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3βH,7O-CA, 3β-hydroxy-7-oxocholest-5-en-(25R)26-oic acid; 3βH,7O-Δ5-BA, 3β-hydroxy-7-oxochol-5-enoic 

acid; 3βH,7,24-diO-CA, 3β-hydroxy-7,24-bisoxocholest-5-en-26-oic acid; 3β,5α,6β-triHBA, 3β,5α,6β-

trihydroxycholanoic acid; 3β,5α,6β-triHCa, 3β,5α,6β-trihydroxycholestan-(25R)26-oic acid; 3β,5α,6β-triol; 

cholestane-3β,5α,6β-triol; 3β,5α,6β,24-tetraHCa, 3β,5α,6β,24-tetrahydroxycholestan-26-oic acid; 3β,5α,6β-

triH,24O-Ca, 3β,5α,6β-trihydroxy-24-oxocholestan-26-oic acid; 3β,5α,6β,26-tetrol, cholestane-

3β,5α,6β,(25R)26-tretrol; 3β,7α-diHCA, 3β,7α-dihydroxycholest-5-en-(25R)26-oic acid; 3β,7α-diHCA(25S), 

3β,7α-dihydroxycholest-5-en-(25S)26-oic acid; 3β,7α,12α-triHCA, 3β,7α,12α-trihydroxycholest-5-en-
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(25R)26-oic acid; 3β,7α,24S-triHCA, 3β,7α,24S-trihydroxycholest-5-en-(25R)26-oic acid; 3β,7α,25-triHCA, 

3β,7α,25-trihydroxycholest-5-en-26-oic acid; 3β,7β-diHCA(25S), 3β,7β-dihydroxycholest-5-en-(25S)26-oic 

acid; 3β,22,25-triH,24O-C, 3β,22,25-trihydroxycholest-5-en-24-one; 3β,24-diH,7O-CA, 3β,24-dihydroxy-7-

oxocholest-5-en-26-oic acid; 5,6-EC, 3β-hydroxycholestan-5,6-epoxide; 6β-HC, cholest-4-ene-3β,6β-diol; 7-

DHC, cholesta-5,7-dien-3β-ol; 7-OC, 3β-hydroxycholest-5-en-7-one; 7α-HC, cholest-5-en-3β,7α-diol; 7α-

HCO, 7α-hydroxycholest-4-en-3-one; 7αH,3O-CA, 7α-hydroxy-3-oxocholest-4-en-(25R)26-oic acid; 7αH,3O-

Δ4-BA, 7α-hydroxy-3-oxochol-4-enoic acid; 7α,12α-diHCO, 7α,12α-dihydroxycholest-4-en-3-one; 7α,24S-

diHCO, 7α,24S-dihydroxycholest-4-en-3-one; 7α,24S-diH,3O-CA, 7α,24S-dihydroxy-3-oxocholest-4-en-

(25R)26-oic acid; 7α,25-diH,3O-CA, 7α,25-dihydroxy-3-oxocholest-4-en-26-oic acid; 7α,25-diHC, cholest-5-

ene-3β,7α,25-triol; 7α,25-diHCO, 7α,25-dihydroxycholest-4-en-3-one; 7α,26-diHCO, 7α,(25R)26-

dihydroxycholest-4-en-3-one; 22R-HCO, 22R-hydroxycholest-4-en-3-one; 24R/S-HC, cholest-5-en-3β,24R/S-

diol; 25H-VitD3, 9,10-secocholesta-5Z,7E,10(19)-triene-3S,25-diol; 25H,7O-C, 3β,25-dihydroxycholest-5-en-

7-one; 26H,7O-C, 3β,(25R)26-dihydroxycholest-5-en-7-one.   
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Abstract 

7-Oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC) and its hydrolysis product cholestane-3β,5α,6β-triol 

(3β,5α,6β-triol) are normally minor oxysterols in human samples, however, in disease their levels may be 

greatly elevated. This is the case in plasma from patients suffering from some lysosomal storage disorders 

e.g. Niemann Pick disease type C, or the inborn errors of sterol metabolism e.g. Smith-Lemli-Opitz 

syndrome and cerebrotendinous xanthomatosis. A complication in the analysis of 7-OC and 5,6-EC is that 

they can also be formed ex vivo from cholesterol during sample handling in air causing confusion with 

molecules formed in vivo. When formed endogenously 7-OC, 5,6-EC and 3β,5α,6β-triol can be converted to 

bile acids. Here, we describe methodology based on chemical derivatisation and liquid chromatography – 

mass spectrometry with multistage fragmentation (MSn) to identify the necessary intermediates in the 

conversion of 7-OC to 3β-hydroxy-7-oxochol-5-enoic acid and 5,6-EC and 3β,5α,6β-triol to 3β,5α,6β-

trihydroxycholanoic acid. Identification of intermediate metabolites is facilitated by their unusual MSn 

fragmentation patterns. Semi-quantitative measurements are possible, but absolute values await the 

synthesis of isotope-labelled standards. 

Key Words: Sterols; cholesterol/metabolism; Niemann-Pick type C; oxidised lipids; tandem mass 

spectrometry         
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Introduction 

Until recently 7-oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC) and its hydrolysis product cholestane-

3β,5α,6β-triol (3β,5α,6β-triol) were regarded by many as artefacts generated by sample handling of 

cholesterol rich material in air (1-4). For a list of sterol abbreviations see Supplemental Table S1. That view 

has changed with the discovery that 7-OC can be generated enzymatically from the cholesterol precursor 7-

dehydrocholesterol (7-DHC) by cytochrome P450 (CYP) 7A1 (5) and is abundant in plasma of patients with 

Smith-Lemli-Opitz Syndrome (SLOS), where levels of 7-DHC are high, and cerebrotendinous xanthomatosis 

(CTX) where CYP7A1 is highly expressed (6, 7). Furthermore, in patients with lysosomal storage disorders 

Niemann-Pick (NP) disease types C and B and lysosomal acid lipase deficiency (LALD), 3β,5α,6β-triol is 

elevated in plasma as is 7-OC, despite apparently normal levels of 7-DHC (8-13). For an up-to-date review 

see reference (14). Importantly, recent reports by Clayton and colleagues in London (15) and Ory and 

colleagues in St Louis (16) have documented the presence of the unusual bile acid 3β,5α,6β-

trihydroxycholanoic acid (3β,5α,6β-triHBA) in plasma of NPC patients, while Alvelius et al and Maekawa et 

al have reported the presence of the sulphuric acid and glycine conjugates of 3β-hydroxy-7-oxochol-5-enoic 

acid (3βH,7O-Δ5-BA) in urine and plasma of NPC patients (17, 18). The observation of these unusual bile 

acids associated with NPC and of 3βH,7O-Δ5-BA with other disorders e.g. SLOS (19-21) strongly suggests 

that their precursors 7-OC and 5,6-EC are formed in vivo and are not (only) ex vivo artefacts generated 

through sample handling in air. Both 7-OC and 5,6-EC are dietary oxysterols (22, 23), while 5,6-EC may also 

be formed by environmental ozone in lung (24), representing alternative sources of these molecules in 

healthy individuals. In fact Lyons et al showed that 7-OC was rapidly metabolised by the liver in rats and 

excreted into the intestine mainly as aqueous soluble metabolites, presumably bile acids (22). Pulfer and 

Murphy showed that 5,6-EC was the major cholesterol-derived product formed in the reaction of ozone 

with lung surfactant and that 3β,5α,6β-triol, and more abundant levels of an unexpected metabolite, 

3β,5α-dihydroxycholestan-6-one were formed from 5,6-EC by lung epithelial cells (24).        

To investigate how 7-OC is metabolised in vivo into 3βH,7O-Δ5-BA and 5,6-EC and 3β,5α,6β-triol into 

3β,5α,6β-triHBA, as reported in the accompanying manuscript (Griffiths W.J. et al), we have optimised a 

charge-tagging methodology to specifically identify 7-oxo containing sterols and sterols with a 3β,5α,6β-
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triol function using chemical derivatisation and liquid chromatography - mass spectrometry (LC-MS) with 

multistage fragmentation (MSn). The resultant method is described below. 
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Materials and Methods 

Human Samples 

Plasma was from patients diagnosed with lysosomal storage disorders, their siblings or parents. All 

participants or their parents provided written informed consent in accordance with the Declaration of 

Helsinki and the study was conducted with institutional review board approval (REC08/H1010/63). NIST 

standard reference material (SRM1950, Gaithersburg, MD), a pooled plasma sample representative of the 

US population (25), was used as a reference.   

Materials 

Oxysterols and C27 bile acids were from Avanti Polar Lipids Inc. (Alabaster, Al, USA); C24 bile acids were a 

kind gift from Professor Jan Sjövall, Karolinska Institutet, Stockholm, Sweden; 3β,5α,6β-triHBA was a kind 

gift from Professor Douglas F. Covey, Washington University School of Medicine. See Supplemental Table 

S1 for a list of oxysterols and bile acid with their common and systematic names, abbreviations, LipidMaps 

ID and suppliers. Cholesterol oxidase (ChOx) enzyme from Streptomyces sp was from Sigma Aldrich Ltd 

(Dorset, UK), [2H0]Girard P ([2H0]GP) reagent was from TCI Europe (Zwijndrecht, Belgium), [2H5]GP was 

synthesised as described in (26). Reversed-phase Certified Sep-Pak C18 (200 mg) and Oasis HLB (60 mg) solid 

phase extraction (SPE) columns were from Waters Ltd (Elstree, Herts, UK). 

Sample Preparation 

The sample preparation protocol is described in detail in (27) and only differs here by the addition of 

additional deuterium-labelled standards. In brief, plasma (100 µL) was added to absolute ethanol (1.05 mL) 

containing deuterated internal standards including [25,26,26,26,27,27,27-2H7]7-OC ([2H7]7-OC), 

[25,26,26,26,27,27,27-2H7]5α,6-EC ([2H7]5α,6-EC), [25,26,26,26,27,27,27-2H7]3β,5α,6β-triol ([2H7]3β,5α,6β-

triol), [25,26,26,26,27,27,27-2H7]7α-hydroxycholesterol ([2H7]7α-HC), [25,26,26,26,27,27,27-2H7]24R/S-

hydroxycholesterol ([2H7]24R/S-HC), [26,26,26,27,27,27-2H6]7α,25-dihydroxycholesterol ([2H6]7α,25-diHC), 

[25,26,26,26,27,27,27-2H7]22R-hydroxycholest-4-en-3-one ([2H7]22R-HCO), [26,26,26,27,27,27-2H6]25-

hydroxyvitamin D3 and [25,26,26,26,27,27,27-2H7]cholesterol ([2H7]C). The solution was diluted to 70% 
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ethanol with 0.35 mL of water, sonicated and centrifuged to remove precipitated matter. To separate bile 

acids and oxysterols from cholesterol and similarly hydrophobic sterols, the sample solution was applied to 

a 200 mg Sep-Pack C18 column, cholesterol was absorbed while oxysterols and bile acids eluted in the flow-

through and column wash (SPE1-Fr1, 7 mL 70% ethanol). After a further column wash (SPE1-Fr2, 4 mL 70% 

ethanol), cholesterol, and sterols of similar hydrophobicity, were then eluted in a separate fraction with 

absolute ethanol (SPE1-Fr3, 2 mL). The oxysterol/bile acid (SPE1-Fr1) and cholesterol-rich (SPE1-Fr3) 

fractions were then each divided into two equal aliquots (A) and (B) and lyophilised. After re-constitution in 

propan-2-ol (100 µL), cholesterol oxidase (ChOx, 0.26 units) in 50 mM phosphate buffer (1 mL), pH 7, was 

added to sub-fractions (A). After 1hr at 37 oC the reaction was quenched with methanol (2 mL). Sub-

fractions (B) were treated in an identical manner but in the absence of cholesterol oxidase. Glacial acetic 

acid (150 µL) was added to each sub-fraction followed by [2H5]GP as the bromide salt (190 mg) to sub-

fractions (A) and [2H0]GP as the chloride salt (150 mg) to sub-fractions (B). The derivatisation reactions were 

left to proceed overnight in the dark at room temperature. Excess derivatisation reagent was removed by 

SPE using a re-cycling method. Each sub-fraction (now 3.25 mL, 69% organic) was applied to a 60 mg Oasis 

HLB column and was washed with 70% methanol (1 mL) and 35% methanol (1 mL). The combined effluent 

was diluted to 35% methanol and re-cycled through the column. This was repeated with dilution to 17.5% 

methanol, a further re-cycling and the column was finally washed with 10% methanol (6 mL). At this point 

all oxysterols/bile acids, or more hydrophobic sterols, were absorbed on the column while unreacted GP 

reagent elute to waste. Oxysterols/bile acids were then eluted with 100% methanol (2 mL, SPE2-Fr1+2) 

while more hydrophobic sterols with 3 mL of 100% methanol (SPE2-Fr1+2+3). Just prior to LC-MS(MSn) 

analysis equal volumes of sub-fractions (A) and (B) were combined and diluted to 60% methanol ready for 

injection. This allowed the simultaneous analysis of sub-fractions A and B. 

LC-MS(MSn) 

Analysis was performed on an Orbitrap Elite (Thermo Fisher Scientific, Hemel Hempstead, UK) exploiting 

electrospray ionisation. Chromatographic separation was achieved with a reversed-phase Hypersil Gold 

column (1.9 µm particle size, 50 × 2.1 mm, Thermo Fisher) using an Ultimate 3000 LC system (now Thermo 

Fisher Scientific) with the mobile phase and gradient described in (26, 27). To separate some closely eluting 
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oxysterols/bile acids the usual 17 min gradient was extended to 37 min. The mobile phase composition was 

initially at 80% A (33.3% methanol, 16.7% acetonitrile, 0.1% formic acid), 20% B (63.3% methanol, 31.7% 

acetonitrile, 0.1% formic acid) for 10 min, changed to 50% A, 50% B over the next 10 min, maintained at 

this composition for 6 min, then changed to 20%A, 80% B over the next 3 min. The mobile phase 

composition was held at 20% A, 80% B for a further 3 min before returning to 80% A, 20% B in 0.1 min and 

reconditioning the column for a further 4.9 min.   

For each injection five scan events were performed: one high resolution scan (120,000 full-width at half 

maximum height definition at m/z 400) in the Orbitrap analyser in parallel to four MS3 scan events in the 

linear ion-trap. Quantification was by isotope dilution or by using isotope-labelled structural analogues. 

 by guest, on A
pril 26, 2018

w
w

w
.jlr.org

D
ow

nloaded from
 



 9 

Results 

7-Oxo Containing Sterols 

7-OC is a α,β-unsaturated ketone (5-en-7-one) and unlike oxysterols/bile acids without an oxo group will 

react with GP reagent in the absence of cholesterol oxidase, hence this compound and its metabolites 

possessing a 7-oxo group will be found in the (B) sub-fraction derivatised with the [2H0]GP reagent (Figure 

1B). Like most GP derivatives, 7-oxo compounds give an intense [M-Py]+ ion upon MS2 (MS/MS, Figure 1B), 

however, MS3 ([M]+
[M-Py]+

) fragmentation patterns for the 7-oxo derivatives are unlike those from 

compounds with GP derivatisation at position C-3 (cf. Figure 2B & C). In contrast to 3-oxo compounds, 7-

oxo compounds show a prominent pattern of fragment-ions corresponding to [M-Py-43]+, [M-Py-59]+, [M-

Py-90]+ and [M-Py-98]+ (m/z 412.4, 396.3, 365.3 and 357.3). The suggested structures of these ions are 

shown in Figure 3 and Supplemental Figure S1A. As can be seen in Figure 3 the neutral-losses are associated 

with the unsaturated diazacyclohexanone ring and water, this is evident by the invariant nature of the 

neutral-loss upon variation of the sterol side-chain or by the incorporation of deuterium atoms in the side-

chain e.g. as in [25,26,26,26,27,27,27-2H7]7-OC (cf. Figure 2B & Supplemental Figure S2A). Definitive 

identification of the neutral-losses was achieved by utilising [13C15N] and [13C2] isotope-labelled GP reagents 

(Figure 3). Neutral-losses, [M-Py-18]+, [M-Py-28]+ and [M-Py-61]+ common to 7-oxo-5-ene and 3-oxo-4-ene 

derivatives are illustrated in Figure 3 and Supplemental Figure S3A. 

7-OC is well resolved from its isomer 7α-hydroxycholest-4-en-3-one (7α-HCO) in the 17 min 

chromatographic gradient and is readily quantified by isotope dilution against [2H7]7-OC (Figure 2A), but 26-

hydroxy-7-oxocholesterol (26H,7O-C), its CYP27A1 metabolite (28, 29), is only partially resolved from its 

isomer 7α,26-dihydroxycholest-4-en-3-one (7α,26-diHCO) by the 17 min chromatographic gradient, 

although it is well resolved from 25-hydroxy-7-oxocholesterol (25H,7O-C), 7α,12α-dihydroxycholest-4-en-3-

one (7α,12α-diHCO), 7α,24S-dihydroxycholest-4-en-3-one (7α,24S-diHCO) and 7α,25-dihydroxycholest-4-

en-3-one (7α,25-diHCO), four further metabolites identified in human plasma. Extending the 

chromatographic gradient to 37 min provides almost base line separation of 26H,7O-C from 7α,26-diHCO 

while maintaining resolution from the other isomers (Figure 2D). In the absence of an ideal isotope-labelled 
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standard, approximate quantification of 26H,7O-C is performed against the internal standard [2H7]22R-HCO, 

taking into account relative response factors.  

The down-stream CYP27A1 metabolite of 26H,7-OC, 3β-hydroxy-7-oxocholest-5-en-26-oic acid (3βH,7O-CA) 

(29) is not resolved from its isomer 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7αH,3O-CA) in either the 17 

min or 37 min chromatographic gradients (Figure 4A). However, 3βH,7O-CA gives a MS3 fragment-ion at 

m/z 426.3 ([M-Py-59]+) that is not present in the MS3 spectrum of co-eluting 7αH,3O-CA (Figure 4C - 4E). 

Thus, by generating a reconstructed-ion chromatogram (RIC) for m/z 426.3±0.3 from the MS3 spectra, 

3βH,7O-CA is revealed (Figure 4B). Therefore, multiple reaction monitoring (MRM), [M]+
[M-Py]+

[M-Py-

59]+, can be used to resolve 3βH,7O-CA from its co-eluting isomer 7αH,3O-CA. The fragment-ion at m/z 

421.3 ([M-Py-64]+) is present in the MS3 spectrum of 7αH,3O-CA (Figure 4E) but not 3βH,7O-CA (Figure 4C), 

hence the MRM [M]+
[M-Py]+

[M-Py-64]+ can identify 7αH,3O-CA. By necessity, semi-quantification of 

3βH,7O-CA is performed utilising the MRM transition 564.4485.3426.3 and reference to an external 

standard.         

In bile acid biosynthesis side-chain shortening occurs in the peroxisome and proceeds through 24-

hydroxylation of the C27 acid, dehydrogenation to a 24-carbonyl group then beta-oxidation to a C24 acid 

(30). The appropriate metabolites from 7-OC are 3β,24-dihydroxy-7-oxocholest-5-en-26-oic acid (3β,24-

diH,7O-CA), 3β-hydroxy-7,24-bisoxocholest-5-en-26-oic acid (3βH,7,24-diO-CA) and 3βH,7O-Δ5-BA. 

Although authentic standards are not available for these metabolites, by analogy to the MS3 spectra of 7-

OC, 26H,7-OC and 3βH,7O-CA where standards are available, prominent patterns of distinguishing 

fragment-ions corresponding to the neutral-losses [M-Py-43]+, [M-Py-59]+, [M-Py-90]+ and [M-Py-98]+ are 

predicted to be present in the MS3 spectra of 3β,24-diH,7O-CA, 3βH,7,24-diO-CA and 3βH,7O-Δ5-BA. Similar 

to the analysis of 3βH,7O-CA, a MS3 RIC for [M-Py-59]+ i.e. m/z 442.3±0.3, should reveal 3β,24-diH,7O-CA 

(Figure 4F). A fragment-ion at m/z 442.3 is absent from the MS3 spectra of 7α,24S-dihydroxy-3-oxocholest-

4-en-(25R)26-oic (7α,24S-diH,3O-CA) and 7α,25-dihydroxy-3-oxocholest-4-en-26-oic (7α,25-diH,3O-CA) 

acids, two commercially available isomers of 3β,24-diH,7O-CA (Supplemental Figure S2I & S2J). While for 

most plasma samples we have analysed in recent times the MS3 RIC channel for m/z 442.3±0.3 is empty 

(27), when patient samples containing high levels of 7-OC from diseases such as NPC are analysed a peak is 
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evident in the MRM chromatogram m/z 580.4501.3442.3 i.e. [M]+
[M-Py]+

[M-Py-59]+ (Figure 4F) 

and the underlying MS3 spectrum is compatible with that predicted for 3β,24-diH,7O-CA (Figure 4G). In the 

extended chromatographic gradient of 37 min, presumptively identified 3β,24-diH,7O-CA is resolved from 

isomeric dihydroxy-3-oxocholest-4-en-26-oic acids (Supplemental Figure S2K). Semi-quantitative 

measurement of 3β,24-diH,7O-CA are made using the extended chromatographic gradient assuming the 

same response factor as for 7α,24-diH,3O-CA and using the internal standard [2H7]22R-HCO.    

To-date in none of the plasma samples we have analysed have we observed any chromatographic peaks 

compatible with 3βH,7,24-diO-CA. In contrast, as with 3β,24-diH,7O-CA, an MS3 RIC for [M-Py-59]+ (m/z 

384.3) reveals 3βH,7O-Δ5-BA in plasma samples from patients with elevated 7-OC (Figure 5B). 3βH,7O-Δ5-

BA is clearly resolved from its isomer 7α-hydroxy-3-oxochol-4-enoic acid (7αH,3O-Δ4-BA) in the 17 min 

chromatographic gradient (Figure 5A). Semi-quantitative measurement are made for 3βH,7O-Δ5-BA using 

the extended chromatographic gradient assuming the same response factor as for 7αH,3O-Δ4-BA and using 

the internal standard [2H7]22R-HCO.    

While GP-derivatised sterols with a 7-hydroxy-3-oxo-4-ene structure give a characteristic pattern of ring 

fragment ions at m/z 151.1 (*b1-12), 177.1 (*b2), 179.1 (*b3-28) and 231.1 (*c2+2-18) (Figures 2C, 2E, 4E, 

5C) (31), sterols with a 3β-hydroxy-7-oxo-5-ene structure give a minor fragment-ion at m/z 157.1 which 

probably consists of the unsaturated diazacyclohexanone ring and remnants of the B-ring (Figures 2B, 4C, 

4D, 5D). This ion is only minor and of limited diagnostic value.      

Semi-Quantitative Measurements 

Using the methodology described, other than for 7-OC where an isotope labelled standard is available i.e. 

[2H7]7-OC, we can only make approximate or semi-quantitative measurements. However, as all the 7-oxo 

compounds, except 3βH,7O-CA, are resolved from their 3-oxo isomers in either the 17 min or 37 min 

chromatographic gradients, quantification is possible using the isotope-labelled internal standard [2H7]22R-

HCO. In the absence of authentic standards, 3β,24-diH,7O-CA and 3βH,7O-Δ5-BA were quantified assuming 

the same response factors as for their structural analogues 7α,24-diH,3O-CA and 7αH,3O-Δ4-BA. As 3βH,7O-
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CA was not chromatographically resolved from 7αH,3O-CA, the MRM [M+][M-Py]+
[M-Py-59]+ was used 

for quantification of the former isomer.  

3β,5α,6β-Trihydroxysterols 

Sterols with a 3β-hydroxy group and a planar A/B ring system are substrates for cholesterol oxidase, these 

include cholest-5-en-3β-ols and 5α-cholestan-3β-ols (32). 3β,5α,6β-triol is planar and becomes oxidised at 

C-3 and also dehydrated through elimination of the 5α-hydroxy group. The dehydration reaction does not 

go to completion under our experimental conditions, so after derivatisation the GP derivatised triol is 

observed as both [M]+ and [M-H2O]+ ions (Figure 1A) (33), the [M-H2O]+ ion giving the stronger signal and 

more informative MS3 spectrum (Figure 6B). In fact, the MS3 ([M-H2O]+
[M-H2O-Py]+

) spectrum of the 

3β,5α,6β-triol is identical to the MS3 ([M]+
[M-Py]+

) spectrum of cholest-4-ene-3β,6β-diol (6β-HC) 

confirming dehydration through loss of the 5α-hydroxy group. An unusually prominent fragment-ion 

observed in the MS3 ([M-H2O]+
[M-H2O-Py]+

) spectrum of 3β,5α,6β-triol is at m/z 383.3, corresponding 

to [M-H2O-Py-72]+ (Figure 6B, see also Figure 7). A second unusual neutral-loss [M-H2O-Py-100]+ gives a 

fragment-ion at m/z 355.3. Both fragment-ions are elevated by 7 Da in the spectrum of the 

[25,26,26,26,27,27,27-2H7] analogue as is the [M-H2O-Py-90]+ fragment-ion (see Supplemental Figures S4A, 

S5C & S5D). The availability of [2H7]3β,5α,6β-triol allows quantification by isotope dilution utilising RICs for 

[M-H2O]+ ions. Similar to 3β,5α,6β-triol, 3β,5α,6β-triHBA, the end product of 3β,5α,6β-triol metabolism (15, 

16), gives [M]+ and [M-H2O]+ ions after GP derivatisation, the latter of which is dominant. The MS3 ([M-

H2O]+
[M-H2O-Py]+

) spectrum of 3β,5α,6β-triHBA shows a prominent [M-H2O-Py-72]+ fragment-ion at 

m/z 371.3, [M-H2O-Py-90]+ at m/z 353.2 and the unusual neutral-loss [M-H2O-Py-100]+ at m/z 343.3 (Figure 

6D, see also Supplemental Figures S4B & S5I). The particularly prominent neutral loss fragment-ion [M-H2O-

Py-72]+ is common to MS3 spectra of both 3β,5α,6β-triol and 3β,5α,6β-triHBA and can potentially be used 

to identify further metabolites with a 3β,5α,6β-trihydroxy structure via [M-H2O]+
[M-H2O-Py]+

[M-H2O-

Py-72]+ MRM chromatograms (see below). In the absence of an isotope-labelled standard, approximate 

quantification of 3β,5α,6β-triHBA is made against the internal standard [2H7]24R/S-HC, taking into account 

relative response factors.  
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In plasma samples high in 3β,5α,6β-triol (e.g. NPC), a new peak is evident in the RIC for the [M-H2O]+ ion of 

cholestanetetrols (m/z 555.4317 ± 5 ppm, 5.19 min in Figure 6E) which is not seen in control plasma. With 

both the 17 min and 37 min chromatographic gradients this peak is only partially resolved from the [M]+ ion 

of 7α,25-dihydroxycholesterol (7α,25-diHC) which has an identical mass. However, chromatographic 

resolution is sufficiently good to generate an MS3 (m/z 555.4471.4) spectrum from the apex of the new 

peak which is entirely compatible with that expected for the [M-H2O]+ ion of cholestane-3β,5α,6β,26-tetrol 

(3β,5α,6β,26-tetrol), showing a prominent fragment-ion at m/z 399.3 i.e. [M-H2O-Py-72]+, a distinct ion at 

m/z 381.3 i.e. [M-H2O-Py-90]+ and a minor fragment at m/z 371.3 i.e. [M-H2O-Py-100]+ (Figure 6G, see also 

Figure 7). The MS3 (m/z 555.4471.4) spectrum of closely eluting 7α,25-diHC does not give a fragment-

ion at m/z 399.3 or 371.3 (Supplemental Figure S5L), so by generating a RIC for the fragment-ion m/z 399.3 

from the MS3 (m/z 555.4471.4) chromatogram, 3β,5α,6β,26-tetrol ([M-H2O]+) is resolved from 7α,25-

diHC ([M]+, Figure 6F). Other isomers of 7α,25-diHC ([M]+) i.e. the dihydroxycholesterols (diHC) 7α,12α-

diHC, 7α,24S-diHC, 7α,26-diHC, 7β,25-diHC and 7β,26-diHC are all chromatographically resolved from 

3β,5α,6β,26-tetrol ([M-H2O]+). It is only possible to make semi-quantitative measurement of 3β,5α,6β,26-

tetrol in the absence of an authentic standard and its incomplete chromatographic resolution from 7α,25-

diHC. Semi-quantification is made based on the [M-H2O]+ of 3β,5α,6β,26-tetrol against the internal 

standard [2H6]7α,25-diHC.      

CYP27A1 is the enzyme likely to introduce the (25R)26-hydroxy group to the sterol side-chain. This enzyme 

could then oxidise the primary alcohol to a carboxylic acid to give 3β,5α,6β-trihydroxycholestan-(25R)26-oic 

acid (3β,5α,6β-triHCa). As discussed above, peroxisomal side-chain shortening of C27 acids proceeds 

through C-24 hydroxylation, C-24 dehydrogenation and β-oxidation, to generate 3β,5α,6β-triHBA as the 

ultimate product. The relevant pathway intermediates would be 3β,5α,6β,24-tetrahydroxycholestan-26-oic 

acid (3β,5α,6β,24-tetraHCa) and 3β,5α,6β-trihydroxy-24-oxocholestan-26-oic acid (3β,5α,6β-triH,24O-Ca). 

By analogy to 3β,5α,6β-triol, 3β,5α,6β,26-tetrol and 3β,5α,6β-triHBA; 3β,5α,6β-triHCa, 3β,5α,6β,24-

tetraHCa and 3β,5α,6β-triH,24O-Ca should give [M]+ and [M-H2O]+ products upon cholesterol oxidase 

treatment and GP derivatisation and the MS3 spectra of the [M-H2O]+ ions ([M-H2O]+
[M-H2O-Py]+

]) are 

predicted to show neutral-loss fragment-ions [M-H2O-Py-72]+,  [M-H2O-Py-90]+ and[M-H2O-Py-100]+. 
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For 3β,5α,6β-triHCa the [M-H2O-Py-72]+ ion has an m/z of 413.3 (see Supplemental Figure S4B). A RIC for 

the MRM transition [M-H2O]+
[M-Py-H2O]+

[M-H2O-Py-72]+ (m/z 569.4485.3413.3) reveals a new 

chromatographic peak in samples where the concentration of the 3β,5α,6β-triol is high (e.g. NPC) which is 

at, or below, the detection limit in normal plasma samples (Figure 8B). The MS3 ([M-H2O]+
[M-H2O-Py]+

) 

spectrum underlying the new chromatographic peak in plasma samples rich in 3β,5α,6β-triol is compatible 

with that predicted for 3β,5α,6β-triHCa, showing the predicted neutral-loss fragment-ions [M-H2O-Py-72]+,  

[M-H2O-Py-90]+ and [M-H2O-Py-100]+ and is thus assigned to this acid (Figure 8C, see also supplemental 

Figure S4B and S5N). This new chromatographic peak does, however, co-elute with that of the [M]+ ion of 

3β,7β-dihydroxycholest-5-en-(25S)26-oic acid (3β,7β-diHCA(25S)) and a second oxysterol with a probable 

3β,22,25-trihydroxycholest-5-en-24-one structure, but neither compound gives a fragment ion at m/z 413.3 

in their MS3 ([M]+
[M-Py]+

) spectra (Supplemental Figure 5O), unlike well resolved 3β,7α-

dihydroxycholest-5-en-(25S)26-oic (3β,7α-diHCA(25S)) and 3β,7α-dihydroxycholest-5-en-(25R)26-oic 

(3β,7α-diHCA(25R)) acids where this ion is more abundant (Supplemental Figure S5P). In fact, the 25R and 

25S epimers give identical MS3 spectra, but are chromatographically resolved. In the absence of an 

authentic standard of 3β,5α,6β-triHCa only semi-quantification is possible. This can be made using the RIC 

for the [M-H2O]+ ion in samples where co-eluting compounds 3β,7β-diHCA(25S) and 3β,22,25-triH,24O-C 

are minor (and assuming a similar response factor to 3β,5α,6β-triHBA), then determining an appropriate 

response factor for the MRM chromatogram 569.4485.3413.3 and using this for quantification of other 

samples. 

For 3β,5α,6β,24-tetraHCa the [M-H2O-Py-72]+ fragment ion has an m/z of 429.3 (Figure S4B). In the RIC for 

the MRM transition [M-H2O]+
[M-Py-H2O]+

[M-H2O-Py-72]+ (m/z 585.4501.3429.3) from samples 

where 3β,5α,6β-triol is abundant new peaks appears in both the 17 min (Figure 8E) and 37 min 

chromatograms. The underlying MS3 spectrum of the new peak at 3.5 min in an NPC plasma sample (Figure 

8G, see also Supplemental Figure S5Q), shows a minor fragment-ion at m/z 429.3 and a more prominent 

ion at m/z 383.3, the former corresponding to [M-H2O-Py-72]+ and the latter [M-H2O-Py-118], a dehydration 

product of [M-H2O-Py-100]+ (see Supplemental Figure S4B). Both fragment ions are essentially absent from 

MS3 spectra of the closely eluting peak (Figure 8D) annotated as 3β,7α,12α-trihydroxycholest-5-en-(25R)26-
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oic acid (3β,7α,12α-triHCA, Supplemental Figure S5R) and its isomers 3β,7α,24-trihydroxycholest-5-en-

(25R)26-oic (3β,7α,24S-triHCA) and 3β,7α,25-trihydroxycholest-5-en-26-oic acid (3β,7α,25-triHCA). The 

MRM chromatogram [M-H2O]+
[M-Py-H2O]+

[M-H2O-Py-118]+ provides even clearer definition of 

3β,5α,6β,24-tetraHCa (Figure 8F). The chromatographic peak for the [M-H2O]+ ion of 3β,5α,6β,24-tetraHCa 

is sufficiently resolved in the 37 min gradient to allow semi-quantification against the internal standard 

[2H7]24R/S-HC and by assuming a response factor similar to 3β,5α,6β-triHBA.  

Semi-Quantitative Measurements 

Other than for 3β,5α,6β-triol itself, for which the [2H7] analogue is available, we can only make approximate 

or semi-quantitative measurements of 3β,5α,6β-triol containing sterols. An authentic standard of 3β,5α,6β-

triHBA is available, thus can be used to give approximate quantification. Other than 3β,5α,6β-triHCa, all of 

the 3β,5α,6β-triol containing sterols are sufficiently chromatographically resolved from similarly derivatised 

sterols to allow semi-quantification against added internal standards.      
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Discussion 

When 7-OC or 3β,5α,6β-triol is abundant in a sample, whether formed enzymatically or through radical 

reactions, the analyst should consider the possibility of the presence of down-stream metabolites. An 

absence may indicate that the primary metabolites are formed ex vivo, while a presence will indicate 

formation in vivo or perhaps from the diet or environment. By taking plasma samples from patients with 

the lysosomal storage disorder NPC as an example we illustrate how metabolites of 7-OC and 3β,5α,6β-triol 

leading to bile acids 3βH,7O-Δ5-BA and 3β,5α,6β-triHBA, respectively, can be identified. 

Considering metabolites with a 7-oxo-5-ene structure, the fragment-ion resulting from an [M-Py-59]+ 

neutral-loss (Figure 3) and appearing in MS3 ([M]+
[M-Py]+

) spectra is characteristic and valuable for 

metabolite identification via appropriate MRM ([M]+
[M-Py]+

[M-Py-59]+) RICs (Figure 4B & 4F & 5B). 

The [M-Py-59]+ fragment-ion is likely a radical cation stabilised by delocalisation across a conjugated system 

from C3 – C7 and two nitrogen atoms (Figure 3). With respect to sterols containing a 3β,5α,6β-triol 

structure, treatment with cholesterol oxidase and GP derivatisation leads to dehydration through loss of 

the 5α-hydroxy group and formation of an [M-H2O]+ ion. MS3 ([M-H2O]+
[M-H2O-Py]+

) leads to a 

characteristic neutral-loss fragment-ion [M-H2O-Py-72]+ (Figure 7). Again, the appropriate MRM, [M-

H2O]+
[M-H2O-Py]+

[M-H2O-Py-72]+ can lead to the identification of 3β,5α,6β-triol-containing 

metabolites (Figure 6F & 8B & 8E). The [M-H2O-Py-72]+ fragment-ion is likely stabilised through 

delocalisation of positive charge across the conjugated double bonds in the A-ring (Figure 7). Besides giving 

the [M-H2O]+ ion, both 3β,5α,6β-triol and 3β,5α,6β-triHBA give an [M]+ ion. However, the absence of A/B-

ring unsaturation leads to MS3 ([M]+
[M-Py]+

) spectra which are less structurally characteristic making 

identification of intermediate metabolites difficult (Supplemental Figures S5A & S5H).           

Although the primary aim of this work was identification of 7-oxo-5-ene- and 3β,5α,6β-triol containing 

metabolites, approximate or semi-quantitative measurements can also be made. Accurate quantification, 

however, awaits further synthesis of authentic standards and their isotope-labelled analogues. 
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Footnote 

Swansea Innovations Ltd have licensed derivatisation technology described in this paper to Avanti Polar 

Lipids Inc and Cayman Chemical. 
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Figure 1. (A) Oxidation of 3β-hydroxysterols with cholesterol oxidase (ChOx) then derivatisation with 

[2H5]GP and MSn fragmentation. (B) Derivatisation of oxosterols with [2H0]GP and MSn fragmentation. 
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Figure 2. Chromatographic separation and MS3 ([M]+
[M-Py]+

) spectra of 7-OC, 7α-HCO, 26H,7O-C and 
7α,26-diHCO from an NPC plasma sample derivatised with [2H0]GP reagent. (A) Reconstructed ion 
chromatograms (RICs, m/z 534.4054 ± 5 ppm) demonstrating the separation of 7-OC from 7α-HCO in a 
plasma sample from an NPC (upper panel) patient and in the NIST reference material (lower panel). MS3 
spectra of (B) 7-OC and (C) 7α-HCO from the NPC plasma sample. (D) RIC (550.4003 ± 5 ppm) 
demonstrating chromatographic separation of 26H,7O-C from 7α,26-diHCO and other isomers in the NPC 
(upper panel) and NIST (lower panel) plasma samples using the 37 min chromatographic gradient. The 
chromatograms in (D) were recorded on different days resulting in an offset in retention time of 0.2 – 0.3 
min in the earlier peaks. MS3 spectra of (E) 7α,26-diHCO and (F) 26H,7O-C from the NPC sample. Measured 
concentrations of 7-OC and 26H,7-OC are given in the right-hand corners of the chromatograms (A) and (D), 
respectively. Note, 7α-HCO, 7α,25-diHCO and 7α,26-diHCO give twin peaks corresponding to syn and anti 
conformers of the derivative. MS3 spectra of authentic standards of [2H7]7-OC, 7-OC, 7α-HCO, 26H,7O-C, 
7α,26-diHCO, 7α,25-diHCO and 7α,24S-diHCO can be found in Supplemental Figure S2A-G.  
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Figure 3. Patterns of MS3 ([M]+
[M-Py]+

) neutral-losses which distinguish between, or are common to, 

[2H0]GP derivatised 7-oxo-5-ene and 3-oxo-4-ene sterols. Structures of R groups are shown within brackets, 

in the lower left-hand box. Isotope-labelled [13C2]GP and [13C15N]GP reagents used to determine the 

composition of the fragment-ions are shown in the lower right-hand box. An asterisk indicates a heavy 

isotope label. 
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Figure 4. MRM chromatograms [M]+
[M-Py]+

[M-Py-59]+ reveal 3βH,7O-CA and 3βH,24-diH,7O-CA in 

NPC plasma. (A) The authentic standard 3βH,7O-CA (lower panel) co-elutes with 7αH,3O-CA (NPC plasma, 

upper panel; NIST plasma, central panel) in the 17 min chromatographic gradient. (B) MRM chromatogram 

(m/z 564.4485.3426.3) from an NPC plasma sample (upper chromatogram), the NIST control sample 
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(central chromatogram) and an authentic standard of 3βH,7O-CA (lower chromatogram). Measured 

concentrations of 7αH,3O-CA + 3βH,7O-CA and of 3βH,7O-CA alone are given on the right-hand side of the 

chromatograms (A) and (B), respectively. 25S and 25R epimers of 7αH,3O-CA each gives twin peaks 

corresponding to syn and anti conformers of the derivative as seen in (A). The twin peaks observed in (B) 

from NPC and NIST samples probably correspond to 25S and 25R epimers of 3βH,7O-CA. MS3 spectra of (C) 

3βH,7O-CA authentic standard, (D) 3βH,7O-CA from a NPC plasma sample, and (E) 7αH,3O-CA(25R) 

authentic standard. (F) MRM chromatogram (m/z 580.4501.3442.3) from an NPC plasma sample 

(upper panel) and the NIST plasma sample (lower panel) generated with the 17 min gradient. Measured 

concentrations of 3β,24-diH,7O-CA are given in the right-hand corners of the chromatograms. ND, not 

detected. (G) MS3 ([M]+
[M-Py]+

) spectrum underlying the major peak at 2.35 min in (F) from NPC 

plasma, identified as of 3β,24-diH,7O-CA. Structures of fragment ions are shown in Supplemental Figure 

S1B. MS3 spectra of 7αH,3O-CA(25R) from NIST plasma, 7α,24S-diH,3O-CA and 7α,25-diH,3O-CA authentic 

standards are shown in Supplemental Figure S2H-J.   
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Figure 5. The MRM chromatogram [M]+
[M-Py]+

[M-Py-59]+ reveals 3βH,7O-Δ5-BA in samples rich in 7-

OC. (A) RICs for m/z 522.3326 ± 5 ppm corresponding to 3βH,7O-Δ5-BA and its isomer 7αH,3O-Δ4-BA in NPC 

(upper panel) and NIST (lower panel) plasma samples. (B) MRM m/z 522.3443.3384.3 chromatograms 

from an NPC (upper panel) and NIST (lower panel) plasma sample. Measured concentrations of 3βH,7O-Δ5-

BA are given in the right-hand corners of the chromatograms. The chromatograms were recorded on 

different days resulting in an offset in retention time of 0.2 min in the early eluting peaks. MS3 ([M]+
[M-

Py]+
) spectra of the compounds underlying the chromatographic peaks eluting at (C) 1.96 min (7αH,3O-

Δ4-BA ) in chromatogram (A) and (D) 2.16 min (3βH,7O-Δ5-BA) in chromatogram (B). 
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Figure 6. 3β,5α,6β-triol, 3β,5α,6β-triHBA and 3β,5α,6β,26-tetrol give [M-H2O-Py-72]+ and [M-H2O-Py-100]+ 
neutral-loss fragment-ions in their MS3 ([M-H2O]+

[M-H2O-Py]+
) spectra. (A) RIC, m/z 539.4368 ± 5 ppm, 

demonstrating chromatographic separation of 3β,5α,6β-triol ([M-H2O]+ ions) from hydroxycholesterols 
([M]+ ions) and 5,6-EC ([M]+ ions) in NPC (upper panel) and NIST (lower panel) plasma samples. Measured 
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concentrations of 3β,5α,6β-triol are given in the right-hand corners of the chromatograms. 
Monohydroxycholesterols give syn and anti conformers of the GP derivative, resulting in twin peaks. (B) 
MS3 ([M-H2O]+

[M-H2O-Py]+
) spectrum of 3β,5α,6β-triol from an NPC plasma sample. (C) RIC of m/z 

527.3640 ± 5 ppm demonstrating chromatographic separation of 3β,5α,6β-triHBA [M-H2O]+ from 3β,7β-
diH-Δ5-BA ([M]+ ions) and 3β,7α-diH-Δ5-BA ([M]+ ions) in NPC (upper panel) and NIST (lower panel) plasma 
samples. Measured concentrations of 3β,5α,6β-triHBA are given in the right-hand corners of the 
chromatograms. Both diH-Δ5-BA isomers give twin chromatographic peaks. The chromatograms were 
recorded on different days resulting in a retention time shift of ~0.2 min. (D) MS3 ([M-H2O]+

[M-H2O-
Py]+

) spectrum of 3β,5α,6β-triHBA in an NPC plasma sample. (E) RIC for m/z 555.4317 corresponding to 
the [M-H2O]+ ion of cholestanetetrols and the [M]+ ion of dihydroxycholesterols from NPC (upper panel) and 
NIST (lower panel) plasma samples. Measured concentrations of 3β,5α,6β,26-tetrol are given in the right-
hand corners of the chromatograms. (F) RIC for the MRM transition m/z 555.4471.4399.3 
corresponding to [M-H2O]+

[M-H2O-Py]+
[M-H2O-Py-72]+ for cholestanetetrols from the NPC (upper 

panel) and NIST (lower panel) plasma samples. (G) MS3 spectrum of the peak eluting at 5.2 min in the NPC 
plasma sample. See Supplemental Figure S4A & S4B for assignment of fragment-ions. MS3 spectra of 
authentic standards of [2H7]3β,5α,6β-triol, 3β,5α,6β-triol and 5α,6-EC are shown in Supplemental Figure 
S5C – S5E. 
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7 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Patterns of MS3 neutral-losses which distinguish between, or are common to, 3β,5α,6β-triol-
containing and 3β,7-dihydroxy-5-ene sterols. The pattern of neutral-losses shown in the red box distinguish 
between [M-H2O]+ ions of 3β,5α,6β-triols from [M]+ ions of 3β,7-dihydroxy-5-ene sterols of identical mass. 
Neutral-losses/fragment-ion shown in the blue box are common to both structures. Structures of R groups 
are shown within brackets, in the lower left-hand box. 
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FTMS + p ESI Full ms 
[400.00-610.00]  MS 
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NL: 2.75E4

m/z= 585.4030-585.4088 F: 
FTMS + p ESI Full ms 
[400.00-610.00]  MS 
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NL: 1.28E2
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Figure 8. Identification of 3β,5α,6β-triHCa and 3β,5α,6β,24-tetraHCa in plasma samples rich in 3β,5α,6β-
triol. (A) RIC of m/z 569.4110 ± 5 ppm corresponding to [M-H2O]+ and [M]+ ions of 3β,5α,6β-triHCa and 
dihydroxycholestenoic acids, respectively, from plasma from a patient with NPC (upper panel) and the NIST 
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control plasma (lower panel). 3β,7α-diHCA and 3β,7β-diHCA appear as 25S and 25R epimers and both give 
twin peaks due to syn and anti conformers of the GP derivative. The NPC plasma was analysed on a 
different day to the NIST plasma samples resulting in a 0.1 - 0.2 min offset in the earlier eluting 
chromatographic peaks. (B) RIC for the MRM transitions 569.4485.3413.3 in plasma from a patient 
with NPC (upper panel) and the NIST control plasma (lower panel). Measured concentrations of 3β,5α,6β-
triHCa are given on the right-hand side of the chromatograms. (C) MS3 ([M-H2O]+

[M-Py-H2O]+
) 

spectrum from the compound underlying the chromatographic peak at 4.69 min in the NPC chromatogram 
in (B). See Supplemental Figure S4B for a description of fragment-ions. (D) RIC of m/z 585.4059 ± 5 ppm 
corresponding to [M-H2O]+ of 3β,5α,6β,24-tetraHCa and [M]+ of trihydroxycholestenoic acids in NPC (upper 
panel) and NIST control plasma (lower panel). MRM chromatograms (E) m/z 585.4501.3429.3 and (F) 
m/z 585.4501.3383.3 revealing 3β,5α,6β,24-tetraHCa in NPC (upper panels), but not the NIST control 
plasma (lower panels). Measured concentrations of 3β,5α,6β,24-tetraHCa are given on the right-hand side 
of the chromatograms. The NPC plasma was analysed on a different day to the NIST plasma samples 
resulting in a 0.1 - 0.2 min offset in the earlier eluting chromatographic peaks. (G) MS3 ([M-H2O]+

[M-H2O-
Py]+

) spectrum of 3β,5α,6β,24-tetraHCa in NPC plasma.   
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