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Abstract: In situ Scanning Vibrating Electrode Technique and time lapse photography 

were used to study the galvanic corrosion of high strength low alloy (HSLA) steel, laser 

welded to hot stamped ultra high strength steel (UHSS) in 0.017 M NaCl. Samples of 

HSLA welded to UHSS exhibited corrosion focused on the UHSS. This galvanic effect 

was due to a -0.2 V vs. SHE difference in OCP for the UHSS. SVET derived metal loss 

increased by a factor of >2 for this couple. The localised corrosion observed may reduce 

the fatigue resistance and is of significance considering the increased use of thinner UHSS. 
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1. Introduction 

As part of its commitment to the Kyoto Protocol 1, the European Union have issued 

legislation which dictates that the CO2 emissions from 95 % of each manufacturer’s fleet 

of new cars must be reduced to 95 g.km-1 by 2020, this increasing to 100 % by 2021 2.  

One way in which this can be achieved is by using sheet steel components of thinner gauge, 

which resultantly weigh less and thus require less fuel throughout the in service life.  

State-of-the-art car bodies and chassis and suspension (C&S) steel components, for which 

heavy gauge steel is commonly used 3, contribute a weight share of 60 to 80% 4 of the total 

vehicle weight and therefore provide an opportunity for weight reduction. 

The use of ultra-high strength steels (UHSS), which allow for the retention of strength 

whilst reducing gauge, is consequently increasing 4-7. However, down gauging raises 

corrosion concerns, this being especially true of the C&S components which are subject to 

harsh environmental cycling, and are typically uncoated due to cost considerations and 

technological limitations with respect to coating integrity at high temperatures 8-10. 

Furthermore, components are commonly welded together, introducing further 

complications 10-13. The welding process induces a variety of microstructures within the 

steel components as well as geometrical and chemical differences that can influence the 

severity of corrosion 10-11.  

UHSS grades are defined as having a yield strength in excess of 550 MPa and tensile 

strengths of over 700 MPa 13-14. Their strength is generally attributed to solid solution or 

precipitation hardening. This modifies the material’s chemistry, grain size, phase 

distribution and response to work hardening 13-14. One such high strength steel that is being 

used increasingly in the automotive industry is boron steel, the most common grade being 
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22MnB5. Once heat treated, boron steels are fully martensitic with a typical tensile strength 

of 1500 MPa 7. Characteristic properties are high hardness, high stiffness and high tensile 

strength 7. In comparison, high strength, low alloy steel grades (HSLA), which typically 

gain strength from precipitation hardening and grain refinement are typically used for C&S 

components due to their combination of both high strength and relatively high formability 

15-17. Due to the difference in both chemistry and microstructure, the coupling of these two 

steel products via welding may result in increased susceptibility to localised galvanic 

corrosion. 

Chassis components belong to the category of safety components meaning they must never 

fail 18 and consequently the corrosion performance of UHSS grades typically used during 

down gauging is of significant interest.  

Previous research into the corrosion of welded 22MnB5 has shown that the weld metal 

possessed less corrosion resistance than the base metal 10. This finding was attributed to 

the microstructure variation of the weld metal 10. Similarly, electrochemical studies were 

used to conclude that welded 22MnB5 is more susceptible to pitting than the un-welded 

material 11. However, there has been little work into the corrosion of UHSS coupled to 

HSLA grades.  

Here, a combination of electrochemistry, the scanning vibrating electrode technique 

(SVET), and time lapse microscopy is used to study the galvanic corrosion of a HSLA steel, 

typically used during the production of automotive components, laser welded to a UHSS 

hot stamped boron grade. The SVET technique allows for the measurement of spatially 

resolved net current density values and subsequently offers scope to study galvanic 
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corrosion 19-20 and has previously been used to study the cut edge corrosion of Zn coated 

steels 21-23.  

2. Materials and Methods 

NaCl, and all other chemicals were obtained from Sigma Aldrich Chemical Co. and were 

of analytical grade purity. A 0.017 mol.L-1 (M) NaCl (aq) electrolyte was used throughout.  

Both steel grades were supplied by Tata Steel UK. The HSLA grade consisted of ferrite-

pearlite microstructure. The gauge of the samples was 3 mm and the chemical composition 

is shown in Table 1 and is typical of the grade, conforming to Uncoated (EN10149-2:2013): 

S315MCBS.  

(Table 1) 

The pre-heat treatment UHSS grade consisted of a ferrite-pearlite microstructure which is 

achieved through a combination of boron addition and a simulated die-quenching process. 

The gauge of the samples was 2.8 mm and the chemical composition is shown in Table 2 

and is typical of the grade, which conforms to Uncoated (EN10083-3:2006):22MnB5. 

(Table 2) 

Boron steels are manufactured from casts to strip via hot rolling and cooled on the run out 

table to produce the ferritic pearlitic microstructure. The steel was developed to be 

produced in this ferritic pearlitic ‘as received’ (AR) condition rather than fully martensitic 

to avoid wear issues during subsequent processing and tooling 24. The diffusionless 

transformation from austenite to martensite is achieved through a combination of boron 

additions and a hot stamping process. Samples used during this work were primarily in the 
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heat treated (HT), martensitic state as opposed to AR, in order to best replicate in service 

conditions.   

To achieve this transformation AR 22MnB5 samples were placed onto a perforated iron 

rack inside Thermo Scientific Thermolyne for 5 minutes at 900°C. Upon removal from the 

furnace samples were immediately submerged into water to rapidly cool and force the 

diffusionless transformation from austenite to martensite. During the heat treatment cycle 

the temperature of the samples were recorded using a welded k type thermocouple and 

logged through an Omega OM-DAQ-USB 2401 data logger. 

The steel grades were welded together using light amplification by stimulated emission of 

radiation (LASER) welding. using a Remote Laser Welding Robot ‘Comau Smartlaser’ at 

Warwick Manufacturing Group (WMG) situated in The University of Warwick. Three 

different variants were produced; HSLA-HSLA, HT UHSS- HT UHSS, HSLA- HT UHSS. 

Laser welding was chosen due to the reduced size of the heat affected zone (HAZ) and 

therefore the subsequent decrease in the induced microstructural and chemical properties 

changes associated, when compared to other welding techniques 11-12. In addition, laser 

welding requires no filler wire and hence removes the complication of additional elements, 

such as copper, becoming entrained in the weld zone, this in turn influencing 

electrochemical behaviour.  

For microstructural analysis samples were mounted in a conductive compound and ground 

and polished to a 1μm finish using a water based diamond suspension. A 2 % nital etchant 

was used to reveal the microstructures of the steels. Optical images were captured by a 

Reichert JUNG MeF3 light optical microscope with a Nikon DSFi1 camera. Scanning 

electron microscopy (SEM) images were acquired using a JEOL JSM 6100 SEM.  
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In the case of electrochemical characterisation experiments, coupons of approximately 40 

mm x 30 mm were cut from large sheet. Samples were ground to a European P-grade P1200 

grit finish using silicon carbide (SiC) abrasive paper and were cleaned and degreased using 

ethanol and distilled water before experimentation. For open circuit potential (OCP) 

measurements a 1 cm × 1 cm area of the sample was exposed using extruded 

Polytetrafluoroethylene (PTFE) tape (type 5490 HD supplied by 3 M). A Solartron 1280 

Electrochemical Measurement Unit was used and potential values were recorded with 

respect to a saturated calomel electrode (SCE) reference electrode at 25 °C, and converted 

to values with respect to a standard hydrogen electrode (SHE). A zero resistance ammeter 

was used to measure the galvanic current between the HSLA- HT UHSS couple at 

OCP. Samples were prepared and taped using the same methodology as in the case of OCP 

measurements. The experimental setup was such that the 1 cm x 1 cm areas exposed on 

each sample were facing one another and at a distance of 1 cm apart. Both types of 

electrochemical measurement were made three times.  

SVET scans were performed to give spatial mechanistic and time resolved insights into the 

galvanic corrosion occurring on welded material. The SVET makes use of the alternating 

potential arising from the oscillation of the microtip in the ohmic potential field that exists 

as a result of the ionic current in the electrolyte solution above a corroding surface.  

References to the design of SVET instrumentation, operation and calibration to give values 

of current density along the axis of probe vibration (iz), have been made elsewhere 19, 25-26. 

In brief, a glass encased 125 μm diameter platinum wire microtip is vibrated, in the z 

direction, at a constant frequency (140 Hz), amplitude (25 μm) and height (100 μm) above 

the immersed corroding sample.  
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Welded samples were mounted in non-conducting acrylic resin so that the cross section 

was exposed. The samples were then ground to a European P-grade P1200 grit finish using 

silicon carbide (SiC) abrasive paper and polished using a water based 6 μm and 1 μm 

diamond suspension. Finally, a ca 2 x 0.5 cm area was isolated using insulating extruded 

PTFE self-adhesive tape so that only the area to be scanned was exposed.  

The SVET probe made measurements along both the width and length of the sample, 

creating a mesh of data points. One scan was taken per hour for a period of 24 hours. Each 

scan took between 6.5 and 8 minutes, depending on sample size. The dissolved oxygen and 

carbon dioxide concentrations in bulk solution were 2.8 x 10-4 M and 1.32 x 10-5 M 

respectively, the equilibrium concentrations for air saturated water 27. Three experiments 

were conducted for each couple.   

The time dependent total anodic current (It) associated with each of the iz distribution 

maps produced per scan, were calculated by numerical integration of all the anodic 

values of iz (> 0) carried out over the entirety of the exposed surface using the 

trapezium rule, according to equation (1)  

𝐼𝑡 = 𝐴. 𝑖𝑡 = ∫ ∫ [ 𝑖𝑧(𝑥,𝑦,𝑡)
𝑌

0

𝑋

0
> 0] d𝑥 d𝑦    (1) 

where A is the sample area, and x and y are the length and width of the SVET scan 

respectively and t is the time. This allowed one It value to be obtained for each scan. 

Dividing It by A gives an area averaged anodic current density value it. The total 

charge density emitted from the areas of local anodic activity over the duration of the 

experiments was thus calculated using equation (2) and the mass loss in g.cm-2 was 

determined using Faraday’s Law and converted to units of μg.cm-2. 
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𝑞 =  ∫ 𝑖𝑡d𝑡
t=tmax

t=0
     (2) 

where q is the charge density in C.cm-2 and tmax is the immersion period in seconds. It 

is assumed that it remains constant between scans.  

It should be considered that current density was measured 100 μm above the metal surface 

and thus the current detection efficiency was dependent on the local anode-cathode spacing. 

It values were derived solely from localised corrosion and the contribution from general 

corrosion was not accounted for. SVET derived mass loss values are therefore minimum 

estimates and are treated as semi quantitative. Despite this, they are useful when making 

direct comparisons of mass loss from different samples, and values obtained previously 

have been found to correlate with long term external weathering Zn run off tests 28. 

Samples for in situ time lapse microscopy were prepared in the same way as for SVET 

experiments but were also etched using a 2 % nital solution. The sample configuration was 

such that the initiation and progression of corrosion could be ascertained at a 

microstructural level associated with weld zones whilst also assessing any galvanic effects 

of dissimilar metal couples. Due to these samples being larger than the allocated 0.5 mm2 

that the microscope lens could observe, a 0.5 mm height rectangle was exposed using 

extruded PTFE self-adhesive tape across the welded materials, then images were taken 

along the length of this rectangle manually by moving the microscope stage at intervals of 

approximately two-minutes, as shown in Figure 1. These images were then stitched 

together using Adobe Photoshop to create one high resolution image of the exposed area. 

The rectangular exposed area height always remained the same at 0.5 mm, but the length 

and amount of images taken across the exposed area varied from sample to sample due to 

the differences in heat affected weld zones. 
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(Figure 1) 

In situ time lapse optical microscopy, which allowed the imaging of immersed corroding 

samples at a microstructural level, was employed following a methodology developed 

previously 29-30. A polycarbonate time-lapse cell was used. The time-lapse cell had an open 

side to which a mounted sample was secured via an inert adhesive. Once the time-lapse 

cell was secured onto the mounted sample it was carefully filled with the electrolyte via the 

entry points, drilled in at either side of the cell, using a syringe. These holes were then 

sealed for the remainder of the experiment. The top of the time-lapse cell was open and a 

0.13-0.16 mm optical quality borosilicate Agar Scientific coverglass was secured using 

Loctite Double Bubble 2-Part Epoxy, assuring the cell was air and water tight. A Meiji 

MT8000 microscope was then manoeuvred so as to image the exposed sample area. Images 

were captured using an infinity 2 camera attachment.  

3. Results  

3.1 Materials Characterisation 

The surface morphology of the steel grades was determined using SEM and optical 

microscopy. Figure 2a shows an optical image of the HSLA grade steel. The microstructure 

consists of a fine grained ferrite matrix, grain boundary iron carbides, and islands of pearlite, 

which is characterised by a lamellar structure consisting of alternate layers of ferrite and 

cementite 16. Figure 2b shows an optical image of the HT UHSS. The microstructure is 

martensitic. In the accompanying SEM image the laths of martensite, which are formed 

within prior austenite grains, are visible. 

(Figure 2) 

3.2 Electrochemical Characterisation 
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The OCP of the steel grades in 0.017 M NaCl (aq) was measured at 25 °C, prior to welding, 

to determine electrochemical differences between the two steel grades, and are shown in 

Figure 3. Three measurements are shown to clarify that any differences in behaviour 

observed can be attributed to differences in steel grade, rather than data scatter from sample 

to sample. Measurements were made on the HSLA steel in the AR (in-service) condition 

and the UHSS in the AR and HT (in-service) condition in order to ascertain if the heat 

treatment affected the electrochemical properties of the steel. Initially the measured 

potential value is almost 0.2 V higher in the case of HSLA steel than that for both the AR 

and HT UHSS. However, after approximately 10 hours the potential associated with the 

HSLA sample falls by ca. 0.1 V. At the end of the 24 hour time period the potential values 

recorded are, within error, similar for both the UHSS and HSLA steel samples. A 

comparison of the AR and HT UHSS data showed that OCP values both dropped from 

initial potentials of -0.25 V vs. SHE to relatively stable OCP values of -0.43 V ± 0.05 V 

vs. SHE. However, this fall in potential was obtained in around 3 hours for the HT UHSS 

in comparison with 7 hours for the AR UHSS. 

The galvanic current running from the HT UHSS (working electrode) to the HSLA 

steel at OCP was recorded as a function of time using a zero resistance ammeter and 

the results are shown in Figure 4. Three measurements are shown to differentiate between 

a variation resulting from steel grade and variation in samples of the same grade. The 

positive current indicates that the HT UHSS is acting anodically with respect to the HSLA 

steel sample when coupled galvanically. There is an initial rapid rise in current 60 µA.cm-

2 over the first 3 hours.  

(Figure 3) 
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(Figure 4) 

3.3 SVET Results 

The SVET has been used to spatially map anodic and cathodic areas on laser welded steel 

couples. The couples of material investigated were HSLA-HSLA, HT UHSS- HT UHSS 

and HSLA- HT UHSS in order to ascertain the regions of preferred corrosion (if any) and 

the effect of galvanically coupling the two steel substrates when welded. 

HSLA-HSLA; The SVET derived surface plots of the normal current density above the 

welded HSLA steel sample freely corroding in 0.017 M NaCl (aq) electrolyte are shown in 

Figure 5. The plots shown were obtained after varying times during the 24 hours of 

electrolyte immersion, and were chosen to best represent the mechanistic behaviour of the 

system. Areas of net anodic metal dissolution are shown in red, with areas of net cathodic 

activity in blue. After 1 hour of exposure to the electrolyte a number of low intensity anodic 

features of current density < 100 μA.cm-2 were observed at the top and bottom edges of 

the welded material. However, after 8 hours of immersion a definitive localised region of 

corrosion activity had developed that was coincident with the welded zone, with the base 

metal either side of the weld remaining generally cathodic. This region of anodic attack 

persisted for the remainder of the 24 hour experiment. The image of the sample post 

immersion shown in Figure 5 supports the findings of the SVET. A region of red rust was 

observed over the weld zone coincident with the localised anodic attack demonstrated by 

the SVET. The base HSLA metal outside of the weld zone was relatively unaffected by 

corrosion with little red rust observed beyond the weld zone. However, some darkening of 

the substrate to the left hand side of the weld zone was observed after 24 hours of 

immersion. It can, nonetheless, be concluded that the preferential site of attack in the 

ACCEPTED M
ANUSCRIP

T



HSLA-HSLA couple was the weld zone.  

(Figure 5) 

HT UHSS- HT UHSS; Figure 6 shows the SVET derived surface plots of the normal 

current density above the welded HT UHSS sample freely corroding in 0.017 M NaCl (aq) 

electrolyte. After 1 hour localised anodic features were observed to initiate at the weld area, 

but were located at the periphery of the weld zone rather than the central area of the weld. 

After 8 hours these anodic features persisted and had grown into the central part of the weld 

zone. Initiation of further localised anodic features was also observed associated with the 

base substrate away from the weld area. Between 16 and 24 hours the anodic features at 

the weld had reduced in intensity and further anodic activity was observed on the base 

substrate away from the weld zone. An image of the sample post immersion is also shown 

in Figure 6 and shows significant red rusting associated with the weld area and also dark, 

spot like, localised corrosion features on the substrate away from the weld area (circled in 

Figure 6), this supporting the SVET findings.  

(Figure 6) 

HSLA- HT UHSS; The SVET derived surface plots of the normal current density above 

the HSLA steel sample welded to the HT UHSS, freely corroding in 0.017 M NaCl (aq) 

electrolyte are shown in Figure 7. During the first hour of immersion localised anodic 

activity once again initiates at the weld between the two materials with initiation occurring 

preferentially on the side of the weld zone associated with the HT UHSS. Whilst anodic 

activity is localised to the weld region after 1 hour of immersion, thereafter corrosion attack 

spreads across the HT UHSS, whilst the HSLA steel remains completely cathodic 

throughout the 24 hour experiment as shown in scans at 8, 16 and 24 hours in Figure 7. 
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The presence of corrosion product can be seen over the weld zone and the HT UHSS 

surface post immersion, whereas the HSLA substrate remains relatively visually unscathed. 

This behaviour was observed in the case of repeat measurements.  

The total SVET derived mass loss for the three welded steel configurations were 

calculated using Equation 2 and are shown in Table 3 in μg.cm-2, following conversion. 

The confidence limits (errors) shown relate to one standard deviation on the mean, on the 

basis of three measurements. The mass loss from welded HSLA-HSLA (241 µg.cm-2) and 

welded HT UHSS-HT UHSS (197 µg.cm-2) is somewhat similar, but approximately 

doubles in the case that the dissimilar grades HSLA- HT UHSS (505 µg.cm-2) are welded 

to one another, indicative of a galvanic acceleration due to the coupling of the two 

dissimilar substrates.  

(Figure 7) 

(Table 3) 

3.4 Time Lapse Microscopy Results 

Time lapse microscopy experiments were conducted for all three combinations of welded 

samples, as with SVET in 3.3. This technique allows the microstructure to be fully 

observed during testing and thus the extent of the weld and the heat affected zones (HAZ) 

to be established. Thus, on immersion the location of the preferential corrosion initiation 

and growth within these differences in microstructure may be evaluated. 

Figures 8 A-F shows the surface of welded HSLA-HSLA steel samples at ca. 2 minute 

intervals. Initially several anodes appear in the welded zone and associated corrosion 

product rings are formed. The presence of rings of corrosion product, previously suggested 
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to form at the boundary of ionic counter currents from radial diffusion of metal ions from 

the anodic site and migration of hydroxide ions from the cathodic regions, 31 indicate that 

the corrosion occurring is primarily localised. As time progresses one site of anodic attack 

initiates on the base substrate (circled on Figure 8B) and with further time, Figures 8C-8F, 

there is evidence of several rings of corrosion product emanating outward to the base metal 

either side of the weld zone. The morphology of attack is entirely consistent with the SVET 

results for the HSLA-HSLA welded couples as presented in 3.3 where focal anodic attack 

of the weld zone dominated the experiment with net cathodic activity detected on the base 

substrate.  

In the case of welded HT UHSS- HT UHSS, as shown in Figures 9A-F, taken at 2 minute 

intervals, initiation of the anodic attack is not confined to the weld area with point anodic 

features developing on the base metal as circled in Figures 9B and 9C. However, a number 

of anodic sites develop within the weld and HAZ zones in Figure 9C and then persist 

through the experiment, leading to general darkening of these and the development of 

significantly localised points of anodic attack. It would seem, however, that the anodic sites 

initiate preferentially away from the central point of the weld zone, towards the boundary 

of the weld zone and the HAZ, and within the HAZ itself. Once again these data are 

consistent with that of the SVET for the HT UHSS-HT UHSS welded couple where the 

edges of the weld zone were observed to undergo preferential attack with anodes also 

observed to initiate on the base substrate away from the weld zone.   

In the case that the HSLA steel grade is laser welded to the HT UHSS, as shown in Figures 

10 A-F taken, initiation of anodes occurs exclusively on the HT UHSS associated with the 

periphery of the weld zone, and also on the base substrate (circled in Figure 10C). The 

anodes that form once again display the morphology of localised attack. No anodes initiate 
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on the HSLA steel throughout the duration of the experiment and the surface of the HSLA 

part of the coupled sample appears unchanged throughout. This fully supports the SVET 

results for the HSLA-HT UHSS welded couple where preferential attack of the HT UHSS 

was initially observed at the periphery of the weld zone with progression onto the base 

substrate.  

(Figure 8) 

(Figure 9) 

(Figure 10) 

4. Discussion 

In the case that each steel sample is welded to a sample of the same grade corrosion 

primarily occurs within the welded zone, this being demonstrated by both SVET, where 

the red anodic regions correlate with the position of the weld, and by time lapse 

microscopy, which shows the formation of corrosion product in the weld zone and adjacent 

HAZ. For the HSLA-HSLA welded sample this focal attack at the weld is likely due to the 

formation of martensite within the welded zone. Evidence of martensite in the weld zone 

(labelled in Figure 8) is shown in Figure 11 and has been demonstrated in previous research 

31-32. Martensite is generally less corrosion resistant than ferrite-pearlite microstructures 

due to its non-equilibrium structure and large grain boundary length per unit area 33. An 

example of the lower nobility of this phase can be seen in Figure 3 for the UHSS grade 

where the shift in microstructure from the ferrite-pearlite to martensitic through heat 

treatment resulted in a lower open circuit potential of ca. 0.1 V vs. SHE for the initial hours 

of exposure in 0.017 M NaCl.  
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(Figure 11) 

During laser welding of UHSS boron steels the fast cooling rate generally creates a hard 

and brittle martensitic structure in the weld metal and parts of the heat affected zone (HAZ) 

where the temperature has reached the upper part of the austenitisation area 34. This 

behaviour is expected and previous work has shown the welded area of 22MnB5 to be less 

corrosion resistant than the base material 10-11. It is of interest that for this welded couple, 

corrosion seemed to initiate readily in the area at the periphery of the weld zone bounding 

the HAZ. The reason for this is, as yet, unknown. However, it has previously been shown 

that the mechanical properties of this region are reduced in terms of hardness due to the 

region experiencing temperatures only slightly exceeding the austenisation temperature, 

and therefore undergoing incomplete austenisation 35. On cooling, areas of ferrite and 

carbide form that affect the mechanical properties 35. It is also possible that electrochemical 

properties of this region are affected, locally, through the creation of galvanic cells between 

the ferrite containing regions and the surrounding martensite. Subsequently, given the 

difference in OCP between the AR (ferrite-pearlite) and HT (martensitic) UHSS shown in 

Figure 3, corrosion would initiate primarily in this area.  

In comparison, in the case that the HSLA steel is laser welded to HT UHSS the anodic 

activity is initially focused on the weld/ HAZ on the UHSS side of the couple but rapidly 

spreads across the HT UHSS sample, this being demonstrated by both the SVET (Figure 

7) and time-lapse microscopy (Figure 10). At the end of each experiment the HSLA 

substrate remains corrosion free. This behavior is indicative of formation of a galvanic cell 

between the two steel grades with the HT UHSS being anodically attacked and the HSLA 

being protected through cathodic polarisation. This galvanic cell is further evidenced by 

the open circuit potential and ZRA data shown in Figure 3 and Figure 4. The anodic 
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behavior of the HT UHSS with respect to the HSLA is best explained on the basis of the 

initial difference in OCP existing between the two metals as demonstrated in Figure 3, 

which shows the OCP of the HT UHSS to be ca. 0.2 V vs. SHE lower than that for the 

HSLA steel sample. Once the locations of the net anodic and net cathodic activity become 

physically separated this OCP difference will rapidly become amplified through 

differentiation of solution pH. The magnitude and polarity of the local current density 

values observed in the SVET experiments can be understood in terms of the local 

passivation and de passivation of the steel surfaces 36. Thus the HSLA forms a strong 

cathode, and the HT UHSS is strongly anodic due to the initial differences in their OCP. 

Once established, this cell polarity will be maintained and reinforced by the local activation 

of the cathodic electrolyte through reaction (3) and acidification of the anodic electrolyte 

though reaction (4) and (5).  

O2 + 2H2O + 4e− → 4OH−     (3) 

Fe → Fe2+ + 2e−      (4) 

Fe2+ + 2H2O → Fe(OH)2 + 2H+    (5) 

The initial difference in OCP between the two materials is believed to be caused by two 

phenomena, firstly deviations in chemical composition (shown in Table 1 and 2) and 

secondly differences in microstructures, phase size and distribution. Fully martensitic 

microstructures have a high residual strain energy and a large surface area due to the 

diffusionless formation of a body centred tetragonal (BCT) structure from austenite 33. As 

mentioned previously an initial potential difference of ca. 0.1 V vs. SHE was observed in 

the first 2 hours of exposure to 0.017 M NaCl for martensitic UHSS compared to as 

received ferrite-pearlite microstructures as shown in Figure 3. The effect of material 

chemistry is more difficult to assess due to the range of elemental differences between the 
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two samples and thus an overall comparison of the effects of coupling these two grades is 

only possible through this investigation.   

Localised corrosion, of the type shown in Figures 8-10, may lead to perforation or initiate 

crack formation and is therefore an issue for structural reliability, this being especially true 

in the case of down gauged material. The galvanic corrosion observed in the case that 

HSLA steel is welded to HT UHSS is therefore of practical significance.  

5. Conclusions 

An optical and electrochemical study has been completed in 0.017 M NaCl to investigate 

the galvanic corrosion of a HSLA steel grade, typically used during the production of 

automotive components, laser welded to an UHSS hot stamped boron grade. When samples 

of the same grade were laser welded together corrosion activity was focused on the weld 

zone, this being attributed to microstructural changes that had occurred during the welding 

process. In comparison, when HSLA was welded to HT UHSS anodic attack was located 

solely on the UHSS grade and exhibited a localised corrosion morphology. SVET derived 

mass loss was substantially higher in the case that dissimilar materials were welded when 

compared to the case for which samples of the same grade had been welded to one another.   
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7. Figure Legends 

Figure 1. A schematic diagram of the experimental setup used for the time lapse 

photography of welded samples.  

Figure 2. a.) An optical image of the HSLA steel surface b.) An optical and SEM image of 

UHSS surface.  

Figure 3. Free Corrosion Potential of HSLA and UHSS grades in 0.017 M NaCl (aq) 

electrolyte. To show the reproducibility three measurements are shown for each 

material. 

Figure 4. The net galvanic current density, as measured by a zero resistance ammeter 

at open circuit potential, flowing from a heat treated UHSS sample to a HSLA sample 

recorded as a function of time in 0.017 M NaCl (aq) electrolyte. A positive current 

indicates that the HT UHSS is acting anodically. To show the reproducibility three 

measurements are shown. 

Figure 5. SVET derived surface plots maps showing the distribution of normal current 

density iz above a laser welded HSLA-HSLA steel sample freely corroding in 0.017 M 

NaCl (aq) electrolyte after various times of immersion, and an image of the sample post 

immersion. 

Figure 6. SVET derived surface plots maps showing the distribution of normal current 

density iz above a laser welded heat treated UHSS-UHSS steel sample freely corroding in 

0.017 M NaCl (aq) electrolyte after various times of immersion, and an image of the sample 

post immersion. Localised anodic features observed on base substrate are circled.   

Figure 7. SVET derived surface plots maps showing the distribution of normal current 

density iz above a HSLA steel sample welded to a heat treated UHSS sample, freely 

corroding in 0.017 M NaCl (aq) electrolyte after various times of immersion, and an image 

of the sample post immersion. 

Figure 8. Optical microscope images of laser welded HSLA steel taken in situ under 

immersion conditions in NaCl (aq) electrolyte. Images shown were taken at two minute 

intervals. Site of anodic attack on base substrate circled.  

Figure 9. Optical microscope images of a laser welded heat treated UHSS sample taken in 

situ under immersion conditions in NaCl (aq) electrolyte. Images shown were taken at two 

minute intervals. Sites of localised anodic attack circled. 

Figure 10. Optical microscope images of a HSLA grade steel sample laser welded to heat 

treated UHSS taken in situ under immersion conditions in NaCl (aq) electrolyte. Images 

shown were taken at two minute intervals. Sites of localised anodic attack circled. 

Figure 11. Optical microscope images of the weld zone of a laser welded HSLA-HSLA 

grade steel sample.  
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8. Tables  

Table 1. The chemical composition of the HSLA steel. Values provided in weight 

percentages.   

C Si 

 

Mn 

 

P 

 

S 

 

Al 

 

Nb 

 

0.069 0.015 0.495 0.019 0.005 0.029 0.022 

 

 

Table 2. The chemical composition of the UHSS grade steel. Values provided in weight 

percentages.   

C Si Mn P S Al Cr Ti B 

0.25 0.279 

 

1.223 0.02 0.0015 0.041 0.145 0.033 0.0029 

Table 3. SVET derived mass loss calculated for welded steel samples freely corroding in 

0.017 M NaCl (aq) electrolyte for 24 hours. 

Sample Mass loss (µg.cm-2) 

HSLA-HSLA 241 ± 24 

Heat treated UHSS-UHSS 197 ± 12 

HSLA-UHSS 505 ± 19 
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