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Abstract

In this paper, we are concerned with regularity of nonlocal stochastic partial differential
equations of parabolic type. By using Companato estimates and Sobolev embedding theorem,
we first show the Holder continuity (locally in the whole state space R?) for mild solutions of
stochastic nonlocal diffusion equations in the sense that the solutions u belong to the space
C7(Dr; LP(2)) with the optimal Hélder continuity index + (which is given explicitly), where
D7 :=[0,T] x D for T > 0, and D C R? being a bounded domain. Then, by utilising tail
estimates, we are able to obtain the estimates of mild solutions in LP(€;C? (Dz)). What’s
more, we give an explicit formula between the two index v and «*. Moreover, we prove Holder
continuity for mild solutions on bounded domains. Finally, we present a new criteria to justify
Holder continuity for the solutions on bounded domains. The novelty of this paper is that our
method are suitable to the case of time-space white noise.
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1 Introduction

Given T > 0 and D C R%, let Dy := [0, T] x D. Let (Q, F, {F; }+>0,P) be a given filtered probability
space. In our previous paper [19], we obtained regularity of singular stochastic integrals in the
following space

LP(Dr;6); LP(Q))

for p > 1,0 > 0,0 > 0. Further, by virtue of the celebrated Sobolev embedding theorem
P9 (D;8) — CV(D;¥) for § > 1, we succeeded in obtaining estimates of solutions in the Hélder

space

C7(Dr; LP()),
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)(0-1)

where v = (d+2p . In the present paper, we aim to obtain the estimates of solutions in the space

LP(9;C7(Dy)).
The fundamental difficulty is the fact that usually

Esup # supE.

t,x t,x

In this paper, we are going to use the tail estimates to overcome the above mentioned difficulty.
The idea is fairly easy to explicate. In fact, note that

E(X]P) = /Q XPdP(w)

= p/ P{|X| > a}a’ 'da
0

M
p/ P{|X]| > a}ap_lda—i—p/ P{|X| > a}a’ 'da
0 M

o
< Mp—l—p/ P{|X| > a}a? 'da
M

for any arbitrarily fixed constant M > 0. In order to obtain the LP-boundedness, by the above in-
equality, we only need to show that the second integral is bounded. Further, by utilising Chebyshev’s
inequality, one can derive the desired results by means of the estimates in .Z7?((Dr;8); LP(Q)).

Let us recall some regularity results about stochastic partial differential equations (SPDEs). The
earliest results about the Ly-theory of SPDEs appeared in the works of Krylov [I7, 1§]. Recently,
Kim-Kim [I1] considered the L,-theory for SPDEs driven by Lévy processes, also see [5l, 12, 14, [15].
Zhang [24] obtained the L,-theory of semi-linear SPDEs on general measure spaces. Let us also
mention Zhang [25] where very interestingly L,-maximal regularity of (deterministic) nonlocal
parabolic PDEs and Krylov estimate for SDEs driven by Cauchy processes are proved.

The Holder estimate of SPDEs has been studied by many authors. Let us mention a few.
Hsu-Wang-Wang [8] established the stochastic De Giorgi iteration and regularity of semilinear
SPDEs. Du-Liu [6] obtained the Schauder estimate for SPDEs. Combining the deterministic theory
and convolution properties, Debussche-de Moor-Hofmanova [4] established the regularity result for
quasilinear SPDEs of parabolic type. Kuksin-Nadirashvili-Piatnitski [16] obtained Holder estimates
for solutions of parabolic SPDEs on bounded domains. Most recently, Tian-Ding-Wei [22] derived
the local Holder estimates of mild solutions of stochastic nonlocal diffusion equations by using
tail estimates [16]. The results on Holder estimate of PDEs with time-space white noise are few.
Fortunately, our method is suitable the time-space white case.

There are two methods to deal with the Schauder estimate for SPDEs. One is using the
smooth property of kernel, the other is using the iteration technique. In this paper, we use the
Morrey-Campanato estimates and tail estimates to obtain the desired results. The advantage of
Morrey-Campanato estimates is to use the properties of kernel function and Sobolev embedding
theorem. Comparing with other methods to obtain the Holder estimate, it is clear that this method
is relatively simple.

The rest of this paper is organized as follows. Section 2 presents some preliminaries. In section
3, we state and prove our main results on Holder estimate over the whole spatial space. Section 4
is concerned with Hoélder estimate on bounded domains. Section 5 is devoted to some applications
of our main results.



2 Preliminaries
Set, for X = (t,z) € R x R? and Y = (s,y) € R x R?, the following
J(X,Y) = max{]w oyl It - s\%} .
Let Q.(X) be the ball centered in X = (¢, z) with radius ¢ > 0, i.e.,
Qe(X)={Y =(s,9) e RxR?: §(X,Y) < R} = (t — &, t + ¢?) x Be().
Fix T € (0,00) arbitrarily. Denote
Or = (0,T) x R<.

For a bounded domain D C R%, we denote D7 := [0,7] x D. For a point X € Dy, D(X,r) :=
DrN@Q,(X) and d(D) := diam(D) (that is, the diameter of D). Let us first give the definition of

Campanato space.

Definition 2.1 (Campanato Space) Let p > 1 and @ > 0. The Campanato space £P°%(D;6)
is a subspace of LP(D) such that

1

1/p
U] 2p.b(Dmg) = sup 7/ w(Y) —ux,,|PdY < oo, u € LP(Dyp
lulvoorsn <X€DT,d(D)2p>O |D(X, p)|° D(X,p)‘ ) 2 (Dr)

where |D(X, p)| stands for the Lebesgue measure of the Borel set D(X, p) and

1
Ux,p = | U(Y)dY

D(X,p)| Jp(x,p)

For u € P9 (Dr;6), we define

1/p
lullzro0pie = (1l o) + Blynapry ) -
Next, we recall the definition of Holder space.

Definition 2.2 (Hdélder Space) Let 0 < o < 1. A function u belongs to the Hélder space
C®(Dr;6) if u satisfies the following condition
u(X) — u(Y)]
U] ca(p,.s) = sup — e < 0.
O*(Dri) XeDrd(D)zp>0 (X, Y)®

For u € C*(Dr;0), we define
[ull a6y = sup [ul + [l (py:5)-
Dr

Definition 2.3 Let Dy C R4 be a domain. We call the domain Dy an A-type domain if
there exists a constant A > 0 such that VX € D and V0 < p < d(D), it holds that

|Dr(X; p)| = |Dr N Qu(X)] = AlQp(X)]-

Recall that given two sets By and Bs, the relation B; = Bs means that both By C By and Bs C B;
hold. The notation f(z) ~ g(z) means that there is a number 0 < C' < oo independent of z, i.e.
a constant, such that for every = we have C~!f(x) < g(z) < Cf(z). We have then the following
relation of the comparison of the two spaces defined above



Proposition 2.1 Assume that Dr is an A-type bounded domain. Then, for p > 1 and for
1 <0 <1+ &5 (Recall that d is the dimension of the space),

LPY(Drp;6) = CV(Dr; 6)
with

(d+2)(0—1)
=

We want to use the tail estimate to deive the following boundedness results
E”u“g”/([07T}xD) <C, vp=1
for solutions u of SPDEs. To this end, we need the following
Proposition 2.2 [22, Lemma 2.1] Let pg € LP(R? x Q). Consider the Cauchy problem
atp(t?x) = Aap(tax), t>0, z € Rda ,O(O,x) = pO(x) (21)
Then, for any 0 < 8 < 1, the following estimates for the unique mild solution of (2.1)
_B__d
It Vos o) < OF %55 ol ey, B—as.we . (22)
and

_p__4d_
Ip(t +6,2) — p(t,z)| < Ot "2 || po| gy, P —a.s.we Q. (2.3)

We end this section with the following properties of kernel function K satisfying K; = A*K
(the reader is referred to [I}, 2, 3] 9] for more details)

e for any t > 0,

HK(t, ')HLI(Rd) =1 fOI’ all ¢ > 0.

e K(t,xz,y) is C™ on (0,00) x R? x R? for each t > 0;

o fort >0, z,y € R% x #y, the sharp estimate of K (t, ) is
K(t,z,y) ~ min _ = /2a) )
y Uy Y) = |$—y|d+2a, ’
o fort >0, z,y € R% x # 1y, the estimate of the first order derivative of K (t, ) is
. t _di2
|va(t,$,y)| =~ |y—:c|m1n Mm,t 2a . (24)
The estimate (2.4) for the first order derivative of K (¢,x) was derived in [I, Lemma 5]. Xie et
al. [23] obtained the estimate of the m-th order derivative of p(¢,z) by induction.

Proposition 2.3 [23| Lemma 2.1] For any m > 0, we have

n=17

t d+2(m—n)
m _ m—2n ___: _graeum—n)
OV K(t,x) = E Chrlz| min {—|x|d+2a+2(m—n) ,t 2o } ,
n=0

where | %5 | means the largest integer that is less than % .



3 Holder estimate locally over the whole spatial space

In this section, we establish the Morrey-Campanato estimates under different assumption on
stochastic term. Set

¢
Kott.o)i= [ [ K= ratria — n)dyaw (o)
The first result is similar to the deterministic case. We consider the following equation
duy = A%udt + g(t, x)dWy,  uli—o =0, (3.1)

where A% = —(—A)® and W; is a standard Brownian motion on a filtered probability space
(Q’]:’ {]:t}tZO’P)'

Theorem 3.1 Let D be an A-type bounded domain in R such that D C Op. Suppose that
g€ LS (Ry; LP(Q x R%)) for p > d/o is Fi-adapted process, and that 0 < B < « satisfies (a— B)p—
d > 0. Then, there is a mild solution u of (31) and u € LPP((Dr;0); LP(Q)) N LP(Q; C8(Dr)).
Moreover, it holds that

ull zp.o((Drssy;r@)) < CllgllLoe (0,10 @xREY)> (3.2)
lulles(ppirr)) < Cllgllnee (0,17, Lr(xR4)) (3.3)

where 0 = 1 + d+2 Moreover, taking 0 < § < Bp/2 and q > (d+2)/d, we have for 0 <r < q

lull r e (Dry) < CllgllLe o,17;Lr(xRAY) (3.4)
where B* = 3 —25/p.

Proof. The existence of mild solution of ([3.1]) is a classical result under the above assumptions.
Now we prove the inequality (8.2]). Due to the definition of Companato space, it suffices to show
that

[u] 200 (Dpi5):10(0)) < 0

Direct calculus shows that

1
P < —
Haoqoraney =, X$&“u|mxmw
/ / u(t,z) — u(s,y)|Pdtdrdsdy
D(X,¢) J D(X, c)
< 1

sup —_—
D(X,),XeDp0<c<d(D) | D(X,c)[1F?
X

t
E/ / / K(t—r,x—2)g(r,z)dzdW(r)
D(X,c) JD(X,c) R4

_ /s K(s—r,y—2)g(r, z)dde(?“)‘p
0o Jrd

= sup 7/ / EYdtdxdsdy.
D(X.0),xeDr0<c<d(D) DX, ) Jpix.e) JD(x,0)




Set t > s. We have the following estimates

EY < CE‘/OS/RCI(K(t—r,x—z)—K(s—r,y—z))g(r,z)dde(r)‘p

t
+CE / K(t—r,xz—2)g(r, z)dde(r)‘p
s JR

D
2

IN

CIE‘ /0 (/Rd(K(t oz —z) = K(s — 1,y — 2))g(r, z)dz>2dr

/t ( - K(t—r,xz—2)g(r Z)d2>2dr
= O(H +SH2).

D
2

+CE

Estimate of H;.
Take 8 > 0 satisfying (o« — 8)p — d > 0. We first recall the following fractional mean value
formula (see (4.4) of [10])

fle+h) = f@)+ T 1+ B)n’ P (@ + 6n),
where 0 < f < 1 and 0 < 6 <1 depends on h satisfying

. I2(1+p)
6 _
o = a2y

By using the Propositions and 23] the above fractional mean value formula and Holder inequal-
ity, we have

Y4
2

H = IE‘/O (/Rd(K(t—r,x—z)—K(s—r,y—z))g(r,z)dz>2dr

S 2 )
< CE‘/ ( |[K(t—r,x—2)— K(s—r,z—2)|- |g(r,z)|dz> dr|”
0 R4
S 2 D
—l—CE‘/ </ (K(s—r2z—2) —K(s—r,y—z))-g(r,z)dz> drl?
0 R4
Bp s 8§K a %
< c-9)%E| | ( [ e-na- z)\qdz) 9012 gy
0 R Ot2
8 s _B_d ) :
+Clo =B [ (s =) 7E g0 e
8 2 5
8p S 85[( q
< C(t—s)2 ”gHip(Q;Loo([O,T];Lp(Rd))) |:/0 </le ’ 52 (&—ro— z)‘qdz) dr}
§ B _d 5
+ Ol = U9 g1 sy | [ 6= 1) F ]
< O((t—9)F + |z —y?),



where g =p/(p—1), £ = 0t + (1 — 0)s, and we used the following fact

2
s g q
/ (/ |—62§(£—T,x—z)|qdz> dr
0 Rd Ot2

L
)2a

C/ / (T R LA
2
q

N /oo 1 (5 _ T)q|z|7(qd+2qa+2qa6) |Z|qa6+d1d|z|> dr
(6-r)7

IN

d—dg+qa(1-5) d—dq+qa(1—5):|

< C |:(9(t — S)) qo —{—5 qo
< C
because using ¢ = p/(p — 1), we have
d—dg+qa(l - ) >0 pla—af)>d«<pla-F) >d

Similarly, we have

provided that (o — 8)p —d > 0.
Estimate of Hs.
Similar to the estimate of Hi, we have

D
2

t 2
Hy, = E‘/( K(t—r,x—z)g(r,z)dz) dr
s R4

t :
< ”gHip(Q;Loo([O,T];Lp(Rd))) [/S < o |K(t —r,z— z)’qdz> d?“]

ga—(g—=1)d
— 5) qo

[SIiS]

D
X2

> CHgHLp (L°°([0,T); LP(Rd)))(t
provided that ap > d. Indeed, by using 1/p + 1/¢g = 1, we have
go—(g—1)d >0 <= ap>d.

Combining the assumption of p, we have

o—

Hy < Ot — s)"5",

Assume that D(X,c) = DrN Q. and Q. = Q.(to,xo). Noting that (t,z) € Q.(to,zo) and (s,y) €
Qc(to, ), we have

0<t—s<2? and |z —y| < |z —xzo| + |y — zo| < 2¢.

By using the definition of A-type bounded domain, we have

1
U] oop.6 5): < sup —_— / / EYdtdxdsdy
[u] 200 ((Drs6);10 (@) Do xen® cairy DA oo S

C”gHLP Q;L°°([0,T);LP(R4)))’

IN



where 0 = 1 + dﬁ—_&. This yields the inequality ([3.2)). Applying Proposition [21] one can obtain the
inequality (B.3)).

Next, we prove the inequality ([B.4]). In order to use the technique of tail estimates, we first
consider the following estimates. Let (tg,z¢) € Dr C Or and

Qc(to,xo) = (to — 02,t0 + 02) X Bc(.%'o).

Then we have DT C Qd(D)(tOw%'O)- Set (tl,ml), (tg,.%’g) eDr,Q;:=DprnN Qci(ti,xi), i =1,2 and

1
F(ti, i,¢;) = W/ Q.\u(t,x)—u(s,y)]”dtdmdsdy

1

~ Qi /Q, |, [Kalt:2) = Ko(s,y)Pdtdadsdy.

Notice that
F(ti,z1,c1) — F(ta,x2,c0) = [F(t1,21,¢1) — F(t2,21,¢1)]
+[F(t2,.%’1,01) - F(t27x27cl)]
+[F(t2,$2,01) —F(t2,$2,02)]
= I + 1+ Is.

Estimate of I5:
Iy = F(ti,z1,c1) — F(ta, 21,¢1)

] //
= — Kg(t,z) — Kg(s,y)Pdtdrdsdy
G [, [ 1Ka(te) Koo )

1
_71%/ / IKg(t,z) — Kg(s,y)[Pdtdzdsdy
|Q12| 12 12

7 U )
- ICy(t,x) — Kg(s,y)|Pdtdzdsdy
|Q1|1+0 { Q1\Q12 Y Q1\Q12

+/ / ICg(t,x) — Kg(s,y)|Pdtdzdsdy
Q12\Q1 Y Q12\Q1

1 1
+ — / / Kg(t,z) — Kg(s,y)Pdtdrdsd
[|Q1|1+9 |Q12|1+9} . 12| g(t, x) 9(s,9)| Y
= I+ Lo,

where Q12 = Dy N Qg (t2,x1). For simplicity, we assume that [Q1| > |Q12]. Otherwise, we can
chance the place of 1 and QQ12. And thus I;5 < 0 almost surely. Now, we consider the term I7;.
Before giving the estimates of I, we first recall our aim. In order to apply the tail estimate, we
want to obtain the estimates of I like the followings:

EL; <C(th —t2)5 for some ¢ > 0.
It is easy to see that
Q1 \ Qua| < C(tr — ta)ef and Q1] ~ Cef*>.

So we must put some assumption on g in order to get some help from it.



Set t > s. Denote

IE/ / \Kg(t,z) — Kg(s,y)[Pdtdrdsdy
Q1\Q12 Y Q1\Q12

E / / EYdtdzxdsdy.
Q1\Q12 JQ1\Q12

Similar to the proof of inequality ([B2]), we have
EY < CP.
Noting that (¢,z) € Q1 and (s,y) € Q1, we have
0<t—s<2c? and |z —y| < |z —z1]| + |y — z1] < 2¢1.

Using the above inequalities and the properties of A-type domain, we deduce

E / / EYdtdxdsdy
Q1\Q12 JQ1\Q12

< C(pa ) p|Q1\Q12| HgHLp (Q;Lo°([0,T); LP(R%)))*

Since Dy is a A-type bounded domain, we have for 2¢; < diamD,

AlQe, (t1,71)] < Q1] < Qe (t1,71)]
AlQe, (t1, 1) \ Qe (t2,21)| < Q1 \ Q2| < Qe (t1,21) \ Qey (t2,21)]-

We remark that

‘Qq(tlaxl)’ ~ CCEH—z?
Qey (t1, 1) \ Qe (t2, 1) < Ot A (11 — t2)],

where C'is a positive constant which does not depend on ¢;. Noting that @1\ Q12 C @1 and taking
0 <6 < fBp/2, we have

E/ / |Kg(t,z) — Kg(s,y)[Pdtdzdsdy
Q1\Q12 /Q1\Q12

< C(Cy,D,d,T) CE |ty — to.

Hg”IL)/P(Q;LOO([(],T];LP(Rd ‘Ql‘

Similarly, we can get

IE/ / lu(t,x) — u(s,y)[Pdtdxdsdy
Q12\Q1 Y Q12\Q1

< C(D,d,T) =y ytl—tQP

Hg”Lp(Q ;Lo°([0,T);LP(R?)) )’Ql‘

Due to the fact that I1o < 0, we have

ElL < C(Dad’ T)HgHLP(Q ;L ([0,T];LP (R%))) |t1 |6’

where 6 =1 + 551225.

Next, we estimate I». By using the fact that

[D N Qe, (t2,21)] \ [D N Qe (2, m2)]| < CefHay — o,
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similar to the estimates of I;, we can take 0 < § < Sp/2 such that

EI2 = E[F(tQ,xl,Cl)—F(t2,$2,61)]
C(D,d,T)

IN

1)
Hg”ip(Q;Loo([(],T];Lp(Rd)))’xl — 2|,

where § =1+ & d+2
Next, we estimate I3. By using the fact that

[D N Qe, (ta, 22)] \ [D N Qe (t2, 29)]| < CcF(er — o), if ¢ > e,

similar to the estimates of I1, we can estimate

El3 E[F(t2, 22, c1) — F(t2, 22, c2)]

C(D,d, T)

IN

6
”gHiP(Q;Loo([O’T];Lp(Rd)))‘cl — 2|,

B
where § =1 + dI:Lz

Therefore, we have
E|F(f1,$1,61) - F(t2,$2,62)|q
< C(D’da T)HQHLP(Q Lo ([0,T);LP (R%)) (|t1 t2| + |$1 - $2| + |Cl - c2|)5q

where § = 1+ 551225, (ti,x;) € Dy and 0 < ¢; < d(D), i =1,2.

For simplicity, we set Dy = [0,1]! and ¢ € [0,2]. One introduces a sequence of sets:

S, ={z €722 227" € (0,1)%"! x (0,2)}, neN.

For an arbitrary e = (e1,ea, -+ ,eqy2) € Z972 such that
= =1,
leloc = 1<) a2 lesl =

and for every z,z+e € S, we define v’ = |F((z +¢€)27 ") — F(227")|. From the above discussion,

we have
—ndéq . A9—nd
E[v} |7 < C(8, Co, D, d, )l o (o 1oy 20 = €270
For any 7 > 0 and K > 0, one sets a number of events

Al ={w e Q> K", 2,2 + e € Sy},

which yields that

Elo™¢|e A 9—ndq
p(Ane) < Hl=T 1 02T
, Karan Karan
Noting that for each n, the total number of the events A7z, 2, z+e € S, is not larger than 2d+23d+2

Hence the probability of the union

Al = U, zvees, (Ujle)o=1AZ7)

meets the estimate
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Let 7 = 27%%, where v > 0 satisfies (1—v)dq > d+2. Then the probability of the event A = U,,>1.A"
can be calculated that

P(A) < CCK1. (3.5)

For every point & = (t,z,¢) € (0,1)%! x (0,2), we have &€ = 372, €27 (|lej]looc < 1). Denote
& = ZLO e;27" and & = 0. For any w ¢ A, we have |F(&41) — F(&)| < K71, which implies
that

[F(t,z,0) <D |F(€sr) = F(&) < Ky 7" <K@2” —1)7" (3.6)
k=0 k=1

Set v1 = SUP(y g ye(0,1)4+1 x (0,2) [F'(E; @, €), then vi = sup( ; o)ejo,1)4+1 x[0,2] [F' (¢, 7, )| since F' has a
continuous version. For 0 < r < ¢, we have

0o K 00
Eo] = r/ a"P(v; > a)da = 7"/ a"1P(v; > a)da + r/ a" " 'P(v; > a)da. (3.7)

0 0 K

If one chooses v > (2 — 1)1, using (3H), 38) and @7, we get

Ev] < (vK)" + Céqr/ a1 dq
K
< (yK) 4 CCr(cK)™1,
which yields that

EU{ S C(D7 d, T) Hg’ IZ;) (Q;Loo([QT];Lp(Rd)))2_n6q7

if we choose K = . By using the following embed inequality

191z 0 020 (0.3 Loy
LP(Q; £P(Dr; 6)) = LP(; C7(Dr; 6)),
we obtain the inequality (8.4). The proof is complete. [J

Remark 3.1 It follows from Theorem [31 that the index B and [* satisfy > B*, which
implies that if we want to change the places of E and sup, ,, we must pay it on the index.

Comparing with the earlier results of [22] (Tian et al. obtained the Hélder estimate to equation
(@3) locally in R?), we find the Hélder continuous index in this paper is larger than that in [22].
More precisely, we obtain the index of time variable is closed to 1/2. Since the index of Hélder

continuous of Brownian motion is %—, maybe the index obtained in this paper is optimal.

Next, we consider another case. If g is a Holder continuous function, the following theorem
shows that what assumptions should be put on the kernel function K.

Theorem 3.2 Letu = Kxg and D be an A-type bounded domain in R4 such that Dy C Or.
Suppose that g € C’B(RJr xR%), 0 < B < 1, is a non-random function and g(0,0) = 0. Assume that
there exists positive constants v; (i = 1,2) such that the non-random kernel function satisfies that
for any t € (0,T]

2

/Os ( g |K(t—7r,2)— K(s—r2)|(1+ |z|5)dz> dr < C(T,B)(t — s), (3.8)
/Os ( 9 |K (s —r, z)|dz>2dr < Cy, (3.9)

/: (/Rd K(t =7 2)|(1 + yz\ﬂ)dz>2 dr < C(T, B)(t — s), (3.10)
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where Cy is a positive constant. Then we have, for p > 1 and 58 < 7,
[ull 2v.0((Drioy;ze@)) < Cllgllosm, xray),
lulles (pprr@)) < Cllglles®, xray)s (3.11)

where 8 =1+ % and v = min{vy1,72, 8}. Moreover, taking 0 < § < yp/2 and ¢ > (d + 2)/5, we

have for 0 < r < q
”uHL’"(Q;Cﬁ*(DT)) < CH9|’CB(R+><R¢1))= (3.12)
where f* =y —2§/p.
Proof. The proof of the ([B.I1)) is contained in our paper [19]. And we only focus on the proof
of (3.12)).
Similar to the proof of Theorem [B.I] we need to estimate I;, i = 1,2,3. Estimate of I7:
I = F(t,z1,c1) — F(t2,71,01)

1
- Q 1+9/ / IKg(t,z) — Kg(s,y)|Pdtdrdsdy
1| 1 1

1
_71%/ / IKg(t,x) — Kg(s,y)[Pdtdzdsdy
|Q12| 12 12

7 o
= IKg(t,z) — Kg(s,y)[Pdtdzdsdy
|Q1|1+9 { Q1\Q12 JQ1\Q12

+/ / IKg(t,z) — Kg(s,y)Pdtdzdsdy
Q12\Q1 Y Q12\Q1

1 1
+ - / / Kg(t,z) — Kg(s,y)|Pdtdxdsd
it iga] [, L WKate.o) ~ Kot ardsasay

= I11 + Lo,

where Q12 = D N Q¢ (t2,z1). For simplicity, we assume that |Q1| > |Q12]|. Otherwise, we can
chance the place of @)1 and @)12. And thus I1o < 0 almost surely.
It is easy to see that

1Q1\ Q2| < C(t; — to)c? and |Qq| ~ CciH2.

So we must put some assumption on g in order to get some help from it.
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Set t > s. By the BDG inequality, we have

E/ / IKg(t,z) — Kg(s,y)[Pdtdzdsdy
Q1\Q12 /Q1\Q12

t
= E/ / / K(t—r,2)g(r,x — z)dzdW (r)
Q1\Q12 Y Q1\Q12 R4

/ K(s—r,2)g(r,y — z)dzdW (r )‘ dtdxdsdy

PR

IN

Rd
/ / (K(t—r,z)—K(s—m1,2))g(r,x — z)dde(r)‘p
Q1\Q12 Y Q1\Q12 Rd

+2P1E/ /
QI\Q12 Ql\Q12
+2P1E/ /
QI\Q12 Ql\Q12
’ P
C(p)/ / </ | |K(t—r,z)_K(S—’I“,Z)Hg('r’x_Z)|dz|2dr)2
Q1\Q12 /Q1\Q12 0 Rd
p)/ / (/ | |K(5_T’Z)||9(T’x_z)—Q(T,y—z)|dz|2dr>
Q1\Q12 JQ1\Q12 0 Rd
t :
(p)/ / (/ | K(t—r2)g(rx —Z)dz|2dr>
Q1\Q12 J@1\Q12 \Js JR4

=: / / (Jl + Jo + Jg)dtdxdsdy
Q1\Q12 JQ1\Q12

Estimate of J;. By using the Holder continuous of g, i.e.,

B
x—z|}

+lz —21|% + |21 )P + [2]°)
+ &+ |1)? +121P),

/ 9 K(s—r,2)(g(r,x —2) —g(r,y — z))dde(r)‘p

P dtdzdsdy

/ K(t—r2)g(r,x — 2)dzdW (r)
R4

IN

[NIS)

l\)\»—l

Cy max

< Clg,pUT
< Clg, B)(T

l9(r,z = 2) = 9(0,0)]

IN

N
[NJISNT I

and ([B.8]), we have

P

J1 = C(p) </OS| Rd|K(t—r,z)—K(s—7“,z)||g(7“,x—z)|dz|2dr>2

[SIiS)

IN

Cos ) ([1 [ 1K= r2) = Ks = ral(1 -+ 24)asPar

+01 PC(p,B) (/OS Rd\K(t—r,z) —K(s—r,z)\dr)
< O, B, T)(1+7)(t—5)F

Here and in the rest part of the proof, we write the constant depending on ||l o8k, xre)) as C(3)
for simplicity. The condition ([B.9]) and

’9(7"735 - Z) - g(ray - Z)‘ < Cg‘.%' - y‘ﬁ
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imply the following derivation

no= o [ (1] 1K= rlote =2 - gy —2)asfar)
< coo [ [ (1] e o)

< C(N07pagw8)’w_ ’ﬁp

(VS|

Estimate of I3. By using the property ¢(0,0) = 0 and (B10]), we get

J3 = C(p) (/:| RdK(t—r,z)g(r,x—z)dz|2dr>%
o(f
C(p,T,B) (/:

+C@Jqu—mW(

< Cp.T,B)(t—9) % (1+ |z —y™).

IN

2 N}
KA+l =+ ol + 20
d

IN

D
2 2
=2l s dr>
Rd

2 \ 2
|K(t—r, z)]dz‘ dr)
R4

Noting that (¢,2) € Q1 and (s,y) € @1, we have
0<t—s5<2c® and |z—y| <|z—mz|+ |y — 21| < 2.

Using the above inequality and the properties of A-type domain, we deduce

/ / Jidtdzdsdy
Q1\Q12 JQ1\Q12

/ / Jodtdzdsdy
Q1\Q12 JQ1\Q12

/ / Jadtdrdsdy < C(p,T,B)|Q1\ Qi2|*c1(1 + c1P).
Q1\Q12 JQ1\Q12

IN

Cp, T, B)(1 + &P)er P|Qy \ Qual?;

IN

C(CO,P,Q, ) BP|Q1\Q12|

Combining the estimates of Jy, Jo and Js, we get

/ / u(t, ) — u(s,y)|Pdtdrdsdy
Q1\Q12 QI\Q12

< C(8,Co, T, p)|Q1 \ Qual* ()7 + 1)(&P + P + &°P).

Since D is a A-type bounded domain, we have for 2¢; < diamD,

AlQe, (t1,21)] < Q1] < 1Qey (t1,21))]
AlQe, (t1,21) \ Qe (t2,21)| < Q1 \ Q2| < Qe (t1,21) \ Qey (t2, 1))
We remark that

Qe, (t,21)| = Ceit2,
Qc, (t1,71) \ Qc, (t2,71)| < Ccflc] A (11 — t2)],
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where C'is a positive constant which does not depend on ¢;. Noting that Q1 \ Q12 C @1 and taking
0 <6 <1, we have

E/ / ICg(t,x) — Kg(s,y)|Pdtdzdsdy
Q1\Q12 Y Q1\Q12
< C(B’ CO’ D’ d’ T)|Ql|2Jr 5136 |t1 - 752|6,

where v = min{~;,72, 5}
Similarly, we can get

E/ / lu(t,x) — u(s,y)Pdtdxdsdy
Q12\Q1 JQ12\Q1

ap

2422220 5
S C(/BaCO,D,daT)|Q1| d+2 |t1 _t2| .

Due to the fact that I12 < 0, we have
EII S C(/Ba CO7 D7 d7 T)’tl - t2’57

—25
where 6 =1 + V§+2 .

Next, similar to the proof of Theorem [BI] one can estimate Iy and I3 as followings

EL, = E[F(tz, 21, ¢1) — F(t2, 72,¢1)] < C(B,Co, D, d, T)|w1 — 2|°,
El; = E[F(t2, 22, ¢1) — F(t2, 72, ¢2)] < C(8,Co, D, d, T)|er — ea°,

—0
where § = 1 + %.

Therefore, we have

E’F(tl,.%'l,Cl) - F(t27x2702)’q
< C(Co, D, d, D)9l s g, wmay (11 — to| + w1 — @2| +fer — c2])%,

where 6 = 1 + 55;225, (tjyz;) € Dp and 0 < ¢; < d(D), i = 1,2. The rest proof of this theorem is
exactly similar to that of Theorem B.Il and we omit it here. The proof of Theorem is complete.

O
Next, we consider the following equation

0 .
au(t,x) = A%(t,x) + g(t,x)W(t,x), ul=0 =0, (3.13)
where A% = —(—A)® and W; is a standard Brownian motion on a filtered probability space

(Q7 f7 {E}tzo; ]P)
Theorem 3.3 Let D be an A-type bounded domain in R such that D C Op. Suppose that
g€ Lo (Ry; LP(Q x RY)) is Fy-adapted process. Set d = 1. Assume that % <a<l,p> % Let

loc

B > 0 be sufficiently small such that p(2c — 25 — 1) > 2. Then, there is a mild solution u of (313)
and u € LPY((Dr;6); LP(2)) N LP(Q; CP(Dr)). Moreover, it holds that

ull zro((Drisy;r@)) < Cllgllnee (o,17;20(2xR)) s (3.14)
lulles(pg:rr@)) < Cllglle(jo,m);Lr@xRr)) (3.15)

where 8 =1 + %. Moreover, taking 0 < § < Bp/2 and q > 3/, we have for 0 < r < q
lullLrsc8® (7)) < CllgllLoe (o,17:L0(0xR)) 5 (3.16)

where * = 3 —20/p.
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Proof. The existence of mild solution of ([B.I3)) is a classical result under the above assumptions.
Now we prove the inequality ([3.I4]). Due to the definition of Companato space, it suffices to show
that

[u]zpﬁ((DT;é);L”(Q)) < 0.

Direct calculus shows that

1
P < —
[u]fp’e((DT;‘s);Lp(Q))  D(X.0) Xeszl)lf,o<c<d |D(X, c)|+?
XE/ / u(t,z) — u(s,y)|Pdtdrdsdy
D(X,¢) J D(X, c)
1
< sup

D(X,c),XeDp,0<e<d(D ’D(X C)\Hg

XE/D(X@/D(X@ / /Kt—rx—z) (r, 2)d=dW (r)

—/0 /RK(S — oy — 2)g(r, 2)dW (dr, dz)‘

= sup 7/ / EYdtdzdsdy.
D(X,c),XE€Dr,0<c<d(D ’D(XC\HH D(X,c) /D(X,c)

Set t > s. We have the following estimates

EY < CE‘/OS/R(K(t—r,x—z)—K(s—r,y—z))g(r,z)W(dr,dz) :

)g(r, 2)W (dr, dz) ‘p

[NIiS)

IN

CE‘/OS/R(K(t—r,x—z)—K(s—r,y—z))292(r,z)dzdr

b
(t —r @ — 2)g>(r, 2)dzdr|®

= C(Hl +H2)

Estimate of Hj.
Take 8 > 0 satisfying (2 — 28 — 1)p — 2 > 0. By using the Proposition 23], and Hoélder
inequality, we have

P

H, = E‘/OS/R(K(t—r,x—z)—K(s—r,y—z))zgz(r,z)dzdr ’

p

CE‘/ /\K(t—r,x—z)—[((s—r,x—z)\z-]gQ(T,z)]dzdr ’
0o Jr

IN

[N

—i—C’E‘/ /(K(s—r,x—z)—K(s—r,y—z))2-gQ(r,z)dzdr‘
0o Jr
=: Hy1 + Hio.

For Hy1, we have

62K ?
C(t-9)%E / / | —rx = 2)0dz | (lg(r) |2 dr
8t2

K(g—r,x — z)]qdz> dr|

p
2

Hyq

IN

(NI

IN

B
Bp ’ o2
Ot = ) 2 ll9M1En (0, oo 0.1 0 () /0 ( &



where g =2p/(p—2), £ =0t + (1 —0)s, 0 < 0 <1 and we used the following fact

/ / ]62K —rx—z)|%dz | dr
ats

1
T
<cf / (=)~ o[
2
o0 q
. f 1<s—r)ﬂzr—(q“qa“qam\zrqaﬁdrz\) ar
(§—r)2e
1-g+ga(1-8) 1—g+ga(1-8)
T
< C

because using ¢ = 2p/(p — 2), we have
1—g+qa(l-0)>0&p2a—2a8—-1)>2<pRa—25—-1) > 2.

For Hi2, by using the fractional mean value formula again, we have

2
q P
Hyy < C]m — y’ﬁp”gHLP(Q Lo ([0,T);LP (R ‘/ </ K(B S -, §— z)]qudT‘> dr 2
D
dla=1)+Bq 2
< Ol ol qorany | | (0= ]
< C’I’ - y’ﬁpa

where ¢ = 2p/(p — 2), £ = 0z + (1 — 0)y and we used the following inequality

s _d(g—1)+Bq a q(a—pB)—(q—1)
/ (s—r) w@  dr = q s q <C
0

qgla—pB)—(g—1)

provided that (2o — 28 —1)p —2 > 0.
Estimate of H.
Similar to the estimate of Hi, we have

t P
Hy, = E‘/ Kt —r,z — 2)g*(r, 2)dzdr|”
R4

t :
< HgHip(Q;Loo([O,T];Lp(Rd))) [/s </n |K(t—r,x— z)‘qdz> d?“]

ga—(g=1)d p
t—s) aa X2

D
2
p

< Clgllio e omyo(may)
provided that p(2a — 1) > 2. Indeed, by using ¢ = —p2 we have

ga—(¢—1)>0 <= p2a-1)>2.

Combining the assumption of p, we have
p(2a—1)—2

HQSC(t—S) 2a

The rest proof is similar to that of B.I] and we omit it here. (I
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4 Holder estimate on a bounded domain

In this section, we consider the SPDEs of the following form

du = Audt + g(t,z)dW;, (t,x) € (0,00) x D,
Ut=0 = 07

where D is a smooth bounded domain in R? W; is standard one-dimensional Brownian motion,
and g is progressively measurable L*°- or LP-function.

Throughout this section, we assume that A is a uniformly elliptic second-order differential
operator of the form

0 0 0

with smooth coefficients. Furthermore, we assume that at least one of the following two assumptions

holds:
B>+ gl zee jo.17:00 (910 (D)) < 0,
B gl Lo (0,10 (2x D)) < 00-

In order to obtain the Holder estimate, we need the following Lemma. Consider the following
initial-boundary problem:

% —Av =0, v|i=o = F(x), v|sp =0, (4.2)

and denote by S; the corresponding semigroup:

U(tv ) = (StF)()7 F = F()

Lemma 4.1 [16, Lemma 1] Let |F(x)| < M. Then, for any 0 < 1, the following estimates
hold with ¢ > 0:

ot )llcepy < e(8) Mt~ exp(—ct),
lo(t+6,2) —v(t,z)] < (@) Mt=06% exp(—ct).

Moreover, if | F||pe(py < M and p > 1, then

[v(t, )leopy < c(0) Mt~ @) exp(—ct),
lu(t 4 6,2) — v(t,z)| < c(0) Mt~V P50 exp(—ct).

Theorem 4.1 Let Dy be an A-type bounded domain in R4,
(i) Suppose that BP holds for p > d and that 0 < 8 < 1 satisfies (1—)p—d > 0. Then, there is
a mild solution u of [1) and u € LP9((Dr;8); LP()) N LP(Q; CP(Dr)). Moreover, it holds that

ull zro((Drisy;r@)) < Cllgllzee (o,m;20(@x D))
lulles (D)) < Cllgllneo.1);Lr@x D))

where 6 =1 + %. Moreover, taking 0 < § < Bp/2 and g > (d+ 2)/d, we have for 0 <r < q

lull r e (Dry) < CllgllLe o,17;Lr(@xRAY)
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where * = 3 — 20/p.
(i1) Suppose that B> holds for p > 1. Then, there is a mild solution uw of ({{.1]) and u €
2P0((Drp;6); LP(Q)) N LP(Q; CP(D7)). Moreover, it holds that

HUHgM((DT;a);Lp(Q)) < CHgHLOO([O,T};LP(QxD))a
lulles (D)) < CllgllLejo.1);Lr@x D))

where 0 = 1+ 7t5. Moreover, taking 0 < < p/2 and ¢ > (d+2)/0, we have for 0 <r < g

lull ricm (Dry) < CllgllLe o,17;Lr(@xRAY)

where * =1—20/p.

Proof. The proof of this Theorem is exactly similar to that of Theorem B.1] by using Lemma
41l We omit it to the readers. The proof is complete. [J

Remark 4.1 Theorem[{.1] does not hold for the nonlocal operator because we did not have the
similar properties of kernel function on bounded domain.

Comparing Theorem [{.1] with [16, Theorems 1 and 2/, we find the index of [10] is B < % — %

for the case BP and the index in this paper is larger than that of [16].

5 Applications and further discussions

We first give an example for Theorem Consider the equation (B.1]). In our paper [20], by using
Proposition 23] we got the following result.

Lemma 5.1 Let 0 < e < a. The following estimates hold.

/os (/R Vip(t=r.2) = Vipls = 2)l1 + !z\%dz)zdr < N(T,B)(t =),

/08 (/Rd V(s =, Z)’dz>2d7“ < Ny,
/: < VRt =)l !z\ﬁ)dz)zdr < N(T,B)(t — s)7,

a—€

where v = &=,

Then applying Theorem B2 we have the following result.

Theorem 5.1 Let 0 < e < a and Dr be an A-type bounded domain in R4 sych that Dy C
Or. Suppose that g € CP(Ry x R?), 0 < B < 1, is a non-random function and g(0,0) = 0. Then
we have, for p > 1 and § < 7,

||VEUH,%M((DT;s);LP(Q)) < C||9HCE(R+de))a
IVullos(prsrr@)) < Cllglles my xray):

where 0 = 1 + 2B and v = 9. Moreover, taking 0 < 0 < yp/2 and q¢ > (d +2)/d, we have for
O0<r<gqg

IVull om0 (7)) < Cllglles @, xray)

where * =~ — 2§ /p.
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In fact, one can use the factorization method to obtain the Holder estimates of solutions to the
following equation

duy = [A%u+ f(t,x,u)ldt + g(t,z)dWy,  uli=o = uo(x),

where A* = —(—=A)%, a € (0,1] and W, is a standard Brownian motion on a filtered probability
space (9, F, F;,P). About the factorization method, see [4].

In addition, one can use the Kunita’s first inequality to deal with a general case. Let (2, F,F,P)
be a complete probability space such that {E}te[O,T} is a filtration on 2 containing all P-null subsets
of Q and F be the predictable o-algebra associated with the filtration {F;},co,r). We are given
a o-finite measure space (Z,Z,r) and a Poisson random measure g on [0,7] x Z, defined on
the stochastic basis. The compensator of p is Leb®wv, and the compensated martingale measure
N := 1 — Leb ® v. The method used here is also suitable to the case that

Gy(t,z) = /O/ZK(t,s, Y xg(s, -, 2)(z)N(dz, ds)
= / / K(t— s,z —y)g(s,y, z)dyN (dz,ds) (5.1)
0 Jz Jrd

for F-predictable processes ¢ : [0,T] x R x Z x Q — R.
In the end of this section, we give a new criteria based on the following Proposition.

Proposition 5.1 [21, Theorem 2.1] Let {X;,t € [0,1]} be a Banach-valued stochastic field for
which there exist three strictly positive constants vy, c,e such that

E[ sup |Xy(z) — Xy (y)]'] < el — y|*te,
0<t<1

then there is a modification X of X such that

X — X \7

£[(sup M) | <o
s#t |t - 5|a

for every a € [0,e/v). In particular, the paths of X are Hélder continuous in = of order a.

For applications, we need prove the Kolmogorov criterion with the following form.

Theorem 5.2 Let {X;(x),z € [0,1]%,¢ € [0,1]} be a Banach-valued stochastic field for which
there exist three strictly positive constants vy, c,e such that

E[ sup |Xi(x) — X;(y)|"] < clw — y|?7e,
0<t<1

then there is a modification X of X such that

X(z)— X
B[ sup (Sup\ t(z) t(y)!ﬂ < 0o
0<t<1 Nazy T —yl®

for every a € [0,e/7). In particular, the paths of)? are Holder continuous in x of order o.

Proof. Let D,, be the set of points in [0, 1]d whose components are equal to 27" for some integral
i € [0,2™]. The set D = U, D, is the set of dyadic numbers. Let further A,, be the set of pairs
(z,y) in D,, such that |z — y| = 2=™. There are 20"+t such pairs in A,,.
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Let us finally set K;(t) = sup(, y)ea, [Xe(z) — Xe(y)|- The hypothesis entails that for a constant
J,

E[sup K;(t)]< Y E[sup [Xi(x) — Xy(y)]"] < c20FDI0He) = jo=ic,
0<t<1 () €A 0<t<1

For a point x (resp. y) in D, there is an increasing sequences {x,,} (resp. {ym,}) of points in D
such that x,, (resp. y,) is in D,, for each m, z,,, < z (ym, < y) and z,, = = (Y, = y) from some
mon. If |x — y| <27, then either x,,, = ym or (T, Ym) € Ay, and in any case

[e.9] o0

Xi(x) = Xi(y) = Y (Xu(wigr) = Xo(@:) + Xe(@m) — Xi(ym) = > (Xe(Wi1) — Xu(w),

=m i=m

where the series are actually finite sums. It follows that

1 Xi(2) - Xe()| S K +2 ) Ki(t) <2) Ki(t).
i=m+1 i=m

As a result, setting M, (t) = sup{|X¢(z) — X¢(v)|/|x — y|*, =,y € D, = # y}, we have

Mo(t) < sup {2" sup [X,(a) ~ Xuy), 2.y €D, 3 #y)

meN je—y|<2=m
o
< sup {ZmO‘H Z Kl(t)}
meN i=m

o
< 2) 2OK(1).
=0
For v > 1 and a < ¢/, we get with J = 2J,

o 0o
[E sup Ma(t)7]1/7 < QZQW[E sup Ki(t)v]l/v < J’ZQZ'(CY—S/V) < 00.
0<t<1 i—o 0<t<1 —

For v < 1, the same reasoning applies to [E supg<;<; M (t)?] instead of [E supg<;<; M, (t)]V/7.
It follows in particular that for almost every w, Xi(-) is uniformly continuous on D and it is

uniformly in ¢, so it make sense to set

Xi(z,w) = yegg}% Xi(y,w).

By Fatou’s lemma and the hypothesis, X;(z) = X;(z) a.s. and X is clearly the desired modification.
(]
It is easy to see that one can use Theorem [5.2] to consider the equation (B.1)) and (5.1))
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