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Abstract 

A novel approach to enhance membrane performance using electrospinning fabrication 

technique for recovery of heavy metals using air-gap membrane distillation is described.  

Accordingly, a comprehensive study was accomplished to fabricate a unique electrospun 

dual-layer membrane (ESD) with an upper superhydrophobic layer and hydrophobic 

electrospun support layer and compare with a superhydrophobic electrospun single layer 

membrane (ESS). Superhydrophobic alumina nanoparticles (Al2O3) were embedded in a low 

polymer concentration of polyvinylidene fluoride (PVDF) to produce superhydrophobic ESS 

and top layer of ESD using electrospinning technique, while a mat with different 

concentrations of PVDF were used as hydrophobic electrospun support layer. In this study, 

dual layer membranes were fabricated in two sets. In the first set, layer thickness was varied 

by changing the spinning volume of the top and support layer with maintain total spinning 

volume, while in the second set the fibre diameter of the support layer was varied by 

changing the polymer concentration. Moreover, the electrospun membranes were 

characterized in terms of membrane performance such as: permeate flux, heavy metal 

rejection and energy consumption; wettability performance such as  liquid entry pressure 

(LEP), and water contact angle (WCA) ; membrane structure such as mean with maximum 

pore size and porosity; membrane integrity such as mechanical and thermal integrity. The 

heavy metal rejection was ˃ 99% for all single and dual layer membranes when filtering 

artificial wastewater (Pb, Cd, Cr, Cu, Ni). When compared with single layer electrospun 

membrane made from spinning 16 ml PVDF, dual layer membrane made from the  same 

spinning volume exhibited some improvement, such as higher permeate flux above 23 

Litre/m2.h (LMH) when filtering 2500 ppm concentration heavy metal feed water. 
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Additionally, both sets of dual layer membrane demonstrated better mechanical performance 

and slight reduction of LEP compared with single layer electrospun membrane.  

Keywords:  

Air gap membrane distillation, Dual layers, Superhydrophobic - hydrophobic membrane, 

Heavy metal recovery, Membrane thickness. 

1. Introduction 

Industrial wastewater contaminated with toxic materials, such as heavy metals, is a major 

environmental issue. Heavy metals, such as lead, cadmium, zinc, copper, and nickel, are 

highly poisonous, especially when discharged in high concentration to the water body. These 

heavy metals are discharged from several industrial sectors in significant concentrations, such 

as  mining, electroplating, printing, wood processing, pulp and paper, petrochemicals, steel 

and battery industries and many more [1, 2].  According to the U.S. Environmental Protection 

Agency (USEPA), the maximum level of heavy metals which can be discharged after 

adequate tratment to the surface water is 0.006, 0.01, 0.25, 0.8, 0.2 mg/L for lead, cadmium, 

copper, zinc, and nickel respectively [3]. Therefore, many attempts have been made to 

remove or recover these materials from discharged wastewater, for instance by absorption, 

chemical precipitation, ion exchange, coagulation with flocculation, and electrodialysis [1, 4]. 

In addition to these treatment methods, membrane technology is a promising alternative. 

Membrane distillation has many advantages for heavy metal removal over other membrane 

techniques, including reverse osmosis (RO) or nanofiltration (NF), such as low operation 

pressure, high rejection percentage for non-volatile components, high water recovery, small 

footprint and lower membrane fouling [5, 6]. Furthermore, many studies have successfully 

tested MD for removal of inorganic material, such as heavy metals [7-15].  Hydrophobic 

membranes, which are crucial in MD applications, can be used to prevent liquid water from 

crossing the membrane while encouraging the vapour to transfer from a hot feed stream to a 

cold permeate stream, can be found in four different configurations. These are: direct contact 

membrane distillation (DCMD), in which both the feed and the permeate side are in direct 

contact with the membrane; air gap membrane distillation (AGMD), which uses an air gap 

between the permeate side and the membrane; vacuum membrane distillation (VMD) and 

sweep gas membrane distillation (SGMD) which both use an external condenser to 

condensate the vapour flux by using vacuum pump and inert gas, respectively [16]. AGMD 

demonstrates high thermal efficiency and reduction of heat lost by conduction due to the 

presence of the air gap between the membrane and condensate plate [16].    

Key factors which can hamper commercialization of membrane distillation (MD) is 

membrane wettability and low permeate flux, which are related to the membrane fabrication 

technique and surface chemistry.  The most common methods to fabricate commercial 

membranes are phase inversion, stretching, and thermally induced phase separation, with the 

membranes commonly made from hydrophobic materials such as polytetrafluoroethylene 

(PTFE), polypropylene (PP), and polyvinylidene fluoride (PVDF) [5]. However, these 

methods do not fulfil the requirements of the membranes used in MD applications, such as 
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high porosity, narrow pore size distribution, high surface area, low surface energy, high 

surface roughness and high LEP. Therefore, the electrospinning technique has gained 

considerable attention recently as it can be used as an alternative method to fabricate 

hydrophobic membranes and enhance MD membrane performance. This technique uses a 

high voltage between a spinneret and a static or movable collector to fabricate a non-woven 

mat with nanofibrous structure which can be used as a membrane for microfiltration [17]. 

The electrospun membrane can enhance membrane flux in MD applications due to high 

porosity, adjustable pore size, high surface area-to-volume ratio and high hydrophobicity due 

to the surface roughness compared with other fabrication methods [18].  

Several electrospun membrane configurations (single, dual and triple layers) have been 

reported in the literature to improve membrane performance by controlling heat and mass 

transfer resistance for MD application. Apart from single layer, dual layer membrane has 

gained much attention recently to enhance membrane productivity. Electrospun dual layer 

membranes for DCMD application have been fabricated from several different polymer 

layers such as PVDF/PES[19], polyvinylidene fluoride–polytetrafluoroethylene (PVDF-

PTFE)/polyacrylonitrile (PAN) [20], PVDF-SiO2/PVDF [21], PVDF-PTFE/ PVDF-PTFE 

[22]. However, in terms of AGMD, very few studies have been reported using dual and triple 

layer membrane configurations, while single layer membranes dominate the published 

research. Single layer electrospun hydrophobic membranes have been mainly fabricated by 

using PVDF [23] and polyvinylidene fluoride–polytetrafluoroethylene (PVDF-PTFE) [24]. 

On the other hand, single composite superhydrophobic layer membrane have been fabricated 

using embedded functionalized nanoparticles (NPs) in a polymer dope solution, such as 

PVDF-PTFE-CNT [25], PVDF-PTFE-GO [26], PVDF-Al2O3 [14]. In terms of dual layer 

membranes, the performance of the membrane is governed by the top layer through control of 

hydrophobicity, LEP and porosity, while the supporting layer provides mechanical support as 

well as reducing heat loss through conduction. Woo et al [27] investigated the effects of three 

different supporting layers made from PVA, Nylon-6, and PAN with a top hydrophobic layer 

fabricated from PVDF-PTFE on membrane performance and mechanical properties using 

AGMD. Triple layers consisting of a top thin layer of electrospun PVDF deposited on a 

micro-porous PVDF layer fabricated by phase inversion on a support layer made from 

polyethylene terephthalate was reported by Prince et al for AGMD application [28]. 

In the present study, comparison between a single layer superhydrophobic and a dual layer 

(superhydrophobic- hydrophobic) electrospun membranes were accomplished in terms of 

membrane performance (flux and rejection), membrane characteristics (porosity, pore size, 

LEP), membrane integrity (mechanical and thermal properties) and energy consumption for 

AGMD applications. For single layer membranes, membrane thickness was varied by 

changing the electrospinning volume over a constant collected area, while the dual-layer 

membrane was fabricated in two sets. For the first set, top and bottom layer thickness were 

altered by changing the spinning volume while maintain the total spinning volume at 16 ml. 

The second set, fibre diameter of the support layer (4 ml spinning volume) was altered by 

varying the dope polymer concentration while the top layer maintained the same polymer 

concentration and spinning volume (16 ml). To our knowledge, this is the first attempt to 
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optimize dual-layer membrane in terms of membrane thickness made from superhydrophobic 

electrospun top layer for AGMD application. 

2. Experimental 

2.1 Materials 

Polyvinylidene fluoride pellets (Mw = 275 000 g/mol), Dimethylformamide (DMF), Acetone 

(Ac), cationic surfactant hexadecyl trimethyl ammonium bromide (HTAB), ethanol, 

isopropanol, toluene, Alumina (Al2O3) NPs (Mw = 101.96 g/mol, particle size = 13 nm) were 

supplied by Sigma-Aldrich.  Lead (II) nitrate, nickel nitrate hexahydrate, copper nitrate 

trihydrate, cadmium nitrate tetrahydrate and zinc nitrate hexahydrate were purchased from 

Fisher Scientific. Isostearyl acids were provided by Nissan Chemical Industries.  A Milli-Q 

plus system (Millipore, USA) was used to provide DI water with high quality to prepare 

synthetic wastewater. All chemicals were used without further purification. 

2.2 Preparation of dope solution 

Polymer solution with three different polymer concentration (15, 17.5, 20 wt% ) was used to 

fabricate base layer for dual layer electrospun membrane in which pre-weighed PVDF pellets 

were dissolved in a mixture of DMF and acetone with a weight ratio 3:2 (60/40 wt%). A 

small amount of cationic surfactant (HTAB) was added to enhance electro-spin ability by 

reducing the surface tension of the dope solution, as shown in Table 1. The dope solution was 

heated to 50 ºC for 12 hours with a stirring speed of 200 rpm using an incubator shaker 

(Innova 44R, New Jersey, USA). Next, a vacuum oven (Salvis, Swissland) was used for 30 

min to remove the bubbles after cooling the polymer solution to room temperature. In terms 

of superhydrophobic layer for ESS and top layer of ESD, superhydrophobic Al2O3 NPs were 

sonicated first for 10 minutes with pre-mixed DMF and HTAB mixture using bath sonication 

(Transsonic, T700/H, Germany) following by 20 minutes sonication using cup horn (Sonics 

& Martial, Newtown, CT, USA) operated at 13 watts. Next acetone was added to adjust the 

solvent weigh ratio to 3:2 followed by adding PVDF pellets to produce an 11 wt% dope 

solution. Superhydrophobic Al2O3 NPs were prepared by functionalizing nanoparticles with 

isostearyl acids, as described previously by Attia et al [29].  Polymer solution viscosity was 

measured at 25oC using a Rheometer (DV3 TLV, Brookfield Engineering Laboratories, 

USA) with spindle SC4-18 and speed 5 rpm. 
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Table 1. Polymer dope compositions and electrospinning parameters used in the present study 

Polymer 

solution code 

PVDF 

(g) 

DMF 

(g) 

Acetone 

(g) 

HTAB 

(g) 

Al2O3 

NP (g) 

Voltage 

(Kv) 

Needle 

(1 &4), 

each 

(ml/h) 

Needles 

(2&3), 

each 

(ml/h) 

Viscosity  

(cp) 

11 wt% 2.473 12 8 0.01 0.494 17.0 ±1 0.3 

±0.05 

0.15 

±0.02 

91±0.4 

15 wt% 3.532 12 8 0.01 ----- 15.0 ±1 0.35 

±0.03 

0.20 

±0.02 

179±0.7 

17.5 wt% 4.245 12 8 0.01 ----- 14.3 ±0.2 0.50 

±0.07 

0.25 

±0.04 

296±0.5 

20 wt% 5.003 12 8 0.01 ----- 14.2 ±0.3 0.70 

±0.11 

0.30 

±0.07 

540±0.9 

 

2.3 Electrospinning process 

An electrospun membrane with single and dual layer was fabricated by using lab-made 

electrospinning apparatus at relative humidity (45% ±10) and room temperature (18°C ±2). A 

four needles set-up was used to enhance electrospinning productivity. The PVDF dope 

solution was loaded to four glass syringes and supplied to the blunt tipped needles (18 G) 

through PTFE tubes. One dual syringe pump (Harvard Apparatus, model 22, USA) and two 

single syringe pumps (Aladdin model 1000) were used to provide two different polymer 

flowrates (Table 1) due to dissimilarity of electrical field on the needles tips. High voltage 

power supply (73030, Genvolt, UK) with positive charge was connected to the needles 

through a rectangular copper plate (L= 100, W=60) mm with thickness 6 mm, while the 

earthed side was connected with the rotating cylinder through a carbon brush. The distance 

between the needles was 20 mm, whereas from the ground collector was 150 mm. Nanofibers 

were collected by using a drum rotating at speed 500 rpm (outside diameter100 mm, length 

300mm) covered with aluminum foil and driven by a DC brushless motor (BL300-H04-I, 

Applied Motion, USA) as shown in Figure 1. In addition, an adjusted speed actuator with 

speed 8 cm/min equipped with a stepper motor (NEMA 17, Leadshine, USA) and controlled 

by a driver (DM422, Leadshine, USA) via a PC program was used to improve the distribution 

of electrospinning fibre to the rotating drum. The spinning process was monitoring by using a 

digital camera (1.3 MP, Chameleon). Electrospinning membranes were heated for 3 h at 35ºC 

to remove residual solvent. This was followed by covering the membrane sheet with 

aluminum foil from both sides and cutting to six pieces (100×150) mm. To increase the 

electrospun membrane integrity, heat-pressing was performed for 1 hour at 160o C with a 

dead weight of 8.057 kg over a membrane sandwiched between two stainless steel plates. 

Finally, membrane sheets were cut to 120×70 mm. 

2.4 Fabrication of single (ESS) and dual layer (ESD) electrospun membranes 

The single and dual electrospun membranes were fabricated by varying electrospinning 

volume pumped by four needles on the rotating ground drum, as shown in Table 2. For single 

layer membranes (ESS1-ESS3), the membrane thickness was adjusted by varying the 
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electrospinning dope solution (11 wt% PVDF + 20 wt% Al2O3 NP) volume from 8 to 24 ml.  

This was followed by drying and heat-pressing. Dual layer electrospun membranes were 

fabricated in two sets. For the first set (ESD1-ESD4), the total spinning volume (16 ml) was 

used for both top and bottom layer in which membrane thickness was adjusted by varying the 

top and bottom layer spinning volume from 1.6 to 12 and 14.4 to 4 ml respectively. The 

second set (ESD5-ESD7) of dual layer membranes had a total spinning volume (20 ml) and 

were fabricated by varying the polymer concentration of the base hydrophobic layer from 15 

to 20 wt% with 4 ml spinning volume while maintain the superhydrophobic top layer with 16 

ml. Moreover, for all dual layer membranes the fabrication process was achieved by spinning 

first the hydrophobic base layer of the PVDF dope solution, followed by spinning of top layer 

immediately with NPs embedded in the PVDF polymer.   

 

 

2.5 Membrane characterization 

Electrospun membrane morphology (surface and cross section) and composition were 

characterized by using a field emission scanning electron microscope (FE-SEM, S-4800, 

Hitachi, Japan) coupled with energy dispersion spectrometry (SEM-EDS). Membrane surface 

charge for SEM examination was reduced by covering the membrane surface with a 5 nm 

layer of chromium using a sputter coating device (Quorum model Q150TS). Membrane 

samples for SEM-EDS were collected from the AGMD module after rinsing with DI water. 

Figure 1: The drum Electrospinning device used in this study: (1) Aluminium drum, (2) HV power supply, (3) 

Syringe pump, (4) Actuator, (5) Camera, (6) Brushless motor, (7) Stepper motor, (8) Power supply, (9) 

Driver, (10) computer, (11) Needle, (12) electrospun fibre, (13) PTFE tube, (14) Positive HV wire, (15) Earth 

wire. 
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Membrane cross sections were prepared by cutting a small piece of membrane (10 × 10 mm) 

with a scalpel after immersion in liquid nitrogen for 5 minutes. Membrane fibre diameter was 

measured by taking the average of 100 readings from high magnification SEM images using 

the Image J program.  

The thickness of heat-pressed electrospun membranes was measured using a digital 

micrometer (Mitutoyo 293 Series, IP65) with a precision of ±1 µm, with an average of six 

values taken. The thickness of the top and bottom layer of dual layer membranes were 

measured by using SEM. 

Membrane mean and maximum pore sizes were measured using the bubble-point method. 

The test was carried out using a lab-made device as explained previously [30]. Briefly, the 

dry and wet curve of bubble point method was measured by applying nitrogen gas to the dry 

and wet membrane with isopropanol solvent in an Amicon membrane cell alternatively and 

measuring the gas flow rate at different pressures. The pressure of the cross point between the 

half-dry curve and the wet curve was used to calculate the mean pore size from Young–

Laplace Equation, while the maximum pore size was estimated by taking the minimum 

pressure which provides continuous gas flow through the membrane.  

Membrane wettability was measured by using both LEP and water contact angle tests. LEP 

measures the pressure of deionized water (DI) required to overcome membrane 

hydrophobicity and was accomplished by using a previously reported lab-made device [30]. 

An Amicon cell was used to accommodate electrospun membrane with DI water which was 

pressurized by nitrogen gas. The pressure was increased inside the membrane cell by 10 psi 

for an interval of 10 mins until the DI water penetrated the membrane. The pressure value at 

that stage was considered as the LEP. The water contact angle was measured by using a 

Krüss model DSA25 using the sessile drop method. The measurement was accomplished by 

immobilize the electrospun membrane on a glass slide by double sided sticky tape. The 

averages of five readings were taken by dropping 2µm of DI water at different membrane 

surface locations. 

Electrospun membrane porosity, which is the total volume of membrane pores divided by 

membrane volume, was measured by using a gravimetric method. Equation 1 was used to 

measure the porosity of a membrane sample with area of 2×2 cm which was weighed before 

and after immersion in isopropanol solvent for 10 minutes. 

   ρ =
(𝑊1−𝑊2)×de

[(𝑊1−𝑊2)/𝑑𝑒]+
𝑊2
𝑑𝑝

         (1) 

Where ρ is the membrane porosity, W1 is a saturated membrane with isopropanol weight in 

gram, W2 is the dry membrane weight in gram, de is the isopropanol density (g/m3) and dp is 

the PVDF polymer density (g/m3). 

Membrane mechanical properties, such as stress, strain, and Young's modulus, were 

measured according to ASTM D-638. The test was carried out at room temperature by using 

a universal testing machine (UTM, H25 KS, Hounsfield, UK) with a load cell of 100N, 

crosshead speed at 50 mm/min and gauge length at 40 mm. To avoid breaking the delicate 
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electrospun membrane (W=10 mm, L=60 mm) during manual handling and loading to the 

gripping jaw, cardboard frames and double sided adhesion tape were used to secure both ends 

of the membrane to the tensile test clamp as explained elsewhere [31]. Before starting the 

test, cardboard frames were cut from both sides to remove any obstacles to the tensile test. 

Equation 2 was used to calculate the tensile strength [32]: 

𝑇𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑀𝑎𝑥.𝐿𝑜𝑎𝑑

𝐶𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
                                           (2) 

Membrane thermal property measurements for single, dual layer and the support layer of dual 

layer without NPs with a concentration of 15 wt% was carried out using differential scanning 

calorimetry (DSC) supplied from TA instrument model SDT Q600. The membrane samples 

with a weight range of 5-6 mg were heated from 50 to 250oC at a heating rate of 10oC/min 

under air atmosphere, then kept under isothermal condition for 5 minutes following by the 

cooling cycle from 250o C to ambient. TA Universal analysis 2000 software (Version 4.5A 

Build 4.5.0.5) was used to measure membrane melting temperature (Tm), the crystallization 

temperature (Tc), the enthalpy of melting (ΔHm), and the heat of crystallization (ΔHc) for all 

membranes. The degree of crystallinity were measured by using equation 3 and 4 from the 

melting and crystallization DSC curves , Xm and Xc, respectively[33]. 

𝑋𝑚 =
∆𝐻𝑚

∆𝐻°  × 100                                                              (3) 

𝑋𝑐 =
∆𝐻𝑐

∆𝐻°  × 100                                                                (4) 

Where ΔHo is the heat of fusion of 100 % crystalline PVDF (104.6 kJ/kg) [34]. 

2.6 AGMD performance test 

Dual and single layer membranes fabricated by the electrospinning technique were tested by 

using a custom-made AGMD set-up as described previously [30]. In short, a horizontal 

membrane cell with rectangular feed channel, (L × W × H = 542, 95, 55 mm) with an 8.5 mm 

air gap and 36.88 cm2 membrane area, was connected to the hot feed solution and coolant 

liquid through stainless steel pipes. The closed system of preheated feed solution was 

circulated by a gear pump with variable speed between the feed tank and the membrane cell. 

The coolant liquid was provided by using a chiller with a flow rate of 8.5 L/m. Feed and 

coolant temperature was measured through using four T- type thermocouples, while feed 

pressure was monitoring by using an analog pressure gauge. Permeate weight was recorded 

by using a two-digit electrical balance. Feed and permeate heavy metal concentration was 

measured by using Atomic adsorption spectroscopy (PinAAcl 900F, PerkinElmer). Permeate 

flux and rejection was calculated by using equation 5 and 6: 

𝐽(
𝐿

𝑚2 .ℎ
) =

∆𝑔

𝐴.𝑡.𝜌
         (5) 

 𝑅 (%) =
𝐶𝑓−𝐶𝑝

𝐶𝑓
 × 100          (6) 
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Where: J, Δg, ρ, t, A, R, Cf, and Cp represent permeate flux, permeate weight (g), permeate 

density (g/cm2), experimental duration time (h), membrane effective area (m2), rejection, feed 

concentration (mg/L), and permeate concentration (mg/L), respectively.  

3. Results and discussion 

3.1 Membrane properties 

3.1.1 Membrane morphology  

Membrane surface and cross-section morphology with the fibre distribution for single, dual 

layer membranes and mean fibre diameter distribution are shown in Figure 2-4. The total 

membrane thickness as well as the individual top and support layer thickness for the single 

and dual layers are presented in Table 2, while the electrospinning parameters and dope 

composition are shown in Table1. For single layer membranes, Figure 2 (a1-c1) shows the 

three different thicknesses obtained by applying different amounts of spinning solution with 

the 11 wt% polymer concentration. It can be seen from the figure that the top surfaces 

showed high roughness, a tight fibre distribution and ultrafine fibres with cylindrical and 

beadless structure and an average mean fibre diameter around 172 nm, which is higher than 

reported in our previous study (105.7 nm) [14] due to the use of four needles to increase the 

electrospinning production rate. This result agrees with the work of Angammana and Jayaram 

[35] which showed that an increase in the number of needles leads to an increase of fibre 

non-uniformity due to variation of the electrical field on the tip of the needles. However, the 

same research reported that an increase of needle number led to a decrease of mean fibre 

diameter, which we did not observe. This discrepancy might be due to using different 

polymer composition and collector configuration. The cross-section picture in Figure 2 (a2-

c2) reveals a highly porous structure with interconnections between the ultrafine fibres which 

enhanced the membrane permeate flux. Moreover, the increase of the electrospinning volume 

from 8 to 24 ml over the aluminium foil (0.094 m2 surface area) lead to an increase of the 

membrane thickness from 56 to 159 μm.  

Dual layer membrane morphology was studied in two groups. SEM images of the first set 

(ESD1-ESD4) is shown in Figure 3 for top, bottom, and cross-section by using 16 ml as total 

spinning solution. The top layer of all dual–layer membranes was fabricated from 11 wt% 

PVDF, while the support layers were made from 15 wt% PVDF. The active layer showed 

comparable morphology with a single superhydrophobic layer with an average fibre diameter 

of around 173 nm and a rough surface due to presence of Al2O3 NPs. In comparison, the 

support layer illustrated a higher fibre diameter of 248 nm, with a smooth surface due to 

absent of nanofillers. It can be seen from the cross-section images that a strong adhesion was 

formed between the top and support layers without any defects observed which improved the 

membrane integrity. This adequate bond between two layers might be due to continuous 

spinning from support to active layer without delay and use of heat-press treatment to 

compact the membrane structure at a temperature 160°C, which is less than the melting point 

of PVDF polymer (166° C) according to DSC test (Table 4). Moreover, the total membrane 

thickness increased from 103 to 130 μm by increasing the volume of the spinning solution of 
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active layer solution from 1.6 ml to 12 ml and reduction of the spinning volume from 14.4 to 

4 ml for the support layer. This might be attributed to lower dissipation of the electrical 

charge of fine diameter fibres to the metallic collector by using a bottom layer with high 

polymer concentration (15 wt%) which led to increase of repulsion between membrane fibres 

[36]. 

The second set of dual layer membranes (ESD5-ESD7) were made with a total spinning 

solution volume of 20 ml. The supporting layer was made from 4 ml of three alternative 

PVDF concentrations (15, 17.5, 20 wt%) followed by the spinning of the active layer using 

16 ml of 11 wt% with 20 wt% of Al2O3 to the polymer weight. Figure 4 shows SEM images 

for the second set membrane morphology and fibre distribution. It can be seen from support 

layer in Figure 4 a2-c2 that a more open web structure was achieved by increasing the 

polymer concentration from 15 to 20 wt%. We attribute this to reduction of fibre density with 

the increase of fibre diameter due to an increase of polymer viscosity from 179 to 540 cp as 

shown in Table 2. This was achieved by increasing the polymer concentration from 15 to 20 

wt% and as a result increasing the mean fibre diameter from 253 to 406 nm. In contrast, the 

top layer showed a rough surface with an open pore surface as explained above. Membrane 

thickness increased slightly with an increase of the polymer concentration of the supporting 

layer (Table 2). For instance, the thickness of ESD5 was 151 µm while for ESD7 it was 164 

µm. These results can be attributed to an increase of fibre diameter of the support layer with 

increase of polymer concentration. This result agrees with the findings of Essalhi et. al [36] 

which showed that membrane thickness can be expanded further with the increase of fibre 

diameter by using a higher polymer concentration in the electrospun membrane, which 

represented the supported layer in our research, due to elevation of electrostatic charge on the 

collected fibre surface with the fibre diameter which lead increase repulsive force between 

the fibres.  

 

Table 2. Membrane fabrication properties od single and dual layer membranes 
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Membrane 

code 

Dope polymer 

concentration (wt%)  

Spinning volume 

(ml) 

Mean fibre diameter 

(nm) 

Membrane thickness      

(µm) 

Top 

layer 

Bottom 

layer 

Top 

layer 

Bottom 

layer 

Top layer Bottom 

layer 

Top 

layer 

Bottom 

layer 

Total  

ESS1 11 ------ 8 ----- 174.7 ----- ---- ----- 56.1 

ESS2 11 ------ 16 ----- 173.5 ------ ----- ----- 104.0 

ESS3 11 ------ 24 ----- 167.6 ------ ----- ----- 159.0 

ESD1 11 15 1.6 14.4 180.3 243.1 8.89 81.1 103.0 

ESD2 11 15 4 12 170.4 252.7 28.7 82.5 112.0 

ESD3 11 15 8 8 170.5 244.2 52.6 60 120.0 

ESD4 11 15 12 4 171.8 253.0 106.0 34.7 130.0 

ESD5 11 15 16 4 185.0 253.0 119.0 30.8 151.0 

ESD6 11 17.5 16 4 173.8 325.6 125.0 29.8 153.0 

ESD7 11 20 16 4 170.8 406.6 115.0 46.0 164.0 
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Figure 2 : SEM images for the single layer ES membrane surface (a1-c1), cross section (a2-c2): (a) ESS1(8 ml), 

(b) ESS2(16 ml), (c) ESS3(24 ml). 
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Figure 3: SEM images for dual layer membrane, top layer (a1-d1), bottom layer (a2-d2) and cross-section (a3-

d3): (a) ESD1, (b) ESD2, (c) ESD3, (d) ESD4. 
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Figure 4: SEM images for dual layer membrane with different support layer polymer concentration, top layer 

(a1-c1), bottom layer (a2-c2) and cross-section (a3-c3) : (a) ESD5, (b) ESD6, and (c) ESD7. 
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3.1.1 Mean and maximum Pore size 

In general, membrane properties, such as pore size, affect membrane performance including 

permeate flux, solute rejection and membrane wettability [37]. Electrospun membrane pore 

size, which was measured by the bubble point method, is controlled by variable parameters, 

such as nanofibre diameter, nanofibre density, membrane thickness and post treatment [38, 

39]. Figure 5 shows the electrospun membrane mean and maximum pore size for single and 

dual layers. In terms of single layer, it can be clearly seen that membrane mean and 

maximum pore size for single superhydrophobic layer decreased from 0.69 and 0.81µm to 

0.38 and 0.43µm with an increase of spinning volume from 8 to 16 ml. This reduction in 

membrane pore size we attribute to a change in membrane thickness by increased spinning 

volume, while other parameters such as membrane mean fibre diameter and heat -press 

maintain their value. Generally, pores in membranes fabricated by electrospinning are created 

by the accumulation of randomly oriented nanofibres, so more accumulated fibres crossing in 

a certain area reduces average pore diameter[37]. Therefore, an increasing of the membrane 

thickness due to the increased spinning volume decreased membrane pore size. These results 

agree with those reported by Liu et al [17] which showed that an increase of polyvinyl 

alcohol (PVA) membrane thickness from 10 to 100 µm lead to a reduction in the mean pore 

size from 0.3 to 0.21 µm and from 0.64 to 0.47 µm for the maximum pore size. However, an 

increase in the membrane thickness beyond 100 µm has no crucial impact on both mean and 

maximum pore size. Therefore, membrane with spinning solution 16 ml was considered as 

optimal for fabrication of single layer membrane with membrane thickness of 104 µm. 

Dual layer membranes show interesting results in terms of controlling membrane mean and 

maximum pore size. For the first set of dual layer membranes (ESDS1-ESDS4), when 

examining the effect of varying dual layer thickness, the reduction of the thickness of the 

superhydrophobic top layer relative to the hydrophobic support layer (Table 2) leads to an 

increase of membrane mean and maximum pore size (Figure 5). For instance, ESD1 

electrospun membrane with 1.6 ml of spinning solution for the top superhydrophobic layer 

had a mean and maximum pore size of 0.56 and 0.71 µm, respectively, while ESD4 

membrane with 12 ml of spinning solution of the superhydrophobic layer showed mean and 

maximum pore size of 0.46 and 0.51 µm, respectively. This can be attributed to a difference 

in fibre diameter, fibre density and membrane thickness for each layer while there was an 

insignificant difference in total membrane thickness. It has been extensively stated in the 

literature that the fibre diameter of an electrospun mat has a significant impact on the 

membrane pore size and structure [40, 41] Ma et al[42] reported that electrospun membrane 

mean pore size is approximately three times the mean fibre diameter. However, for the dual 

layer electrospun membrane, the layer with the smaller fibre diameter controls the membrane 

pore size. The top layer with the average fibre diameter around 173 nm dominates the 

membrane pore size compared with the support layer with a fibre diameter of 256 nm. 

Nevertheless, the variation of membrane mean and maximum pore size (EDS1 -EDS4) is 

attributed not only to the fibre diameter of the top layer but also to the top layer thickness. A 

similar observation by using dual layer membrane was reported by Woo et al [27].  
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For the second set of dual layer membranes, the effect of changing the support layer fibre 

diameter by changing the polymer concentration on mean and maximum pore size was 

studied. The results (Figure 5 and Table 2) showed that using high polymer concentrations 

(15, 17.5 and 20 wt%) for the support layer of dual layer membranes EDS5, EDS6 and EDS7 

respectively, underneath 16 ml of a spinning solution of superhydrophobic layer, had an 

insignificant effect on both mean and maximum pore size. This might be attributed to the 

thickness and fibre diameter of each layer. In terms of fibre diameter, membranes EDS5- 

EDS7 had support layer with fibre diameter of 253, 325, 406 nm for 15, 17.5, 20 wt.%, 

respectively, which is more than the active layer (173 nm). Therefore, no reduction on pore 

size will occur. In addition, increasing the membrane thickness to 100 µm had an 

insignificant effect on membrane pore size as mentioned before (ESS3) by using the similar 

fibre diameter. Therefore, the spinning of 4 ml as a support layer for 16 ml spinning volume 

of top layer had a marginal effect on pore size.  

3.1.2 Membrane wettability and porosity (LEP, CA, porosity) 

Membrane wettability is a crucial characteristic for membrane distillation which can be 

controlled by both maximum pore size and membrane hydrophobicity [37]. Generally, both 

water contact angle and LEP can be used to determine membrane wettability. According to 

the Laplace equation, LEP relies on feed composition and membrane characteristics such as 

hydrophobicity and pore size [43]. Regarding the single superhydrophobic layer, the results 

in Figure 6 and membrane thickness from Table 2 illustrate that membrane thickness can play 

a crucial role to increase electrospun membrane LEP to a specific level. It can be seen that 

membrane LEP increases from 15.2 to 24.2 psi by an increase in membrane thickness from 

56 µm for ESS1 to 104 µm for ESS2 while there was slight increase in LEP seen by 

increasing the membrane thickness to 159 µm. This can be attributed to reduction of the 

membrane maximum pore size from 0.81 to 0.49 µm by increasing the membrane thickness 

from 56 to 104 µm. It is been demonstrated in the literature that the membrane pore size, 

which is represented by the average space between the fibres in case of electrospun 

Figure 5: Mean and maximum pore size of single and dual layer electrospun membrane. 
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membrane, can be reduced by increasing the thickness of random orientated nanofibres[37].  

         

For the first set of dual layer membrane varying the thickness of the superhydrophobic layer 

(top layer) in the dual-layer membrane structure (ESD1-ESD4) showed fascinating results. It 

can be seen from Figure 6a that LEP of dual layer membranes increased from 16.9 to 21 psi 

with increasing spinning solution volume of superhydrophobic layer from 1.6 to 12 ml. We 

attribute this to the increment of the thickness of ultra-fine fibre diameter leading to a 

decrease of both the mean and maximum pore size, as shown in Figure 5. Additionally, the 

reduction of the superhydrophobic layer thickness in the dual-layer membrane belong 10 µm 

as in ESD1 membrane might lead to an increase in the membrane wettability, especially with 

the long duration operation. Therefore, top layer with thickness 28.7 μm for ESD2, which 

was achieved by using a spinning solution volume of 4 ml, is of sufficient thickness to 

achieve a considerable LEP about19.2 psi for MD application. 

For the second set of dual layer membrane in which three different polymer concentrations 

(15, 17.5, 20 wt% for ESD5, ESD6, and ESD7 membranes, respectively) were used as a 

supporting layer, there was very slight effect on LEP (Figure 6 a). For 20 w% PVDF support 

layer (ESD7) a 1.3% reduction of LEP was observed compared with ESD5. The insignificant 

effect of support layer (4 ml spinning volume) on LEP is due to a slight difference of 

membrane maximum pore size by changing the support layer pore size in which fibre 

diameter was  higher than that of the top layer which had a spinning volume of 16 ml. As 

mentioned before, layer with smaller fibre diameter and greater thickness can controls the 

membrane pore size and as a result membrane LEP.  

Water contact angle (WCA) of the membrane surface is dependent on its surface chemistry 

and microstructure [44]. The WCA of the electrospun membrane is expected to be higher 

than other fabrication techniques such as phase inversion due to membrane roughness created 

by the overlapping structure of nanofibers. The WCA of the top layer of all membranes was 

150o ±0.3 due to incorporation of the superhydrophobic Alumina NP with the polymer dope 

solution which increased nanofiber surface roughness as well as reduce the surface energy 

[14]. While the WCA for the supporting layer decrease slightly with increase of polymer 

solution concentration, for instance, the WCA was 141°, 139°, 137o for 15, 17.5 and 20 wt% 

polymer concentrations respectively. This result is in agreement with the work of Moghadam 

et. al. [44] and Yifan et. al.[45] which showed that the relationship between fibre diameter 

and WCA is reversible due to reduction of fibre roughness with increasing of fibre diameter, 

as well as increasing the contact area between the droplet and fibre surface.  

The electrospun membranes porosity which is a vital parameter to increase membrane 

permeate flux can be control by varying fibre diameter[46, 47]. In the case of a single 

superhydrophobic layer, it can be seen from Figure 6b that the porosity was 90.1 %, which is 

much higher than previously reported by Liao et al. [48] and Prince et al. [49] of 71.4% and 

81-82%, respectively. This can be attributed to membrane fibre diameter, which is smaller in 

this study, as well as the addition of nanofiller (Al2O3 NPs) leading to increased fibre 

roughness and as a result increasing the entry space between fibres. Furthermore, increasing 

of membrane thickness from 56 to 159 µm had negligible effect on membrane porosity. Dual 

layer membranes with total spinning solution volume of 16 ml (ESD1-ESD4) showed lower 

porosity than single layer membranes. The increase of top layer thickness lead to a slight 
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increase in membrane porosity, which we attribute again to lower fibre diameter  of the top 

layer compared with the support layer as result of using dope solution with less viscosity. For 

instance, the porosity of the membrane with the top layer of 1.6 ml spinning solution (ESD1) 

was 85.1% while it was 88.1% for ESD4 with membrane top layer electrospinning volume of 

12 ml. The porosity values of the dual layer membranes in this study is higher than the study 

by Woo et al.[27] which were reported as 81.1%, 85.3%, and 86.7% for PH/PAN, PH/N6, 

and PH/PVA dual layers, respectively.  

For the dual layer membranes fabricated with 20 ml spinning solution (ESD5-ESD7), 

membrane porosity decreased slightly compared with single layer membranes. This change is 

most pronounced in ESD6 and ESD7, using 17.5% and 20 % PVDF as a support layer 

respectively.  

 

 

3.1.3 Membrane mechanical properties 

Membrane distillation, which uses atmospheric feed pressure, has lower requirements for 

mechanical robustness compared with pressure driven membranes. However, a membrane 

with good mechanical properties is preferable to reduce possibility of membrane rupture 

owing to hydraulic impact. Electrospun membrane mechanical properties are closely related 

to the nanofiber strength and morphology [50]. Using electrospun membranes fabricated from 

solutions with low polymer concentration incorporated with NPs to reduce pore size diameter 

and increase membrane hydrophobicity, porosity and LEP can lead to relatively weak 

membranes. Therefore, increased membrane thickness might be needed to counteract that 

weakness. Figure 7 shows typical stress−strain curves of the single and multilayer 

electrospun membranes, while other details such as tensile strength, elongation at break and 

Young's modulus are presented in Table 3.  It can be seen from Figure 7a and Table 3 that an 

increase of the thickness of single superhydrophobic membrane from 56 to 159 µm by 

increasing the spinning volume from 8 to 24 ml led to noticeable increase of the membrane 

mechanical properties, such as tensile strength, by 99.7% from 3.01 MPa and strain by 

Figure 6: a- liquid entry pressure, b- porosity for single and dual layer membranes. 
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32.17%, while Young's modulus reduced slightly by 9.4%. Increasing membrane thickness 

by threefold led to improved tensile test results. These results are in accord with the work 

reported by Esseli and Khayet [51] which showed that an increase of the electrospinning time 

from 1 to 4 hours led to enhancement of membrane tensile strength by 126.6% from 4.5 MPa.  

In comparison, dual layer membranes showed an interesting result in terms of tensile 

strength, elongation at break and Young's modulus. These parameters have been enhanced  

either by increasing support layer thickness for the first experimental set or by increasing the 

fibre diameter of the ES supporting layer for the second membrane set. Figure 7b illustrates 

the improvement of the tensile strength and the elongation at break of dual layer membranes 

fabricated from 16 ml total spinning solution from 4.91 to 10.47 MPa and 33.84 to 67.94 %, 

respectively by increase support layer spinning volume from 4 to 14.4 ml. This enhancement  

can be attributed to increased supporting layer thickness, which has higher mean fibre 

diameter (248nm) and without any nanofiller compared with mean fibre diameter of the 

active layer (173 nm) mixed with aluminium NP.  

Increasing the dope concentration from 15 to 20 wt% when using 20 ml as a total spinning 

solution and 16 ml of active layer spinning solution showed some improvement of tensile 

strength from 5.05 to 7.17 MPa, elongation at break from 32.10 to 48.29 % and Young's 

modulus from 47.82 to 65.21 MPa as shown in Figure 7c and Table 3. This result 

complements those reported by Essalhi et. al. [36] where the increased fibre diameter from 

335 to 506 nm, by using PVDF concentration 25 and 30 wt% respectively, lead to an increase 

of tensile strength from 6.1 to 8.3 MPa and Young's modulus from 17.9 to 26.7 MPa.  

Figure 7: Stress-strain curves, a- single layer ES membrane, b- different thickness of dual layer ES 

membrane, c- different polymer concentration of dual layer ES membrane. 
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Table 3. Tensile test values of single and dual layer electrospun membranes fabricated in this study 

 

3.1.4 Membrane thermal properties 

DSC analysis was carried out to investigate the effect of NPs on membrane thermal stability 

and crystallinity for both single and dual layer electrospun membranes together with the 

support layer of ESD5 in the absence of NPs (15 wt% PVDF electrospun membrane). 

Generally, MD is considered a thermally driven process in which the membrane must 

withstand the high temperature of the feed solution. Therefore, any modification of the 

membrane must not undermine its thermal integrity. Table 4 and Figure S1 shows the details 

of the DSC tests in terms of  the relation between temperature and heat flow. It can be clearly 

seen from the Table 4 and Figure S1 that all the single and dual layer membrane together 

with 15 wt% PVDF as a support layer of ESD5 membrane have the same endothermic 

melting peak around 166 °C and an exothermic crystallization temperature around 135 °C, 

which reveal that the aluminium NPs have an insignificant impact on the PVDF membrane 

thermal properties. Similar results were established in previously published work [52]. 

The degree of crystallinity (Xc) of single layer electrospun membrane increased slightly from 

12.74 % to 13.35% with an increase in the membrane thickness which showed that increasing 

of spinning solution has a negligible affect single membrane crystallinity. Similar results 

were found by Essahhi et. al. [51]. The enthalpy of melting was increased by 14.6 % from 

17.58 J/g.  

In terms of dual layer membrane with total spinning volume 16 ml (ESD1-ESD4), the degree 

of crystallinity decreased to 20.56% from 30.98 % . This can be attributed to an increase of 

Membrane code Young’s 

modulus 

(M Pa) 

Tensile 

strength 

(M Pa) 

Elongation at break (%) 

ESS1 44.87 3.01 32.91 

ESS2 32.58 4.57 44.35 

ESS3 40.62 6.01 48.52 

ESD1 46.98 10.47 67.94 

ESD2 63.86 9.29 53.73 

ESD3 45.26 7.09 39.04 

ESD4 42.54 4.91 33.84 

ESD5 47.82 5.05 32.10 

ESD6 65.51 5.69 48.88 

ESD7 65.21 7.17 48.29 
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the NPs content of the membrane top layer (superhydrophobic) together with a reduction in 

the fibre diameter. Kimet. al. [53] showed that the embedded SiO2 NPs with PVDF 

membrane structure led to decreased of the membrane crystallinity values. The enthalpy of 

melting (ΔHm) and the enthalpy of crystallization (ΔHc) also decreased with increase of top 

layer thickness. This could be due to decrease of the polymer content by adding nanoparticles 

to the top layer, as previously reported by Prince et. al [54].  

Dual layer membranes created with 20 ml spinning volume (ESD5-ESD7) showed a similar 

trend with single and dual layer (16 ml total spinning solution) in terms of Tm and Tc. 

However, Xc and ΔHm and ΔHc increased with increase of the fibre diameter of the support 

layer. These findings are similar to those of Essalhi et. al. [36] who concluded that increased 

polymer concentration, besides increasing fibre diameter and membrane thickness, can lead 

to rapid rearrangement of the polymer chain together with the large elongational strains 

during the electrospinning process. 

From the above analytical data, it can be elucidated that increased the top layer thickness of 

dual layer membrane which is fabricated from embedded alumina NPs with PVDF dope 

solution has no effect on membrane thermal stability, but it can reduce the membrane 

crystallinity which is in agreement with the study findings in terms of the membrane 

mechanical properties.  

Table 4. Thermal analysis for PVDF polymer together with single and dual layer membranes 

Membrane code Tm (oC) Tc (oC) ΔHm (J/g) ΔHc (J/g) Xm (%) Xc (%) 

ESS1 166 135.39 17.58 13.33 16.81 12.74 

ESS2 165.95 135.37 19.13 13.82 18.29 13.21 

ESS3 166.3 134.85 20.59 13.96 19.68 13.35 

ESD1 166.39 135.27 26.78 32.41 25.60 30.98 

ESD2 166.44 134.72 23.19 27.27 22.17 26.07 

ESD3 166.97 134.58 21.33 22.03 20.39 21.06 
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3.2 AGMD performance 

3.2.1 Effect of feed temperature 

The effect of varying feed temperature from 30 to 80o C (DI water) on permeate flux for dual 

and single layer membranes were tested using AGMD. Coolant temperature and feed flow 

rate were kept constant at 7o C and 1.5 L/m, respectively. Increasing feed temperature, as 

shown in Figure 8, led to a significant increase of membrane flux regardless of the membrane 

structure used.  

Figure 8 shows that the flux increased exponentially for all membranes with the rise of feed 

temperature. This can be attributed to an increase in the feed vapour pressure exponentially 

with the rise of feed temperature according to the Antonio equation [55]. In terms of single 

layer membranes, it can be seen from Figure 8a, the permeate flux for a given feed 

temperature is gradually decreased with the increase of the membrane thickness, especially 

between ESS1 and the rest of membranes (ESS2 and EESS3) associated with increased 

electrospinning volume from 8 to 24 ml. For instance, the permeate flux was 25.3, 21.73 and 

20.25 for ESS1, ESS2, and ESS3 membranes respectively at 60oC. This difference in 

membrane permeate flux can be attributed mainly to the effect of spinning volume on 

membrane mean and maximum pore size as well as membrane tortuosity, which was altered 

by changing membrane thickness. For instance, ESS1 with a mean pore size of 0.69 nm 

which is higher than by 43.5% and 44.9% for ESS2 and ESS3 respectively has higher 

permeate flux. This result is agreed with Essalhi et. al. [51] which show that increase of 

spinning time lead to decrease the permeate flux ( increase mass transfer resistance) due to 

decrease of membrane pore size. Additionally, the trend of the difference between the 

permeate flux by using different membrane thickness, especially with ESS1, was noticeably 

with the rise of feed temperature. This might be explained by increase of mass transfer 

resistance with the increase of membrane thickness especially with high temperature[56].  

Far from single layer, dual membranes fabricated with 16 ml spinning solutions (first set) 

showed better permeate flux than ESS2 and ESS3, especially ESD1, due to the thin thickness 

of the top layer which played a crucial role to alter the membrane pore size (0.58 μm) 

compare with other membranes. Figure 8b shows that the permeate flux for ESD1 increased 

from 5.51 to 38.94 l/m2.h when the feed temperature increased from 30 to 80°C. We attribute 

this to an increase of the vapour partial pressure difference across the membrane with an 

increase of feed temperature. Studies show that the membrane distillation process is a thermal 

separation process in which feed temperature has a significant effect on the membrane 

driving force, which is represented by vapour pressure [16, 30, 57].   In contrast with the first 

set, dual layer membranes with 20 ml spinning solution (ESD5-ESD7) shows insignificant 

ESD4 166.37 135.2 19.28 21.51 18.43 20.56 

ESD5 165.09 135.32 23.76 16.8 22.72 16.06 

ESD6 165.32 135.04 21.88 17.56 20.92 16.79 

ESD7 166.7 135.23 22.59 19.47 21.60 18.61 

15 wt% PVDF 169.13 134 37.55 37.68 35.90 36.02 
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difference between the membranes permeate flux and temperature as shown in Figurer 8c and 

Table S3 in the support information. This behaviour can be attributed to similarity of 

membrane characteristics, especially membrane pore size, regardless of increase membrane 

thickness by using different support layers. Additionally, the permeate flux with temperature 

of this membrane showed a similarity to single layer membrane (ESS3) with 24 ml 

electrospinning volume, while lower than dual layer membrane with 16 ml as a total spinning 

solution.  
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Figure 8: Effect of feed temperature on permeate flux, a- single layer membranes (ESS1 –ESS3), b- first set of 

dual layer membranes (ESD1 – ESD4), c- second set of dual layer membranes (ESD5-ESD7). 
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3.2.2 Energy consumption  

Minimizing the energy consumption of MD process compared with other membrane process, 

such as pressure drive processes, is necessary for commercialization of MD. Hence, the 

AGMD process was investigated  in term of total energy consumption by using different 

membrane constructions (single and dual layer). The electrical energy consumption for the 

AGMD rig used in this study was for the heating and cooling systems, as well as the 

circulation pump. The electrical consumption measured by using three separate digital energy 

meters, while the total energy per-permeate-weight was gauged by divided total energy 

consumption per hour by permeate flux in kg for the same period. The effect of membrane 

structure (single and dual layer) with the varying of feed temperature of DI water on energy 

consumption was explored. It can be seen from Figure 9 that the energy consumption was 

reduced remarkably by increasing the feed temperature. This can be attributed to an 

exponential increase of the permeate flux with increase of feed temperature. A similar result 

was obtained by Duong et al [58]. The results also show that an increase of membrane 

thickness for the single layer had a negative impact on the energy consumption, especially in 

the range of feed temperatures less than 60o C. This can be attributed to reduction of 

membrane pore size as well as increasing membrane tortuosity with increase of spinning 

solution, which led to increased mass transfer resistance. However, energy consumption with 

the feed temperature over 60oC showed a slight reduction in total energy consumption. 

Therefore, it can be concluded from the above result that the optimum feed temperature is 

60oC. 

In the case of dual layer membranes, an energy consumption decrease was observed with 

reduction of active layer spinning volume. This can be explained by increase of permeate flux 

with reduce of spinning volume for the top layer (ultrafine fibre) and hence increased 

membrane pore size as mentioned before. Using different polymer concentrations (15, 17.5, 

20 wt%) in the support layer in membrane ESD5-ESD7 produced no major difference in the 

energy consumption observed.  
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3.2.3 Heavy metal treatment 

Effect of feed heavy metal concentration for five elements (Zn, Cd, Pb, Cu, Ni) were studied 

in terms of permeate flux, rejection and fouling. Two different concentrations (100 and 500 

mg/L) for each element and a total concentration of 500 and 2500 mg/L, respectively were 

used to simulate the rise of feed concentration in long term operation. The operation 

parameters of AGMD were set for feed and coolant temperature of 60oC and 7o C 

respectively, while the feed flow rate was maintained at 1.5 L/m. All dual and single layer 

membranes were tested over a period of 5 hours. Figure 10 illustrates the variation of 

permeate flux with feed concentration of the heavy metal. The trend of permeate fluxes for all 

membranes were stable during the five-hour run, which demonstrates the ability of 

electrospun membranes for removing inorganic heavy metals during continuous operation at 

high feed concentrations without reducing membrane flux. The different membranes structure 

can be divided into three groups according to the top layer thickness and performance. The 

first group which is represented by a thin top layer without supporting layer (ESS1) with 

thickness 56 µm; while the second group (ESD1, ESD2, ESD3, ESD4 and ESS2) with top 

layer thickness between 9 and 106 µm. The third group (ESD5, ESD6, ESD7 and ESS3) had 

a top layer thickness between 104 to 159µm. In terms of effect of feed concentration on the 

membrane flux, the results showed that the permeate flux for all membranes was reduced 

slightly with an increase of total feed concentration from 500 to 2500 ppm, which can be 

explained by the reduction of feed vapour pressure with increase of feed heavy metal 

concentration which is in agreement with the work of Alkhudhiri et. al. [59]. Figure 11 and 

Figure S2 reveals that the rejection % of all five heavy metals (Cd, Pb, Zn, Cu, Ni) with total 

feed concentration 500 and 2500 ppm by using single and dual layer membranes was above 

99.8%, except for ESS1which was between 99 and 99.4%. The lower rejection rate of ESS1 

can be explained due to using a thin membrane (56 µm thickness) without support layer 

which lead to a high mean pore size (0.69 µm), low LEP (15.2 psi) as well as low mechanical 

strength. However, a rejection above 99% can still be consider quite remarkable with these 

Figure 9: Effect of feed temperature on energy consumption by using DI water, a- single layer membrane, 

b- dual layer membranes. 



27 

 

 

properties (LEP, mean pore size) which can be attributed to the superhydrophobic layer made 

by incorporating superhydrophobic alumina NPs with PVDF polymer solution.  

In terms of membrane fouling, EDS measurements were carried out for all membranes after 

AGMD filtration with 2500 ppm heavy metals feed solutions followed by rinsing with DI 

water. Table 5 shows the atomic weight of C, F, Al, Cd, Pb, Zn, Cu, and Ni on membranes 

surface. It can be seen from Table 5 that the heavy metals atomic weight on the membrane 

surface was low which is provide an evidence of fouling resistance of superhydrophobic 

layer. We can conclude that the AGMD with electrospun dual layer membrane can operate at 

high heavy metal feed concentrations for long durations, which is a major advantage 

compared with other desalination processes like RO which experiences flux reduction and 

increase of feed pressure at high heavy metal feed concentrations. 

 

Table 5. EDS test for single and dual membrane after 5 h test 

Membrane 
Code 

Atomic weight % 

C O F Al Pb Zn Cd Cu Ni 

ESS1 47.48 20.61 22.83 8.97 0.01 0.00 0.01 0.03 0.06 

ESS2 46.27 18.43 26.20 9.07 0.00 0.01 0.00 0.01 0.00 

ESS3 47.11 18.66 25.42 8.76 0.00 0.02 0.01 0.01 0.00 

ESD1 44.60 17.52 29.23 8.58 0.02 0.00 0.00 0.02 0.03 

ESD2 45.03 17.09 29.37 8.47 0.00 0.02 0.00 0.02 0.01 

ESD3 45.96 17.70 27.43 8.59 0.01 0.00 0.00 0.03 0.00 

ESD4 45.69 19.19 25.92 8.81 0.01 0.00 0.00 0.00 0.00 

ESD5 46.12 18.23 26.63 8.63 0.00 0.00 0.00 0.02 0.00 

ESD6 46.93 17.95 26.38 8.19 0.00 0.00 0.00 0.06 0.00 

ESD7 45.38 17.83 27.87 8.35 0.01 0.01 0.00 0.00 0.01 

 

Figure 10: permeate flux for single and dual layer membranes, a- 500 ppm total heavy metals concentration, b- 

2500 ppm total heavy metals concentration 
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Conclusions 

In attempts to commercialize MD process, one of the hurdles is maintaining an adequate 

permeate flux and membrane wettability. Therefore, this study focussed on improving 

Figure 11: Heavy metal rejection for single and dual layer membranes by using total feed concentration 

2500 ppm. 
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membrane flux and wettability by fabricating novel dual layer electrospun membranes with a 

superhydrophobic top layer. In addition, the study investigated the effect of the membrane 

thickness ratio of dual layer electrospun membranes (superhydrophobic –hydrophobic) 

compared with single layer superhydrophobic membranes in term of membrane performance 

(flux and rejection) as well as membrane morphology (fibre diameter, pore size, LEP, pore 

size). Artificial wastewater containing heavy metals was used as wastewater model 

compound with air gap membrane distillation process to examine the electrospun membrane 

perfomances. The results show high permeate flux (above 23 LMH) with the feed metal 

concentration of 2500 ppm can be achieved, which is higher than the previous studies 

reported in the literature [27, 60] by using the bilayered membrane structure in AGMD with 

total thickness above 100µm thanks to superhydrophobic top layer. In addition, our study 

illustrates that the PVDF dual layer nanofibrous membrane, which was fabricated by using 

four needles to increase electrospinning productivity, has higher permeate flux and similar 

rejection % compared with single superhydrophobic membrane layers fabricated using 

electrospinning with polymer solution volumes of more than 16 ml. In addition, electrospun 

dual layer membranes have displayed some other advantages such better mechanical 

properties. In contrast, some disadvantages were revealed in terms of LEP with dual layer 

membranes fabricated using an active layer spinning volume of less than 1.6 ml.  Support 

layers fabricated with high polymer concentrations of 17.5, 20 wt% led to increased 

membrane tensile strength without sacrificing permeate flux. The energy consumption of 

single membrane reduces with decreased membrane thickness while it was reduced in the 

dual layer membrane structures by decreasing the top layer ultrafine fibre diameter thickness. 

Regarding heavy metal rejection, the top layer thickness is vital to increase rejection 

percentage, therefore spinning volumes greater than 4 ml (layer thickness 28.7 μm) is needed 

to reach rejection rate above 99.8%.  

 

Supporting information 

DSC Figure of single and dual layer membrane, heavy metal rejection with 500 mg/l as a 

total heavy metal concentration and a table for the permeate flux with temperature setup as 

PDF. 
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