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ABSTRACT ARTICLE HISTORY
Strain-controlled cyclic deformation of a nickel-based Received 15 July 2017
single crystal superalloy has been modelled using three- Accepted 13 February 2018

dimensional (3D) discrete dislocation dynamics (DDD) for KEYWORDS

poth [09 1] and [111] o.rlentatllons. The work .fo.cused on 'Fhe Dislocation—precipitate
interaction between dislocations and precipitates during interaction; representative
cyclic plastic deformation at elevated temperature, which has volume element;

not been well studied yet. A representative volume element crystallographic orientation;
with cubic y'-precipitates was chosen to represent the dislocation structures;
material, with enforced periodical boundary conditions. In precipitation; slip bands
particular, cutting of superdislocations into precipitates was

simulated by a back-force method. The global cyclic stress—

strain responses were captured well by the DDD model when

compared to experimental data, particularly the effects of

crystallographic orientation. Dislocation evolution showed

that considerably high density of dislocations was produced

for [111] orientation when compared to [00 1] orientation.

Cutting of dislocations into the precipitates had a significant

effect on the plastic deformation, leading to material

softening. Contour plots of in-plane shear strain proved the

development of heterogeneous strain field, resulting in the

formation of shear-band embryos.

1. Introduction

Nickel-based superalloys are widely applied as rotating turbine blades and discs in
the hottest sections of gas turbine engines. Their exceptional mechanical proper-
ties at high temperature are due to the coherent double-phase microstructure, i.e.
aLl,-ordered y"-precipitate phase and a ductile y-matrix phase. The y’ precipitates,
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dispersed in the y-matrix, play a significant role in increasing the strength and
enhancing the fatigue and creep behaviour of the alloys at elevated temperature
[1-3]. In order to achieve further improved mechanical properties, new develop-
ment of nickel-based superalloys is normally pursued by increasing the y’ volume
fraction. For instance, the y’ volume fraction may reach above 70% for the latest
single crystal nickel alloys. Nickel-based superalloys are often subjected to severe
cyclic or sustained loads in harsh environments, thus a reliable characterisation
and prediction of their mechanical behaviour at high temperature, such as plastic
deformation under low cycle fatigue, is critical in order to accurately assess damage
tolerance of their components.

Discrete dislocation dynamics (DDD) has been developed during recent years
to study plastic deformation in metals and alloys by directly modelling the evolu-
tion of collective dislocation segments. The DDD model can simulate dislocation
motion, multiplication and interaction under applied loading conditions. For
instance, Déprés et al. [4] modelled local plastic deformation of AISI 316L steel
by 3D DDD simulations during low cycle fatigue. They confirmed that dislocation
cross-slip played the crucial role for the initial strain spreading within the grain
and also the subsequent strain localisation for forming slip bands. Huang et al. [5]
studied crack-tip deformation of a polycrystalline nickel-base superalloy under
model I cyclic loading condition using 2D DDD simulations. Results showed
that the ratchetting strain ahead of the crack tip is associated with dislocation
accumulation, climb and penetration across grain boundaries, amongst which
dislocation climb seems to be the dominant mechanism for the cases studied at
elevated temperature. 3D DDD simulations were also carried out to study strain
hardening in Al-TiN nanolayered composites [6]. When the layer thickness ratio
kept constant, the rate of strain hardening was caused by plastic incompatibility
solely and independent of dislocation density and layer thickness. On the other
hand, the yield stress of the composites showed a strong size effect, i.e. the depend-
ence of yield stress on the thickness of Al layer (significant increase of yield stress
was observed with the decreasing thickness of Al layer when the layer thickness
ratio kept unchanged).

The DDD approach is able to model the interaction between dislocations and
material microstructures explicitly, including the formation of heterogeneous
dislocation networks such as slip bands. Huang et al. [7] and Hafez Haghighat
et al. [8] simulated dislocation network formation in nickel-base single crystal
superalloys during monotonic loading, showing that the movement of dislocations
was in the y channels and close to the y’ cubes, and most dislocation segments
were deposited on the y/y’" interfaces to form the dislocation network. Shin et al.
[9] modelled fatigue deformation in precipitation hardened metals, with a fixed
precipitate volume fraction (14%). They showed that large monomodal precipitates
(radius 400 nm) caused only a small effect on the material’s cyclic response. For
small monomodal precipitates (radius 160 nm), strain localised into persistent slip
bands (PSBs) with features similar to single phased materials and a large effect
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on the cyclic mechanical response (evolution of the stress amplitude) was found
in the initial loading cycles. In grains with a bimodal precipitate, the simulated
mechanical behaviour (such as stress—strain behaviour, PSBs, dislocation densities
and cyclic response) fell between the above two cases. Yashiro et al. [10] stud-
ied dislocation shearing into y’ precipitates by applying a back-force model, and
the model was used to explore the dependence of precipitate-shearing resistance
on the dislocation spacing in the interfacial dislocation network for nickel-base
superalloys.

In nickel alloys, precipitates play a very important role in obstructing dislo-
cation motion and high volume fraction of )’ precipitates tend to confine dis-
locations in the narrow channels of the y phase, resulting in increased material
strength. In fact, Rao et al. [11] conducted discrete dislocation simulations to
study the influences of y’ volume fraction on critical resolved shear stress (CRSS)
needed to overcome the precipitate barrier. Their simulation results showed that
the CRSS varied with the square root of the precipitate volume fraction. Vattré
et al. [12] also demonstrated that the CRSS increased strongly with the increase
in precipitate volume fraction when the average spacing of precipitates was
kept constant. However, the existing 3D DDD simulations are largely limited to
monotonic loading condition, without considering the effect of loading reversal.
In this paper, 3D DDD was performed to gain a better understanding of dislo-
cation—-microstructure interaction under cyclic deformation of a nickel-based
single crystal superalloy at high temperature (850 °C). A representative volume
element (RVE), with 9’ cubic precipitates of 70% volume fraction, was chosen
to represent a Ni-based single crystal superalloy, on which a periodic boundary
condition was enforced. A back-force model was applied to simulate the cutting
of superdislocations into precipitates. Detailed studies on dislocation evolution
during cyclic loading were conducted for both [11 1] and [00 1] orientations. The
dislocation-dynamics induced plastic deformation and the corresponding dislo-
cation networks were then discussed, including the cutting of superdislocations
into precipitates and the formation of shear-band embryos.

2. 3D DDD simulation methodology
2.1. Peach-Kohler force calculation

In 3D DDD model, a dislocation network of arbitrary topology is represented
by sets of nodes which are connected to form straight segments with non-zero
Burgers vectors. The evolution of dislocation segments was dependent on the
motion of dislocation nodes. The Peach-Koehler (PK) force controls the motion
of dislocation nodes and can be calculated by [13]:



4 (&) B.LINETAL

N
Fi = Z (o-]?’@f+o-“PP> . bi X§i+Fi,i+1 +Fi,i—1 (1)
j=1
j#i
j#i+1
j#i-1

where Fi is the Peach—Koehler (PK) force acting on dislocation segment 7, N is the
total number of dislocation segments, Ei is the line sense vector, and Fl.)l. - and F“._1
are the interaction forces between dislocation segmentsiand i+ 1andiand i -1,
respectively, which are computed by following the method presented in Zbib et al.
[13] and Hirth and Lothe [14], a}m is long range stress from a remote segment j
and o“? is externally applied stress on segment i.

During a simulated time increment, the glide velocity for each dislocation

lid
segment, v, was governed by:

0 ifabs(thde> < abs(TFbi)

F'yr b—r,sign(F"“)b, . lid
— G 1fabs<Fig’ e) > abs(z,b;)

Viglide — (2)

where Fflide is the glide component of the PK force F,, 7,  is an internal stress caused
by the anti-phase boundary in y’ precipitate, 7, is the friction stress in the y phase,
B is the drag coefficient and abs(x) is the absolute value of x.

For efficient computation of the PK force F, in Equation (1), the RVE was further
partitioned into a series of equal-sized subcells. For dislocations within a subcel
and its neighbouring subcells, their contributions to PK force on dislocation i were
calculated at the centre of the dislocation segment i directly, and for dislocations
in remote subcells, their contributions to PK force were calculated at the centre of
the subcell which contains the dislocation segment i. The dislocation stress field
in Equation (1) was calculated by applying the analytical Hirth and Lothe formu-
lation [14]. In addition, the interaction stresses between dislocations in remote
subcells were calculated from a multipole expansion method, which reduces the
computational cost. Also in order to further improve the efficiency of computing,
a parallel OpenMP interface was utilised to calculate the long-range stresses.

In the precipitates, when the screw superdislocations on the octahedral slip
planes cross slip to {100} planes, a Kear-Wilsdorf (KW) lock was introduced to

hinder the dislocation motion. In this paper, a KW unlocking stress 7, acting
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as a friction stress in the precipitates and corresponds to the term 7,,in Equation
(2), was used to consider the KW locks and can be expressed as [12]:

b AH,
Tgw = “BfDl_ exp | — kT (3)

where f, is a Debye frequency factor, [ is the length of the screw dislocation seg-
ment, AH,, is the activation enthalpy for KW locks, T is the absolute temperature
and k is the Boltzmann constant. The KW lock inside the precipitates was not
simulated directly but considered by a KW unlocking stress 7,,, which has a
constant value of 425 MPa as calculated from Equation (3).

In nickel-based single crystal superalloys with high precipitate volume frac-
tion, TEM imaging revealed that dislocation—precipitate interactions may result
in shearing of precipitate by dislocation pairs separated by anti-phase boundary
(APB), i.e. superdislocation [15,16]. Based on these experimental observations, a
back-force model suggested by Yashiro et al. [10] was applied to simulate precipi-
tate shearing by series of superdislocations explicitly. When a leading dislocation
cuts into a precipitate, it leaves an antiphase boundary (APB) on the slip plane
with a back force F, (equals to antiphase boundary energy x,,,) acting on it.
Meanwhile, a follow-on trailing dislocation on the same slip plane is attracted by
F, and enters the precipitate subsequently. The leading and the trailing dislocations
form a superdislocation which glides in the precipitate. The following criterion
was applied in the 3D DDD code to decide whether the dislocation entering the
y' phase is a trailing or a leading dislocation [7]:

o If F, " P-Fim >(0and abs(Fm t) >0.25), s the dislocation is a leading dislocation;
« IfF, -F, <Oandabs(F, ) >0.25y,,, the dislocation is a trailing dislocation.

Here, y,pprepresents the inherent APB energy density, F,, is the glide force
caused by the externally applied load and F, , is the dislocation-interaction stress
computed at the centre of the dislocation segment i. They are defined by the fol-
lowing two equations:

Fypp = (Gapp b % 5:‘) (nx&) (4)

Fop = (04 - ;% &) - (nx &) ()
where 7 is the normal vector of the slip plane of dislocation segment 7, app 1
the externally applied stress and o, . is the centre stress of dislocation segment i
induced by an interacting dislocation. Also, the back force (F,, per unit length),
acting on the pair of superdislocations (i.e. leading and trailing dislocations)
cutting into the precipitate, literally corresponds to 7, b, in Equation (2), i.e.
Fy = Xaps = Tinsb;

int~ i
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2.2. DDD short/long range interactions

The interactions of dislocations are very important because of their influence
on the mobility of dislocations and hence on the plastic deformation of crys-
tals. Broadly, the interaction can be classified as either short range or long range.
The local interactions between dislocations with a small distance (core level) are
described by short-range interactions. Basically, when the distance between two
dislocations is close to the size of the core where the elasticity field is not valid
anymore and short-range interaction occurs [17]. In the present DDD model,
short-range interactions included the formation of jogs and junctions as well
as the annihilation of dislocations. Long range interactions are defined here as
non-contact elastic interactions between dislocation segments in a three-dimen-
sional microstructure. Modelling of the interacting dislocation segments in a
large model is far too computationally expensive, since the computation every
step would be proportional to the square of dislocation segment numbers. The
multipolar expansion method is a numerical technique [13] developed to reduce
the order of computation to N log N, without losing the required accuracy. In
this method, the dislocations far away from the point of interest are grouped into
a set of equivalent monopoles and dipoles. For numerical implementation, one
would divide the 3D cell into a number of subcells, and the dislocations in each
subcell are grouped into monopoles and dipoles whose far stress field can then be
computed more efficiently using the multipolar expansion method.

In particular, the mechanisms of cross-slip and collinear annihilations have
been implemented in the 3D DDD code. The cross slip of screw dislocation was
determined numerically using a Monte-Carlo type simulation [18], and the
collinear annihilations of dislocations AB and CD are possible if short-range
interaction is possible and §,; - ., = land b, , + b, =0 (or &, - &, = —land
b, — bo, = 0). Here, b is the Burgers vector and ¢ is the dislocation line sense
vector [17]. Our simulations showed that cross slip (threshold stress for cross
slip was chosen to be 122 MPa) leads to softer stress—strain response and higher
dislocation densities, which is consistent with the DDD simulation results for
single-crystal nickel by Zhou et al. [19].

2.3. Evaluation of plastic strains and computation of external stress

Glide of many dislocations results in plastic deformation in crystalline materials.
The motion of each dislocation segment produces plastic deformation, which is
associated with the macroscopic plastic strain 5‘Z In the 3D DDD model, a homo-
geneous macroscopic stress state is assumed in the RVE, and thus a macroscopic
plastic strain e*z is computed by [20]

1 1
&= L > (mib+ b, )aa 6)

slip
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where dA represents the area incrementally swept over by the segment of dislo-
cation, #, is the vector normal to the glide plane, V is the volume of the RVE and
A, is the collection of deforming surfaces. Equation (6) describes the rigorous
relationship between the macroscopic plastic strain and the dislocation motion.

If the external load is applied along the z axis of the RVE with a strain rate of

¢, the total strain £/ along the loading axis should be:

z

el = €t (7)

By referring to Equations (6) and (7), the elastic strain £(¢) is written as:
£(t) = () — (t) (8)

Then, the time-dependent external stress 62 (¢) is:

Figure 1. (colour online) RVEs with (a) 1, (b) 8 and (c) 27 precipitates, where initial Frank-Read
dislocation sources are randomly distributed in the y-phase matrix.
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o (t) = Ee(t) = E(e¥'(t) — €X(t)) (9)

where E is the Young’s modulus.

2.4. RVE model

Representative volume elements (RVE) containing 1, 8 and 27 cubic y’ precipitates,
as sketched in Figure 1, were built, representing a new-generation nickel-based
single-crystal superalloy MD2. The RVE has a precipitate volume fraction of 70%
and a channel width of 0.0475 pm. The y" volume fraction in MD2 was esti-
mated based on the assumption that the ' precipitate is perfectly cubic. Periodical
boundary conditions (PBCs) were imposed on dislocation movement which is
critical in 3D DDD simulations and should always be considered. Basically, when
a dislocation leaves the RVE from one side, it enters the RVE from the opposite
side to maintain the continuity of dislocation lines [21]. The corresponding elas-
tic stress fields were calculated directly from the updated dislocation networks.
In addition, the elastic stress field induced by imaging dislocations in the rest
of periodical RVEs were considered by the multipolar expansion method [13].
Transmission electron microscopy (TEM) observations have revealed that dislo-
cations are initially contained in the y matrix, whereas no dislocations were found
in the y' precipitates [22]. Also, the TEM observations [23,24] demonstrated that
dislocation motion was not found on cubic slip planes. Consequently, in this
work random initial dislocations were distributed on 12 octahedral slip systems
in y phase as Frank-Read sources. These initial dislocations are also randomly
oriented on the slip plane. The dependency of initial dislocations on loading axis
was not considered in this work. When an initial length of dislocation sources is
less than y channel width, unreal macroscopic mechanical behaviour is produced
[25]. To prevent such issues, the initial lengths of all dislocation sources were set
to be 0.0875 um (>channel width of 0.0475 pum). The initial dislocation density
of nickel-based superalloy adopted in previous 3D DDD simulations [7,8,25,26]
ranged from 1.4 x 1012 to 6.7 x 10'* m2 In this study, the initial dislocation density
was chosen to be 2.5 x 10'> m~2, which fell within the range reported in literature.
Both the y and y’ phases were treated as isotropic and have the same elastic
constants (modulus and Poisson’s ratio). Due to the PBCs imposed to the RVE,
portions of dislocation loops may self-annihilate to reduce the mean free-path
of dislocations [27], which may affect the microstructure arrangement as well
as the strain hardening behaviour. To avoid these, a non-perfect cubic shape is
applied to the RVE. The dimensions of the RVE with 1, 8 and 27 precipitates are
1420b x 1500b x 1580b, 3220b x 3380b x 3540b and 4830b x 5070b x 53100,
respectively (see Figure 1), corresponding to 70% precipitate volume fraction and
a channel width of 1906 (0.0475 pm), where b is the Burgers vector magnitude.
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2.5. Contour plot of maximum plastic shear strain

The RVE is divided into equal-sized sub-cells in 3D DDD model, and the plastic
strain produced by the dislocation segments in sub-cells is computed at the centre
of each sub-cell in the 3D DDD simulations. The plastic strain at nodes of sub-
cells was calculated by a written post-processing program in the present study.
The plastic strain at a node k is computed by averaging the plastic strains at the
centre of all sub-cells sharing the node k:

g = 2nliom (10)

where 7 is the number of neighbouring sub-cells sharing the node k, €, is the
plastic shear strain at the centre of the mth sub-cell.
Then the maximum plastic shear strain is computed by:

e Y (52) + (2) w

where i and j refer to coordinate axes. In the present simulation, we used Equation
(11) to calculate the in-plane maximum plastic shear strain on the surface of the
3D RVE model. The contour plot of maximum plastic shear strain can be created
easily with the assistance of commercial software Tecplot once the nodal values
are determined by Equations (10) and (11).

3. Results
3.1. RVE size and model parameter identification

Using the 3D DDD framework given in the above section, numerical analyses were
conducted for three RVEs, consisting of 1, 8 and 27 precipitates with randomly

(a) (b)
1200 1200
1000 - 1000 -
= 800 - 800
a a
é 600 g 600 -
? ?
5} Lp <
& 400 4 <001> orientation & 4001 <111> orientation
~— one precipitate one precipitate
200 = 8 precipitates 200 4 ~— 8 precipitates
27 precipitates w27 precipitates
0 T T T T T 0 T T T T T
0.0 0.2 04 06 08 1.0 12 0.0 0.2 0.4 06 08 1.0 12
Strain (%) Strain (%)

Figure 2. (colour online) Stress—strain response for RVEs with different number of precipitates for
(a) [00 1] orientation; (b) [1 1 1] orientation.
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0 o : T T : : 0 T v v v '

00 0.2 04 06 08 1.0 12 0.0 0.2 04 06 08 1.0 12
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Figure 3. (colour online) Dislocation density against time for RVEs with different number of
precipitates for (a) [00 1] orientation; (b) [11 1] orientation.

distributed Frank-Read dislocation sources in the y-phase matrix as shown in
Figure 1. The stress-strain response and the dislocation density evolution for
the RVEs with different number of precipitates were compared in Figures 2 and
3 for both [001] and [111] orientations. It was seen that a good convergence
was achieved for an 8-precipitate RVE, especially for the evolution of dislocation
density. Consequently, a RVE with 8-precipitates was adopted in our simulations.

To determine the DDD model parameters for the actual material (MD2), we
adopted a fitting procedure based on iterative simulations of monotonic and
cyclic stress—strain responses for both [00 1] and [1 1 1] orientations. Prior to the
fitting process, some fundamental material parameters such as Poisson’s ratio
and modulus were directly obtained from experimental measurements. Initial
values of other dislocation-dynamics related parameters were estimated based
on the literature [7,26]. Following each simulation, the stress—strain responses
were obtained and compared with those measured experimentally to assess the
difference. This essentially is an inverse parameter-fitting process. Basically, we
manually change the values of the parameters until the simulated stress—strain
responses matched the low-cycle-fatigue test data for both [001] and [111] ori-
entations. Here, we focused on monotonic and the first cycle of fatigue loading.
The procedure consisted of a series of iterations until an acceptable agreement
was achieved between model simulations and experimental data. The material
parameters obtained for 3D DDD simulations are given in Table 1, where the
elastic moduli for [001] and [11 1] orientation were taken from the linear part

Table 1. The parameters used in 3D DDD simulations.

Orientation [001] [111]
Young’s modulus (GPa) 99.3 247.3
Poisson ratio 0.402 0.24
APB energy (mJ/m?) 150

Drag coefficient (Pa s) 1.0e-4

KW unlocking stress (MPa) 425

Friction stress in y phase (MPa) 180
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of the stress—strain responses. Shear modulus for [1 1 1] orientation was also cal-
culated using the following equation [28]:

3(cyy = €1p)Cyy

G[m] B ¢ — ¢y +4cy (12)
where
ey = Foon = Vi) » €y = €y ooy » €y = Gop
(T4 Vo) = 2¥jg01) 1= Y001
Here, E ) and Vigo 1T€ the elastic modulus and Poisson’s ratio in [00 1] orien-

tation, respectively. For single crystals, the elastic modulus in [1 1 1] orientation is
higher while the corresponding shear modulus is lower when compared to those
in [001] orientation [29]. In the code, the shear modulus Gy p calculated as
43.7 GPa, was used for calculations of Orowan stress and critical resolved shear
stress, which control the dislocation glide on {11 1} slip planes.

Experimental stress—strain responses were obtained from our own low-cy-
cle-fatigue tests. The tests were carried out using standard cylindrical specimens
(a diameter of 6.4 mm and a gauge length of 36.5 mm) at a temperature of 850 °C
which reflects the typical working environment of nickel superalloys. The speci-
mens were subjected to strain-controlled cyclic loading, with 2 s-2s-2s-25(2s
dwell at both maximum and minimum load levels) and 200 s-200 s—200 s—200 s
(200 s dwell at both maximum and minimum load levels) loading waveforms,
for both (001) and (1 11) directions. The maximum level of strain applied to the
specimen was 1%, with a strain ratio of -1.

~
o
~
~_~
=2
~

1500 1500
dir : (001), f = 0.125Hz dir :(111), f = 0.125Hz
10001 o  Experiment 1000{ O Experment 0T CITTGR

e
; ! w— Simulation oy v ww - vl
s Simulation O T

T 500 A S 500+
S o
% 0 2 0
8 2
I o
& -500 A S -500
@ 7}
-1000 4 -1000
-1500 . . B ' v v -1500 - - - : r "
20 15 10 05 00 05 10 15 20 15 10 05 00 05 10 15
Strain (%) Strain (%)

Figure 4. (colour online) Cyclic stress—strain response simulated with 3D DDD model até = 0.01/s
for (a) [00 1] and (b) [1 1 1] orientations.
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3.2. stress-strain response

The simulated macroscopic stress—strain responses by the DDD model under
monotonic and cyclic loading (1st cycle) are presented in Figure 4(a) and (b)
for [001] and [111] orientations, respectively, in a direct comparison with the
experimental results. It is noted that the model simulations have a good agreement
with the experimental data for the two cases. Both the stress—strain responses and
the shape of cyclic loops were captured by 3D DDD model. Results exhibited the
narrow hysteresis loop for the [001] orientation, which demonstrated the very
limited amount of plastic deformation for this orientation. While for the [111]
orientation, the stress—strain loop is much fatter (see Figure 4(b)), indicating con-
siderably more plastic deformation in the alloy for this orientation. It is noted from
Figure 4(b) that the present 3D DDD model could not capture the strain harden-
ing behaviour very well followed by load reversal in the [1 1 1] loading direction,
which may be attributed to a lack of additional hardening mechanisms for the
material. In nickel-based single crystal superalloys, majority of dislocations are
deposited at the y/y’ phase interfaces rather than in the y channels, which is also
the dominant hardening mechanism. There is an absence of additional hardening
mechanisms such as Taylor hardening. Specifically, a generalised form for Taylor

hardening can be written as z" = ub _ [} a, p" [30], for which the coefficients

a,,, are the components of a matrix that describe the average interaction strength
between slip system m and slip system 7, and they are related with the formation
of dislocation junctions and jogs. This implies that the formation of junctions and
jogs will lead to high hardening rate, as also reported in Rhee et al. [17]. However,
as reported in our previous work [7], the density of dislocations with jogs and
junctions (5.2 x 10 and 6 x 10" m~? at 0.4% plastic strain) are two to four orders
less than the total dislocation density 1.25 x 10'> m2 for nickel-based superalloys.
Basically, junction and jog dislocations make negligible contributions to the total
dislocation density in nickel-based superalloys, indicating an absence of Taylor
hardening. This is also the case for our current simulations.

3.3. Evolution of dislocation networks

Dislocation networks developed at different loading stages are shown in Figures 5
and 6 for [00 1] and [11 1] orientations, respectively. During the loading stage, the
initial dislocation segments of Frank-Read sources are activated and tend to bow
out (i.e. multiplication process) when an applied resolved shear stress exceeds a
critical value [31]. The activated dislocations in the slip plane can climb over, shear
or loop around precipitates, which results in the deposition of most dislocation
segments on the y/y" interfaces. These deposited dislocations constituted a type of
dislocation network, in which dislocation lines are normal to each other, as shown
in Figures 5 and 6, consistent with the TEM observation by Tian et al. [32]. These
dislocations on the y/y" interfaces can cause high internal back stresses that lower
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Figure 5. (colour online) Dislocation networks for [00 1] orientation at (a) time =15, (b) time =45,
(c) time =55, (d) time =8sand (e) time=9s.
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Figure 6. (colour online) Dislocation networks for [11 1] orientation at (a) time =15, (b) time =45,
(c) time=5s5, (d) time=8sand (e) time=9s.
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the PK force and subsequently the dislocation mobility in the channels, leading to
strain hardening. When the applied stress is reduced (the unloading stage), the dis-
location loop tends to shrink due to the reduction of dislocation line tension and
some of the deposited segments would disappear if not hindered [33]. Moreover,
the mutual dislocation annihilation can happen during the reversed loading stage
[34]. Therefore, a reduction of dislocation density, as shown in Figures 5 and 6, is
a direct outcome of the annihilation and shrinkage of dislocations.

It is noted that simulated dislocation density was much higher for the [111]
orientation (compared with the density for [00 1] orientation), which is because
cross slip and junction formation take place more easily for [111] orientation
[35]. The evolution of dislocation density has a direct influence on plastic strain
or plastic deformation, and a lower yield stress is shown for [111] orientation
which is associated with the higher density of dislocations for this orientation
(compared to [00 1] orientation). This also reflects different Schmid factors for
these two orientations. From the Orowan formula (¢’ = pbv), which relates the
plastic strain rate £” to the mobile dislocation density p, Burgers vector magnitude
b, and average dislocation velocity v, the higher density of mobile dislocations
would result in a softer response due to the increasing plastic strain rate, and, con-
sequentially, reduce the flow stress. Our work showed that dislocation networks
for both [001] and [111] orientations are similar to those reported in Vattrés
work [25]. For the [001] orientation, dislocations deposited on the surface of
precipitates form a network and are normal to each other; for the [11 1] orienta-
tion, due to the multiplication of dislocations in one single crystallographic direc-
tion, the dislocations on the surface of precipitates are restricted to one direction.
On the other hand, this work showed that [11 1] orientation had a significantly
higher dislocation density than [00 1] orientation (as opposed to the results in
Vattré et al. [25]), which is consistent with the more severe plastic deformation
observed experimentally for the [11 1] orientation (Figure 4). It should be noted

(a) (b)
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Figure 7. (colour online) Maximum-shear plastic strain contour at strain = 1% for (a) [001] and
(b) [11 1] orientations.
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that Vattré et al. [25] used the same modulus for [001] and [11 1] orientation in
their simulations. In fact, [1 1 1] orientation has much higher modulus than [001]
orientation (i.e. 247.3 GPafor [11 1] and 99.3 GPa for [001]) and also experiences
more plastic deformation. This is measured by our experiments, but not reflected
in Vattré et al’s work [25]. In our work, we used the correct modulus which was
able to capture the behaviour.

3.4. Contour plot of maximum shear strain

To examine shear-related material deformation behaviour, contour plots of the
maximum shear plastic strain were also produced for both [001] and [111] orien-
tations at a total strain of 1% and shown in Figure 7(a) and (b), respectively. Again,
the simulations showed heterogeneous shear deformation at precipitate level. It
was particularly noted that shear-band embryos were formed in the RVE, with
an inclination of 45° with respect to the loading direction (z-axis). Here, we used
shear-band ‘embryos’ to reflect the modest RVE size (0.355 x 0.375 x 0.395 um)
used in our simulations (due to the high computing cost for 3D DDD simu-
lations). The shear-band embryos developed with a characteristic orientation
and a regular spacing, similar to those observed in f.c.c. polycrystalline metals
using digital image correlation method [36]. Due to more plastic deformation
developed for the [111] orientation the intensity of shear deformation in the
shear-band embryos is much stronger for [111] orientation than that for [001]
orientation. These shear-band ‘embryos’ will eventually develop into shear bands
atlarge scale. This has been confirmed by our 2D DDD simulations using a larger
RVE (3 x 3 pm?), showing a direct correlation between dislocation networks
and shear bands. Basically, ‘bands’ of localised high-density dislocations tend to
develop along certain slip planes, which are discrete and accommodate a signifi-
cant amount of shear strain. They also appear as shear bands in the contour plots
of maximum in plane shear strain.

4, Discussions
4.1. Dislocation-precipitate interaction

Discrete dislocation dynamics and its computer simulation have advanced signif-
icantly over the past two decades, where such important features as dislocation
intersection, slip geometry, multiplication, line tension effects and cross-slip have
been successfully modelled to simulate dislocation patterning observed in exper-
iments. However, almost all studies are limited to isotropic and homogeneous
media, and the interactions between dislocations and material microstructure,
which is the major source for heterogeneous dislocation arrangements and the
generation of internal stress concentration and initiation of cracks, is generally
excluded for simplicity. One of our aims is to understand how the dislocation-
microstructure interaction affects the global stress—strain behaviour during plastic
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Figure 8. (colour online) Stress—strain response with and without precipitate for (a) [00 1] and (b)
[111] orientations.

deformation, which cannot be captured by the classical continuum model (e.g.
crystal plasticity).

To illustrate this, DDD simulaitons were carried out for RVE without precipi-
tates for both [001] and [111] orientations. For like-to-like comparison, the DDD
parameters and the initial dislocation distributions were kept exactly the same as
the RVEs with precipitates. The stress—plastic strain curves obtained are shown
in Figure 8, in direct comparison with those for RVEs with precipitates. It was
noted that stress—plastic strain response for RVE without precipitates has a sharp
drop after the initial elastic stage and is well below those for RVE with precipiates.
Following a sharp drop, the stress tends to reach a steady level for both [001] and
[111] orientations and no further strain hardening occurs. This confirms that the
strength of nickel alloys is mainly controlled by the dislocation-precipitates inter-
action, especially the accumulation of dislocation loops at the matrix—precipitate
interfaces. These accumulated dislocation loops form a strong network and make
the mobile dislocations more difficult to bow-out between the precipitates, leading
to significant strain-hardening effect [37,38]. As also demonstrated in Huang et
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Figure 9. (colour online) Stress—strain response with and without shearing of precipitate by
dislocations for (a) [00 1] and (b) [1 1 1] orientations.
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al. [7], the morphology of precipitates also affects the evolution of dislocation
networks in the matrix channel, leading to alteration of mechanical behaviour
of the material. The effect of varied internal microstructure features (e.g. volume
fraction, shape and morphologies of precipitates) on material behaviour will be
further studied in future research.

4.2. Shearing of precipitates by superdislocations

The simulated stress—plastic strain responses for single-precipitate RVE along
[001] and [111] orientations are presented in Figure 9 for the cases with and
without introducing precipitate shearing in the 3D DDD model. It can be seen
that shearing of precipitates had a great effect on the stress—strain response for
both [001] and [111] orientations, and three-stage deformation (elastic, harden-
ing and softening stages) was observed (Figure 9). During the elastic stage, since
the initial sources of dislocations in the y channels are not activated or just move
slightly to the y/y’ interfaces, both the y and y’ phases remain elastic and no plastic
deformation or increase of dislocation density is expected. When the resolved
shear stress on the slip systems exceeds the critical shear stress, dislocations bow
out and the initial yielding occurs. With the increase of load level, more Orowan
dislocation loops are produced and most of them are deposited at the y/y" surface,
which results in strain hardening, i.e. the second stage deformation. With further
increase of strain level (beyond ~1%), shearing of precipitates by superdislocations
occurred, which reduced the resistance of the material to further slip and produced
a softer mechanical response of the material [39,40]. Based on our simulations, it
is concluded that the shearing of precipitates by dislocations is a major cause of
the softening behaviour of nickel superalloys, especially at high strain levels. These
findings have also been observed in experimental studies [22,41-43].

(a) (b)

2|

\

Figure 10. (colour online) Shearing of dislocations into precipitate for [00 1] orientation at: (a)
strain = 1% and (b) strain = 2%.
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Figure 11. (colour online) Shearing of dislocations into precipitate for [11 1] orientation at: (a)
strain = 1% and (b) strain = 2%.

As mentioned in Section 2.1, precipitates are generally sheared by a series of
superdislocations formed by leading and trailing dislocations. When a leading
dislocation enters into the precipitate, it destroys the L1, order in the slip plane,
thus creating an antiphase boundary (APB) [44]. The following trailing disloca-
tion moving on the same slip plane intends to restore the initial L1, structure.
We checked the dislocation networks of single-precipitate RVE under monotonic
loading conditions (strain rate = 1%/s and strain level = 2%), and superdisloca-
tions clearly sheared into the precipitate for both [001] and [111] orientations
at strain levels of 1 and 2%, as shown in Figures 10 and 11. It is noted that, when
loading level reached to a higher value, more superdislocations sheared into the
precipitate, which further demonstrated that precipitate shearing resulted in the
softening of material’s stress—strain response.

In fact, TEM images have confirmed that the y’ precipitates were cut by super-
dislocations for nickel-based superalloys, especially at elevated temperature and
increased loading level [15,16]. For example, TEM study in Grant et al. [16]
revealed that the precipitates were cut by series of superdislocations for a nick-
el-based superalloy tested under tensile loading at 500 °C (with a strain rate of
107%/s). Cui et al. [45] studied the creep deformation mechanisms of a nickel-base
superalloy, and pointed out that, at low temperature region, the favourable defor-
mation mechanism for shearing of ' precipitates was dominated by stacking faults.
However, it changed to antiphase boundaries (APBs) shearing (e.g. superdisloca-
tions) at high temperatures. Their TEM observations confirmed the shearing of y’
precipitates by superdislocations under creep (760 MPa) and at high temperature
(800~1000 °C). In our simulations, the stress levels for both [001] and [111]
orientations are up to 1000 MPa and the temperature is 850 °C, so the cutting of
y' precipitates by superdislocations should be considered in our 3D DDD model.
To study such phenomenon in simulations, we artificially put some dislocation
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Figure 12. (colour online) Evolution of the dislocation density: (a) simulations in this work for
both [001] and [1 1 1] orientations and (b) the in situ measurements by Huang et al. [34].

sources on the same slip planes, which allowed an increased chance (probability)
of formation of superdislocations. For comparison purposes, we are currently
carrying out systematic TEM studies of the tested samples to investigate the cutting
of precipitates by superdislocations, which will be reported in our future work.

4.3. Evolution of dislocation densities during cyclic loading

The evolution of the dislocation density for [00 1] and [1 1 1] orientations is shown
in Figure 12(a) for the 1st loading cycles. Density reached the peak at the end
of monotonic loading (time = 1 s), then kept increasing during the dwell period
(despite the stress relaxation behaviour). Decrease in dislocation density was
observed during the unloading and reached a minimum value at the end of load
reversal. Following subsequent re-loading, density was increasing again with the
time and reached another peak value, larger than the 1st peak, at the maximum
load level (time = 9 s). These are consistent with the in situ measurements by
Huang et al. [34], who obtained dislocation densities at seven points within the
Lst fatigue cycle using Neutron diffraction method (see Figure 12(b)). The meas-
urement at point 7 (end of the 1st loading cycle) has a higher dislocation density
than that at point 1 (beginning of the 1st loading cycle), which shows the strain
hardening even within the 1st cycle. The measured dislocation densities for the
Ist and 100th cycles were also compared in the work, as shown in Figure 12(b).
Although the same load level was maintained during the fatigue test, the observed
dislocation density for 100th cycle is several times higher than that for the 1st
cycle, indicating the significant accumulation of dislocations during the cyclic
plastic deformation. Due to the excessive amount of computing time required for
simulating a large number of cycles under dwell-fatigue, only one cycle was mod-
elled in this paper. However, additional simulations were carried out by removing
the dwell period in the fatigue cycles. The dislocation density against time for
the 1st and the 5th cycles are shown in Figures 13(a) and 14(a) for [001] and
[111] orientations, respectively. The increase in dislocation density with cyclic
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Figure 13. (colour online) (a) Evolution of dislocation density; dislocation networks at the end of
the first (b) and the fifth (c) cycles for [00 1] orientation.

loading number is clearly shown, indicating the accumulation of dislocations
during fatigue. The dislocation networks at the end of the 1st and the 5th cycles
are shown in Figure 13(b) and (c) for [00 1] orientation and Figure 14(b) and (c)
for [111] orientation, respectively, which further confirmed the accumulation of
dislocations with the number of fatigue cycles. This is consistent with the in situ

neutron measurements by Huang et al. [34] and the 3D DDD simulation results
by Shin et al. [9].

4.4. Limitations of current work

The misfit strains and the associated coherency stress, produced by the lattice
mismatch between the y/y’ phases in nickel-base single crystal superalloys, are
not considered in this work. However, the work of Huang et al. [7] demonstrated
that the influence of coherency stress on stress—strain behaviour can be negligi-
ble, which is also confirmed by the work of Vattré et al. [12]. The simulations in
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this study focused on the macroscopic stress—strain responses and dislocation
networks for [001] and [111] loading directions, which should not be much
affected by the misfit strain. But further work is needed to fully understand the
effects of lattice mismatch.

The dislocation climb was not considered in our 3D DDD code, so its effect
on relaxation of hardening was not simulated in our work. The recent 3D DDD
simulation results on nickel-based superalloys by Gao et al. [46] demonstrated that
dislocation climb was capable to promote dislocation glide and multiplication, and
rearrange the dislocation configuration to relax the hardening due to dislocations
filling in the y channel. 2D DDD simulations by Huang et al. [47] also showed that
dislocation climb decreased significantly the flow stress and hardening rate while
increased the dislocation density by relieving the dislocation pile-ups against the
grain boundaries (GBs). We are in the process of incorporating climb into our 3D
DDD code, but it requires a significant amount of efforts and additional work. Also
in this paper, we are more focused on the interaction between dislocations and
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precipitate, especially looping and cutting of precipitates by dislocations, under
cyclic loading. The effect of climb on dislocation-precipitate interaction will be
reported in our future work.

The DDD method seems to be phenomenological to a certain extent, as it still
relies on some governing laws to describe generation, evolution and interaction
of dislocations. But it makes sense to say that DDD is a more physically based
approach compared to crystal plasticity model. For instance, the dislocation net-
works can naturally introduce strain hardening without the need of phenome-
nological hardening variables. Specifically, the long-range dislocation interaction
may contribute to the isotropic hardening, while the short-range interaction to
the kinematic hardening. Finally, it needs to be noted that the DDD simulations
are based on isotropic response and further work is required to incorporate ani-
sotropic elastic constants into the 3D DDD code.

5. Conclusions

Cyclic deformation of a nickel-based single crystal superalloy has been mod-
elled by 3D DDD at high temperature (850 °C). RVE-size study confirmed the
convergence of stress—strain behaviour and dislocation density for 8-precipitate
RVE, which was used in simulations of stress—strain response and dislocation
evolution. The DDD model parameters were calibrated from strain-controlled
cyclic experimental data at 850 °C. Simulation results are in good agreement
with experimental data for both [00 1] and [11 1] loading orientations, in terms
of stress/strain responses (monotonic and cyclic loading). The simulation results
also confirmed the orientation-dependence of the global stress—strain response
([001] vs. [111]). The dislocation networks deposited on the y/y’ interface made
major contributions to strain hardening while the precipitate shearing by super-
dislocations played a significant role in the material softening. The dislocation
densities also evolved accordingly with the cyclic loading, and increased with
the number of loading cycles. Maximum shear plastic strain contour plots of the
deformed RVE at total strain of 1% showed heterogeneous shear deformation,
which led to the development of shear bands.
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