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Abstract 

Vanadium dioxide/titanium dioxide bilayer films have been investigated as a thermochromic 

coating for application as intelligent window glazings for buildings. The nanostructured VO2 

and TiO2 films were deposited on fluorine doped tin oxide coated glass substrates using electric 

field assisted aerosol assisted chemical vapour deposition (ElFi-AACVD) and sol-gel spin 

coating, respectively. Their thermochromic properties were investigated using scanning 

electron microscopy, X-ray diffraction, variable temperature UV/Vis/NIR and X-ray 

photoelectron spectroscopies. Compared to bare VO2 films, the VO2/TiO2 bilayer films exhibit 

an increase in visible light transmittance of up to 30%, an increase in integrated luminous 

transmisttance, with values up to 66%, and a higher transmittance modulation in the near 

infrared of up to 20% at the thermochromic transition temperature. The TiO2 top layer not only 

enhances visible light transmittance, but also serves to protect the VO2 bottom layer from 

oxidation. The bilayer films are shown to exhibit photo-induced super-hydrophilicity. These 

properties are affected by the morphology of the VO2 under-layer. 
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1. Introduction 

World-wide total energy consumption has dramatically increased over the last few decades, 

reaching 9384 Mtoe in 2015.1 It has been estimated that around 40% of this energy 

consumption is attributable to temperature and humidity control of buildings, including air 

conditioning and heating.2 One of the most important considerations in reducing energy 

consumption in buildings is the window glazing. Intelligent glazing systems with spectrally 

selective properties are seen as a practical and innovative method of controling the throughput 

of visible and solar thermal energy entering and leaving buildings, allowing for significant 

energy savings.3 

Thermochromic glazings are designed to intelligently control the amount of light and heat 

(mainly in the near infra-red region) that can pass through the glazing as a function of the  

glazing temperature.4,5 Vanadium dioxide (VO2) exhibits a sharp change in optical properties 

around a thermochromic transition temperature (Tc) of  68 °C, which is associated with a 

semiconductor to metal transition, from a low-temperature monoclinic phase to a high-

temperature tetragonal rutile-type phase.6-8 For this reason, vanadium dioxide based thin films 

have been extensively investigated as possible smart-window coatings. On heating, the 

transmittance in the near infra-red (NIR) region decreases significantly at Tc, while there is no 

significant change in transmittance in the UV/Vis region.  

Thermochromic performance is characterised by ΔT, the percent transmittance modulation 

between the cold and hot stage:5  

        

hotcold TTT −=∆           (1) 

Wavelength integrated luminous transmittance Tlum  and solar transmittance, Tsol are given by:9 
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where i denotes luminous or solar, T(λ) denotes the transmittance at wavelength λ, φlum(λ) is 

the photophic spectral sensitivity of the light-adapted eye (CIE (2008) physiologically-relevant 

2-deg V(λ) luminous efficiency functions), and φsol(λ) is the solar irradiance spectrum for air 

mass 1.5 corresponding to the sun at 37° above the horizon (ASTM G173-03 reference 
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spectrum, direct radiation + circumsolar). The solar modulation ∆Tsol can be calculated by 

substitution of the Tsol values (from equation 2) into equation 1.  

Whilst VO2 shows promise as a thermochromic material, its practical applicability is 

limited by a number of factors, viz.: its high Tc value of 68 °C, that ideally needs to be closer to 

room temperature;10 a wide thermal hysteresis around Tc, ideally the change in transmittance at 

Tc should be large with no hysteresis;11 generally poor visible light transmittance (Tvis) and 

poor glazing aesthetics (films exhibit a strong brown colour).12,13  

Much research effort has gone into lowering the Tc value of VO2 films, for example 

through doping with high-valence transition metal cations, such as Nb5+, Ta5+, Mo6+, W6+ and 

Ru4+.14-19 Even though doping has been found to be effective in lowering Tc, it is still difficult 

to both lower Tc and increase visible light transmittance, as well as reducing thermal 

hysteresis.20 Porosity has been demonstrated to have a positive effect on visible light 

transmittance in tungsten doped VO2 films with low Tc values.21,22 Another way of tuning Tc is 

to control the crystallite size within the VO2 films.23 Reduction in the crystallite and particle 

size causes strain, resulting in a lowering of Tc.
24 For this reason, nanostructured VO2 films are 

of specific interest.25 For example, a Tc of 29 °C was obtained in sol-gel deposited VO2 films, 

with average crystallite sizes between 20-50 nm.23 Warwick et al.26-28 used a novel method for 

controlling film morphology, through deposition of VO2 films with aerosol assisted chemical 

vapour deposition (AACVD) in the presence of an electric field. Increasing electric field 

strength was shown to reduce the average crystallite size and lower Tc. Higher electric fields 

are thought to cause the precursor to approach the surface with greater kinetic energy, allowing 

for faster nucleation. However, one problem with smaller crystallite size is that it leaves films 

more prone to oxidation, accompanied by an irreversible colour change and the complete loss 

of thermochromic properties.27  

A convenient approach to overcome the issue of vulnerability to oxidation, is the use of  

protective layers of high refractive-index dielectric compounds.29 These not only serve to 

provide protection against chemical attack30 and excessive heat and humidity,31 but also 

improve visible light transmittance, as well as allowing for other properties such as self-

cleaning ability.32-34 TiO2 over-layers have been shown to be particularly effective in multilayer 

films with VO2,
30,35,36 improving visible light transmittance, whilst maintaining good 

thermochromic properties. In addition, TiO2 has proved to be an excellent photocatalyst for 

degradation of organic materials, allowing multilayer films to possess self-cleaning properties.  
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In the present work, the properties of VO2/TiO2 bilayer films produced using a novel 

combination of electric field assisted AACVD (ElFi-AACVD) and sol-gel spin coating are 

investigated. The resulting films show enhanced visible light transmittance and good 

transmittance modulation in NIR, in combination with photo induced superhydrophilicity.  

 

2. Experimental 

2.1 Thin Film Preparation 

VO2 thin films were deposited using ElFi-AACVD. The reaction chamber was fitted with 

electrodes which allowed for an electric field to be applied during deposition. Reactions were 

carried out in a quartz cold walled reactor, as described previously.26-28 Films were deposited 

on fluorine doped tin oxide (FTO) coated glass substrates (Pilkington) of dimensions 90 mm × 

45 mm × 4 mm, which were washed with acetone (Sigma-Aldrich) and isopropyl alcohol 

(Sigma-Aldrich), sonicated in deionized water for 10 min and dried in flowing N2 prior to use. 

A 0.1 M solution of VO(acac)2 (0.384 g, Sigma-Aldrich, 99.99%) in ethanol (15 ml, Sigma-

Aldrich) was used as the VO2 precursor. Aerosols were formed using an ultrasonic humidifier, 

with nitrogen (BOC, 99.99%) as a carrier gas, at a flow rate of 1.5 L min-1. The reaction 

chamber was heated to 440 °C using a graphite block, containing a Whatman heating cartridge, 

with temperature gradients of up to 50 °C between the top plate and the substrate. The substrate 

temperature was monitored using Pt–Rh thermocouples. VO2 depositions were carried out for 

15 min. 

Three different electric field types were investigated: (1) DC-positive bias, where a DC 

potential was applied with a positive bias on the bottom plate; (2) DC-negative bias, where a 

DC potential was applied with a negative bias on the bottom plate; (3) AC, where an 

alternating current was applied on the bottom plate. The top and bottom plates were separated 

by 1 cm, allowing the precursor vapour and carrier gas to pass between them. The electric field 

strength used to produce VO2 films was 1500 V m-1. Table 1 summarises the films produced. 

The following notation is used to describe the plain VO2 films: V0 denotes VO2 films produced 

without the presence of an electric field, Vdc+15 and Vdc-15 denote bare VO2 films produced 

when positive and negative biases were applied, respectively. Vac15 denotes samples produced 

under AC voltage. 
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The VO2 coated substrate plates were cut into 2 cm × 2 cm pieces in preparation for 

deposition of the TiO2 top layers. TiO2 top layers were deposited in air using sol-gel spin 

coating as described elsewhere.37 Titanium IV-butoxide (17.02 ml, Sigma-Aldrich, 97%) was 

added dropwise to a mixture of pentane-2,4-dione (2.567 ml, Sigma-Aldrich, 99%) in butan-1-

ol (32 ml, 0.35 mol, Sigma-Aldrich, 99.4%), with continuous stirring for 30 min, resulting in a 

yellow solution. To this solution, a mixture of distilled water (3.6 ml, 0.2 mol) and propan-2-ol 

(9.04 g, 0.15 mol, Sigma-Aldrich, 99%) was added dropwise, with stirring, to hydrolyse the 

titanium precursor. The solution was stirred for a further 30 min, and left to gel for 2 h. In each 

case, the resulting gel was added dropwise onto a VO2 film, which was spun at 1000 rpm for 

30 s, followed by 3000 rpm for 40 s. The films were subsequently annealed at 500 °C, under 

flowing N2 (1 litre min-1) for 1 h. Bilayer films are denoted as VT in Table 1.  

 

2.2 General Characterisation 

Sample adhesion was tested using the standard Scotch tape test, as well as attempted abrasion 

using tissue paper and brass and steel styli. Surface morphology was examined by scanning 

electron microscopy (SEM), using an FEI Inspect F Field Emission SEM at an accelerating 

voltage of 10 keV, a spot size of 3 nm and a working distance of 10 mm. X-ray powder 

diffraction (XRD) measurements were made on a PANalytical X’Pert Pro diffractometer fitted 

with an X’Celerator detector in glancing angle (α = 3°) mode, using Ni filtered Cu-Kα 

radiation. The diffraction patterns were collected over the 2θ range 20–70°, with a step size of 

0.033° and an effective count time of 1.7 s per step. X-ray photoelectron spectroscopy (XPS) 

measurements were performed using a VG Scientific ESCALAB-210 spectrometer, with Al-

Kα non-monochromated radiation (1486.6 eV; 300 W) as the excitation source. The pressure 

during analysis was 5.0 × 10-9 mbar. The binding energies of the target elements (V 2p, Ti 2p) 

were determined at a pass energy of 25 eV, using the binding energy of carbon (C 1s: 284.8 ± 

0.2 eV) as a reference. A Shirley background38 subtraction was applied to obtain the XPS 

signal intensity. Data were corrected for surface charging effects, prior to fitting using an 

asymmetric Gaussian/Lorentzian function. 

 

2.3 Thermochromic Activity 
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UV/vis/NIR transmission spectra were measured using a Lambda 950 UV–Vis–NIR 

spectrometer over the wavelength range 300–2500 nm with an air spectral background. In 

order to determine the thermochromic properties of the films, transmission was recorded above 

and below Tc by heating the samples on a hot plate. Hysteresis data were obtained for films by 

heating between ca. 20 °C and 80 °C, using a custom-built heated sample holder. Spectra were 

recorded at 5 °C intervals on heating and cooling. Tc was measured as the mid-point of the 

hysteresis loop. 

 

2.4 Water Droplet Contact Angle 

Photo-induced super-hydrophilicity (PSH) was measured through changes in the contact angle 

of a water droplet on the film surface upon UV irradiation. The samples were irradiated for 30 

min in a custom-built light box using a 32 W UVITEC UV lamp, with a main emission 

wavelength of 254 nm and an incident light intensity of 15 µW cm-2. In each case, a 3 µl 

droplet of deionised water was placed on the film surface. The diameter of the drop was then 

measured after it had settled. Measurements were performed on a Goniometer Kruss DSA100 

drop shape analyser, using digital images to record droplet base length and height, from which 

the contact angles were calculated. If a coating shows PSH after UV irradiation, the water 

droplet will be seen to spread out with a very low contact angle. Contact angles were measured 

prior to and post UV irradiation.  

 

3. Results and Discussion 

3.1 Crystalline Structure and Physical Properties 

All the VO2 films produced were translucent brown in colour, typical of these films.26-28 The 

films could not be wiped away with tissue, and passed the Scotch tape test. They could not be 

removed with a brass stylus, but they could be damaged using a steel stylus. VO2/TiO2 bilayer 

films were lighter in colour compared to the bare VO2 films and showed good transparency (Fig. 

1). These VO2/TiO2 bilayer films also showed good adherence to the substrate, passing the tissue 

and Scotch-tape tests. They were additionally resistant to damage from both brass and steel styli. 

The XRD patterns of representative films are shown in Fig. 2 and are dominated by peaks 

from the FTO coating of the glass substrate. In the single layer VO2 films, peaks attributable to 

VO2 are observed and are indicated in Fig. 2, but from the data it is impossible to distinguish 

between the tetragonal (JCPDS # 44-253) and monoclinic (JCPDS # 33-1441) forms of VO2, due 
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to the weakness of diffraction from this layer. In the XRD patterns of the VO2/TiO2 bilayer films, 

peaks associated with the VO2 under-layer are not visible and only the (101) reflection of anatase 

TiO2 (JCPDS # 21-1272) is evident at about 27.6° 2θ, along with peaks from the FTO coating of 

the substrate.  

 

3.2 Surface Morphology 

Fig. 3 shows SEM images of bare VO2 films prepared under different deposition conditions, 

as summarised in Table 1. In the absence of an applied field (V0), the surface morphology of 

the film is comprised of small nanoparticles (~30 nm in diameter), which are coalesced to form 

randomly aligned larger grains, typical of AACVD deposited VO2 films.26-28,39 For films 

produced in the presence of an electric field, there are significant changes in the surface 

morphology. For films deposited under a positive DC bias (Vdc+15), the surface is formed of 

smaller particles, with sizes in the range of 25-30 nm. The films produced under a negative bias 

DC field (Vdc-15) were found to be formed of clusters (ca. 140 nm in diameter) of small 

particles (~10 nm in diameter), similar to those observed at zero applied field, but with a larger 

grain size and higher porosity. VO2 films, produced in an AC field (Vac15), where the polarity 

alternates during the deposition, show characteristics similar to those produced under positive 

and negative DC biases, consisting of clusters of small particles (10 nm in diameter), but with 

less porosity than seen under negative DC bias. The results are consistent with those previously 

reported.26-28  

 

Fig. 4 shows SEM images of VO2/TiO2 bilayer films. The surface morphologies of the 

films are similar to each other and show a smooth and less complex structure compared to the 

bare VO2 films, which is more typical of sol-gel prepared films.40 Particle sizes are in the 

order of 5 nm. The VT0 film, where the VO2 under-layer was deposited in the absence of an 

electric field, has a non-uniform, loose morphology, which is likely caused by solvent 

evaporation during the annealing step, leaving a cracked surface. Additionally, the irregular 

surface morphology of the VO2 under-layer (Fig. 3) could have a significant effect on the TiO2 

top-layer, leaving randomly aligned grains. Similarly, the VTdc+15 film, which had a VO2 

under-layer deposited under positive DC bias, also exhibited an irregular surface, but with a 

greater extent of cracking and corresponds to the film where the VO2 under-layer had the 

lowest porosity. A much better surface coverage was obtained for the VTdc-15 film, where 
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the VO2 under-layer was produced under negative DC bias. This film exhibited complete 

crack-free surface coverage. A similar surface morphology was observed for the VTac15 film, 

showing complete surface coverage made up of agglomerations of small nanoparticles (~5 nm 

in diameter). Overall, the SEM results confirm good surface coverage by TiO2, with the 

porosity and morphology of the VO2 under-layer exhibiting an influence on that of the top-

layer.  

 

3.3 Thermochromic Properties 

UV-Vis-NIR spectroscopy was used to measure visible light transmittance (Tvis), 

transmittance modulation (ΔT) in the NIR region and the critical transition temperature (Tc). 

Above 1300 nm, the optical properties of all films were dominated by those of the FTO coated 

glass substrate, which exhibits strong absorption of NIR radiation. Fig. 5 shows the spectral 

changes in the UV-Vis-NIR transmittance for the studied bare VO2 and VO2/TiO2 bilayer films 

between room temperature and 80 °C. All VO2/TiO2 bilayer films showed an increase in 

transmittance of ca. 20 to 30% in the visible (Tvis) region at both temperatures, compared to the 

corresponding bare VO2 films, in agreement with previous work on sputtered VO2/TiO2 

films.34,36 The maximum Tvis value for the bilayer VO2/TiO2 films was 79% for the VTdc+15 

sample and corresponds to the film with the least porous VO2 under-layer and lowest particle 

size. Films with the VO2 layer deposited under AC field showed significantly lower Tvis values 

than other films (ca. 45%, for Vac15 increasing to ca. 62% for VTac15). The correlation 

between increasing Tvis and porosity has been noted before in W doped VO2 films.21,22
 

 

 As seen in Fig. 5, all samples showed thermochromic behaviour, with a decrease in 

transmittance at 80 °C. The maximum transmittance modulation between room temperature 

and 80 °C occurs at around 1100 nm and therefore, ΔT values and hysteresis plots were 

obtained from the data collected at this wavelength. All films showed some degree of 

transmittance modulation (ΔT) at 1100 nm between the cold and hot stages, ranging from 2.0% 

for the Vdc-15 sample to 21.7% for the VTdc+15 sample. Integrated luminous transmittance 

and solar modulation values for the films are tabulated in Table 2. The bare VO2 films 

exhibited higher Tlum values than those for films produced by sputtering,34 and sol-

gel methods.41 
ΔTsol values of the bare VO2 films varied between 1.3 and 7.7, comparable to 

similar nanostructured films prepared by other methods.9,13  
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The presence of a TiO2 over-layer is seen to increase Tlum significantly in all films, with 

small differences in ∆Tsol between the bare VO2 and the corresponding bilayer films. This 

increase in Tlum with TiO2 coating has previously been observed in bilayer films produced by 

various other techniques. For instance, Tlum values increased from 32% to 47% in films 

produced by RF sputtering,34 while for sol-gel produced films more modest increases from 42 

to 47 % 12  and from 39% to 44 % are observed.9 Thus the Tlum increases seen in the present 

study are exceptionally high.  

Higher values for Tlum have been reported, for example Chen et al.13 obtained  a value of 

84.8% for Tlum, with TiO2 over-layers, but with a ΔTsol of only 0.9%. Indeed, it has been 

reported that it is difficult to achieve improvements in both Tlum and ΔTsol and that it is often 

the case of a compromise between higher Tlum and slightly lower ΔTsol 
13,34,42  In the present 

study, the observed ΔTsol values are comparable with those in other studies. 20, 32, 36  

The evolution of transmittance as a function of temperature was characterised through 

hysteresis plots at 1100 nm. Fig. 6 shows a comparison between the hysteresis plots of the bare 

Vdc+15 and the bilayer VTdc+15 films. Significant hysteresis between heating and cooling is 

evident in the bare VO2 film, as previously reported.43 The introduction of the TiO2 top layer 

causes a significant reduction in the hysteresis loop width to around 10 °C and a reduction of 

the Tc value from ca. 59 °C to ca. 46 °C. However, there is also a significant reduction in % 

transmittance at 1100 nm from 47% to 33% for the bare VO2 and TiO2 coated films, 

respectively.  

The observed reduction of Tc  in the VO2/TiO2 bilayer films may be due to slight deviations 

in stoichiometry of the VO2 layer caused by diffusion of titanium from the TiO2 top-layer 

during annealing.44 This doping phenomenon would be enhanced by the porosity of the VO2 

under-layer.27 Ti4+ doping would introduce oxide ion vacancies which disrupt the zigzag chains 

of the V-V pairs, characteristic of the low-temperature phase, resulting in a decrease of Tc.
30 

Similar observations had been made previously in VO2/WO3 and VO2/SiO2 multilayer 

films.45,46 Another potential factor is the additional strain on the VO2 layer caused by lattice 

mismatch with the TiO2 top-layer, leading to a beneficial extra reduction in Tc. This strain 

induced reduction in Tc has been reported in VO2/SiO2/TiO2 
47 and TiO2/VO2/TiO2 multilayer 

films.27,48 

 



11 

 

3.4 Thermal Protection 

In addition to increasing the visible light transmittance and NIR transmittance modulation, 

TiO2 over-layers have been shown to work as thermal protection layers.49,50 In our previous 

work, we reported that, the application of electric fields caused a reduction in the crystallite and 

particle sizes, which leads to a higher NIR transmittance modulation and lower Tc, compared to 

films produced in the absence of electric fields.26-28,51 However, the smaller particle size leaves 

the VO2 films susceptible to oxidation on thermal cycling, resulting in an irreversible loss of 

thermochromic properties. The results of the present study are reproducible over three cycles of 

heating and cooling up to 80 °C, confirming the protective role of TiO2 in these bilayer 

systems. In order to assess the extent of thermal oxidation protection offered by the TiO2 top-

layers, previously cycled bilayer films were examined by XPS. Fig.7 shows XPS spectra for 

selected samples with binding energies summarised in Table 3. All spectra showed a 

characteristic Ti 2p3/2 and 2p1/2 doublet. The Ti 2p3/2 binding energy showed no significant 

variation between samples, with a value typical for TiO2.
52 In the case of vanadium, 

interpretation is complicated by the closeness of the strong O1s peak. The V 2p3/2 2p1/2 doublet 

is seen in all but the sample with the VO2 layer prepared in an AC field. The V 2p3/2 binding 

energies are typical for V4+ and comparable to previously reported values for VO2.
53 Analysis 

of the vanadium peaks is complicated by the presence of strong single peaks evident at 517.7 

eV and 519.2 eV. All attempts at fitting these peaks to additional vanadium 2p3/2 2p1/2 doublets 

were unsuccessful and their position at ca. 10 and 12 eV below the O1s peak (at ca. 530 eV) 

suggests that they are in fact satellites of this peak. The results therefore appear to confirm the 

effectiveness of TiO2 as a protective layer preventing oxidation on thermal cycling.  

 

3.5 Wettability  

 Photoactive TiO2 films often demonstrate photo-induced super-hydrophilicity (PSH). The 

degree of PSH can be monitored by observing the change in the contact angle of a water 

droplet on the film surface upon UV illumination. A wavelength of 254 nm (4.88 eV) was 

selected to ensure the radiation had a greater energy than the band gap of TiO2 (3.2 eV). Fig. 8 

shows photographs of water droplets on the surface of the studied bilayer films prior to and 

post UV irradiation for 60 min. As shown in Table 4, the measured contact angle decreased in 

all cases after irradiation, with that for the VTdc+15 showing the greatest reduction from 72° to 
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9°, significantly better than seen for the film where the VO2 under-layer was prepared in the 

absence of an electric field (VT0). The observed PSH behaviour is consistent with studies of 

plain TiO2 films, which exhibit PSH after UV irradiation.54,55 The PSH effect in TiO2/VO2 

multi-layer films has been attributed to the creation of oxide ion vacancies (and associated 

reduction of Ti) at the surface by the UV radiation, leading to sites that are attractive to water 

molecules and rendering the surface with greater hydrophilicity. However, Takeuchi et al.56  

have suggested that heating effects caused by the UV irradiation are more important and lead to 

a decrease in surface tension within the water droplets. In fact the effect of temperature on 

surface tension is well known and for a liquid in equilibrium with its vapour can be described 

by: 

n

T

T













−=

c
0 1γγ          (3) 

where T is the temperature in K, Tc is the critical temperature when surface tension vanishes 

and γ0 and n are constants for a particular liquid. While, surface morphology and in particular 

porosity are very likely to influence surface tension, the observed variation of PSH behaviour 

between samples, suggests an influence of the VO2 under-layer morphology, rather than that of 

the TiO2 top layer, with the films with the least porous VO2 under-layers showing the strongest 

PSH effect. This may be attributable to the extent of the interfacial region formed between the 

VO2 under-layer and the TiO2 top layer, with the films with the most porous VO2 under-layers 

likely to exhibit larger interfacial regions with TiO2 penetrating more extensively during top-

layer deposition. While this is expected to have little influence on oxide ion vacancy creation at 

the TiO2 surface, the improvement of heat flow from the TiO2 layer to the VO2 under-layer 

could lead to a reduced thermal effect from the UV radiation at the TiO2 surface.      

 

4. Conclusions 

The electric field modulated AACVD reaction of VO(acac)2 at 440 °C resulted in the 

deposition of thin films of nano-structured VO2 on FTO coated glass substrates, with complex 

and porous surfaces. TiO2 layers were deposited on the VO2 films by sol-gel spin coating 

followed by annealing at 500 °C. These TiO2 top-layers increased visible light transmittance as 

well as increased Tlum by as much as 50% in some cases, with a small sacrifice in the solar 

modulation values compared to the corresponding bare VO2 films. Application of TiO2 top-
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layers resulted in reduced NIR transmittance hysteresis, as well as a lowering of Tc. The best 

results were obtained for VTdc+15, where the VO2 under layer was produced under the 

application of a positive DC bias, with a field strength of 1500 V m-1, giving a Tc value of 46 

°C, significantly lower than seen in previous studies of bare VO2 films produced under electric 

fields, a ∆T at 1100 nm of 21.7%, with a reasonable integrated solar modulation, ∆Tsol of 4.3%.  

Application of the TiO2 top layer not only results in enhanced thermochromic properties, but 

also offers protection against oxidation of the thermochromically active VO2 layer, improves 

the aesthetic appearance of the glazing and visible light transmittance, as well as providing 

enhanced wetting behaviour through PSH. The microstructure of the VO2 under-layer is found 

to influence the PSH behaviour of the bilayer films, with the least porous VO2 under-layers 

showing the strongest PSH effect. The higher porosity of the films allows for greater 

penetration of the TiO2 top layer generating a larger interfacial region, with better heat flow 

between the TiO2 top layer and the VO2 under-layer. This might account for the smaller PSH 

effect in samples with high VO2 layer porosity by reducing the heating effect of the UV source 

at the TiO2 surface. PSH is an important consideration in extensively glazed structures and 

combined with the known property of photocatlytic degradation of simple organic molecules 

by TiO2 films, gives the glazing self-cleaning properties. These bilayer structures, made by a 

unique combination of ElFi-AACVD and sol-gel spin coating offer a simple and versatile way of 

producing durable window coatings with enhanced properties, affording the design and integration 

of advanced thermochromic structures with controllable functionalities for intelligent windows. 

 

Conflicts of interest 

There are no conflicts of interest to declare. 

 

Acknowledgements 

IT thanks TUBITAK for a BIDEB 2213 PhD Scholarship and Queen Mary University of 

London for PhD funding. MEAW is grateful for funding from the European Union’s Horizon 

2020 Research and Innovation programme under the Marie Skłodowska-Curie grant agreement 

No. 663830. Dr R. M. Wilson at Queen Mary University of London is thanked for his help in 

X-ray powder diffraction data collection. The authors also thank Christian Sol from University 

College London for Tlum and Tsol calculations.   



14 

 

 

References 

1. The International Energy Agency, Key World Energy Statistics,  2017, 6.  

2. A. M. Omer, Renew. Sustain. Energy Rev., 2008, 12, 2265–2300. 

3. S. B. Sadineni,  S. Madala and R. F. Boehm, Renew. Sustain. Energy Rev., 2011, 15, 3617–

3631. 

4. M. Kamalisarvestani, R. Saidur, S. Mekhilef and F. S. Javadi, Renew. Sustain. Energy Rev., 

2013, 26, 353–364. 

5. A. L. Anderson, S. Chen, L. Romero, I. Top and R. Binions, Buildings, 2016, 6, 37. 

6. F. J. Morin, Phys. Rev. Lett., 1959, 3, 34–36. 

7. C. O. F. Ba, S. T. Bah, M. D’Auteuil, V. Fortin, P. V. Ashrit and R. Vallee, Curr. Appl. 

Phys., 2014, 14, 1531–1537. 

8. J. B. Goodenough, J. Solid State Chem., 1971, 3, 490–500. 

9. C. Liu, S. Whang, Y. Zhou, H. Yang, Q. Lu, D. Mandler, S. Magdassi, C. Y. Tay and Y. 

Long, J. All. Comp., 2018, 731, 1197-1207. 

10. H. Ye, X. Meng, and B. Xu, Energy Build., 2012, 49, 164–172. 

11. M. E. A. Warwick, I. Ridley, R. Binions, Energy Build., 2014, 77, 80–90. 

12. M. Saeli, C. Piccirillo  I. P. Parkin, R. Binions, and I. Ridley, Energy Build. 42, 2010, 

1666–1673. 

13. Z. Chen, Y. Gao, L. Kang, J. Du, Z. Zhang, H. Luo, H. Miao and G. Tan, Sol. Energy 

Mater. Sol. Cells, 2011, 95, 2677–2684. 

14. K. Miyazaki, K. Shibuya, M. Suzuki, H. Wado and A. Sawa, Jpn. J. Appl. Phys., 2014, 53, 

071102. 

15. L. Jinhua, Z. Daohua, W. Yan, Z. Meng, Z. Weifeng and Yuan, Ningyi,  IPGC 2008 IEEE 

Photonics Global@Singapore, 2008, 1-4. 

16. T. Manning, I. Parkin, C. Blackman and U. Qureshi, J. Mater. Chem., 2005, 2, 4560–

4566. 

17. G. Pan, J. Yin, K. Ji, X. Li, X. Cheng, H. Jin and J. Liu, Sci. Rep., 2017, 7, 1–11. 

18. C. Batista, R. M. Ribeiro, and V. Teixeira, Nanoscale Res. Lett. 2011, 6, 301. 

19. C. Piccirillo, R. Binions, I. P. Parkin, Thin Solid Films, 2008, 516, 1992–1997. 

20. I. Top, J. Schläfer, R. Binions, I. Papakonstantinou, S. Srimurugananthan, M. Powell, I. P. 

Parkin, C. J. Carmalt and I. Abrahams, MRS Advances, 2018, 1-7.  

21. C. Zhao, H. Tao, F. Peng, R. Pan and X. Zhao, J. Sol-Gel Sci. Technol., 2016, 78, 582–588. 

22. L. Hu, H. Tao, G. Chen, R. Pan, M. Wan, D. Xion and X. Zhao, J. Sol-Gel Sci. Technol., 



15 

 

2016, 77, 85–93.  

23. B. Wang, S. Chen,  Z. Huang and  M. Fu, Appl. Surf. Sci. 2012, 258, 5319–5322. 

24. Z. Zhang, Y. Gao, Z. Chen, J. Du, C. Cao, L. Kang and H. Luo, Langmuir,  2010, 26, 

10738–10744. 

25. Z. Huang, S. Chen, B. Wang, Y. Huang, N. Liu, J. Xu and J. Lai, Thin Solid Films, 2011, 

519, 4246–4248. 

26. M. E. A. Warwick, I. Ridley and R. Binions,. J. Nanosci. Nanotechnol. 2011, 11, 8158–

8162.. 

27. M. E. A. Warwick and R. Binions, Sol. Energy Mater. Sol. Cells, 2015, 143, 592–600. 

28. A. J. T. Naik, C. Bowman, N. Panjwani, M. E. A. Warwick and R. Binions, Thin Solid 

Films., 2013, 544, 452-456. 

29. J. Zhou, Y. Gao, Z. Zhang, H. Luo, C. Cao, Z. Chen, L. Dai and X. Liu, Sci. Rep., 2013, 

24, 1–5. 

30. J. Zheng, S. Bao, and P. Jin, Nano Energy, 2015, 11, 136–145. 

31. Y. X. Ji, S. Y. Li, Niklasson, G. A. and C. G. Granqvist, Thin Solid Films, 2014, 562, 

568–573. 

32. A. Taylor, I. P. Parkin, N. Noor, C. Tummeltshammer, M. S. Brown and I. 

Papakonstantinou, Opt. Express, 2013, 21, A750–A764. 

33. M. E. A. Warwick, C. W. Dunnill and R. Binions, Chem. Vap. Dep., 2010, 16, 220–224.  

34. P. Jin,  G. Xu, M. Tazawa and K. Yoshimura, Jpn. J. Appl. Phys., 2002, 41, L278–L280. 

35. U. Qureshi, T. Manning, and I. P. Parkin,  J. Mater. Chem., 2004, 14, 1190–1194,  

36. N. R. Mlyuka,  G. A. Niklasson and C. G. Granqvist,  Sol. Energy Mater. Sol. Cells, 2009, 

93, 1685–1687. 

37. K. Page, R. G. Palgrave, I. P. Parkin, M. Wilson, M. Savin, L. P. Shelley and A. V. 

Chadwick, J. Mater. Chem., 2007, 17, 95–104. 

38. D. A. Shirley, Phys. Rev. B, 1972,  5, 4709–4714. 

39. C. Piccirillo, R. Binions and I. P. Parkin, Eur. J. Inorg. Chem., 2007, 2007, 4050–4055. 

40. S. Nadzirah, K. L. Foo, and U. Hashim, Int. J. Electrochem. Sci., 2015, 10, 5498–5512. 

41. M. Wan, B. Liu, S. Wang, L. Hu, Y. He, H. Tao, X. Zhao, J. All. Comp., 2017, 706, 289-

296.  

42. N. R. Mlyuka, G. A. Niklasson and C. G. Granqvist, Phys. Stat. Solidi A, 2009, 9, 2155-

2160. 

43. C. Piccirillo, R. Binions and I. P. Parkin, Chem. Vap. Depos. 2007, 13, 145–151. 

44. S. Zhang, I. S. Kim and L and J. Lauhon, Nano Lett., 2011, 11, 1443–1447. 



16 

 

45. S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao and P. Jin, RSC Adv., 2016, 6, 106435.  

46. J. Zhang, J. Wang, C. Yang, H. Jia, X. Cui, S. Zhao and Y. Xu, Sol. Energy Mater., 2017, 

162, 134-141. 

47. M. J. Powell, R. Quesada-Cabrera, A. Taylor, D. Teixeira, I.  Papakonstantinou, R. G. 

Palgrave, S. Gopinathan and I. P. Parkin, Chem. Mater., 2016, 28, 1369–1376. 

48. K. Okimura, T. Watanabe and J. Sakai, J. Appl. Phys., 2012, 111, 073514. 

49. P. Jin, G. Xu, M. Tazawa and K. Yoshimura, Appl. Phys. A Mater. Sci. Process., 2003, 77, 

455–459. 

50. Y. Li, S. Ji, Y. Gao, H. Luo and M. Kanehira, Sci. Rep. 2013, 3, 1370. 

51. M. Warwick, R. Smith, N. Furlan, J. Crane and R. Binions, ECS Trans., 2010, 28, 1–13. 

52. M. C. Biesinger, L. W. M. Lau, A. R.Gerson and R. S. C. Smart, Appl. Surf. Sci. 2010, 

257, 887–898. 

53. G. Silversmit, D. Depla, H. Poelman, G. B. Marin, R. De Gryse, J. Electron Spectros. 

Relat. Phenomena, 2004, 135, 167–175. 

54. L. Anderson, R. Binions, Coatings, 2014, 4, 796–809. 

55. N. Stevens,  C. I. Priest,  R. Sedev and J. Ralston, Langmuir, 2003, 19, 3272–3275. 

56. M. Takeuchi,  K. Sakamoto, G. Martra,  S. Coluccia and M. Anpo, J. Phys. Chem. B., 2005, 

109, 15422-15428. 

  



17 

 

Table 1. Reaction conditions used for production of bare VO2 and bilayer TiO2/VO2  films 
used in this study.  

Sample 
Name 

Voltage 
type 

Applied voltage 
(V) 

Film Field Strength (V m-1) 

V0 - 0 VO2 0 

VT0 - 0 VO2/TiO2 0 

Vdc+15 DC (+) 15 VO2 1500 

Vdc-15 DC (-) 15 VO2 1500 

Vac15 AC 15 VO2 1500 

VTdc+15 DC (+) 15 VO2/TiO2 1500 

VTdc-15 DC (-) 15 VO2/TiO2 1500 

VTac15 AC 15 VO2/TiO2 1500 

 

 

Table 2. Summary of thermochromic response of bare VO2 and bilayer TiO2/VO2  films. 
Hot and cold stages are denoted by h and c. 

Sample Tlum.c Tlum,h Tsol,c Tsol,h ΔTsol 

V0 46.0 44.7 42.5 34.7 7.7 

Vdc+15 46.5 45.3 40.5 36.3 4.1 

Vdc-15 50.0 48.8 40.7 39.4 1.3 

Vac15 40.0 43.4 32.8 30.0 2.7 

VT0 63.8 63.8 60.6 55.2 5.4 

VTdc+15 55.7 56.1 62.5 58.2 4.3 

VTdc-15 66.0 65.4 61.9 58.1 3.8 

VTac15 59.8 59.8 51.7 49.3 2.4 
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Table 3. Binding energies (eV) from XPS spectra for studied bilayer TiO2/VO2  films 

Sample 
Name 

V 2p3/2 V 2p1/2 Ti 2p3/2 Ti 2p1/2 

VT0 516.5 523.4 459.1 464.7 

VTdc+15 516.7 523.3 459.1 464.7 

VTdc-15 516.7 524.2 459.1 464.7 

VTac15 - - 459.1 464.7 

 

Table 4. Average contact angles ( °°°° ) of VO2/TiO2 bilayer films before and after 60 min of 
UV irradiation. 

Sample  Before UV irradiation After UV irradiation 

VT0 63 ± 2 57 ± 3  

VTdc+15 72 ± 3 9 ± 3 

VTdc-15 49 ± 2 46 ± 2 

VTac15 58 ± 2 10 ± 3 
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Figure captions 

Fig. 1. Images of VO2/TiO2 bilayer films (a) VT0, (b) VTdc+15, (c) VTdc-15 and (d) VTac15. 

Fig. 1. XRD patterns of bare VO2 and bilayer VO2/TiO2 films. Peaks attributable to VO2 (+), 
TiO2 (-) and FTO (*) are indicated. 

Fig. 3.SEM images of bare VO2 films produced by ElFi-AACVD, under 0 and 1500 V m-1 
field strengths, with positive DC  bias, negative DC bias, and AC. 

Fig. 4.SEM images of bilayer VO2/TiO2 films. 

Fig. 5. UV-Vis spectra for bare VO2 (dashed lines) and bilayer VO2/TiO2 (solid lines) films at 
room temperature (blue) and at 80 °C (red). 

Fig. 6. NIR transmittance hysteresis plots recorded at 1100 nm for Vdc+15 and VTdc+15 
films. Blue and red lines denote heating and cooling runs, respectively. The arrows denote the 
Tc values. 

Fig. 7. Fitted vanadium XPS spectra for (a) VT0, (b) VTdc+15, (c) VTdc-15 and (d) VTac15 
films. For data representation a Shirley-type background was subtracted. 

Fig. 8. Images of water droplets on the surface of VO2/TiO2 bilayer films before and after 60 
min of UV irradiation at 254 nm. 
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Fig. 1. Images of VO2/TiO2 bilayer films (a) VT0, (b) VTdc+15, (c) VTdc-15 and (d) VTac15. 

 

Fig. 2. XRD patterns of bare VO2 and bilayer VO2/TiO2 films. Peaks attributable to VO2 (+), 

TiO2 (-) and FTO (*) are indicated.  
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Fig. 3.SEM images of bare VO2 films produced by ElFi-AACVD, under 0 and 1500 V m-1 

field strengths, with positive DC  bias, negative DC bias, and AC. 
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Fig. 4.SEM images of bilayerVO2/TiO2 films. 
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Fig. 5. UV-Vis spectra for bare VO2 (dashed lines) and bilayer VO2/TiO2 (solid lines) films at 

room temperature (blue) and at 80 °C (red). 
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Fig. 6. NIR transmittance hysteresis plots recorded at 1100 nm for Vdc+15 (solid lines) and 

VTdc+15 (dashed lines) films. Blue and red lines denote heating and cooling runs, 

respectively. The arrows denote the Tc values. 
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(a) 

 

(b) 

 

(c) 

 

 

(d) 

 

Fig. 7. Fitted vanadium XPS spectra for (a) VT0, (b) VTdc+15, (c) VTdc-15 and (d) VTac15 

films. For data representation a Shirley-type background was subtracted. 
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Fig. 8. Images of water droplets on the surface of VO2/TiO2 bilayer films before and after 60 

min of UV irradiation at 254 nm.   

 

   

 

 

 


