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Abstract: Efficient analytical image charge models are derived for the full spatial variation of 
the electrostatic self-energy of electrons in semiconductor nanostructures that arises from 
dielectric mismatch using semi-classical analysis. The methodology provides a fast compact 
and physically transparent computation for advanced device modeling. The underlying semi-
classical model for the self-energy has been established and validated during recent years and 
depends on a slight modification of the macroscopic static dielectric constants for individual 
homogeneous dielectric regions. The model has been validated for point charges as close as 
one interatomic spacing to a sharp interface. A brief introduction to image charge 
methodology is followed by a discussion and demonstration of the traditional failure of the 
methodology to derive the electrostatic potential at arbitrary distances from a source charge.  
However, the self-energy involves the local limit  of  the difference between the electrostatic 
Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is 
shown that high convergence may be achieved for the image charge method for this local 
limit. A simple re-normalisation technique is introduced to reduce the number of image terms 
to a minimum. A number of progressively complex 3D models are evaluated analytically and 
compared with high precision numerical computations. Accuracies of 1% are demonstrated. 
Introducing a simple technique for modeling the transition of the self-energy between 
disparate dielectric structures we generate an analytical model that describes the self-energy 
as a function of position within the source, drain and gated channel of a silicon wrap round 
gate field effect transistor on a scale of a few nanometers cross-section. At such scales the 
self-energies become large (typically up to ~100 meV) close to the interfaces as well as along 
the channel. The screening of a gated structure is shown to reduce the self-energy relative to 
un-gated nanowires. 
 
Keywords: nanostructures, image charge, electrostatic self-energy, semiconductors, dielectric 
mismatch, nano-transistors 
 
Subject classification: PACS (2008) 73.63-b 
 

1. Introduction 

A dielectric heterostructure may be defined as the spatial union of a set of homogeneous 
regions I (I=1…N) described by permittivities εI(r) that depend on location r and where the 
interfaces and surfaces are well-defined. A particle P with point charge Q at r1 will induce 
polarisation charges at the interfaces and surfaces that generate a resultant electrostatic field 
φ (r, r1, Q) (Figure 1a) that reacts back on the charge to produce an electrostatic self-energy 
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Σ(r1) which varies throughout the system (Figure 1). The self-energy [1] is defined semi-
classically by  

Σ(r) = limit
r1→r

      12Q{φ(r,r1,Q)−φCoulomb(r,r1,Q)}    (1) 

where 

φCoulomb(r,r1,Q) =
Q

4πε1 | r− r1 |
      (2) 

 
is the Coulomb field of the point charge P in an infinite  homogeneous dielectric (bulk) with 
permittivity ε1=ε(r1) (Figure 1b). For dielectric heterostructures with regions with nanometer 
dimensions the electrostatic self-energies of carriers and charged impurities may be high 
(meV to a few eV, [1]). Here we focus on semiconductor nanostructures including wrap-
round-gate field effect nanowire transistors [2-6] but the following is applicable also to 
biological systems such as ion channels and to molecular heterostructures including carbon 
nanostructures. For semiconductor nanostructures the electrostatic self-energy (when 
considered at all) is generally pre-computed numerically along with a tight-binding evaluation 
of nanostructure energy band structure [7]. As pointed out in [2, 8-9] the interaction between 
a charge carrier and its own image charge distribution is a long-range correlation effect, 
which is not included in the conventional quantum many-body theories of out of equilibrium 
open systems. It should be described within a many-body framework such as the GW method 
of Hedin and Lundqvist [10,11]. However, the semi-classical electrostatic self-energy with 
minor modifications (section 2) has been shown to be important for semiconductor 
nanostructures [8, 7] where it is evaluated by intensive numerical methods.  
 
The underlying semi-classical model for the self-energy has been established and validated 
during recent years [1-2, 7-9, 20-23] and depends on a slight modification of the macroscopic 
static dielectric constants for individual homogeneous dielectric regions. The modification 
involves in the role of dynamic screening. For strong dielectric mismatch e.g for the silicon-
silicon dioxide interface, a modified dielectric constant must be used that differs from the 
bulk obtained by subtracting the ionic contribution (which responds very slowly to electrons 
moving in a nanowire [1-2, 25]]). A similar argument applies to the choice of modified 
dielectric constant in III-V semiconductors but not to silicon or SiGe. The underlying model 
has been validated for point charges as close as one inter-atomic spacing to a sharp interface 
[19] and to a few silicon planes [23]. In the present work the model is used to compute self-
energies for point charges in an environment determined electrostatically by a modified static 
dielectric function. The intended target is the incorporation of the self-energy into full 
quantum transport studies [3-6] of nanostructured devices using the self-consistent Keldysh 
non-equilibrium Green function methodology. The latter methodology quantizes the system 
in the position representation so that the resulting electronic properties are parameterized by 
states that depend on the electrostatic self energy which acts like an addition to the 
confinement potential but as we show later (section 5) may vary spatially along a 
homogeneous device channel with values between ~ 0 to 100 meV close in magnitude to 
standard confinement energies. In this fashion the relatively simple classical self-energy 
enters directly into the complex scenario of electronic states and their dependence on 
the underlying crystalline geometry. 
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(a)                                            (b) 

Figure 1: (a) Charge Q at r '  in a volume of dielectric 1 enclosed by dielectric 2 gives rise to an 
electrostatic potential ϕ12 (r) = (1 / 4π ε)/ | r-r ' | +ϕinduced (r) at the field point r . (b) Charge Q at r '  in 
bulk homogeneous dielectric 1 and a field point r  where the potential is 
ϕ1(r) = (1 / 4πε)/ | r-r ' | ≠ϕ12 (r) . The potential ϕinduced (r)  results from the charge induced at the 
interfaces by source charge  Q. 

In the present paper we demonstrate that there are excellent prospects for deploying accurate 
compact analytical models for the electrostatic self-energy based on image charge methods. 
The aim is to promote better understanding of the key physical processes and effective device 
design without complex numerically intensive computing. The approach utilises image charge 
methods without recourse to slowly convergent series or multiple integrations and without 
special methodologies [12] developed for solvation problems such as particle-mesh Ewald 
methods, fast multi-pole methods, and others for which compact analytical models are not 
available. In section 3 we consider two parallel grounded conducting slabs separated by a 
distance d and determine the electrostatic potential along a central line at a distance D=10d 
from a point charge.  It is found that 1% accuracy requires the summation of 108 images as 
first conjectured in [13]. This problem is generally present for computing the electrostatic 
potential in dielectric heterostructures, but not for the evaluation of the self-energy. It is 
shown in section 3 that the localised nature of the self-energy requires many fewer image 
charge summations and indeed using a simple renormalisation scheme may reduce the 
number to less than 10 for accuracies better than 1%. 

The determination of the image potential φImage (r,r1,Q) from a summation over image 
charges is well-known [13] to have convergence problems for large separations of the field 
point and the source point | r - r1 | >> 0 , because the resultant series are asymptotic. 
However, as we shall demonstrate, the construction of the self-energy involves the local limit 
| r - r1 | → 0 leading to rapid convergence provided a position-independent contribution to the 
self-energy is correctly identified. 

 The plan of the paper involves a simple introduction to the electrostatic self-energy including 
archetypal models for the image charge representation (in section 2). Section 3 describes 
infinite planar layered dielectric heterostructures. Section 4 describes infinite nested square 
cross-section dielectric heterostructures. Section 5 introduces a methodology to extend the 
image methodology to adjoining nested square boxed structures with finite dimensions 
including wrap-round-gate silicon nanowire field effect devices. Section 6 considers briefly 
the extension to cylindrical layered dielectric heterostructures.  
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2. The electrostatic self-energy 

2.1 General 

The self-energy Σ(r) is defined in equation (2). The factor ½ is slightly counter-intuitive since 
for interactions between different particles we expect a factor of 1. Here it is derived in more 
detail. The starting point is Poisson’s equation that describes the electrostatic potential set by 
a charge density ρ(r) for a scalar permittivity function ε(r) (that describes the dielectric 
heterostructure) plus appropriate boundary conditions: 

∇. ε(r)∇φ(r) = −ρ(r)       (3) 

The Green function for the Poisson equation satisfies (for the same boundary conditions): 

∇. ε(r)∇g(r,r1) = −δ(r− r1)      (4) 

A particle P with point charge Q at r1 will induce polarisation charges at the interfaces and 
surfaces that generate a resultant electrostatic field φ (r, r1, Q) given by: 

φ(r,r1,Q) =Qg(r,r1;ε(r))      (5) 

on the other hand, if the particle P was in a homogeneous infinite medium with uniform 
permittivity     ε1= ε(r1) we recover the Coulomb potential: 

φCoulomb(r,r1,,Q) =Qg0 (r,r1;ε1 ≡ ε(r1)) =
Q

4πε1 | r− r1 |
  (6) 

The self-field φSelf (r, Q) within a bounded region of homogeneous permittivity ε1 is defined as 
the local limit of the difference between φ (r, r1, Q) and the source Coulomb potential: 

 φSelf (r,Q) = limitr1→r
 {φ(r,r1,Q)−φCoulomb(r,r1,Q)} = limitr1→r

 Q{g(r,r1)− g0 (r,r1;ε1)}  (7) 

The self-field is the additional electrostatic potential of the particle P due to the presence of a 
surfaces and interfaces of the polarisable heterostructure. To construct the self-energy 
Σ let us  consider the self-field φSelf (r, q) due to a smaller charge |q|<|Q| ; then an 
infinitesimal increment in the charge δq will lead to P experiencing an infinitesimal increase 
in the interaction self-energy δΣ = δq φSelf (r, q) (in the limit: dΣ/dq= φSelf (r, q)). Here we 
used the property that φSelf (r, q) is directly proportional to q (equation (7)). The full self-
energy is therefore the result of building up the charge to its final value Q: 

Σ(r) = φSelf (r,q)dq0

Q
∫ = 1

2QφSelf (r,Q)     (8) 

in agreement with equation (1) of section 1. Or in terms of the Green function for Poisson’s 
equation: 

Σ(r) = limit
r1→r

  12Q
2{g(r,r1)− g0 (r,r1;ε1)}    (9) 
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2.2 The archetypical model: two layered dielectric slabs 

The simplest example of the construction of the electrostatic self-energy is sketched in Figure 
2. A point charge Q is located in a uniform dielectric I1 (ε=ε1) at r1= (x1,y1, z1) at a distance 
d=b-y from the planar interface with a uniform dielectric I2 (occupying, y≥ b for all x, y; 
ε=ε2). The problem is trivially solved by the method of images, but we shall illustrate the 
field-theoretic approach that may be used very generally as a method for the rigorous 
extraction of image charges. A useful preliminary is to note that in this geometry the simple 
Coulomb field of the point charge in bulk dielectric with ε=ε1 (no interfaces) is: 

φC (r, r ') =
Q

4πε1 | r-r ' |
=  Q
4πε1 (x − x1)

2 + (y− y1)
2 + (z− z1)

2

  = Q
4πε1 (y− y1)

2 + ρ2
   = Q

4πε1
J0 (kρ)e

−k|y−y1|
0

∞

∫ dk
  (10) 

In region I1 the general solution comprises a Coulomb term plus a solution to the 
homogeneous Poisson equation (Laplace’s equation): 

ϕ1 =
Q
4πε1

J0 (kρ){e
−k|y−y1|

0

∞

∫ + Aeky}dk     (11) 

ϕ2 =
Q
4πε1

J0 (kρ)Ce
−ky

0

∞

∫       (12) 

 

These forms satisfy the correct boundary conditions at infinity. The coefficients A and C are 
determined by matching φ1 ,φ2  and  ε1∂φ1 /∂y, ε2∂φ2 /∂y at y=b. This leads to: 

 A = ε1 −ε2
ε1 +ε2

exp[−k(2b− y− y1)]     (13) 

From (13) and using the identity (10) we find: 

φSelf (y) = limitρ→0

Q
4πε1

J0 (kρ)e
−2k|b−y|

0

∞

∫ dk = Q
4πε1

λ12
2(b− y)

  (14) 
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Figure 2: Image charge model: two infinite parallel dielectric slabs: single interface 
Showing source and image charges and variation of electrostatic energy as a function of the distance d 
of the charge Q from the interface for dielectric I1= silicon (ε1=11.87 ε0) and dielectric I2 = air 
(ε2=ε0) or silicon dioxide (ε2=2.1 ε0). 

 

Here, we encounter the factor 

λ12 =
ε1 −ε2
ε1 +ε2

= −λ21       (15) 

The self-energy then follows as 

Σ(r) = λ12Q
2

16πε1
1

b− y
=
λ12Q

2

16πε1
1
d

     (16) 

Here, d=b-y as the distance of the source charge from the interface or better, 2d is the 
separation of the source charge from an image charge QImage=λ12Q, at yImage=y+2d. Figure 2 
shows the configuration for this example and the self-energy in regions I1 and similarly in I2 
for silicon and air and silicon and silicon dioxide. An important detail that differs from a 
purely classical treatment is that for the oxide we adopt a value for ε =2.1 ε0  that corresponds 
to just the electronic contribution as described in [8] for the semi-classical self-energy. In the 
case that dielectric I2 is replaced by a conducting slab, we may use the limit  ε2 →∞ ; then 
the  self-energy only exists in the lower half plane (d>0) and the image charge becomes –Q in 
the above formulae. Physically, it apparent that the electrostatic energy for Q less than a few 
nm from a region of strong dielectric mismatch is of the order of quantum confinement 
energies (less than to the order of  1 eV). 

More general models involving multiple slabs both above and below I1 may be handled 
similarly except that an additional term Bexp[-ky] is required in equation (11) and the other 
regions will again involve exponentials of the form exp[±ky] with different coefficients 
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determined by the boundary conditions at the different interfaces. The coefficients A and B 
are thus determined to be functions of the interface parameters, the permittivities and k. By 
expressing the k-dependence of these coefficients solely in terms of exponentials in k, the 
self-potential and self-energy in I1 is obtained in the form of a sum over images 

φSelf (y) = limitρ→0

Q
4πε1

J0 (kρ) λImage
Image
∑ e−k|yImage−y|

0

∞

∫ dk = 1
4πε1

λImageQ
| y− yImage |Image

∑     (17) 

 

Σ(r) = 1
8πε1

λImageQ
2

| y− yImage |Image
∑        (18) 

which is a sum over image locations yImage and effective image charges λImageQ  
(Image=1,2,…). 

3. Image charge models: three parallel dielectric slabs 

3.1 Dielectric sandwiched between a dielectric slab and a conducting slab  

The first non-trivial model for the image charge computation of the electrostatic self-energy 
energy is provided by a point charge Q at (x1,y1,z1) in a dielectric slab (I1) in the region y1≤b 
(b>0) where b<y ≤a=b+t  locates a second dielectric slab (I2) and the region y > a is occupied 
by a grounded conductor (I3). The configuration is sketched in Figure 3. The electrostatic 
field within the region y<b comprises the source Coulomb potential due to the charge Q and 
the Coulomb fields resulting from an infinite number of image charges Qimage located at yimage: 

yimage = 2b− y,  Qimage = λ12

yimage = 2b− y+ 2t,  Qimage = (1−λ
2
12 )λ23

yimage = 2b− y+ 2Nt,  Qimage = −
(1−λ 212 )
λ12

(λ21λ23)
N   (N = 2,3,...∞)

         (19) 

 

Figure 3: Image charge model: three infinite parallel dielectric slabs: two interfaces 
Showing source Q and construction of image charges.  



Image charge models for the electrostatic self-energy in nanostructures 
 

 8 

Here, a direct construction by ray tracing to locate the image charges utilises: a reflection 
coefficient λ12 from travel from source Q towards the first interface (y≤b); a transmission 
coefficient (1- λ12) across the first interface y=b; a reflection coefficient (λ23) at the second 
interface y=b+t; a reflection coefficient λ21 and transmission coefficient (1- λ21)=(1+ λ12) at 
the lower interface y=b. Multiple ray paths lead to multiple images as sketched in Figure 3 . 
The  resulting electrostatic self-energy for region y≤b is easily obtained and may be verified 
by a straightforward field theoretic methods (as in section 2): 

Σ(r) = Q2

16πε1
{ λ12
b− y

− (1−λ 212 )
(λ21λ23)

N

λ12 (b− y+ Nt)N=1

∞

∑ }    (20) 

This summation may be evaluated with the aid of the Lerch function [14] 

ΦL (β,1,α) =
β N

α + NN=0

∞

∑ =
e−αu

1−βe−u0

∞

∫ du     (21) 

Σ(r) = Q2

16πε1
{λ12
d
−
(1−λ12

2 )
λ12

{ΦL (λ21λ23,1,d / t)− t / d}}   (22) 

where d=b-y. 

 

Figure 4. Self-energy of an electron (charge Q) as a function of the perpendicular distance d=b-y from 
the I1- I2 interface at y=b in the silicon component of a dielectric heterostructure comprising parallel 
planar slabs (I1 = silicon, I2 = oxide, I3 = grounded conducting slab (part of the cross-section shown as an 
inset). Exact theory (full curves ). Approximate theory from equation (23)(dashed curve) for oxide 
thickness t=1 nm, 2 nm, 4 nm, infinity; the case t=0 is exact in both the approximate and exact theory 
(black dashed curve). Oxide permittivity =0.287 ε0 ; semiconductor permittivity 11.87 ε0.   

In the case that λ23= -1 (conducting slab) illustrated in Figure 4 we may use an appropriate 
series expansion of the Lerch function [14] to find a good approximation valid for t<d (we note 
the cancellation of terms from the second image) : 

Σ(r) ~ Q2

16πε1
{λ12
d
−
1+λ12
d + 2t

}       (23) 
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Approximation (23) is exact for ( t→∞ ) and ( t→ 0 ). Figure 4  exhibits the accuracy of the 
approximation for a point electronic charge of |e| in silicon close to a gated oxide region 
(ε2=2.87ε0)  of thickness t=4 nm, 2 nm, 1 nm (dashed blue, red, orange curves) compared with 
the exact self-energy (solid blue, red, orange curves). A very thick oxide ( t→∞ ) is shown 
by the exact black curve whereas the exact dashed black curve corresponds to t=0. The 
distance of the charge from the b=1 interface is varied between 0.25 nm to 10 nm. The 
accuracy of the approximation (23) involving just two effective image charges is better than 
1%. The exact solution is given by (20) or (22) or by an integral form derived by field theory 
in the Appendix where we also displayed the error computation. This is an interesting case 
that shows the action of a gated thin oxide in reducing the self-energy of an electron in silicon 
relative to that of a thick oxide.  

3.2 Dielectric sandwiched between two conducting slabs 

The next order of complexity is provided for the self-energy within the central of three 
parallel dielectric slabs. The simplest version involves a dielectric sandwiched between two 
parallel grounded conducting slabs with interfaces at y=±b. Here the image map is illustrated 
in Figure 5. It comprises a periodic array of copies of the original charge Q and the nearest 
image charge (-Q). 

 

(a)                                            (b)                                             (c) 

Figure 5: Image charge model: (a) charge Q embedded in a dielectric between two conducting slabs; 
(b)  shows location of multiple image charges and the two interfaces. (c) Shows the construction of one 
of the images by ray paths. Blue dots represent charge +Q, Red dots correspond to -Q. 

In the central dielectric the electrostatic potential at a field point r=(x,y,z) comprises the sum 
of the Coulomb fields from the source charge and an infinite number of image charges of 
value ±Q :  

φ(y,ρ) = 1
4πε1

{
N=−∞

∞

∑ Q
(y− y1 + 4bN )

2 + ρ2
+  −Q

(y+ y1 + 2b(2N +1))
2 + ρ2

}  (24) 

The source potential is given by the N=0 in the first series of equation (24). The image 
locations along the y-axis and charge assignments are: 
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QImage =Q;   yN = y1 ± 4bN                    (N =1, ∞)
QImage = −Q;   yN = −y1 − 2b(2N +1)      (N = −∞, ∞)

    (25) 

 

Figure 6: Error in the electrostatic potential as a function of number of image charges for various 
separations of the field point and the source charge.   The percentage error is defined as  
100(φ(y,ρ)N- φ(y,ρ)exact)/ φ(y,ρ)exact. 

Figure 6 displays the percentage error in the computed electrostatic potential as a function of 
the number of included images at various distances down the channel from the source charge. 
For a separation of source charge and field point ρ=10d (where here d=2b is the distance 
between the two conducting slabs) and an accuracy in the potential of the order of 1% 
requires ~ 108 image charges, a result first observed in reference [6]. This slow convergence 
disappears for shorter distances between the source charge and the field point, precisely the 
localised regime where the self-energy is defined. 

The self-energy is obtained as: 

Σ(y) = Q2

8πε1
{ −b(2N −1)
(2N −1)2b2 − y2N=1

∞

∑ +
1
2Nb

}    (26) 

3.3 Dielectric sandwiched between two dielectric slabs 

Replacing the two conducting slabs of section 3.2 with dielectric slabs having permittivity ε2, 
yields the self-energy as 

Σ(y) = Q2

8πε1
{bλ12

(2N+1)(2N −1)
(2N −1)2b2 − y2N=1

∞

∑ +
λ 2N12
2Nb

}    (27) 

The series has been slightly re-arranged to give symmetric behaviour about y=0 and to give a 
convergent result at y=0. The nearest images contribute to the leading terms to the self energy 
except for the central location y=0 where very large numbers contribute.  
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Figure 7: Comparison of the computed electrostatic self-energy for: a single electronic charge in a 
silicon slab sandwiched between: two grounded conducting slabs (black); two oxide slabs (red); and 
two regions filled with air. The approximations for Nmax=1 (eqn 28) are shown with dashed lines. Exact 
results are shown as full lines.  The half-width b = 0.5 nm. 

Close to each interfaces the self-energies behave like the single interface result (16). 
Truncating the summation (27) at N=Nmax=1 gives : 

Σ(y) = Q2

8πε1
{ λ12b
b2 − y2

+
λ 212
2b
} = Q2

16πε1
{ λ12
b− y

+
λ 212
b
+
λ12
b+ y

}  (28) 

Figure 7 compares the Nmax=1 approximation with the exact self-energy. The results show that 
equation (28) is a fair approximation near the interfaces but is less accurate at the symmetry 
point. The Nmax =2 case has errors of order 20% that reduce to 0.1% with the order of 500 
iterations (Nmax~ 500). However, the main part of the error comes from a constant shift arising 
from the large number of images that contribute to the centre value Σ(y=0). 

3.4 A simple re-normalisation procedure   

Since the major source of error in the self-energy comes from a slowly varying term peaking 
at the symmetry point y=0 it is pertinent to set up a simple re-normalisation scheme where it 
is supposed that an accurate value for the centre value Σ(y=0) is known. A re-normalised 
calculation of the self-energy truncated at N=Nmax may then be written: 

ΣR (y,Nmax ) = Σ(y,Nmax )+Σ(y = 0)−Σ(y = 0,Nmax )     (29) 

where Σ(y, Nmax) is given by expression (27) truncated at N= Nmax. The re-normalised self-
energy is thus fixed at the exact value. Figure 8 shows the error in the truncated self energy 
and the re-normalised self-energy as a function of Nmax in the grounded slab case λ12=-1. 
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Figure 8: Percentage error in the electrostatic self-energy for a single electronic charge in a silicon slab 
sandwiched between two grounded conducting slabs as a function of Nmax  and distance y for un-
renormalised and normalised expression ( half-width b=0.5). 

In general the re-normalisation scheme yield two orders of magnitude improvement. The 
Nmax=2 approximation is better than 1%. These findings are corroborated in Figure 9 that 
shows the detailed error in the truncated self-energy (dashed lines) re-normalised truncated 
self-energy approximation (full lines). The error for the re-normalised self-energy increases 
towards the interfaces, peaking at about 75% of the half-width b. 

 

 

Figure 9: Percentage error in the electrostatic self-energy for a single electronic charge in a silicon slab 
sandwiched between two grounded conducting slabs as a function of distance y for Nmax=1,2,5  using 
un-renormalised and renormalized expressions (for half-width b=0.5 nm). 
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4. Image charge models: nested dielectric blocks with planar interfaces 

4.1 A simple case: a wrap-round square cross sectional dielectric box 

   
 

Figure 10.   An infinite dielectric box I1 surrounded by a single dielectric I2. A charge Q in I1 is 
associated with image charges in the plane perpendicular to the main axis that passes through Q. 

New features arise in this case: (i) given a charge Q at (x,y,z) belonging to the core dielectric 
I1 the image plane (the x-y plane) passes perpendicular to the central z-symmetry axis as 
shown in Figure 10; (ii) the appearance of corner regions leads to new image charges (shown 
in Figure 11 for the nearest images to a charge Q near to a corner). 

 

Figure 11: Corners and image charges. On the left is exhibited the self-energy in landscape mode over 
the x-y plane; on the right a contour plot of the self-energy near a corner in the image plane is 
combined with diagrams showing the location of the source charge Q and the nearest image charges 
and their locations. 

 

The spatial locations of the nearest images may be exhibited as an image location map 
(Figure 12 shows 99 nearest image charges for the central solution domain containing a single 
source charge Q). The corresponding image charge assignment is shown in Figure 13. 
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Figure 12.  Image map for 2 nested boxes. The location of charge Q within region 1 (box 1)  
bounded by an infinite region 2(box 2) is the solution domain where it is required to evaluate the 
self-energy. The charge Q creates image charges within the periodically extended image 
domain. For the solution domain bounded by a grounded conductor the image charges 
alternate between ± Q (denoted by red and blue). The entire image map is a periodic array 
because of the periodic boundary conditions. The electrostatic potential on the boundaries 
of the solution domain is zero.                   

 

Figure 13. Image charge assignment for the image map of Figure 12. The central value N=0 
corresponds to the source charge Q. The central square portion corresponds directly to the 100 
locations shown in Figure 12. The 4 nearest neighbour image charges to the source charge Q have 
image charges λ12Q  i.e N=1. The 4 next  nearest neighbour image charges (N=2) have values λ12

2Q . 

Since the factor λ12 =
ε1 −ε2
ε1 +ε2

 ⇒ | λ12 | ≤ 1  the total potential in the solution domain converges. 



Image charge models for the electrostatic self-energy in nanostructures 
 

 15 

These cases include a grounded conducting gate wrapping around the central dielectric core. 
The self-energy expressions are simple generalisations of the truncated series expansions over 
images.  

 

 

(a)                                                                   (b) 

Figure 14  (a): a point charge Q (blue) is located within an infinitely long finite square cross-section 
dielectric ε1 (yellow) embedded in an infinite dielectric 0<ε2< ε1 (orange). The nearest and next nearest 
image charges due to the 4 interfaces are shown in red in the image plane (light blue).  
Figure  14 (b): a point charge Q (blue) is located within an infinitely long finite square cross-section 
dielectric ε1 (yellow) embedded in an infinite dielectric ε2 (orange) of finite thickness which in turn is 
embedded in a grounded conducting medium (gate). The nearest and next nearest image charges are 
shown in red in the image plane (light blue) arising from the first 4 interfaces; a further set of image 
charges (in green) that arise from the second set of interface at the gate boundary. 

To illustrate, consider the following expression (30) for the self-energy in a two dielectric 
wrap-around geometry (Figure 14a ) along the z-symmetry axis in a truncated expansion and 
without re-normalisation being applied.  

Σ =
Q2

16πε1
1
b J=−Nmax,  J=K≠0

Nmax

∑ λ12
|J |+|K |

J 2 +K 2
K=−Nmax

Nmax

∑      (30) 

Results for various materials configurations are shown in Figure 15.  
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Figure 15 utilises equation (30) to compute the convergence of the self-energy for different materials 
configurations with boxed structure without re-normalisation and along the central axis (x =y=0, 
arbitrary z). Here the silicon core is square with width = 2 nm. 

4.2 Re-normalised model 

The renormalisation procedure of section 3.4 permits the following simple expression for the 
re-normalised self-energy in boxed structures. Assuming that the value Σ0  along the central 
axis is known accurately, the re-normalised result for a truncation index Nmax ~ 2  is: 

ΣR (x, y, z) = Σ0 +Σ1(x, y, z)−Σ1(0, 0, 0)      (31) 

Σ1(x, y, z) =
Q2

8πεSib
λ12{

b2

b2 − x2
+

b2

b2 − y2
+ (λ12 / 2)Λ(x, y)}    (32) 

 Λ =
b

(b− x)2 + (b− y)2
+

b
(b− x)2 + (b+ y)2

    + b
(b+ x)2 + (b− y)2

+
b

(b+ x)2 + (b+ y)2
     (33) 

The expressions (31-33) give highly accurate results (better than 1%) across the full spatial 
domain where the nearest and next nearest neighbour images provide the spatial variation. 
The distant images contribute primarily to the central axis self-energy. 

4.3 Gated dielectric wrapped around a square cross-section, long dielectric wire.  

Figure 14b  illustrates the generalisation to a gated boxed structure important in field-effect 
nano-transistors and compares the nearest image charges in the image plane for a core charge 
Q showing the additional images that derive from reflection at the upper interfaces. The inner 
interfaces are separated by the planes x=b, x=-b, y=-b, y=b and by the set x=a, x=-a, y=-a, 
y=a where a=b+t > b . 
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In analogy to section 3.1 the presence of the I3-2 interface (gated-dielectric) leads to image 
charges arising from multiple internal reflections in the I2 region in the ray construction of the 
images. Following the analysis of section 3 it is straightforward to utilise a simple re-
normalisation of the lowest order images arising from internal reflection at the gate. The 
additional terms are similar in structure to expressions (20) and (23). Further to the simple 
example of section 3 there are also additional multiple reflections that derive from 
intermediate reflections at the inner boundaries. Despite the complexity, the multiple images 
contribute very little to the self-energy except along the central axis. This is a consequence of 
the large distances of the image charges involved. The simple re-normalisation scheme 
outlined in section 4.2 reduces the complexity of the self-energy to just a few simple 
analytical terms. Expressions (31-33) are then modified to order λ12 and for  
|x| <b, |y| < b as: 

Σ1(x, y, z) =
Q2

8πεSib
{λ12 −

(1+λ12 )b
b+ t

}{ b2

b2 − x2
+

b2

b2 − y2
}    (34) 

Here t is the thickness of the dielectric I2 separating the core I1 from the gate. Letting t -> 0  in 
(34) recovers the simple grounded box result  of sections 4.1 and 4.2. In the limit  t >> b, we 
recover the self-energy for the un-gated dielectric box (section 4.1). 

 

5. Application to wrap-round gate nanowire devices. 

Realistic devices are finite heterostructures. An example is shown in exploded form in figure 
16: a wrap-round gate silicon nanowire field effect transistor [15]. The source and drain 
regions ultimately contact a macroscopic system. The active region is the channel region 
under the gate. Here the silicon wire is a uniform homogeneous dielectric (although it is likely 
to be heavily doped in the source and drain regions). However, the dielectric environment of 
an electron in the silicon wire changes dramatically along the transport axis of the structure. 
At first sight there is scant hope of obtaining a simple image representation. 

 

Figure 16. Schematics of a typical wrap round gate silicon nanowire field effect transistor. 

5.1 Connecting the self-energies 
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Earlier sections have sketched how simple but accurate image charge models can be used to 
describe various infinite 3D nanowire dielectric structures. Thus it is straightforward to build 
a compact analytical model of long examples of each sub-component of a nanowire transistor, 
for example the self-energy variation along the central axis of a long source or drain region 
(e.g silicon in air or oxide), and for a long channel region (gated oxide surrounding silicon 
region). But it remains to join these disparate regions together to maintain the continuity of 
the self-energy and its longitudinal spatial derivative along the transport axis. The first 
procedure is to determine the self-energies for the long versions of the source, drain and gated 
channel that are independent of the transport direction z. The terms sbulk, cbulk and dbulk 
will refer to the self-energies derived from the long structures where the self-energies are 
independent of z. The origin of coordinates is taken to be in the centre of the channel at 
(0,0,0). Thus the source-gate edges are at z=±Lg/2 where Lg is the gate length.  

A viable model for the self-energy throughout the full length of the central dielectric (silicon 
in our example) must satisfy physical continuity conditions on the self-energy and its gradient 
along the transport direction z (following from the continuity of the electrostatic potential and 
its gradient across a homogeneous dielectric region). To proceed we outline a heuristic model 
based on standard field-theoretic principles [16]. 

 

Consider a charge Q at (x1,y1,z1) within a very long box (dielectric region E1) 
−b < x1 < b, −b < y1 < b, −∞ < z1 <∞  surrounded by a mismatched dielectric region E2 . In 
field theoretic terms we determine the self-energy in E1 by computing the total electrostatic 
potential φ(r, r1) in region E1. Here the general solution is a particular solution to Poisson’s 
equation (the Coulomb potential) plus a general solution to Laplace’s equation in E1. The 
Laplace equation is separable (φ(x, y, z ) = φX (x)φY (y)φZ (z) ) in E1 and takes the form: 

d2φX
dx2

= −k2xφX ; 
d2φY
dy2

= −k2yφY ;
d2φZ
dz2

= −k2zφZ      (35) 

These equations are equivalent to Laplace’s equation if the separation constants satisfy 

k2x + ky
2 + k2z = 0         (36) 

To satisfy (36) we choose: 

k2z = −k
2 = kx

2 + ky
2;       d

2φZ
dz2

= k2φZ       (37) 

Solutions to (37) are of the form:  

φZ (z) ~ exp[±kz],  k = kx
2 + ky

2        (38) 

The transverse functions φX, φY  are complex exponentials or combinations of sines and 
cosines.  
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For a grounded box (region E2 =grounded conductor) the transverse functions must vanish at 
the interfaces leading to conditions 

kx = kn  = nπ / b     (sin function); (n+1/ 2)π / b (cos function)

ky = km =mπ / b     (sin function); (m+1/ 2)π / b (cos function)

k 2 = k 2
mn;   kmn = km

2 + kn
2  ;  W = 2b.

   (39) 

The lowest mode has  

k00 =
π 2
2b

=
π 2
W

        (40) 

It may then be shown that 

φ ~ φT (x, y) exp[−k00 | z− z1 |]
2k00

       (50) 

which is valid for | z− z1 | >1/ k00  and where z1 is the location of Q.  

Returning to the general case of a box E1 embedded in E2 , if | λ12 | > 0.2  we find from 
inspection of the image potentials obtained from the nearest image charges described in (32) 
that the lowest order kx, ky contributing to a Fourier decomposition are of the order of  π/W 
which again leads to k00 as a good indicator for the z-dependence in (50). At the interfaces the 
image potential may be used to compute the induced charge distribution on the interface using 
Poisson’s equation driven by the effective interface charge density ρ(z) . For a given image 
charge QI  at rI  we obtain an interface charge density as a function of z, normalised to QI  : 

ρ(z) = (k / 2)exp[−k | z− z1 |]QI       (51) 
 
This function is plotted in Figure 17(a), we choose the nearest image charge QI =Qλ12 =0.8 
(arbitrary units). 
 
Suppose now the medium E2 is replaced by a third dielectric E3 in the region |x|,|y| > b and 
z>L1 creating an external dielectric corner at (see Figure 17(b). We make the adiabatic 
approximation that the charge density is discontinuous at z=L1=0.5: 
 
ρ(z) = (k / 2)exp[−k | z− z1 |]Q{λ12 + (λ13 −λ12 )θ(z− L1)}    (52) 
 
where we set λ12Q = 0.4 (arbitrary units). Integrating over all z  we find the effective image 
charge as the continuous function 
 
QI (zI ) =Qλ12{1− fD (zI ,L1)}+Qλ13 fD (zI ,L1)      (53) 
 
where the function fD  is 
 
fD (z, z1) = (1 / 2)exp[−k | z− z1 |]+ (1− exp[−k | z− z1 |])θ(z− z1)   (54) 
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fD  and its first derivative are continuous at the interface z=z1 as required from continuity of 
the image potential. Figure 18 plots the effective image charge QI(z) as a function of source 
charge position z in a dielectric 1 enclosed by dielectrics 2 and dielectric 3 in a boxed 
structure with a dielectric mismatch between regions 2 and 3 at L=0.5. 
The contribution to the total self-energy and its gradient with respect to z due to this image 
charge thus varies continuously with z as 
 
δΣ(x, y, z) = Σ12 (x, y){1− fD (z,L1)}+Σ13(x, y) fD (z,L1)     (55) 

 

 

Figure 17. (a) Model induced charge density at an interface between a dielectric 1 and a dielectric 2 in 
a boxed structure. Source charge at z=0 in region 1. (b) Model induced charge density at an interface 
between a dielectric 1 and a dielectric 2 (z<L =0.5 ) and a dielectric 3 (z >0.5) in a boxed structure. 
Note the discontinuity at z=L. Decay constant k = 2π /W for W=2. 
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Figure 18. Effective Image charge QI(z) as a function of source charge position z in a dielectric 1 
enclosed by dielectrics 2 and dielectric 3 in a boxed structure with a dielectric mismatch between 
regions 2 and 3 at L=0.5. The effective image charge in a long boxed structure involving dielectrics 1 
and 2 only is set arbitrarily at Qλ12=0.8; for dielectrics 1 and 3 alone Qλ13=0.4. Decay constant 
k = 2π /W for W=2.The transition region is approximately of width 2/k. 

 

Extending the same argument to a further dielectric mismatch at L2 where region E4 onsets 
leads to: 
 
δΣ(x, y, z) = Σ12 (x, y){1− fD (z,L1)}+Σ13(x, y){ fD (z,L1)− fD (z,L2 )}+Σ14 (x, y) fD (z,L2 )  

(56) 
 
Finally summing over all the image charges we obtain the total self-energy as the 
approximation: 
 
Σ(x, y, z) =
Σsbulk (x, y){1− fD (z,−Lg )}+Σcbulk (x, y){ fD (z,−Lg )− fD (z,Lg )}+Σdbulk (x, y) fD (z,Lg )

 

         (57) 
 
This approximation is and its first derivatives are continuous in z within the central dielectric 
box and reduce to the long sample expressions in the limits 
( | z | >> Lg  (Lg  finite); | z |<< Lg(Lg →∞) . 

 
The function fD is an example of a representation of the distribution θ(z− z1) . The logistic 
function fL is similar in form: 
 

fL (z, z1) =
1

1+ exp[−k(z− z1)]
     (k > 0)     (58) 
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Figure 19(a) shows the field theoretic model for the self-energy at (x=y=0) along the central 
transport direction z of a hypothetical nanowire field-effect transistor  for which 
Σsbulk = Σdbulk = 0.15eV, Σcbulk = 0.05eV,Lg = 4nm, W = 2nm, k = 2 π /W. For 
comparison we show the result of replacing fD by an empirical  logistic function fL with the 
same parameters.  
 

 

Figure 19 (a) In red: field theoretic model for a continuous self-energy along the central transport axis 
of a hypothetical wrap round gate transistor. (b) In black: Empirical logistic model with identical 
parameters to (a) 

The results of Figure 19 are very similar to numerical computations for the self-energy within 
a nanowire transistor [2, 9]. 

A complete image-based model for the nanowire field effect transistor is obtained by 
inserting expressions (31-33) appropriate to the source, gated channel and drain into 
expression (57). Figure 20 shows a representation of the self-energy for a typical set of device 
parameters. 
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Figure 20. Model electrostatic self-energy of a silicon based nanowire field effect transistor  
Σ(x, y = 0, z) showing a  section along the transport axis  in x-z plane. Gated oxide thickness 
t = 1 nm; silicon thickness W=2b = 2 nm; z-axis length = 24 nm; Lg=4 nm. Position of gate 
boundaries illustrated by white lines.  k = 2π /W  

6. Extensions 

The image methodology may be extended to cylindrical geometries [17, 18]  with important 
string charge extensions. Figures 21, 22 compare the self-energy for a square cross section 
silicon based wrap round gate field effect transistor with that for a comparable cylindrical 
device of the same cross-sectional area. The results show very similar dependence on z, and 

in the central region r = x2 + y2 <W / 4  . Figure 21 shows self-energy contours in the x-y 
plane at z=0 and Figure 22 shows the self energy contours in the x-z plane at y=0. 

 

 

 

 

 

Figure 20(a) Energy contours of the 
electrostatic self-energy in cross 
section of rectangular wrap-round 
gate device for z=0 (device centre). 

Figure 20(b)   Energy contours of the 
electrostatic self-energy in cross 
section of a cylindrical wrap-round 
gate device for z=0 (device centre).  

 
Energy scale 
in eV   
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Silicon channel thickness (W) =  
2 nm, Oxide thickness = 1 nm.  
Channel cross sectional area = 4 nm2  

Silicon core radius = 1.1284 nm,  
Oxide thickness = 1 nm.  
Channel cross sectional area = 4 nm2 

 

 
 

 

Figure 21(a)     Contours of self-energy 
in the x-z plane (y=0) for the rectangular  
nanowire structure. White lines 
demarcate gated channel region. 

Figure 21(b)   Contours of self-energy 
in the x-z plane (y=0) for the 
cylindrical nanowire structure. White 
lines demarcate gated channel region. 

 
Energy 
scale 
eV 

 
7. Discussion and Conclusions 

We have demonstrated that image charge modelling  provides compact, accurate, analytic 
computation of the electrostatic self-energy in square or rectangular cross sectional  3D 
geometries suitable for a range of nanowire heterostructures. We have shown that the image 
method works well for the electrostatic self-energy due to its dependence on the diagonal (or 
local) limit of the classical electrostatic Green functions. In contrast, computation of the  
electrostatic potential at large separations from the source charge renders the image method 
conditionally convergent, cumbersome and numerically intensive. It has been further shown 
that nanowire geometries the self-energy dependence on the transverse distance from central 
longitudinal transport axis is generally determined by contributions from the nearest and next 
nearest images. The central axis self-energy depends on a large number of images. The self-
energy has been shown to be computable to very high accuracy using a renormalisation 
technique that reduces the complexity of the computations. A new technique for matching 
different heterostructure geometries has been demonstrated that permits the modeling of 
complicated device structures.  

It was pointed out that simple classical interfaces that are not atomically resolved give rise to 
divergences in the self-energy. These divergences have no impact on most device modeling 
situations as they correspond to regions where carriers are not present. In the case of 
tunneling across interfaces, where the divergence is important, it is straightforward to replace 
the classical interface by an atomically resolved method without loss of generality of the 
image method. This refinement has already been noted in full-scale numerical computations 
[7 Appendix B]. Older methods [24, 25] of removing the divergence introduce discontinuities 
and distortion on the farther side of an interface. 

Challenges for future work include extending the image charge model formalism to defects or 
ion contamination in nanostructures interfaces and to atomistic randomly sited impurities. The 
key factor here is whether or not this may be achieved by a  simple change to the dielectric 
constant within the perturbed region. If the perturbation region is sufficiently polarizable that 
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may be possible. The effect of electrostatic self-energy on tunneling through interfaces has a 
long history reaching back over 30 years [26]. However, the existence of simple image charge 
methodology rather than using a full numerical approach via Poisson’s equation is not yet 
clear. Part of the problem is that for curved interfaces the image charges may form complex 
line charges [Barker, unpublished].  

In device modelling, the influence of the self-energy on self-consistent transport as a function 
of source, drain and gate voltages has been studied in reference [2, 9] and by us (using 
Keldysh Green functions, unpublished). The effects are manifest via the local self-consistent 
gate potential determined from Poisson’s equation. The main effect is a distortion and 
lowering of the barrier potential.  

Finally, it is observed that our methodology is applicable to a diverse range of 
heterostructures other than semiconductor nanowires. Examples include: quantum dot 
structures, carbon nanotubes and ion channels. There are also possibilities for investigation of  
image methods applied to the self-energy in nested stadiums for which chaotic ray paths are 
of interest.  

Appendix 

Here is sketched a derivation of an integral form for the exact solutions given by the infinite 
series (20) and (22) for the case λ23 = −1  (region 3 is a grounded conducting slab). Without 
loss of generality we locate the source charge Q in region 1 at y=0. The interface with region 
2 is at y=b. The interface with region 3 is at y=b+t (t=thickness of region 2). 

Solving Poisson’s equation in region 1 and Laplace’s equation in region 2 leads to the general 
solutions in regions 1 and 2 in the form: 

 

ϕ1 =
Q
4πε1

J0 (kρ){e
−k|y|

0

∞

∫ + Aeky}dk     (A1) 

 

ϕ2 =
Q
4πε1

J0 (kρ){Ce
ky

+De−ky}
0

∞

∫ }     (A2) 

 
Here we have already applied the boundary condition ϕ1(y→−∞) = 0 . The boundary 
condition at the second interface requires the potential to be zero at y=b+t. Hence the 
coefficient D must satisfy  
 
Dexp[−k(b+ t)]= −C exp[k(b+ t)]     (A3) 
 
Thus 
 

ϕ2 =
Q
4πε1

J0 (kρ){−2C sinh[k(b+ t − y)]0

∞

∫ ek (b+t )}   (A4) 

 

The coefficients A and C are determined by matching the functions ϕ,  ε ∂ϕ
∂y

 at y=b. 

For the self-energy we only require coefficient A which is 
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A(k) = λ12 − e
−2kt

1−λ12e
−2kt       (A5) 

 
where λ12  is defined by (15). The self-energy follows (Q/2) multiplied by the term in C at 
the location y=0 of the source charge: 
 

Σ(y = 0) = Q2

8πε1
J0 (kρ){

λ12 − e
−2kt

1−λ12e
−2kt0

∞

∫ e−2kb}dk    (limit ρ→ 0)    (A6) 

 
Expression (A6) is an integral solution that may be computed numerically. The inverse 
denominator of (A6) may also be expanded as a power series in λ12 exp[−2kt]  to obtain an 
infinite sum of exponentials that may be put in the form of Coulomb functions using (10). 
 

Σ(y = 0) = Q2

8πε1
J0 (kρ){(λ12 − e

−2kt )
0

∞

∫ e−2kb λ12
Ne−2Nkt

N=0

∞

∑  }dk    (limit ρ→ 0)   (A7) 

 
Using representation (10) we express each term as a Coulomb term derived from individual 
image charges: 
 
 

Σ(y = 0) = Q2

8πε1
{λ12
2b

+
λ12
N+1

2(b+ Nt)N=1

∞

∑ −  λ12
N

2(b+ (N +1)t)N=0

∞

∑  }    (A8) 

 
The first few terms are: 
 

Σ(y = 0) = Q2

16πε1
{λ12
b
−
(1−λ 212 )
b+ t

+...... }      (A9) 

 
The first term involves the image of Q in the interface at y=b. The second term involves the 
contribution of the image in the second interface at y=b+t. The remaining terms involve 
multiple reflections. 
 
Using the definition of percentage error: 
 

E =100
| Σexact −Σapprox |

Σexact

 

we use a high precision evaluation of (A6) and whatever approximation is obtained for the sum over 
image terms. 
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