12; 16]. An Eulerian
cycle of a complete graph with N vertices follows in order every edge u → v → . . .
exactly once for all u and v, and this is equivalent to the definition of an (N, 2) de Bruijn
sequence. More generally, a de Bruijn graph is a graph whose Euler cycle generates the
corresponding de Bruijn sequence. As a special case, the complete graph is a de Bruijn
graph; Good [13] gives further examples. Other approaches for generating de Bruijn
sequences include feedback shift registers and genetic algorithms [21; 46].

2.2. Classic Euler cycle algorithms

Many deceptively simple algorithms to generate Eulerian cycles have been de-
scribed. These two classic algorithms were invented well before modern computers:

• Hierholzer’s algorithm [16] first finds all cycles in the graph then merges them
together.

• Fluery’s algorithm [12] follows a path successively choosing edges to delete at
each vertex by first choosing any edge that is not a bridge, and finally choosing
the bridge when there is no other choice.

However their simple descriptions in English belie their relatively complex imple-
mentations in software — just saying “find cycles” and “merge” assumes all sorts of
implementation details. Should you use depth first search to find cycles, and what are
the exact details for identifying bridges (especially when deleting edges changes the
bridges)?

This common but deceptive simplicity of many published algorithms is a problem
we also noted in our previous discussion of the Chinese Postman Tour [41].

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

�

��
 1 1 1

1 1 1
1 1 1


 A→ A · · · · · ·

B→ A→ B B→ B · · ·

C → A→ C C → B→ C C → C


Figure 2: Representations of the complete directed graph K3, where there is an edge u→ v for each directed
pair of the 3 vertices u, v ∈ {A, B,C}. As can be seen (left), the graph is composed from 6 trivial cycles: 3
single-arrow cycles (e.g., A → A), and 3 double-arrow cycles (e.g., A → B → A). The corresponding cycle
matrix is shown top right. The cycles represented by it are shown explicitly in the larger matrix (bottom
right), which has one entry shown explicitly for each trivial cycle. The omitted entries in the matrix are
implied by symmetry, as, for example, the top right would be A → C → A but this is the same cycle as
C → A→ C, which is shown bottom left.

2.3. A new Euler cycle algorithm for complete directed graphs

Inspired by Hierholzer’s algorithm, we make five observations for an Euler Cycle
algorithm for complete graphs:

1. Instead of using an algorithm to find cycles, since the graph is complete we
already know a decomposition into cycles: namely, for every vertex u there is a
cycle of length 1, u→ u, and for every pair of vertices u, v (u , v) there is a
cycle of length 2, u→ v→ u. We call these trivial cycles.

2. We use a recursive algorithm to merge cycles. It starts walking any cycle, and if
it crosses another cycle (that has not already been walked) it recursively walks
that cycle, then resumes the cycle it was walking. This approach does not need
any explicit operations or data structures to merge cycles.

3. Once a cycle has been walked, it is not walked again. The algorithm therefore
starts by initialising every trivial cycle as unwalked, and as it walks a cycle it
marks it as walked, and hence will not walk it again.

4. Marking trivial cycles can be represented by a Boolean matrix as follows:
walkeduv is true if the cycle u→ v→ u has been marked as walked (if u = v
then the cycle u→ u has been walked). We call this representation of a graph a
cycle matrix.

Hence we suggest the following Euler cycle algorithm. Using C, vertices are num-
bered 0 to N − 1.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

void cycle(int u, int v) // walk a cycle from u to u via v

{ if(!walked[u][v])

{ // we will have walked the cycle u to u via v

walked[u][v] = walked[v][u] = 1; // keep cycle matrix symmetric

recordEdge(u, v); // record walking edge from u to v

for(int w = 0; w < N; w++)

cycle(v, w); // walk any unwalked cycles from v

if(v != u) // get back from v to u if not already at u

recordEdge(v, u);

}

}

As shown in Figure 2, the cycle matrix is symmetric, and might therefore be rep-
resented more compactly as a triangular matrix. However, the algorithm implements
walked as a square symmetric matrix (i.e., walked[u][v] = walked[v][u] is in-
variant) as this simplifies the implementation. It is possible to use a more sophisticated
data structure than a matrix to avoid the for-loop and to avoid calling cycle when
it will immediately return: such an optimisation would not change the algorithm, but
would significantly obscure its implementation.

The function recordEdge can be any way of recording the next edge along the
Euler cycle; just printing it is easiest:

void recordEdge(int u, int v) // print an edge walked

{ (void) printf("%d --> %d\n", u, v);

}

The initial call of cycle to generate a solution is now simply:

cycle(0, 0); // Euler cycle starting at 0 returning to 0

which generates an Euler cycle that starts and ends at 0, with 0 → 0 as its first edge
(because cycle starts off by going via 0, the second parameter). We discuss alterna-
tives in the next section, below, to randomise the cycle and to avoid always starting
with the same edge.

Finally, the walked cycle matrix needs declaring and initialising:

// represent cycles of a complete graph with N vertices

int walked[N][N];

// initialisation; all cycles initially unwalked

void initialise()

{ for(int u = 0; u < N; u++)

for(int v = 0; v < N; v++)

walked[u][v] = 0;

}

In C, arrays may be initialised to zero when declared, so explicit initialisation is not
strictly required, but we provided explicit initialisation here in case the code needs to
be re-entrant or is to be translated into another language. Of course, in many languages
True and False will be used instead of C’s convention of 1 and 0.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

2.4. Randomised sequences
Performing a sequence of experiments in random order controls the effects of drift

and random error, and adding the constraint that every calibration value in the set
must be preceded exactly once by every other calibration value in the set normalises
any carry-over effects. Karl Popper called such sequences “shortest random-like se-
quences” [29]. Therefore, for experimental design, we need to modify our algorithm
so that the search for an unwalked cycle to recursively follow is randomised. The
easiest way to do this is to use a random permutation in cycle’s for-loop, as follows:

void cycle(int u, int v) // follow a cycle from u to u via v

{ if(!walked[u][v])

{ // keep the cycle matrix symmetric

walked[u][v] = walked[v][u] = 1;

recordEdge(u, v); // record edge from u to v

for(int w = 0; w < N; w++)

// cycles from v via a randomly permuted vertex

cycle(v, permutation[v][w]);

// get back if not already at u

if(v != u) recordEdge(v, u);

}

}

There are N independent random permutations (indexed by v) to avoid dependen-
cies between between vertices: w is mapped by permutation[v][w] to a random
value in the range 0 to N − 1.

The Knuth-Fisher-Yates shuffle [20, p145–146] is a standard way to initialise such
a permutation matrix:

int permutation[N][N];

...

for(int u = 0; u < N; u++)

{ for(int v = 0; v < N; v++)

{ int randomv = randInt(v+1);

permutation[u][v] = permutation[u][randomv];

permutation[u][randomv] = v;

}

}

To avoid always starting an Euler cycle from the same vertex and always starting
with the same trivial cycle, the original base call cycle(0, 0) must be randomised
too:

cycle(randInt(N), randInt(N));

Since the Knuth-Fisher-Yates shuffle is carefully designed to generate a uniform
distribution of permutations, the choices made in the modified cycle will be uniformly
random.

The function call randInt(N) above returns a uniformly distributed integer from
0 to N − 1 inclusive; it is not standard C, but can be implemented using the standard
rand() function which produces a pseudo-random integer 0..RAND MAX.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

// return random integer 0..n-1 inclusive

int randInt(int n)

{ return floor(n*((double)rand())/((double)RAND_MAX));

}

This function assumes n << RAND MAX ≈ 231 [20, p119], and it is called in a context
where n ≤ N (where N is the order of the graph). The length of an Euler cycle is
N2, and it is implausible that (even robotic) experimenters have the time to perform
sequential experiment runs approaching N2 = 262 (i.e., over 1018) steps, especially as
randomisation is only relevant when repeated sequential experiments are run. Hence
the assumption is readily met in all realistic applications.5

Finally, to ensure different random sequences each time the program is run, the
random number generator must be seeded differently during initialisation. This may be
done in C from the current time:

time_t t;

srand((unsigned) time(&t));

As is good practice, the seed for the random number is stored in a variable, so if
any bug is found, a debugger can recover the value of the seed to repeat exactly the
same sequence of random numbers for a subsequent test run.

2.5. Solving the wine tasting problem
The basic algorithm, described above, uses integers as the names of vertices. For

many applications it may be more appropriate to use strings. We can define vertex
name strings:6

// assuming N = 3

// (C permits N > 3, which will make the next line not fully initialise the array!)

char *wines[N] = { "Merlot", "Pinotage", "Shiraz" };

and then convert the edge recording by changing recordEdge to print the names of
vertices rather than their numbers:

void recordEdge(int u, int v)

{ (void) printf("%s $\\rightarrow$\n", wines[u]);

}

Note how we used LATEX’s \rightarrow to generate a “→” symbol to make the
experiment sequence look a bit neater when typeset by LATEX.

Finally, we need to finish with a final explicit printf("%s\n", wines[0]), be-
cause printing the second vertex was otherwise lost in changing the recordEdge to
only print the first vertex rather than pairs of vertices.

5An alternative would be to use the function arc4random uniform() available in some implementa-
tions of C.

6Not shown here, but our wine sequence generating program, which is generated automatically from this
paper using our tool relit (see Section 3.1), checks at run time that N correctly matches the number of wines
declared. (It is a shame that this cannot be performed with a static check in C.)

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

With these changes, the code generates the following sequence: Pinotage→ Pino-
tage → Merlot → Shiraz → Shiraz → Pinotage → Shiraz → Merlot → Merlot →
Pinotage. (This actual sequence was typeset here by LATEX inputting a file generated
by running the C program, which itself was generated automatically by relit from the
code explicitly published in this paper.)

It is easy to confirm by hand that this is indeed an Euler cycle (perhaps by map-
ping wines to the letters A, B,C and ticking off the edges in Figure 2). Note that, as
an Eulerian cycle ends at the starting vertex, an additional drink of Pinotage (in this
worked example)7 is required: thus a balanced scientific experiment would repeat se-
quential experiments with randomly selected starting vertices each time, using the ideas
of Section 2.4. Randomisation avoids the potential bias caused by drinking too much
Pinotage — in the sequence above Pinotage happens to be drunk both first and last, and
hence once more than any other wine. Randomisation also avoids possible conscious or
unconscious experimenter bias caused by the researcher choosing, say, to always start
or finish with their favourite wine. After enough randomised sequential experiments,
these biases will be evened out.

Wine buffs will be tempted to go to a city like Königsberg, drink some wine, cross
a bridge, consider the wine on the other side of the river, cross another bridge, and so
on — and recording the results. However, trying it for larger N may result in a new
meaning for “drunken walk.”

Part II

Reproducible algorithms

3. Finding reproducible algorithms

While we continue to take it for granted that algorithms are described vaguely —
in English, in pseudo-code, with illustrative fragments of uncompilable code, or left as
exercises for the reader — unnecessary errors often persist in their real-life implemen-
tations. (Some of the problems are reviewed in [43; 45].) Often, of course, publications
are not always aiming to describe the algorithm as such, but to do something else —
like teach students, analyse complexity, prove some theorems, discuss how to optimise
them, and so on. This “dual use” creates things that look very much like algorithms but
which cannot be reliably used in practice as algorithms; the likely confusion calls to
mind Feynman’s critique of cargo cult science [10]. In fact Feynman was devastatingly
critical of work that was not reproducible because it wasted everyone’s time who tried
to continue the work; Mlodinow describes an incident where Feynman comments on
lack of reproducibility due to fraudulence [26].

7The wine experiment sequence was generated automatically by running the randomised version of the
code shown in this paper; it was run and the results saved to a file winelist.tex, the last line of which was
extracted (several times) for this paragraph by using Unix’s tail -n 1 winelist.tex. Each run of the
program will generate a different random example for this paper.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Ironically, then, in one of the very few areas — programming — where we could be
completely explicit about our work (e.g., if an algorithm works, it is text that can surely
be published explicitly) there is a default culture of vagueness and “abstraction” that
undermines scientific reproducibility if not progress. English, pseudo-code, fragments,
exercises . . . none are scientific statements: they are irrefutable [29].

Often software practice and experience emphasises the efficiency of running pro-
grams, but we should also be concerned with the end-to-end time to develop a program,
confirm it is correctly implemented, and to run it. In many cases, the development time
dominates the run time. Unlike the bulk of the algorithms textbook literature, our goal
was to have a reliable program quicker, not a faster program later. As we shall argue,
literate programming and its variants are powerful approaches to be more scientific
when publishing algorithms, and hence to end up with more reliable programs working
in the wider world. In this paper, we developed a new variant of literate programming
for this very reason.

Programs that can be compiled and run involve details that are generally not rel-
evant to discussions of algorithms. Furthermore, writing a paper or book is a human
process, so transcription errors may creep into any algorithms presented.

There is even the danger that publications may be negligent: sometimes, authors
do not check their published code adequately and referees take the correctness of the
code on faith (partly because it is too hard to reconstruct the code from the paper, and
too hard to disentangle whether problems are due to the published code or the referee’s
own errors in the reconstruction of it). “Negligent” is a harsh word, but it covers a wide
range of common problems ranging from deliberate fraud, unintentional exaggeration,
accidental uncorrected errors, and well-intentioned aspirational comments — like, the
program would obviously work like this (even if it does not quite work yet). Even trivial
and excusable errors, like typos and spelling errors, undermine the reproducibility of
program code.

All this means that finding an algorithm in the literature that can be used to solve
a real problem is fraught with difficulties. In our case, having developed an algorithm
to solve our problem — because it is a very common problem for experimenters who
may not have sufficient programming expertise — we wanted to take care that what we
published (i.e., this paper) would be both clear and able to be copied from the paper as
real, executable code without problem. We wanted to make it readily — and reliably
— available.

At the start, we developed our algorithm first in Mathematica. Mathematica is
excellent for presenting the results of programs in papers, as it allows documentation,
code and results to be interleaved in a polished typeset document where Mathematica it-
self manages all the editing. There is a Mathematica Journal full of papers constructed
with it. However, Mathematica it is not good for writing papers about algorithms, as
it requires code to be runnable exactly as and in the order as written; although you
can hide complete blocks of code from the reader, the constraints on expression are
onerous (for example, you cannot show an interesting line from within a block of oth-
erwise hidden code). In a paper you generally want to discuss fragments or lines of an
algorithm in the order that suits the exposition — you do not want to be constrained
by the declaration or block syntax of the implementation language. Notwithstanding
these concerns with Mathematica, we were excited by our algorithm and ported it to C

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

(which is simpler, better known and non-proprietary). We then started to write in LATEX.
LATEX [23] of course is a very flexible typesetting system, accepted by many journals.
We were aiming to publish and share our findings as widely as possible. Finally, we
ended up with the present paper.

As we wrote, we reviewed and revised this paper. We naturally made many changes
to the original Mathematica program code. For example, we had initially used variables
i, j. . . in the program, but for writing the paper we decided to use u, v. . . as these
are conventional names for graph vertices.8 So, over time, the original code and its
description in the manuscript drifted far apart; yet, in principle, it is essential that the
manuscript was synchronised with the source code so that it described the source code
without error. Ideally, the paper should be automatically changing to reflect updates to
the source code — but we were doing it by hand.

In a word, we did not want to be sloppy, yet our initial approach to writing the pa-
per was making life hard. It was tempting to take an easy approach, and only describe
our algorithm in words or pseudo-code, being a bit vague about the details. Conven-
tionally, neither the readers of the paper nor we, the authors, would worry about slight
discrepancies, because they would be invisible and unknown.

An obvious way to help ensure that executable code in a manuscript is correct is to
cut and paste the relevant code in the paper to construct a program. This is very awk-
ward if the code is spread out in the paper. Sometimes LATEX commands will mean that
the typeset code will differ from the intended correct source code. For many reasons,
then, the code in the paper is not complete and usually has to be edited to make it work.
In short, a “cut and paste” approach is not reliable.

But why do something by hand repeatedly when you can design a tool to do it with
far more generality and reliability? Once a tool is written to do this chore automati-
cally, the authors are freed from worrying about maintaining and checking the code in
the document as it is repeatedly edited and revised: it should be done automatically.
Reproducible authoring then becomes easier and more reliable. A win win.

This idea is very similar to Knuth’s literate programming [19] which combines
source code with explanatory documentation; however the format of the documenta-
tion generated by literate programming is not suitable for a journal manuscript, as it
introduces named sections and other paraphenalia — which may be very convenient
for programming, but is quite arbitrary notation to impose on a paper intended for a
general readership. However, relit retains the section naming convention (using names
like <this>), but by design none of them would normally appear in a paper. (Such
names only occur in the present paper due to our explaining relit; there are none and
none needed in Part I of this paper where we explain the example algorithm.)

Literate programming has the disadvantage for us (and for many authors) that the
author has to start with the literate program, and in this instance we had already drafted
the manuscript as a LATEX document. Warp is a type of literate programming that ex-
tracts code from a normal program commented in XML, thus avoiding the separate
processing that literate programming normally requires to generate the executable pro-
gram [42]. Our earlier paper on the related Chinese Postman Tour [41] used warp to

8Unfortunately wine names starting with u, v, w, are not commonly recognisable.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

(b) Literate programming

WEB file

Source code Latex file

Publish

The published document

must be formatted in

an idiosyncratic “literate

programming” style.

(c) Loom & Warp

Latex file Source code

Temporary

Latex file

Publish

The published document

is unrestricted, but at the

expense of managing

several source files.

(a) Conventional

Latex file Source code

Publish

The published document

and the source code

are independent and

probably inconsistent.

(d) This paper

Latex files

Source code Publish

There is only one source

file to manage, and the

published document is

unrestricted.

Editable files

are shaded

Generated

files

Figure 3: Comparing various ways to write about programming. Note that in the conventional approach (a)
there is no guarantee that the published paper faithfully represents the source code, as the paper and source
code can be (and will be) edited independently: what is published has no automatic connection to the source
code. (Although not made clear in the diagram, typically source code and LATEX documents will be split into
multiple files for convenience. In principle, all methods can handle multiple files.)

present accurate Java code.9 Loom [15] (originally written by Janet Incerpi and Robert
Sedgewick for their classic algorithms book [34]) is another approach, similar to warp,
but allows the use of Unix filters to perform arbitrary transformations of code (e.g., to
handle special symbols) that is then inserted into arbitrary documents.

In the present paper, however, we had already been working on the code in the
paper, in the usual informal way. To avoid this becoming increasingly sloppy (or, con-
versely, a huge burden to manage), we therefore developed a novel “reversed” literate
programming approach: using it, the code is exactly as written in this paper (i.e., what
you are now reading) and it can be automatically extracted to generate a program that
is directly executable. Readers of this paper can be assured the code is reproducible,
and if they wish they can start with the paper, use our tool, and automatically extract
all the code themselves and run it or develop their own programs directly from it.

The point is: we know that the code shown in this paper works, and moreover,
we have a lightweight, fully automatic process that goes directly from this paper to
executable code. What you now see as published may not be all of the code,10 but the
code shown does work as shown.

Figure 3 compares the main forms of literate programming, including our new ap-
proach. There are of course many other related approaches, ranging from the very
simple such as our reverse literate programming to the highly sophisticated, such as
PreTEX [22] that are designed for large complex projects and have commensurate learn-
ing curves: for a review see [42] and [47] for up-to-date summaries of available tools.

9The Chinese Postman finds the shortest cycle in a weighted graph that is not necessarily Eulerian (i.e.,
some edges may need to be walked more than once); it is a non-trivial generalisation of the problem discussed
in this paper.

10There is exactly one line missing from the main section of the published paper — as our tool can tell
you; see Section 3.3.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

3.1. Reverse literate programming — the details
Code in LATEX documents is often written in “snippets” in the following conven-

tional style:

\begin{verbatim}

printf("example code");

\end{verbatim}

When typeset, this will appear as “printf("example code");” somewhere in
the typeset document — in fact, as it does in this very sentence.

However, the code the reader can see above might be — and usually would be —
just text manually written in the original LATEX document: it may have errors, it may
not be real program code, and it may not have been checked by compiling it — it may
have been manually copied and pasted from some program, and probably errors will
have been introduced while trying to follow LATEX conventions (such as handling the %
and \ characters, which have different meanings in LATEX and in program code).

To assure code is correct, we need to be able to generate a file from the code snip-
pets like this, then the file and the code it is made up from can be checked. Unfortu-
nately, the snippets may be scattered in any order throughout the paper, and perhaps
the author does not want to burden the reader with all the details of the entire program
so often additional code will also be required to make a compilable program.

In our approach, we name snippets, and then use our tool relit to collect the named
snippets to assemble them into one or more source code files that can then be compiled
and run in the usual way. We allow snippets to be hidden from the reader — for
instance, placing them beyond the “end” of the document, that is placing them after the
LATEX’s \end{document} command which signals the end of the typeset document.
Relit instructions can also be placed in separate files that are not processed by LATEX at
all. Hiding snippets allows the LATEX source file to define all the code required, even
when not all of it is relevant to the reader (for example, the reader does not always need
to see standard declarations).

A relit name is defined by preceding any part of the LATEX document with a special
comment:

%define name /start pattern /±offset , /end pattern /±offset

The pattern style (general regular expressions are permitted) is deliberately remi-
niscent of the form used by the Unix utility ed, and the entire line (starting with the
standard LATEX comment symbol %) is a LATEX comment so it is ignored completely in
the typesetting of the document. The effect is that name is defined to be the text in the
file over the specified range of lines. For example, the LATEX for the code snippet above
was preceded by a definition of the name demo as follows:
%define demo /verbatim/+1, /verbatim/-1
\begin{verbatim}
printf("example code");
\end{verbatim}

Here, the %define command defines the name demo to be all the text — as it
happens, only one line in this case — between the line after one containing verbatim

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

(which happens to be the line \begin{verbatim}) upto the line before the next line
containing verbatim (which happens to be the line \end{verbatim}).

To create this example, for it to be typeset as shown above, we used relit to generate
a file, and then that file was input (several times) into the paper to show the actual
value of <demo> in each place where the text was needed. Therefore, the original text
actually occurs only once in the source file, and if it is edited there, all of the examples
and discussion get automatically updated. Relit thus ensures that all the examples are
consistent; if we decide at a later date to improve anything there is only one place
to edit — and it is impossible to forget to update each example, as updating happens
automatically. Of course, repeatedly using exactly the same code into a paper may be
unusual, but the point is relit has no problem, and in fact it was helpful for the present
paper to have the flexibility to be able to do so.

Relit generates source files by writing file definitions analogously to name defini-
tions, such as:

%generate filename ., /%end/-1

text ...

%end

However, to help assemble snippets together, within text any occurrence of <name >
is replaced by its definition, and so on recursively. For example,

%generate hello.c ., /%end/-1

int main(int argc, const char *argv[])

{ <demo>

return 0;

}

%end

will generate a file called hello.c that should compile and do whatever <demo> does.
In fact, with our example, the C compiler will complain:

hello.c:2:3: warning: implicitly declaring library function

’printf’ with type ’int (const char *, ...)’

[-Wimplicit-function-declaration]

because in fact hello.c does not provide the needed declaration for printf. That is
the point: the approach enables us to write a paper and easily check whether the code
we are writing is valid. Note that relit can also generate makefiles [25] as well, so
the entire code, compiling and testing protocols and indeed arbitrary transformations
to generated files can be conveniently combined into a single LATEX source document
and maintained in one place.

Illustrating relit’s commands out of context (i.e., not showing the surrounding En-
glish descriptions of the code), as above, does not explicitly show the powerful leverage
the approach provides for reflection during the authoring process. The description and
explanation of code embeds the code in the same place; it is thus easy to improve the
description and simultaneously improve the code, and conversely. The author can think
in either language, and slip in and out of either description without losing track of their
thoughts.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

As a matter of fact, we realised we needed to add some explicit code to the paper
only after we had implemented relit and found some oversights in our original descrip-
tion. Reverse literate programming helped us find the problems: various declarations
and a bit of wider context were needed to make the algorithm described in this paper
properly compile and run without error. The following code generation, creating a
file euler.c, works correctly once relit substitutes the values for the various names,
which have been defined elsewhere in this paper:11

%set-tag \seen{}

%generate euler.c ., /%end/-1

#define N 3 // for a graph with N vertices

<common-declarations>

<declare-walked>

<define-basic-recordEdge>

<define-non-randomised-cycle>

int main(int argc, const char *argv[])

{ <main-body>

return 0;

}

%end

This code was written exactly as shown, and it is easy for the authors to check it
actually works: with relit it generates the file euler.c which can be compiled and
run, and will get the expected results. This implies the code <main-body> and so on
recursively also compiles and works. Using make [25] with a makefile (also generated
by relit from the same document) made it very easy to automatically update the code
files and unit test them repeatedly as the publication evolved.12

Of course it is unlikely that a normal paper (that is, one not explaining relit) would
present the code shown explicitly above: usually, the %generate command would
have appeared after LATEX’s \end{document} so it would disappear and not be typeset
as part of the published paper. Similarly, any details that need not be part of a typical
published paper can be hidden. As we will discuss in Section 3.3, relit can tell the
author what code is visible and what code has been hidden to avoid any uncertainty.

Notice that relit allows the generated program code to be put in the correct order
required for a compiler, but the code visible in the paper can be presented to the reader
in whatever order is best for the narrative of the publication. For example, although
<main-body> appears near the end of the code, it might be explained to the reader
before showing increasing levels of detail of the implementation.

Name definitions can occur freely before or after they are used. For example, in
this paper the name <common-declarations> (used above) is defined later, after the
end of the LATEX document: the headers are a detail we feel readers of the present paper
do not need to see written out in full, but they are necessary to be able to generate

11The code shown here is the actual code that relit used — we just placed the relit % comment inside the
LATEX verbatim environment so it could be seen.

12By default relit only updates files when their content changes, which makes using make efficient, as
most edits to a document do not update any files generated from it.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

executable code. There are no restrictions on the order of generating files: they, too,
can be specified in any order that best suits the needs of the author.

This complete freedom of order distinguishes relit from other approaches such as
used in Jupyter [30] and Mathematica [48], which both impose an order on the doc-
ument to suit the compiler rather than the reader or author.13 Org-mode [33] is an
EMACS editing environment that manages stuctured documents, like notebooks, that
can generate other files, including code and LATEX documents. Indeed, all of these ap-
proaches use special or essentially proprietary tools to edit and maintain the documents
(whereas relit does not). In addition, these and similar tools typically require units of
code to be syntactically complete, which is not required by relit, as made clear with the
simple opening example in Section 1.2 and with the more complex Knuth-Fisher-Yates
shuffle example in Section 2.4.

As well as in the document, as shown above, names can also be defined in relit’s
command line parameters, so any textual information can be imported when the tool
is run — such as a version number, the date, or even output from Unix tools such as
expect [24] to refer to unit test diagnostics.

Our tool relit provides all the normal checks, such as reporting if names are defined
and never used, used recursively, multiply defined, etc. Indeed, some authors have used
deliberate “errors” as a way of providing metacomments: defining an unused name
results in its name and value being reported to the user — so the text is highlighted,
which can be used as a reminder to fix an issue with the document.

Relit is a Unix tool, written as a short C program, 480 lines long and, together with
this paper and documentation, is available from github.com/haroldthimbleby/

relit14

3.2. Generating any text, not just program code

In general, authors of papers may want any text generated, not just program source
code; for example, we showed the text generated by running our algorithm on a selec-
tion of wines in Section 2.5. In general the generated text may require further process-
ing or testing.

There are many ways to do this: loom for example, generalises LATEX’s \input

command to allow arbitrary processing, but this has the disadvantage that the approach
requires an intermediate LATEX file to be generated. Instead, our simple approach is to
use %generate to create a makefile or any shell script: then any processing whatsoever
can be performed, and of course it will typically generate files that are then included
in the LATEX paper. Indeed, this is how we generated the sample list of wine tasting —
using the makefile generated by relit, Unix’s make then generated a C source program
wine.c from the paper you are reading, which was then compiled and run (in the same
run of make), obtaining results saved to a file. Finally, that file was read in at the

13Mathematica is interesting in that Mathematica notebooks are first class Mathematica expressions, and
therefore can be processed in arbitrary ways by the notebook itself. Thimbleby [40] gives an example of
a published paper generated by Mathematica deleting the author’s explicit Mathematica in the notebook to
leave just the final paper without the underlying program it is based on.

14See footnote 1 on page 3.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

appropriate point when this paper was typeset (in Section 2.5), using \input to read
in the program’s saved output to insert it into the paragraph where it was needed.

Of course, files created by relit programming can be processed by other tools in
arbitrary ways, for example stream editors to decode LATEX typesetting conventions
(e.g., in normal LATEX, the common programming symbol & has to be written \&).

3.3. Checking hidden material — using tags

The authors of a paper should be able to check that the explicit code shown in
their paper is exactly what they want the reader to see and that nothing critical has been
omitted. On the other hand, a published paper should conceal details that are distracting
or irrelevant to its core message: it need not show all of the code a runnable program
requires, but just enough to get the idea across. The tension between these, being
explicit and being concise, is a recipe for error: what is hidden, by definition, cannot be
seen, yet some omitted information may be required for achieving a complete program.
Worse, the reader of the paper may not be certain what is missing, and they may not
have the skills or time needed to reconstruct it correctly. Compounding the problem
is the so-called “curse of knowledge” [28]: the authors of the paper have privileged
knowledge (in principle they know everything about what they are talking about) and
they may therefore be unaware that some things have not been explicitly mentioned in
the paper — it is very hard to distinguish between what they know in general about
what they are writing and what they think they know (perhaps inaccurately) is in the
paper.

Tools like warp and loom help the authors ensure that code published has been
obtained directly from the working programs, but it is still possible to write code in the
paper that has never been tested or compiled, and also to leave a lot of essential context
in the program that warp or loom do not draw into the document. Figure 4 summarises
the challenges.

Unfortunately, in reverse literate programming, generated code can include names
that are defined anywhere in the source documents, and the defined values themselves
may or may not be visible in the published paper, and so on recursively. It is therefore
impractical to manually determine what code is visible in the published paper and what,
if any, is not visible.

Our tool, relit, allows code to be tagged, and although the tags can be used for
any purpose, a useful application is to keep track of what code is visible and what is
not. The approach is simple; the define and generate commands can be followed
by optional tags:

%define name start , end [, tag]

%generate filename start , end [, tag]

For every file generated, relit additionally generates a duplicate file but marked up
with the tags, with the relevant tags output as each name (or filename) is expanded.
The tags are arbitrary text as supplied by the author, but will typically be LATEX macro
names that can be defined to highlight text in any way that the author chooses. Of
course if the tags include names like <stuff > then they will be expanded as normal
(the names can be defined anywhere, generally after the end of the document). This

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Relit All source code and published paper in the LATEX source file or files.
Code may be hidden, but only with deliberate effort. Intended for peer
reviewed publications. Diagnostics for both missing and defined but
unused code, etc.

Loom
and Warp

Some code is visible, but most is hidden in separate files. Good for
publications.

Literate
programming

No code is hidden and all the code and document is in one place. Ideal
for internal documentation rather than journal publications.

Conventional
approach

No connection between published paper and program source code;
there is no link between the source code and the published paper. Er-
rors and inconsistencies are easy to introduce; no diagnostics possible.

Figure 4: What the author writes and what the reader sees should be closely aligned, ideally with the reader
able to deduce full working code from the published paper. However, setup and other code is often hidden
from the reader, and probably held in files separate from the published paper. The more code that is hidden,
the more likely it will drift into complexity; critical details may be accidentally concealed from the reader.
Conventional literate programming hides nothing, but typically makes the result too large to be convenient
as a journal paper. Loom and Warp help ensure code published is correct, but it may be incomplete. The
present paper’s approach, relit, ensures that what the authors may choose not to publish can easily be checked
with simple diagnostics (see Section 3.3) — and what is not published remains in the original LATEX files, so
remaining visible at least to the author.

feature is useful if the tag is complicated (e.g., writing <tag> is easier and more reliable
than writing out a tag in full every time it is needed) or if the author wants a tag to have
many lines of text.

With tagging, we can readily obtain typeset text showing where code has come
from.

However, since tagging each name definition is a bit tedious — and therefore itself
error-prone — a default tag can be defined to apply to all future relit commands:

%set-tag tag

That tag is then automatically applied to all subsequent definitions (and files) until
it is superseded, or overridden by explicit tags. Hence, typically a LATEX document will
start:

...

\begin{document}

%set-tag \seen{}

...

published document including visible definitions

and then have the following at its end:

...

\end{document}

%set-tag \unseen{}

...

hidden definitions and files

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Here, the LATEX code \end{document} signals the end of the published LATEX doc-
ument, and all subsequent text will be hidden from view in the published document.
Normally this part of a LATEX document is empty, or has accumulated “junk” text and
thoughts the authors cannot steal themselves to really delete — the space has a useful
role in co-authored documents, where one author wants to delete text from the pub-
lished document, but does not want another author to lose some idea without a chance
to reconsider it before it is deleted. In our case, with reverse literate programming, the
hidden space can also be used for defining program code that is needed for compiling
and testing, but is considered too much detail for visible inclusion in the published doc-
ument. Although there is an advantage having everything in one file to simplify editing,
if desired, relit allows the code to be placed in separate files if “hiding” it beyond the
end of the LATEX seems contrived.

The illustrative tags \seen{} and \unseen{} used above are arbitrary; one might
choose to use \color{black} and \color{red} instead, say. In the complete example
shown below (having defined \unseen{} appropriately) the “∗∗∗ hidden code ∗∗∗”
marker is provided automatically and therefore correctly.15

The code shown next, below, is one of the example algorithms already discussed in
this paper: the highlighted text generated by relit reveals code that was not previously
shown in the paper but which was generated for the compiled test programs. In other
words, the highlighted code is included below, but it as used elsewhere in this paper
that line was hidden from sight from readers (by being placed after \end{document}).
To be clear, the code shown below was generated by relit, including the highlighting,
and it was then inserted into this LATEX document — essentially, the program code was
typeset by writing \input{file}.

#define N 3 // for a graph with N vertices
#include <stdio.h> ∗ ∗ ∗ hidden code ∗ ∗ ∗
// represent cycles of a complete graph with N vertices
int walked[N][N];
void recordEdge(int u, int v) // print an edge walked
{ (void) printf("%d --> %d\n", u, v);
}

void cycle(int u, int v) // walk a cycle from u to u via v
{ if(!walked[u][v])

{ // we will have walked the cycle u to u via v
walked[u][v] = walked[v][u] = 1; // keep cycle matrix symmetric
recordEdge(u, v); // record walking edge from u to v
for(int w = 0; w < N; w++)

cycle(v, w); // walk any unwalked cycles from v
if(v != u) // get back from v to u if not already at u

recordEdge(v, u);
}

}

int main(int argc, const char *argv[])
{ cycle(0, 0); // Euler cycle starting at 0 returning to 0

return 0;
}

The authors of this paper are happy that these standard declarations are not taking
up space in the published paper — in any case, if a reader of this paper faithfully copies

15Correctness here depends on the author not cheating! LATEX is programmable, so a determined author
could defeat the reliability of the tagging mechanism if they were so inclined.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Figure 5: An extract from a simple relit TEX-mode index, as made for this paper. (It is possible section
numbers are incorrect in this printing, depending on how you handle LATEX indexing; see appendix on mak-
ing this paper.) Only names and files explicitly shown in this paper have been included (i.e., definitions
where the normal relit process has not shown names to the reader, along with all hidden material after the
\end{document}, have been excluded).*

the published code and omits these lines, good compilers will provide error messages
that help solve their problems (as we discussed above, in Section 3.1). Alternatively,
a reader of this paper can download the source code of this paper, run relit on it, and
then they will have all the executable files for all of the examples.

To summarise: using tags lets an author assure themselves that readers of their pa-
per have the right details to reproduce the algorithm as exactly as they wish — balanc-
ing detail with verbosity and pedantry. As shown above, highlighted in the diagnostic
output from relit, the present paper fails to disclose one line of code. However we, the
authors, consider this omission an unnecessary, obvious and distracting implementa-
tion detail — in fact, we know if this line was omitted by a reader, their C compiler
would help them correct it, so it is not a serious problem.

Apart from the original literate programming approach that tells the reader every-
thing, which may be overwhelming, we know of no other approach that gives the ben-
efits of concise algorithm publication combined with such strong assurances of repro-
ducibility.

3.4. A more flexible TEX-mode

As described above, relit uses % to introduce commands, like %generate and
%define; the advantage of this approach is that LATEX completely ignores relit com-
mands because they are in the form of LATEX comments. However, in addition, relit
provides an integrated “TEX-mode” that makes the syntax it uses real TEX or LATEX
code; this is more sophisticated, requires a little TEX programming, but has some sig-
nificant advantages that some authors may appreciate. In TEX-mode, relit becomes
user-programmable, which of course is impossible with the %-comment form of com-
mands.

In TEX-mode, the author defines relit commands to do arbitrary typesetting (as well
as continuing supporting relit), such as printing where they are used in the document
to help prepare the paper or keep track of how relit is being used, or an index of relit
names can be constructed, which would help in large projects. An example (from this
paper) is shown in Figure 5.

*This paper, which is both a paper explaining an algorithm in the usual way and a paper explaining
relit in detail, is complicated by unusually having to write some relit commands inside LATEX verbatim

environments, so the reader can see them but where simultaneous indexing is impossible. (In normal use,
relit commands would be outside verbatim and similar commands and hence they would be processed by
LATEX and would normally be invisible to the reader.) Thus, index entries marked * in Figure 5 were provided
by using duplicated relit commands written just outside the verbatim environments so LATEX could evaluate
them to make the starred index entries as shown.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Normal mode TEX-mode
% define name re 1, re 2 \relit{define name re 1, re 2}

% define name re 1, re 2, tag \relit[tag]{define name re 1, re 2}

% generate name re 1, re 2 \relit{generate name re 1, re 2}

% generate name re 1, re 2, tag \relit[tag]{generate name re 1, re 2}

% set-tag tag \relit{set-tag tag }

% any comments permitted \relit{ends}

Figure 6: Corresponding normal and TEX-mode syntax for relit commands. The final case in the table allows
\relit{ends} to mark the end of definitions (anything convenient, such as text in a comment can also be
used).

The TEX-mode syntax corresponds directly to the original syntax, and is sum-
marised in Figure 6.

Here is an example of the use the TEX-mode so the normally invisible relit com-
mands used to save text have been made visible by defining \relit appropriately in
LATEX. Defining \relit like this can be useful when reviewing a document.
RELIT: generate TeX-mode-demo.tex /This/, /relit.ends/-1 ←RELIT

This is a simple example that generates a file TeX-mode-demo.tex, which will
contain the original LATEX source for this paragraph after relit is run.
RELIT: ends ←RELIT

For completness, the generated text (input from the file relit generated) is shown
below inside a LATEX quote environment:

This is a simple example that generates a file TeX-mode-demo.tex, which will
contain the original LATEX source for this paragraph after relit is run.

Relit warns if TEX-mode and non-TEX-mode commands are mixed in the same
files: the point of TEX-mode is that authors can use TEX to keep track of all relit
commands, but using the % relit notation as well (which of course TEX completely
ignores) would undermine reliable tracking.

The reason that relit makes TEX-mode an option, rather than being the only method
of use, is that the feature introduces a conceptual layer of complexity the standard ap-
proach does not require. Using TEX-mode requires not just defining some TEX com-
mands (a matter of copying them from somewhere that already works) but also under-
standing how to control TEX’s syntax with regular expressions, which is harder as you
can no longer use \, %, {, }, etc, in the same way. If you make mistakes in TEXmode
strange things can happen that are hard to debug because TEX/LATEX are complex; in
contrast if mistakes are made in the normal %-mode, nothing strange happens in LATEX
(because relit commands are ignored by LATEX) and relit reports any errors.

3.5. Name subscripts

Relit allows authors to name and combine snippets of code, but surprisingly often
the author has trouble thinking of names. For example, the publisher Elsevier wants to
have a list of figure captions, and if relit is used to collect the figure captions, then we
either need the author to invent many names and keep track of them, or we need a way

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

of subscripting names — then the author only needs to invent one name for each class
of things (such as figure captions) that they want to keep track of.

Introducing programming into relit would make it more complex than seems war-
ranted, but subscripts are very useful even with no arbitrary arithmetic allowed on
them.

The approach relit takes is that any name can have a # symbol in it, and this rep-
resents the subscript. Each time a name is used with a #, the subscript for that name
increments, having started at 1. Hence,

%generate fig#-caption.txt ...

%generate fig#-caption.txt ...

%generate fig#-caption.txt ...

will generate three files called, respectively, fig1-caption.txt, fig2-caption.txt and fig3-
caption.txt. If the author inserts another similar %generate, say between Figures 1
and 2, then the caption subscripting simply introduces a new numbered name in the
sequence. The author does not have to keep inventing and keeping track of any new
names — they can just copy-and-paste one subscripted name.

Using subscripted names in %generate is thus quite straight forward. When sub-
scripted names are used in %define commands, the effect is identical: a subscripted
name is defined, and the subscript increments each time it is redefined. Somewhere,
unlike with file names, the author will of course want to use these defined names. To
use a name, the author writes <name1>, <name12>, or whatever, as usual. Relit will
report errors if incorrect subscripts are used, if a defined subscript is not used, and if an
explicitly subscripted name is defined (like name4 when name# has also been defined
and has counted, in this case, to 4).

In fact, in relit names and file names work completely identically (they are in the
same namespace), except that %generate creates a file as a side-effect as well as defin-
ing the name. Thus, if an author generates a file, the file name can also be used as an
ordinary relit name, so that its value can be used anywhere else in the file, for instance
to generate a set of related files. (This feature is used in the present paper: by gen-
erating such “nested” files, we were easily able to run Unix’s wc on snippets of code
within larger files.) The way subscripts work is also identical, as described above.

4. Further work on relit

The experience of developing and using a tool drives new ideas, creating a tension
between polishing the legacy or generalising and extending the scope and reach of the
ideas. Here are several key potential developments:

1. The syntax of relit could be improved. For example, instead of defining names
or generating files, relit commands could be considered more generally as
specifying arbitrary text from an expression, which is then processed. Like
loom, commands could pipe their output to files or other Unix processes. This
would generalise relit. At present, the same effect can be achieved, albeit after
one extra step, by using makefiles and other external processes filtering the files
that are generated — but this is “bad practice” as it involves creating an
arbitrary namespace, specifically the names of the temporary files.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

2. An unnecessary restriction in the current version of relit is that regular
expressions specify lines of text rather than strings. If an author wants to write
code like \texttt{sin(x)} then we currently cannot pull out the value
“sin(x)” unless the sin(x) is written on a line on its own, which is an
awkward convention and introduces unnecessary blanks in the author’s text.

3. Relit’s syntax is fixed, and must be adapted if it is to be applied to international
languages other than English or to programming languages other than LATEX. At
present, relit is open source and available for any such improvements, and
adapting its (currently built-in) syntax would be trivial as the parser is uses a
standard regular expression engine.

4. Relit is an example of a “parallel language”: a language grafted into an existing
language, in this case, relit’s simple commands are squeezed into LATEX.
Parallel languages are very common, but all of them are ad hoc and are
compromises. Think of HTML, CSS, PHP and JavaScript that have developed
conventions so that they can co-exist; or Java and JavaDoc; C and its #define
macro-language which defies C’s own syntax; or XML and its metadata; even
LATEX and TEX. Conversely, JSON has no parallel language. More research is
needed on parallel languages, so that when new languages are introduced they
can be extended in the future without unnecessary and perhaps fragile
compromises.

5. Relit could be extended with its own parallel languages. Relit allows LATEX and
code to be interleaved, but an author may want additional information or
annotations, such as program specifications, test cases, invariants, contracts,
author names, versioning information, etc: these might be neither program code
the author wants the reader to see, nor program code that should be compiled.

6. Although relit readily allows a single LATEX document to generate many
programs (e.g., in the present paper we generated a Euler cycle and a
randomised Euler cycle), it does not provide any built-in way to keep track of
the evolution of code. Of course, existing tools can do this; for example,
running diff on the generated programs from this paper shows several lines are
different, for instance that the two comments below are different:

21c8

< void cycle(int u, int v) // follow a cycle from u to u via v

> void cycle(int u, int v) // walk a cycle from u to u via v

— thus revealing a minor sloppy change between the two versions of the code
given originally in Sections 2.3 and 2.4 respectively. (As usual, the lines above
were generated automatically, and editing the original lines in this paper in
Sections 2.3 and 2.4 will change the lines above correspondingly.)

7. In this paper we have argued for the value of tools like relit. For good reasons,
we believe it enormously helps reproducibility and dependability of
publications. Whether it actually helps other scientists, and whether it can be
improved to help more authors to achieve their publication goals, is an open
question.

8. Finally, a harder question, which is more useful to answer is: of several
relit-like systems (org-mode [33] and others), which are more effective and

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

why? We currently lack the theories and principles of doing and disseminating
computer science so these critical questions are hard. Our final section, next,
explores these bigger issues.

Part III

Reproducibility: discussion and conclusions

5. The benefits of automatic honesty

Richard Feynman’s 1965 Physics Nobel Prize lecture (shared with Sin-Itiro Tomon-
aga and Julian Schwinger) reminds us that we polish our scientific papers to convey
what we have achieved rather than how we got there. As we refine and improve our ar-
ticles, their connection with the original work — our programs — can become tenuous
and ultimately deceptive.

This sloppiness creates a misleadingly “productive” culture which favours quantity
over quality of written output. It becomes accepted practice, because everyone seems
to benefit from taking the easiest route to publish more. It gives an advantage for the
scientists who do it [38]: cargo cult science is easier to publish. Indeed, what authors
even read all the papers they cite [37]?

It is noteworthy and arguably a symptom of this cargo cult that the ACM Com-
puting Classification System (CCS, dl.acm.org/ccs) does not even classify the core
activity publishing — yet publishing (including LATEX itself) is clearly a very active
field within computer science research. Evidently, thinking seriously about publishing
(which involves thinking about uncomfortable subjects like quality in publishing) is
not as exciting as just publishing!

As discussed in Part I of this paper, before we had invented relit, we ourselves
encountered the problem of discrepancies between source material and published ma-
terial while were searching the literature to help us in writing early drafts of this paper:
improving the English explanations in the paper naturally led us to talk about variables
u, v yet the program we were writing about still had variables called i and j in it. This is
an example of how it is very easy to slip without noticing from clarifying your writing
to simply making it up — here, we fell into the trap of talking about u and v because
those are standard ways of talking about graph vertices, but the program’s original i, j
were out of sight (at that time, before we had developed relit), and therefore incorrectly
described and we did not notice.

There is a legitimate stage in drafting papers where authors can freely write about
what they hope and intend will be true as placeholders for future work [44]. “Our
program will work like this . . . ” But if what they write has no rigorous connection
with reality it will never be straightforward to know when the aspirational gap has been
closed, and the authors thus risk eventually publishing misleading and time-wasting
papers. Readers generally have no way to distinguish sketches and visionary ideas
from actual achievements.

Feynman warned about the utter honesty — the special kind of integrity — essen-
tial to do good science [10]. But with computer tools to help we can go further than

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

conventional scientists: we can make this honesty automatic. And when honesty is
automatic, it becomes easy and reliable.

So automatic tools and techniques to encourage reproducibility, like relit, can help
you help yourself — and help your readers. Your readers should not have to work
out things for themselves you did not know you were not telling them. Our scientific
writing should not rely on readers having to use their insight to interpret and clarify
what we write; different readers may have different insights, and then it is not clear
what our science is communicating.

When describing something that is complicated, there is a temptation to simplify
and take short cuts. In the worst case, this results in publications that describe what
ought to happen, what we hope happens, but there are omissions that mean the claims
are not easily reproducible. Somehow it is too easy to reframe our programs so that it
sounds as if they work; all the details are too hard to check even for the original authors
— and as we convince themselves what we write is correct, then there seems to be less
and less need to go to the trouble of checking our code. When we conceal errors —
and, worse, when we conceal errors from ourselves — although our work may look
good, it holds back progress [39].

If a tool like relit is used, the code in the paper is exactly what works. If describing
it gets complicated, this cannot be denied. Instead of simplifying the narrative, the
author is encouraged to improve the code so it becomes easier to describe. This means
both the code and the paper improve, and improve together.

It must be pointed out that not everybody agrees under all circumstances. For
example, Knuth writes:

“The author [Knuth] feels that this technique of deliberate lying will
actually make it easier for you to learn the ideas.” [18, pvii]

Knuth’s argument is that a reader learns, and at first things need to be simplified with
“white lies” as he calls them [18, p44], and then, later with more knowledge and skill,
the reader can learn from more elaborate explanations that would have been incom-
prehensible earlier. However, this is Knuth’s strategy for writing his substantial and
very successful TEXbook, which describes in a single document a very complex sys-
tem, namely TEX itself. He knows readers will have an arduous process ahead of them,
and the book tries to fit the needs of both beginners and experts. We believe that in
contrast, in normal scientific publishing, particularly in publishing comparatively short
peer reviewed papers — which normally focus on one or two ideas — the utter honesty
championed by Feynman has important if not overriding advantages. Another point of
view is that perhaps Knuth should have improved TEX so it did not require lying to ex-
plain it so well. On the other hand, one of the enormous strengths of TEX is that it has
not “improved” over time, so it is remarkably portable and dependable, unlike many
programs that are continually “improving” with new changes forcing users to upgrade.

While the TEXbook is an exceptional piece of writing, elsewhere Knuth himself has
said science is what we can explain well enough to computers [27], and that everything
else is art.

Our position is that if people are publishing scientific papers about algorithms that
cannot, as written, “be explained to computers” then their papers are too obscure to be

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

called science. Such papers compromise reproducibility. Science advances when art
becomes science; we hope, then, that ideas like reverse literate programming, and relit
in particular, will help move the dark arts of publishing programming into an improving
science of programming.

6. Conclusions

We developed an elegant algorithm to help design reliable sequential experiments,
and in the process of writing about it, trying to do reproducible research, we developed
a tool to help publish reliable papers about any algorithms in any language. This paper
then combined a description of the algorithm and a description of the tool, relit. Our
tool enabled us to write this paper with confidence that the code shown in the paper is
reliable.

Our algorithm generates Euler cycles or randomised Euler cycles for complete di-
rected graphs. It can be used to generate randomised (N, 2) de Bruijn sequences for
efficient sequential experimental design which controls for random variation, system-
atic error, and carry-over effects. The simplicity of our algorithm, written in basic C,
means that it is easy to understand and translate into other languages, which makes it
accessible to those engaged in experimental research.

Conventional literate programming prevents transcription errors by linking source
code and manuscripts. Our novel “reverse literate programming” approach, which we
have described and used in the preparation of the present paper, has allowed us to simul-
taneously edit the program code and its description in this paper at will, and repeatedly
automatically generate an executable program we could run and use to confirm the
integrity of the code as described exactly in the paper. Indeed, the paper had several
examples, in different programming languages, collectively showing the flexibility of
our approach. We hope that interest in literate programming is literally relit by our
demonstration of its combination of simplicity, practicality, and value for reproducibile
research.

This paper (including its full LATEX source from which all code and examples
can be generated, as well as all relit documentation) is available from github.com/

haroldthimbleby/relit17

Acknowledgements

We are very grateful to Paul Cairns, Rod Chapman and Bob Laramee for helping
us greatly improve the paper.

This research was funded by EPSRC under grant no. [EP/L019272/1].

17See footnote 1 on page 3.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

References

References

[1] ACM. Artifact review and badging. 2016. URL http:

//www.acm.org/publications/policies/artifact-review-badging.

[2] G. K. Aguirre, M. G. Mattar, and L. Magis-Weinberg. de Bruijn cycles for
neural decoding. Neuroimage, 56(3):1293–1300, 2011. doi:
10.1016/j.neuroimage.2011.02.005.

[3] P. E. C. Compeau, P. A. Pevzner, and G. Tesler. How to apply de bruijn graphs to
genome assembly. Nature Biotechnology, 29(11):987–991, 2011. doi:
10.1038/nbt.2023.

[4] T. H. Cormen. Thomas H. Cormen Professor Department of Computer Science.
http://www.cs.dartmouth.edu/∼thc/#solutions, 2016.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Boston, MA, 3rd. edition, 2009.

[6] N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen, 49:758–764, 1946.

[7] P. Diaconis and R. Graham. Magical Mathematics: The Mathematical Ideas That
Animate Great Magic Tricks. Princeton University Press, Princeton NJ, 2012.

[8] B. Eagle, D. J. Williams, and J. Dingley. Investigation of two prototypes of
novel noncontact technologies for automated real-time capture of incremental
drug administration data from syringes. Anesthesia & Analgesia, 125(2):
458–466, 2018. doi: 10.1213/ANE.0000000000002172.

[9] L. Euler. Solutio problematis ad geometriam situs pertinentis. Comment.
Academiae Sci. I. Petropolitanae, 8:128–140, 1736.

[10] R. P. Feynman. Cargo cult science, 1974 CalTech commencement address. In
R. P. Feynman and R. Leighton, editors, Surely You’re Joking, Mr. Feynman!
Adventures of a Curious Character, London, UK, 1992. Vintage.

[11] R. A. Fisher. Statistical Methods for Research Workers. Oliver and Boyd,
London, 1925.

[12] M. Fleury. Deux problèmes de géométrie de situation. Journal de
Mathématiques Élémentaires, 2:257–261, 1883.

[13] I. J. Good. Normal recurring decimals. Journal of the London Mathematical
Society, s1-21(3):167–169, 1946. doi: 10.1112/jlms/s1-21.3.167.

[14] R. W. Hall. Math for poets and drummers.
http://people.sju.edu/ rhall/mathforpoets.pdf, 25 November 2015.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

[15] D. R. Hanson. Printing common words. Communications of the ACM, 30(7):
594–598, 1987.

[16] C. Hierholzer. Ueber die möglichkeit einen linienzug ohne wiederholung und
ohne unterbrechung zu umfahren. Mathematische Annalen, 6(1):30–32, 1873.
doi: 10.1007/BF01442866.

[17] B. Hopkins and R. J. Wilson. The truth about Königsberg. The College
Mathematics Journal, 35(3):198–207, 2004.

[18] D. E. Knuth. The TEXbook. Addison-Wesley, Boston, MA, 1986.

[19] D. E. Knuth. Literate Programming, volume 27 of Center for the Study of
Language and Information Lecture Notes. Stanford University, Palo Alto, CA,
1992. doi: 10.1093/comjnl/27.2.97.

[20] D. E. Knuth. Seminumerical Algorithms, volume 2. Addison-Wesley, Boston
MA, 3rd edition, 1998.

[21] D. E.. Knuth. Combinatorial Algorithms, volume 4A. Addison-Wesley, Reading
MA, 1998.

[22] R. L. Kruse. Managing large projects with PreTEX: A preprocessor for TEX. In
TEX Users Group Annual Meeting, pages 1070–1074, 1999.

[23] L. Lamport. LATEX: a Document Preparation System: User’s Guide and
Reference Manual. Addison Wesley, Boston, MA, 2nd. edition, 1994.

[24] D. Libes. Exploring Expect: A Tcl-based Toolkit for Automating Interactive
Programs. O’Reilly Media, Sebastopol, CA, USA, 1994 (corrected printing
1996). ISBN 978-1-565-92090-3. URL http://expect.sourceforge.net.

[25] R. Mecklenburg. Managing Projects with GNU Make. O’Reilly Media,
Sebastopol, CA, USA, 3rd. edition, 2004.

[26] L. Mlodinow. Some Time with Feynman. Penguin: Penguin Press Science, 2004.

[27] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A K Peters, Wellesley, MA,
1996. Foreword by D. E. Knuth.

[28] S. Pinker. The Sense of Style: The Thinking Person’s Guide to Writing in the 21st
Century. Penguin, London, 2015.

[29] K. R. Popper. The Logic of Scientific Discovery. Routledge Classics, London,
2002.

[30] Project Jupyter team. Project jupyter. jupyter.org, 2016.

[31] N. Ramsey. Literate programming simplified. IEEE Software, (September):
97–105, 1994.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

[32] C. F. Sainte-Marie. Solution to problem number 48. L’Intermédiaire des
Mathématiciens, pages 107–110, 1894.

[33] E. Schulte, D. Davison, T. Dye, and C. Dominik. A multi-language computing
environment for literate programming and reproducible research. Journal of
Statistical Software, 46(3):1–24, 2012. doi: 10.18637/jss.v046.i03.

[34] R. Sedgewick. Algorithms. Addison-Wesley, Reading MA, 1983.

[35] R. Sedgewick and K. Wayne. Algorithms. Addison-Wesley, Boston, MA, 4th
edition, 2011.

[36] R. Sedgewick, K. Wayne, and N. Liu. Directedeuleriancycle.java. In
http://algs4.cs.princeton.edu/42digraph/DirectedEulerianCycle.java

Sedgewick and Wayne [35].

[37] M. V. Simkin and V. P. Roychowdhury. Copied citations create renowned
papers? arXiv.org>cond-mat>arXiv:cond-mat/0305150, 2003. URL
https://arxiv.org/abs/cond-mat/0305150.

[38] P. E. Smaldino and R. McElreath. The natural selection of bad science. Royal
Society Open Science, 3(160384), 2016. doi: 10.1098/rsos.160384.

[39] M. Syed. Black Box Thinking. John Murray, London, 2015.

[40] H. Thimbleby. Analysis and simulation of user interfaces. In S. McDonald,
Y. Waern, and G. Cockton, editors, Human Computer Interaction 2000,
Proceedings British Computer Society Conference on Human-Computer
Interaction, volume XIV, pages 221–237, 2000. ISBN 1–85233–318–9.

[41] H. Thimbleby. The directed chinese postman problem. Software — Practice and
Experience, 33(11):1081–1096, 2003. doi: 10.1002/spe.540.

[42] H. Thimbleby. Explaining code for publication. Software — Practice &
Experience, 33(10):975–1001, 2003. doi: 10.1002/spe.537.

[43] H. Thimbleby. Give your computer’s IQ a boost. Times Higher Education
Supplement, 9 May, 2004. URL http://www.timeshighereducation.co.

uk/story.asp?sectioncode=26&storycode=176549.

[44] H. Thimbleby. Write now! In P. Cairns and A. Cox, editors, Research Methods
for Human-Computer Interaction, pages 196–211. Cambridge University Press,
2008.

[45] H. Thimbleby. Heedless programming: Ignoring detectable error is a widespread
hazard. Software — Practice & Experience, 42(11):1393–1407, 2012. doi:
10.1002/spe.1141.

[46] M. S. Turan. Evolutionary construction of de Bruijn sequences. In Proceedings
of the 4th ACM Workshop on Security and Artificial Intelligence, AI Sec’11,
pages 81–86. ACM, 2011. doi: 10.1145/2046684.2046696.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

[47] Wikipedia. Comparison of documentation generators. accessed 2016. URL
http://en.m.wikipedia.org/wiki/Comparison_of_documentation_

generators.

[48] S. Wolfram. The MATHEMATICA Book. Cambridge University Press,
Cambridge, 4th edition, 1999.

[49] Michael Zink and Niall Murray. ACM multimedia systems conference. 2018.
URL http://www.mmsys2018.org/participation/research-track.

Authors’ biographies

Harold Thimbleby PhD, CEng, FIET, FLSW, FRCP (Edinburgh), Hon. FRSA,
Hon. FRCP is at Swansea University, Wales. His research focuses on human error and
computer system design, particularly for healthcare.

Harold has written several books, including Press On (MIT Press, 2007), which
winner of the American Association of Publishers best book in computer science award.
He won the British Computer Society Wilkes Medal. He is emeritus Gresham Profes-
sor of Geometry (a chair founded in 1597), and has been a Royal Society-Leverhulme
Trust Senior Research Fellow and a Royal Society-Wolfson Research Merit Award
holder. He has been a member of the UK Engineering and Physical Sciences (EPSRC)
research council Peer Review College since 1994.

See his web site, www.harold.thimbleby.net, for more details.

Dr. David Williams MBChB, FRCA, Dip. DHM, PGCME is at Swansea Univer-
sity, Wales.

David is a Consultant Anæsthetist at Morriston Hospital, Swansea; and Honorary
Associate Professor and Lead for Simulation Training at Swansea University Medical
School.

He has research interests in: Human Factors, computing, and medical device de-
sign.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

In addition to over 100 peer reviewed publications, he is the Director of four uni-
versity spin-out companies, and has won several international product design awards.
He is an editor of Anæsthesia and Intensive Care Medicine.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Appendix: Automatically generating figure captions

Many journals require a list of figure captions, as Elsevier does. The following
list of figure captions was generated automatically using relit to generate a subscripted
set of files, one for each figure caption, as described. This was very easy to do using
relit’s subscript (#) feature, and relit generated a sequence of uniquely-named files,
caption-1.tex, caption-2.tex, etc. Section 3.5 provides more details.

If we had been concerned, we could have used relit’s tags (see Section 3.3) to
distinguish captions that the reader of the paper can see and those that they cannot
(for some reason) see — for example, during editing a figure might have been moved
beyond the \end{document} so it was technically preserved in the LATEX source file,
but was not actually part of the published document. Such things typically happen
with co-authored papers, where one author wants to get rid of a figure (or other item)
but dare not delete it completely and unnecessarily upset the other author — the text
will still be there, but it will not form part of the published paper. As it happened, we
decided to keep all the figures!

The list below shows how relit has automatically generated all of the caption files
so that they are easy to include in a straight forward LATEX loop. However, since the
full captions are of course printed with each figure in this paper, to save space we used
a simple Unix filter to shorten each caption with an ellipsis.

Figure 1 caption: “Conventional literate [· · ·] serted back into this paper.”
Figure 2 caption: “Representations of th [· · ·] which is shown bottom left.”
Figure 3 caption: “Comparing various way [· · ·] can handle multiple files.)”
Figure 4 caption: “What the author write [· · ·] ible at least to the author.”
Figure 5 caption: “An extract from a sim [· · ·] excluded).*”
Figure 6 caption: “Corresponding normal [· · ·] comment can also be used).”

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Appendix: Typesetting instructions

Simply, just run make, and everything should happen automatically. However, for
the purposes of this paper, explaining what happens step-by-step is more useful.

First, then, build the executable relit by compiling its C source file:

cc relit.c -o relit

Now use relit to generate the files from this paper by running:

./relit relit.tex

For the present paper, some of these files are C and Java programs that need com-
piling and running to generate the examples used in the paper. Make has been set up to
do all this correctly — in fact, the makefile is also generated by relit — so the details
do not need to be shown here.

Now just treat everything in the standard LATEX way. Thus, the typeset document is
generated as follows:

Run pdflatex relit.tex to get relit.aux, relit.idx, etc
Run bibtex relit.aux to get relit.bbl
Run makeindex -s makeindex.sty relit.idx to get relit.ind

This will generate the bibliography and the index (used in Figure 5) for this paper.
As usual, you will typically need to run all this least twice: to get cross references
correct and to get the index page numbers correct — you have to run makeindex twice,
once to generate an index, then after running pdflatex again, to get the right page
numbers after the index has been inserted into the document — inserting the index
itself into the document changes page numbers, so another run is needed to get the
right page numbers.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Useful, but not for publishing

Below is a list of the generated files (i.e., files generated directly or indirectly by
relit needed to typeset this paper correctly) in the order as they are used in the docu-
ment. There are repetitions, because some are used more than once in this paper, for
example the file lastwine.tex contains just one word, “Pinotage,” and is used several
times in one paragraph (which was written on a single line in the LATEX source file) as
well used in this very paragraph as the final file included. (If any files do not exist or
cannot be read, the list below will have appropriate error messages in it.)

java-output – source line 223 (typeset on page 4)
linesofcode.tex – source line 323 (typeset on page 10)
corelinesofcode.tex – source line 328 (typeset on page 10)
sedgewickeslinesofcode.tex – source line 328 (typeset on page 10)
allLinesofcode.tex – source line 331 (typeset on page 10)
winelist.tex – source line 612 (typeset on page 16)
lastwine.tex – source line 614 (typeset on page 17)
lastwine.tex – source line 614 (typeset on page 17)
lastwine.tex – source line 614 (typeset on page 17)
nameDemo.c – source line 676 (typeset on page 21)
nameDemo.c – source line 699 (typeset on page 21)
helloWarn.tex – source line 731 (typeset on page 22)
linesofrelit.tex – source line 770 (typeset on page 24)
demo-tagged-euler.txt – source line 865 (typeset on page 27)
relit.ind – source line 888 (typeset on page 28)
TeX-mode-demo.tex – source line 928 (typeset on page 29)
diff.txt – source line 981 (typeset on page 31)
shorter-caption-1.tex – source line 1115 (typeset on page 40)
shorter-caption-2.tex – source line 1115 (typeset on page 40)
shorter-caption-3.tex – source line 1115 (typeset on page 40)
shorter-caption-4.tex – source line 1115 (typeset on page 40)
shorter-caption-5.tex – source line 1115 (typeset on page 40)
shorter-caption-6.tex – source line 1115 (typeset on page 40)
lastwine.tex – source line 1148 (typeset on page 42)

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Figure captions for Elsevier

Figure 1 caption

Conventional literate programming tools work as illustrated in Figure 1(a), which
is based on a diagram in the paper on the literate programming tool noweb [31]: as
shown, the author edits a source file (e.g., wc.nw) and the tool generates two files: a
compilable program (wc.c) and a stylised LATEX documentation file (wc.tex). Contrast
this with Figure 1(b), which shows the comparable diagram for relit. With relit, the
author edits a file (now wc.tex) from which relit can generate many files, including
wc.c, which is compilable. Additional files generated by relit can be used for any
purpose; for instance, in the present paper one of the generated files is a makefile so
generated files were compiled and executed with their outputs inserted back into this
paper.

Figure 2 caption

Representations of the complete directed graph K3, where there is an edge u → v
for each directed pair of the 3 vertices u, v ∈ {A, B,C}. As can be seen (left), the graph
is composed from 6 trivial cycles: 3 single-arrow cycles (e.g., A → A), and 3 double-
arrow cycles (e.g., A → B → A). The corresponding cycle matrix is shown top right.
The cycles represented by it are shown explicitly in the larger matrix (bottom right),
which has one entry shown explicitly for each trivial cycle. The omitted entries in the
matrix are implied by symmetry, as, for example, the top right would be A → C → A
but this is the same cycle as C → A→ C, which is shown bottom left.

Figure 3 caption

Comparing various ways to write about programming. Note that in the conventional
approach (a) there is no guarantee that the published paper faithfully represents the
source code, as the paper and source code can be (and will be) edited independently:
what is published has no automatic connection to the source code. (Although not made
clear in the diagram, typically source code and LATEX documents will be split into
multiple files for convenience. In principle, all methods can handle multiple files.)

Figure 4 caption

What the author writes and what the reader sees should be closely aligned, ideally
with the reader able to deduce full working code from the published paper. However,
setup and other code is often hidden from the reader, and probably held in files sep-
arate from the published paper. The more code that is hidden, the more likely it will
drift into complexity; critical details may be accidentally concealed from the reader.
Conventional literate programming hides nothing, but typically makes the result too
large to be convenient as a journal paper. Loom and Warp help ensure code published
is correct, but it may be incomplete. The present paper’s approach, relit, ensures that
what the authors may choose not to publish can easily be checked with simple diagnos-
tics (see Section 3.3) — and what is not published remains in the original LATEX files,
so remaining visible at least to the author.

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

Figure 5 caption

An extract from a simple relit TEX-mode index, as made for this paper. (It is possi-
ble section numbers are incorrect in this printing, depending on how you handle LATEX
indexing; see appendix on making this paper.) Only names and files explicitly shown
in this paper have been included (i.e., definitions where the normal relit process has not
shown names to the reader, along with all hidden material after the \end{document},
have been excluded).*

Figure 6 caption

Corresponding normal and TEX-mode syntax for relit commands. The final case
in the table allows \relit{ends} to mark the end of definitions (anything convenient,
such as text in a comment can also be used).

Use DOI 10.1016/j.scico.2017.12.010 for published version. January 10, 2018

