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Summary

In this work, we simulate the coupled physics describing a magnetic resonance
imaging (MRI) scanner by using a higher-order finite element discretisation and
a Newton-Raphson algorithm. To apply the latter, a linearisation of the nonlinear
system of equations is necessary, and we consider two alternative approaches. In
the first approach, ie, the nonlinear approach, there is no approximation from a
physical standpoint, and the linearisation is performed about the current solu-
tion. In the second approach, ie, the linearised approach, we realise that the MRI
problem can be described by small dynamic fluctuations about a dominant static
solution and linearise about the latter. The linearised approach permits solutions
in the frequency domain and provides a computationally efficient way to solve
this challenging problem, as it allows the tangent stiffness matrix to be inverted
independently of time or frequency. We focus on transient solutions to the cou-
pled system of equations and address the following two important questions:
(i) how good is the agreement between the computationally efficient linearised
approach compared with the intensive nonlinear approach and (ii) over what
range of MRI operating conditions can the linearised approach be expected to
provide acceptable results for outputs of interest in an industrial context for MRI
scanner design? We include a set of academic and industrially relevant examples
to benchmark and illustrate our approach.

KEYWORDS

acousto-magneto-mechanical coupling, linearisation, MRI scanner, multifield systems, Newton
methods, time integration implicit

1 INTRODUCTION

In recent years, magnetic resonance imaging (MRI) scanners, illustrated in Figure 1, have become an indispensable tool
for use in medical imaging. Their capability to nonintrusively diagnose a range of medical ailments, such as tumours,1

damaged cartilage, fractures,2 internal bleeding, and even detection of multiple sclerosis3 make them a desirable imaging
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FIGURE 1 Patient on magnetic resonance imaging (MRI) scanner bed with localised torso receiver coils, courtesy of Siemens [Colour
figure can be viewed at wileyonlinelibrary.com]

technique for clinical use. The increasing accuracy in MRI has become a topic of particular importance in recent years,
due to the need for more accurate diagnosis of medical conditions, such as cancer.4,5

Magnetic resonance imaging scanner resolution is determined by the strength of the static magnetic field, ie, HDC,
produced by the main magnet. The magnitude of magnetic flux density of such fields, ie, |BDC|, is typically in the region
of 1.5 to 3 T (approximately 30 000 to 70 000 times the strength of that of the Earth) for clinical operation,6-8 with some 7-T
units in use for medical research applications.9,10 Recently, the Siemens 7-T magnet, the MAGNETOM Terra,11 has also
been cleared for clinical use and research use. The magnitude of the magnetic flux density, quoted by manufacturers, is
defined as the maximum value of the flux density magnitude on the imaging bore axis,* in the centre where the patient
lies, as shown in Figure 1. Recent advances in MRI design have resulted in magnets of flux densities of up to 12 T coming
into production, which will allow for very high resolution images to be obtained, compared with the current systems.12

These scanners all typically utilise superconducting magnets consisting of wound conducting wires resembling solenoids
that are supercooled by being immersed in liquid helium (to temperatures of approximately 4◦K). Some open C-shaped
MRI scanners, which utilise permanent magnets to generate the static field, are still available, but these are less common
in current imaging units due to their relatively low flux densities of approximately 0.3 T.

In addition to the static field generated by the main magnet, MRI scanners use pulsed time-varying magnetic field gra-
dients, generated through sets of resistive coils, which excite the tissues and generate images of the patient. The gradient
in the magnetic flux density of these fields is much smaller than the flux density of the main static field, typically with
amplitudes in the region of 30 to 80 × 10−3 T/m.6-8,† In the presence of conducting bodies, these time-varying fields give
rise to eddy currents, which exert Lorentz forces in the conductors. These forces generate magnetic stresses in the con-
ducting components, which, in turn, cause them to deform and vibrate. Furthermore, these vibrations generate Lorentz
currents, which cause further perturbations in the magnetic field. They also cause the surrounding free-space region of
air to perturb, generating acoustic pressure waves, resulting in audible noise that can cause discomfort for the patient.
These generated pressure waves can also rebound off other conducting components causing further deformations to the
conductors and more acoustic waves to form. This, in turn, creates further perturbations of the magnetic field resulting in
a fully coupled transient system of nonlinear transient PDEs comprising the Maxwell, elasticity, and acoustic equations.13

With increasing interest in the design of more economical (reduced amount of material, decreased power consumption)
and more advanced MRI systems (capable of producing stronger magnetic fields),14 of late, the prediction of the physical
behaviours of such scanners has become an important area of research, in particular, the computational modelling of these
systems. As such, an emphasis on the reduction of the computational cost of simulations is of great importance to the
medical imaging industry. Many single field attempts to analyse the magnetic field of MRI scanners have been published;
finite-difference time-domain methods for the calculation of eddy currents arising from transient gradient coils in MRI
scanners,15-17 with analysis also of the effects on the human body,18-20 and methods for “fast” analysis and design of the
MRI coils.21,22 A number of works have also been published, which focus on the analysis of superconducting solenoids,23

as well as the on full MRI scanners 24,25 and consider the structural design of higher field scanners.26 Acoustic effects in
MRI scanners have also been investigated,27 with attempts to design noise reduction systems28,29 and even analyse the

*The imaging bore is located in free space and as such BDC = 𝜇0HDC, where 𝜇0 = 4𝜋 × 10−7H/m is the permeability of free space.
†The gradient field is typically measured in terms of spatial rate of change in the magnetic flux density along the imaging bore axis in teslas per metre
(T/m). The magnitude of the magnetic flux density arising from these coils is orders of magnitude smaller than that of the main coils.
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acoustic effects in the human head.30 More recently, a few attempts to analyse the magneto-mechanical coupling in MRI
systems have been considered; with the modelling of axisymmetric superconducting solenoids in self magnetic fields31 and
efficient low-order FE solvers for magneto-mechanical coupling in the work of Rausch et al,32 which utilised calculation
of body forces to generate a weakly coupled algorithm. This work was later extended to include acoustic effects in the
aforementioned authors' other work.33

Our previous work34 focused on the solution of coupled magneto-mechanical behaviour of geometrically idealised
(axisymmetric) MRI scanners, with arbitrarily high-order finite elements,35,36 through a stress tensor approach to avoid
direct calculation of the electromagnetic body forces. Given the relatively small-scale phenomena that emerge in such
magnetic and acoustic applications, such as small skin depths in conducting components (known as skin effect)37 and
high frequency acoustic waves, high-order elements are necessary to accurately resolve such effects and ensure accurate
solutions, as shown in our other work.13 Furthermore, by choosing to linearise the transient nonlinear system of coupled
equations about the static fields, the formulation simplifies greatly, resulting in a transient linear system of equations
dependent on the transient magnetic field excitation, as shown in our other work.13 Similar techniques, involving the
additive split of a nonlinear problem to a series of linear problems, have been successfully applied to the field of com-
putational mechanics, such as analysis of structural membranes,38-40 high-order mesh generation,41 and in biomedical
applications.42 This formulation permits a simple linearised approach that can be solved in the frequency domain and,
given the relatively small frequency ranges of MRI applications, provides rapid solutions to industrial problems. However,
the applicability of this linearisation will depend on the strength of the coupling between the acoustic, mechanical, and
electromagnetic fields. In the context of MRI scanners, it is thus imperative to answer two important questions: i) how
good is the agreement between the computationally efficient linearised approach compared with the intensive treatment
of the fully nonlinear system, denoted the nonlinear approach and (ii) over what range of MRI operating conditions can
the linearised approach be expected to provide acceptable results for outputs of interest in an industrial context for MRI
scanner design? The nonlinear approach is trusted as there is no approximation from a physical standpoint.

The aim of this paper is to address these two questions. This is achieved through the following novelties.

1. We revisit the linearisation of the nonlinear equations presented in our other work13 and provide an alternative formu-
lation, suitable for transient simulation of the full nonlinear problem, using a Newton-Raphson and alpha-type time
integration schemes. We refer to this as the nonlinear approach.

2. We demonstrate numerically that the linearised approach is in excellent agreement with the nonlinear approach and
derive estimates of the energy present in the nonlinear approach, which is not captured by the linearised approach.

3. We undertake a rigourous comparison of the linearised and nonlinear approaches in terms of outputs of interest for a
set of challenging industrially motivated examples.

In this paper, we begin by presenting the coupled transient transmission problem and its associated initial conditions in
Section 2. Then, in Section 3, we present the continuous weak treatment of the nonlinear and linearised approaches, derive
estimates of the energy not captured by the linearised approach and present a transient Newton-Raphson procedure for the
nonlinear iteration of the continuous fields in the two approaches. In Section 4, we briefly recall the spatial discretisation
of the system by means of high-order finite elements. We include the temporal discretisation, where we have implemented
a second order generalised 𝛼-scheme, to allow for inclusion of numerical dissipation into the model. The system is then
solved through an iterative monolithic Newton-Raphson solution procedure, which is summarised in an algorithm. We
then conclude with numerical results in Section 5, which have been obtained by using the in-house software written by
the group for this work.

2 COUPLED SYSTEM

Previously, in our other work,13 we presented the fully coupled system of nonlinear equations describing the magnetic,
mechanic, and acoustic behaviours of an MRI scanner. The work included the transmission conditions present at the
interface between the conducting and nonconducting regions, as well as initial and far-field conditions of the system.
From this coupled transmission problem, a simpler linearised scheme was introduced by a suitable additive split of the
exciting current source J s(t) as J s(t) = J DC+J AC(t). In this section, we briefly recall the fully coupled transmission problem
derived in our earlier paper, describe in detail the physical motivation for the additive split of J s(t), and provide a set of
realistic initial conditions.
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FIGURE 2 Physical representation of the coupling effects in an magnetic resonance imaging (MRI) environment [Colour figure can be
viewed at wileyonlinelibrary.com]

2.1 Transient nonlinear system
The governing coupled transmission problem, illustrated in Figure 2, describing the acousto-magneto-mechanical
behaviour of MRI scanners is given by the following. Find (A,u, �̂�)(t) ∈ (R3 ×R3 ×R)(0,T] such that

∇ × (𝜇−1∇ × A) + J e(A) = J s + J l(A,u) in R
3, (1a)

∇ · A = 0 in R
3∖Ωc, (1b)

∇ ·
(
𝝈

m(u) + 𝝈
e(A)

)
= 𝜌utt in Ωc, (1c)

∇2�̂� − 1
c2 �̂�tt = −∇ ·

(
∇ · 𝝈e(A)

)
in R

3∖Ωc, (1d)

A = O
(|x|−1) , (1e)

lim|x|→∞

(
𝜕�̂�

𝜕|x| + �̂�t

)
= O

(|x|−1) as |x| → ∞, (1f)

u = uD, (1g)

∇�̂�|+
𝜕ΩD

c
· n = 0 on 𝜕ΩD

c , (1h)

𝜌+utt||−𝜕ΩN
c
· n =

(
∇�̂� + ∇ · 𝝈e(A)

)|||+𝜕Ωc
· n on 𝜕ΩN

c , (1i)

n × [A]𝜕Ωc = 0, (1j)

n × [𝜇−1∇ × A]𝜕Ωc = 0, (1k)(
𝝈

e(A) + 𝝈
m(u)

)|||−𝜕Ωc
n =

(
�̂�I + 𝝈

e(A)
)|||+𝜕Ωc

n on 𝜕Ωc, (1l)

subject to an appropriate set of initial conditions. In (1), the magnetic flux density B is related to the magnetic field
H and the magnetic vector potential A by B = 𝜇H = ∇ × A, where 𝜇 is the magnetic permeability of the medium,
�̂� is the acoustic pressure field in free-space region (of air) R3∖Ωc, and u is the displacement field of the conducting
bodies Ωc. The eddy currents Je(A) = 𝛾At and Lorentz currents J l(A,u) = 𝛾ut × (∇×A) are expressed in terms of the field
variables, respectively. The notation describing the system of equations in (1) is the same as in our other work,13 where
the magnetic vector potential A, mechanical displacements u, and acoustic pressure �̂� have been introduced above. Here,
we use ut ∶= 𝜕u∕𝜕t and utt ∶= 𝜕2u∕𝜕t2 and note that J s are the magnetic source currents, x is the position vector, 𝛾 is the
electrical conductivity, and

𝝈
m(u) ∶= 𝜆tr (𝜺(u)) I + 2G𝜺(u),

is the Cauchy stress tensor. In the above, 𝜆 and G denote the Lamé parameters, 𝜌 the material density, 𝜺(u) ∶= (∇u +
∇uT)∕2 the linear strain tensor, I the identity tensor, T the transpose, n the unit normal vector, and

𝝈
e(A) ∶= 𝜇−1

(
(∇ × A)⊗ (∇ × A) − 1

2
|∇ × A|2I

)
, (2)

the magnetic component of the Maxwell stress tensor.
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The current source J s(t) in (1) can be decomposed through the additive split J s(t) = JDC + J AC(t), where J DC is a static
current source provided by the main magnet and J AC(t) is a time-varying current source through a series of conducting
(gradient) coils. Thus, the supports of J DC and J AC(t) are different and their (maximum) magnitudes and orientations
are defined during the MRI design process. In all current MRI designs, they are also chosen so that |J DC| ≫ |J AC|
by several orders of magnitude to provide a strong background static magnetic field, which is perturbed by weaker
time-varying magnetic fields generated from the gradient coils and their interaction with the conducting components. Fur-
thermore, J DC is always present and J AC(t) is only nonzero during imaging sequences.43 In absence of J AC(t), the system
in (1) simplifies considerably as there is no time variation and it is instead described by static solutions ADC,uDC, �̂�DC.13

If 𝜇 = 𝜇0 = 4𝜋 × 10−7H/m in R3, then uDC = 0 and �̂�DC = 0; however, in general, this is not the case.
Taking advantage of the fact that MRI scanners are typically maintained at full field strength, whilst in clinical use, as

they are maintained at superconducting temperatures, and that the gradient (time-varying) fields are then only applied
during imaging sequences, the initial conditions for (1) are set as the solution of the static field components

A(t = 0) = ADC in R
3, (3a)

u(t = 0) = uDC,ut(t = 0) = 0 in Ωc, (3b)

�̂�(t = 0) = �̂�DC, �̂�t(t = 0) = 0 in R
3∖Ωc. (3c)

3 WEAK TREATMENT OF THE CONTINUOUS PROBLEM

The transient problem described by (1) represents a nonlinear system of coupled equations including electromagnetic,
mechanic and acoustic effects in an MRI environment. We first establish the continuous weak form of this coupled
nonlinear approach and present the continuous weak form of the linearised approach, previously derived in our other
work.13 Based on estimates of the energy present in the nonlinear approach, which is not captured by the linearised
approach, presented in the Appendix, we summarise conditions under which we expect the linearised approach to pro-
vide an accurate representation of the solution of the nonlinear approach. A Newton-Raphson iteration is then presented
to resolve the nonlinearity in the continuous weak forms.

3.1 Weak forms of the nonlinear and linearised approaches
3.1.1 Nonlinear approach
In our nonlinear approach, we assume that there exists a fixed point weak continuous solution (A,u, �̂�)(t) ∈ (X̃(ADC) ×
Ỹ (uDC,uD) × Z̃(�̂�DC))(0,T] of the coupled system (1) satisfying

RA(A𝛿;A,u, J s) ∶= ∫
R3

(
(𝜇−1∇ × A) · (∇ × A𝛿)

)
dΩ + ∫Ωc

(
𝛾At · A𝛿

)
dΩ

− ∫Ωc

(
(𝛾ut × (∇ × A)) · A𝛿

)
dΩ − ∫supp(Js)

(J s · A𝛿)dΩ = 0, (4a)

Ru(u𝛿;A,u, �̂�) ∶= ∫Ωc

((
𝝈

m(u) + 𝝈
e(A)

)
∶ ∇u𝛿

)
dΩ + ∫Ωc

(
𝜌utt · u𝛿

)
dΩ

− ∫
𝜕ΩN

c

(
u𝛿 ·

((
�̂�I + 𝝈

e(A)
)|||+𝜕Ωc

n
))

dS = 0, (4b)

R�̂�(�̂�𝛿;A,u, �̂�) ∶= ∫
R3∖Ωc

((
∇�̂� + ∇ · 𝝈e(A)

)
· ∇�̂�𝛿

)
dΩ + ∫

R3∖Ωc

(
�̂�𝛿

1
c2 �̂�tt

)
dΩ

− ∫
𝜕ΩN

c

(
�̂�𝛿

(
𝜌+ utt|−𝜕ΩN

c

)
· n

)
dS = 0, (4c)
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for all weighting functions (A𝛿,u𝛿, �̂�𝛿) ∈ (X × Y (0) × Z), denoted by a superscript 𝛿, where

X̃(g) ∶=
{

A ∈ X ∶ A(t = 0) = g inR3} ,
X ∶=

{
A ∈ H(curl,R3) ∶ ∇ · A = 0inR3∖Ωc

}
,

Ỹ (g,h) ∶=
{

u ∈ Y (h) ∶ u(t = 0) = g,u t (t = 0) = 0 inR3} ,
Y (h) ∶=

{
u ∈ H1(Ωc)3 ∶ u = h on 𝜕ΩD

c
}
,

Z̃(q) ∶=
{
�̂� ∈ Z ∶ �̂�(t = 0) = q, �̂�t(t = 0) = 0inR3∖Ωc

}
,

Z ∶=
{
�̂� ∈ H1(R3∖Ωc)

}
,

and H(curl,R3) and H1(R3) have their usual definitions, eg, the work of Monk.44

3.1.2 Linearised approach
The continuous version of the linearised approach, previously derived in our other work,13 corresponds to seeking weak
solutions (ADC + AAC(t)), (uDC + uAC(t)), (�̂�DC + �̂�AC(t)), which are obtained from a direct current DC and an alternating
current AC stage.

DC-stage
The static solutions (ADC,uDC, �̂�DC) ∈ (X × Y (uD) × Z) are the fixed point solution of

RDC
A (A𝛿;ADC,uDC) ∶= RA(A𝛿;ADC,uDC, JDC)

= ∫
R3

(
(𝜇−1∇ × ADC) · (∇ × A𝛿)

)
dΩ − ∫supp(JDC)

(JDC · A𝛿)dΩ = 0, (5a)

RDC
u (u𝛿;ADC,uDC, �̂�DC) ∶= Ru(u𝛿;ADC,uDC, �̂�DC)

= ∫Ωc

((
𝝈

m(uDC) + 𝝈
e(ADC)

)
∶ ∇u𝛿

)
dΩ

− ∫
𝜕ΩN

c

(
u𝛿 ·

((
�̂�DCI + 𝝈

e(ADC)
)|||+𝜕Ωc

n
))

dS = 0, (5b)

RDC
�̂�

(�̂�𝛿;ADC,uDC, �̂�DC) ∶= R�̂�(�̂�𝛿;ADC,uDC, �̂�DC)

= ∫
R3∖Ωc

((
∇�̂�DC + ∇ · 𝝈e(ADC)

)
· ∇�̂�𝛿

)
dΩ = 0, (5c)

for all (A𝛿,u𝛿, �̂�𝛿) ∈ (X × Y (0) × Z).

AC-stage
The transient weak solutions (AAC,uAC, �̂�AC)(t) ∈ (X̃(0) × Ỹ (0, 0) × Z̃(0))(0,T] are the solution of the linearised problem

DRA(A𝛿;ADC,uDC)[AAC] + DRA(A𝛿;ADC,uDC)[uAC] = −RA(A𝛿;ADC,uDC, J s), (6a)

DRu(u𝛿;ADC,uDC, �̂�DC)[AAC] + DRu(A𝛿;ADC,uDC, �̂�DC)[uAC]+
DRu(A𝛿;ADC,uDC, �̂�DC)[�̂�AC] = −Ru(A𝛿;ADC,uDC, �̂�DC), (6b)

DR�̂�(�̂�𝛿;ADC,uDC, �̂�DC)[AAC] + DR�̂�(A𝛿;ADC,uDC, �̂�DC)[uAC]+
DR�̂�(A𝛿;ADC,uDC, �̂�DC)[�̂�AC] = −R�̂�(A𝛿;ADC,uDC, �̂�DC), (6c)

for all (A𝛿,u𝛿, �̂�𝛿) ∈ (X × Y (0) × Z) under the assumption (AAC,uAC, �̂�AC)(t) are small perturbations from (ADC,uDC, �̂�DC).
In the above, the notation DRA(A𝛿;ADC,uDC)[AAC] denotes the directional derivative of RA about the static solutions
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(ADC,uDC) in the direction AAC with similar meanings for the other terms.45 By deriving the required terms, this can be
explicitly written as: Find (AAC,uAC, �̂�AC)(t) ∈ (X̃(0) × Ỹ (0, 0) × Z̃(0))(0,T] such that

∫
R3

(
(𝜇−1∇ × AAC) · (∇ × A𝛿))dΩ + ∫Ωc

(
𝛾(AAC)t · A𝛿

)
dΩ

− ∫Ωc

((
𝛾(uAC)t × (∇ × ADC)

)
· A𝛿

)
dΩ − ∫supp(J AC)

(J AC · A𝛿)dΩ = 0, (7a)

∫Ωc

((
𝝈

m(uAC) + 𝜇−1(ADC,AAC)
)
∶ ∇u𝛿

)
dΩ + ∫Ωc

(
𝜌(uAC)tt · u𝛿

)
dΩ

− ∫
𝜕ΩN

c

(
u𝛿 ·

((
�̂�ACI + 𝜇−1(ADC,AAC)

)|||+𝜕Ωc
n
))

dS = 0, (7b)

∫
R3∖Ωc

((
∇�̂�AC + ∇ · 𝝈e(AAC)

)
· ∇�̂�𝛿

)
dΩ + ∫

R3∖Ωc

( 1
c2 (�̂�

AC)tt�̂�
𝛿
)

dΩ

− ∫
𝜕ΩN

c

(
�̂�𝛿

(
𝜌+ (uAC)tt

|||−𝜕ΩN
c

)
· n

)
dS = 0, (7c)

for all (A𝛿,u𝛿, �̂�𝛿) ∈ (X × Y (0) × Z). In the above, the linearised electromagnetic stress tensor, introduced previously in
our other work,13 is

(a,b) ∶= (∇ × a)⊗ (∇ × b) + (∇ × a)⊗ (∇ × b) − ((∇ × a) · (∇ × b)) I.

3.2 Energy not captured by the linearised approach
In the Appendix, we estimate the energy present in the nonlinear approach, which is not captured by the linearised
approach. We find that this will be small, at a continuous level, provided the following criteria are met for all time t:

1. ||𝛾(uAC)t(t)||L∞(Ωc)||BDC||2L∞(Ωc)
≪ 1,

2. ||BAC(t)||2L∞(Ωc)
(||∇uDC||L∞(Ωc) + ||∇uAC||L∞(Ωc)) ≪ 1, ||BAC(t)||2L∞(𝜕ΩN

c )
(||uDC||L∞(𝜕ΩN

c ) + ||uAC||L∞(𝜕ΩN
c )) ≪ 1,

3. 𝜇0||HAC(t)||L∞(supp(JAC))||JAC||L∞(supp(JAC))||∇�̂�DC||L∞(supp(JAC)) + ||∇�̂�AC||L∞(supp(JAC)) ≪ 1,
4. ||BAC(t)||L∞(Ωc)∕||BDC||L∞(Ωc) ≪ 1.

Provided that these conditions hold, we conjecture that the linearised approach will be in good agreement with the non-
linear approach. We argue that these conditions will be met on physical grounds for MRI scanners as follows: 1) requires
that the velocities are small in comparison to 𝛾 and ||BDC||2L∞(Ωc)

, which is typically the case for MRI scanners; 2) requires
that the displacements and strains (displacement gradients) are small in comparison to ||BAC||2L∞(Ωc)

and ||BAC||2L∞(𝜕ΩN
c )

,
which is again typically the case for MRI scanners; 3) requires the pressure gradients in the coils are small, which is
typically the case for MRI scanners under the Biot-Savart coil assumption; and 4) requires the BDC field obtained from
the strong main magnet results in a ||BDC||L∞(Ωc) that is orders of magnitude larger than ||BAC||L∞(Ωc), obtained from the
weaker AC coils and smaller field perturbations caused by eddy and Lorentz currents in the conductors. In Section 5, we
will demonstrate numerically that the 2 approaches are in excellent agreement for such problems. We include a simple
model below to illustrate the applicability of these criteria.

3.2.1 Simple model relating field and current strengths
Whilst the true field strength B = 𝜇H can only be found after solving (1) by means of the solution of the continuous weak
forms for the nonlinear or linearised approaches, described in Sections 3.1.1 and 3.1.2, there is merit in also considering
a simple model to relate B to the applied current density in the coils. This is because manufacturer's data, available for
MRI scanners, is typically only quoted in terms of the maximum capable main and gradient field strengths at the central
axis of the imaging bore.6-8 Therefore, to determine the operating ranges of the current densities on in-use scanners, the
relationships given by this simplified model offer useful insight.

In the simplified model, as shown in Figure 3, all transient, eddy current, and coupling effects are neglected, as is
the mutual inductance between coils. Coil i has a constant cross-sectional area ai, is circular, and hence, rotationally
symmetric and so is best expressed in terms of cylindrical coordinates (r, 𝜙, z) and carries a uniform current density
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(A) (B)

FIGURE 3 Single current loop, representing a lumped mass of coils. A, Magnetic field around single current loop; B, Multiple coil
configuration [Colour figure can be viewed at wileyonlinelibrary.com]

Js = Js
𝜙

e𝜙. Then, by an additive application of the Biot-Savart law for a single coil,46 the following relationship can be
derived for the field strength along the axis r = 0 for N coils placed at different locations (Ri,Zi)

|Js| = N∑
i

(
(z − Zi)2 + Ri

2)3∕2

Riai
|B(0, 𝜙, z)|, (8)

where B(0, 𝜙, z) = Bz(r = 0, z)ez along this axis, Ri is the radius, and Zi the axial position of the ith current source
relative to the scanner's central axes. Provided the aforementioned assumptions are enforced, this relationship can be
applied to obtain the current densities that are associated only with the main magnet (J s = J DC) or with the gradient
coil (J s = J AC) from their produced field strengths. It also provides a guide as to the ranges of ratios of |J AC|∕|J DC| and||BAC||L∞(Ω)∕||BDC||L∞(Ω) over which the linearised approach is applicable.

3.3 Nonlinear iteration
We now present a nonlinear iteration to resolve the nonlinear terms present in (4) and (5), resulting in linearised problems
(not to be confused with linearised approach) being solved at each iteration. The unknowns in the linearised problems are
continuous update fields, which we relate to the continuous solution of (4) and (5). We make explicit those terms, which
are time dependent.

3.3.1 Newton-Raphson for the nonlinear approach
To resolve the nonlinearity in (4) a nonlinear iteration, which requires the solution of a linearised problem at each
iteration, is performed. This is expressed in the form of the following iterative Newton-Raphson procedure: Find
(𝜹A

[k], 𝜹u
[k], 𝛿[k]

�̂�
)(t) ∈ X̃(𝟎) × Ỹ (𝟎, 𝟎) × Z̃(𝟎)(0,T] such that

DRA
(

A𝛿;A[k],u[k]) [
𝜹A

[k]] + DRA
(

A𝛿;A[k],u[k]) [
𝜹u

[k]]
= − RA

(
A𝛿;A[k],u[k]) , (9a)

DRu
(

u𝛿;A[k],u[k], �̂�[k]
) [

𝜹A
[k]] + DRu

(
u𝛿;A[k],u[k], �̂�[k]

) [
𝜹u

[k]] + DRu
(

u𝛿;A[k],u[k], �̂�[k]
) [

𝛿
[k]
�̂�

]
= − Ru

(
u𝛿;A[k],u[k], �̂�[k]

)
,

(9b)

DR�̂�

(
�̂�𝛿;A[k],u[k], �̂�[k]

) [
𝜹A

[k]] + DR�̂�

(
�̂�𝛿;A[k],u[k], �̂�[k]

) [
𝜹u

[k]] + DR�̂�

(
�̂�𝛿;A[k],u[k], �̂�[k]

) [
𝛿
[k]
�̂�

]
= − R�̂�

(
�̂�𝛿;A[k],u[k], �̂�[k]

)
,

(9c)

for all (A𝛿,u𝛿, �̂�𝛿) ∈ X × Y (𝟎) × Z for a particular iteration [k], where

A[k+1](t) = A[k](t) + 𝜹A
[k](t), (10a)

u[k+1](t) = u[k](t) + 𝜹u
[k](t), (10b)

�̂�[k+1](t) = �̂�[k](t) + 𝛿
[k]
�̂�
(t). (10c)
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As standard, this linearisation is established under the assumption that the updates (𝜹A
[k], 𝜹u

[k], 𝛿[k]
�̂�
)(t) are small.45 Given

an initial guess (A[0],u[0], �̂�[0])(t) ∈ X̃(ADC) × Ỹ (uDC,uD) × Z̃(�̂�DC), and performing iterations of this kind, leads to a
sequence of continuous iterates(

A[0],u[0], �̂�[0]
)
(t),

(
A[1],u[1], �̂�[1]

)
(t), (A[2],u[2], �̂�[2])(t), · · · ∈ X̃(ADC) × Ỹ (uDC,uD) × Z̃(�̂�DC)(0,T]

with the goal of converging to the continuous solution (A,u, �̂�)(t) ∈ (X̃(ADC) × Ỹ (uDC,uD) × Z̃(�̂�DC))(0,T] of (4). Pro-
vided the initial guess (A[0],u[0], �̂�[0])(t) is chosen to be sufficiently close to (A,u, �̂�)(t) this is expected to be the case. The
requirements for the convergence of Newton-Raphson schemes are well documented and are consequently not discussed
further, see e.g.45

It is instructive to introduce the notation q(t) ∶= (qA,qu, q�̂�)(t) = (A , u , �̂�)(t) and to rewrite (9) in the form of the
Newton-Raphson iteration: Find 𝜹q

[k](t) ∈ W̃(𝟎, 𝟎)(0,T] such that

M
((
𝜹q

[k])
tt,q𝛿

)
+ C

((
𝜹q

[k])
t,q𝛿;q[k]) + K

(
𝜹q

[k],q𝛿;q[k],
(

q[k])
t

)
=

− Rq
(

q𝛿;q[k],
(

q[k])
t,
(

q[k])
tt, Js) , (11)

for all q𝛿 ∈ W(0), where
q[k+1](t) = q[k](t) + 𝜹q

[k](t), (12)
and W̃(qDC,uD) = X̃(ADC) × Ỹ (uDC,uD) × Z̃(�̂�DC) and W(uD) ∶= X × Y(uD) × Z. As before, if q[0] ∈ W̃(qDC,uD) is chosen
sufficiently close to q ∈ W̃(qDC,uD) then the iterates q[0](t), q[1](t), q[2](t), … ∈ W̃(qDC,uD) are expected to converge to
q(t) ∈ W̃(qDC,uD). This formulation has the benefit that the forms of M, C, and K, are associated with the mass, damping,
and stiffness contributions to the system, respectively, and can be found to be‡

M
((
𝜹q

[k])
tt,q𝛿

)
∶=∫Ωc

(
𝜌
(
𝜹u

[k])
tt · q𝛿

u
)

dΩ − ∫
𝜕ΩN

c

(
q𝛿

�̂�

(
𝜌+

(
𝜹u

[k])
tt
|||−) · n+

)
dS

+ ∫
R3∖Ωc

( 1
c2

(
𝛿
[k]
�̂�

)
tt

q𝛿

�̂�

)
dΩ, (13a)

C
((
𝜹q

[k])
t,q𝛿;q[k]) ∶=∫

R3

(
𝛾
(
𝜹A

[k])
t · q𝛿

A
)

dΩ − ∫Ωc

((
𝛾
(
𝜹u

[k])
t ×

(
∇ × q[k]

A

))
· q𝛿

A

)
dΩ, (13b)

K
(
𝜹q

[k],q𝛿;q[k],
(

q[k])
t

)
∶=∫

R3

(
𝜇−1 (∇ × 𝜹A

[k]) · (∇ × q𝛿
A
))

dΩ − ∫Ωc

((
𝛾

(
q[k]

u

)
t
×
(
∇ × 𝜹A

[k])) · q𝛿
A

)
dΩ

+ ∫Ωc

(
𝜇−1 (

q[k]
A , 𝜹A

[k]
)
∶ ∇q𝛿

u

)
dΩ − ∫

𝜕ΩN
c

(
q𝛿

u ·
(
𝜇−1

0  (
q[k]

A , 𝜹A
[k]
) |+n−

))
dS

+ ∫Ωc

(
𝝈

m (
𝜹u

[k]) ∶ ∇q𝛿
u
)

dΩ − ∫
𝜕ΩN

c

(
𝛿
[k]
�̂�
|+n− · q𝛿

u

)
dS

− ∫supp(Js)

((
∇ × 𝜹A

[k] ×
(
∇ ×

(
𝜇−1

0 ∇ × q[k]
A

))
+ ∇ × q[k]

A ×
(
∇ ×

(
𝜇−1

0 ∇ × 𝜹A
[k]))) · ∇q𝛿

�̂�

)
dΩ

+ ∫
R3∖Ωc

(
∇𝛿[k]

�̂�
· ∇q𝛿

�̂�

)
dΩ. (13c)

The system residual Rq easily follows from (4) and is defined as

Rq
(

q𝛿;q[k],
(

q[k])
t,P

(
q[k])

tt, Js) ∶= M
((

q[k])
tt,q𝛿

)
+ C

((
q[k])

t,q𝛿;q[k])
+ ∫

R3

(
𝜇−1

(
∇ × q[k]

A

)
·
(
∇ × q𝛿

A
))

dΩ + ∫Ωc

((
𝝈

m
(

q[k]
u

)
+ 𝝈

e
(

q[k]
A

))
∶ ∇q𝛿

u

)
dΩ

− ∫
𝜕ΩN

C

(
q𝛿

u ·
((

q[k]
�̂�

I + 𝝈
e
(

q[k]
A

)) |+n−
))

dS + ∫
R3∖Ωc

(
∇q[k]

�̂�
· ∇q𝛿

�̂�
+
(
∇ · 𝝈e

(
q[k]

A

))
· ∇q𝛿

�̂�

)
dΩ

− ∫
R3

(
Js(t) · q𝛿

A
)

dΩ. (14)

‡The directional derivatives in (9a) are already stated in our other work13 and consequently not repeated here.
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3.3.2 Newton-Raphson for the linearised approach
DC-Stage
A nonlinear iteration, with a linearised problem being solved at each iteration, is also required to resolve the nonlinearity
in (7). For this, we employ the Newton-Raphson procedure: Find (𝜹DC[k]

A , 𝜹
DC[k]
u , 𝛿

DC[k]
�̂�

) ∈ X × Y (𝟎) × Z such that

DRDC
A

(
A𝛿;ADC[k]) [

𝜹
DC[k]
A

]
= −RDC

A
(

A𝛿;ADC[k]) , (15a)

DRDC
u

(
u𝛿;ADC[k],uDC[k], �̂�DC[k]) [

𝜹
DC[k]
A

]
+ DRDC

u
(

u𝛿;ADC[k],uDC[k], �̂�DC[k]) [
𝜹

DC[k]
u

]
+ DRDC

u
(

u𝛿;ADC[k],uDC[k], �̂�DC[k]) [𝛿DC[k]
�̂�

]
= −RDC

u
(

u𝛿;ADC[k],uDC[k], �̂�DC[k]) , (15b)

DRDC
�̂�

(
�̂�𝛿;ADC[k],uDC[k], �̂�DC[k]) [

𝜹
DC[k]
A

]
+ DRDC

�̂�

(
�̂�𝛿;ADC[k],uDC[k], �̂�DC[k]) [

𝜹
DC[k]
u

]
+ DRDC

�̂�

(
�̂�𝛿;ADC[k],uDC[k], �̂�DC[k]) [𝛿DC[k]

�̂�

]
= −RDC

�̂�

(
�̂�𝛿;ADC[k],uDC[k], �̂�DC[k]) , (15c)

for all (A𝛿,u𝛿, �̂�𝛿) ∈ X × Y (𝟎) × Z for a particular iteration [k], which follows from the assumption that
(𝜹DC[k]

A , 𝜹
DC[k]
u , 𝛿

DC[k]
�̂�

) are small.§ The solution updates (𝜹DC[k]
A , 𝜹

DC[k]
u , 𝛿

DC[k]
�̂�

) are used to obtain ADC[k+1], uDC[k+1] and
�̂�DC[k+1] in a similar way to (10). Once again, if the initial guess (ADC[0],uDC[0], �̂�DC[0]) ∈ X × Y (𝟎) × Z is chosen
to be sufficiently close to (ADC,uDC, �̂�DC) ∈ (X × Y (𝟎) × Z), the iterates (ADC[0],uDC[0], �̂�DC[0]), (ADC[1],uDC[1], �̂�DC[1]),
(ADC[2],uDC[2], �̂�DC[2]), · · · ∈ (X × Y (𝟎) × Z) are expected to converge to the continuous solutions (ADC,uDC, �̂�DC) ∈
(X × Y (𝟎) × Z) of (5). This problem can also be formulated in terms of qDC ∶= (ADC ,uDC , �̂�DC). Find 𝜹

DC[k]
q ∈ W(𝟎) such

that
K
(
𝜹

DC[k]
q ,q𝛿;qDC[k], 𝟎

)
= −Rq

(
q𝛿;qDC[k], 𝟎, 𝟎, JDC) , (16)

for all q𝛿 ∈ W(0) with qDC[k+1] = qDC[k] + 𝜹
DC[k]
q .

AC-stage
For completeness, we also recast (7) to: Find 𝜹q(t) ≡ qAC(t) ∈ W̃(𝟎, 𝟎)(0,T], such that

M̃
(
(𝜹q)tt,q𝛿

)
+ C̃

(
(𝜹q)t,q𝛿

)
+ K̃

(
𝜹q,q𝛿

)
= −R̃q

(
q𝛿
)
, (17)

for all q𝛿 ∈ W(0), which does not require iteration as it is linear in the unknown fields; hence, the reason we call it the
linearised approach. The bilinear forms M̃, C̃ and K̃ are associated with the mass, damping and stiffness contributions in
the linearised approach, and can be expressed in terms of the definitions in (13) as

M̃
(
(𝜹q)tt,q𝛿

)
∶= M

(
(𝜹q)tt,q𝛿

)
, (18a)

C̃
(
(𝜹q)t,q𝛿

)
∶= C

(
(𝜹q)t,q𝛿;qDC) , (18b)

K̃
(
𝜹q,q𝛿

)
∶= K

(
𝜹q,q𝛿;qDC, 𝟎

)
, (18c)

R̃q(q𝛿) ∶= Rq
(

q𝛿;qDC, 𝟎, 𝟎, Js) . (18d)

In this case the solution of (17) will contain only the transient alternating current (AC) component of the fields, and
thus the complete description is q(t) = qDC + 𝜹q(t). The linear nature of this system also allows for it to be transformed to
the frequency domain by the application of a Fourier transform, which was the approach followed in our other work.13

4 DISCRETISATION OF THE SYSTEM

In this section, we describe the spatial and temporal discretisation of (11) for the nonlinear approach and (16,17) for
the linearised approach. The eventual aim of this formulation is to handle fully coupled nonlinear problems, which, for
the nonlinear approach, will employ an iterative procedure at each time step to fully resolve the solution while, for the

§The directional derivatives in (15) have been previously stated in our other work13 and, in the following, we relate them to the explicit expressions in
(13) to avoid repetition.
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linearised approach, will involve a static iterative solve followed by a linear time integration without iteration. The pre-
sentation includes a brief description of the spatial discretisation using hp-finite elements, which result in a semidiscrete
system of coupled second order ODEs. We then present the temporal discretisation of the system of equations to allow
for solutions in the time domain and close the section by presenting a solution algorithm for the nonlinear and linearised
approaches, which summarises the steps required once the problems are fully discretised.

4.1 Spatial discretisation
The spatial discretisation of the linearised system of coupled acousto-magneto-mechanical equations in (16) and (17)
is extensively covered in our other work13 and the work of Bagwell47 and the spatial discretisation of (11) is analogous.
Hence, we only briefly summarise the approach. We limit ourselves to the treatment of idealised MRI scanners that are
assumed to be rotationally symmetric in the azimuthal direction so that the problem is axisymmetric. Our domain then
becomes the meridian plane Ωm = {(r, z) ∶ 0 < r < ∞,−∞ < z < ∞}, the current sources have the form Js = Js

𝜙
(r, z)e𝜙,

and the unknown fields are A = A𝜙(r, z)e𝜙, u = ur(r, z)er + uz(r, z)ez and �̂� = �̂�(r, z), where er, e𝜙, and ez are the stan-
dard bases for the cylindrical coordinate system (r, z, 𝜙). However, by projection of Ωm the full 3-dimensional results are
still achieved.

When transformed to the axisymmetric domain, the spaces in which the weak solutions are sought in the variational
statements (11,16,17) must be adapted following the approach described in our other work13 and the work of Bagwell.47

To overcome the need for the solution in weighted spaces, to ensure the fields are well behaved at the radial axis, we
transform the fields as A𝜙 = rÂ𝜙, ur = rûr and note that Â𝜙 ∈ H1(Ωm) and ũ ∶= [ûr,uz] ∈ (H1(Ωm))2 and recall from
our other work13 that the acoustic pressure �̂�(r, z) ∈ H1(Ωm) presents no difficulty. The continuous update fields and test
functions in the Newton-Raphson iterations are also treated in an analogous manner.

To achieve a finite computational domain, Ωm is truncated by the introduction of infinite elements48 for the far-field
treatment of Â𝜙 and a perfectly matched layer approach49 for the far-field treatment of �̂�. The far-field decay of
the update fields is also treated analogously. For the details, we refer again to our other work13 and the work of
Bagwell.47 Then, a nonoverlapping partition ( ,  ,) of Ωm is achieved through the generation of a hybrid unstructured
triangular-quadrilateral mesh, where denotes the set of vertices, the set of edges, and the set of cells. In each element,
we employ the H1 conforming hierarchic finite element basis functions proposed by Schöberl and Zaglmayr,50,51 which
allow for arbitrary increases in element order p and local refinement of the mesh spacing h, for the spatial discretisation
of the fields A𝜙, ũ, and �̂� and the associated continuous update fields.

For a discretisation consisting of uniform order p elements, and a mesh consisting of N vertices, N edges, NT trian-
gular cells and NQ quadrilateral cells, there will be N = N + (𝑝 − 1)N + 1

2
(𝑝 − 2)(𝑝 − 1)NT + (𝑝 − 1)2NQ degrees of

freedom for (each component of) each field.

4.1.1 Nonlinear approach
Following a spatial discretisation using a uniform order approximation, the semidiscrete vector of updates and unknowns
for problem (11) become

𝛅q
[k](t) =

{ 𝛅A𝜙

𝛅ũ
𝛅p̂

}[k]

(t) ∈ R
4N , q[k](t) =

{ qA𝜙

qũ
qp̂

}[k]

(t) ∈ R
4N , (19)

for each time t and the corresponding semidiscrete solution to the nonlinear approach reduces. Finding 𝜹q
[k](t) at each

time t ∈ (0,T] satisfying the following initial value problem:

M𝛅q
[k](t) + C[k]𝛅q

[k](t) + K[k]𝛅q
[k](t) = −R[k]

q , (20a)

q[k+1](t) = q[k](t) + 𝛅q
[k](t), (20b)

q̇(0) = 𝟎, (20c)

q(0) = qDC, (20d)

where 𝛅q
[k] = d𝛅q

[k]∕dt and 𝛅q
[k] = d2𝛅q

[k]∕dt2. Equation (20) involves iteratively solving a second-order system of ODEs
until |R[k]

q | < TOL for some user-defined tolerance TOL. The convergence of |R[k]
q | to 0 will be quadratic.45 In the above,
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M, C[k], K[k], and R[k]
q are the discrete linearised mass, damping and stiffness matrices, and residual vector, respectively,

which are obtained by discretising the terms in (13) and depend, with the exception of the mass matrix, on the solution
at iteration [k]. Explicit expressions for the matrices can be found in the work of Bagwell.47 The vector qDC ∈ R4N is the
converged solution of (21) below.

4.1.2 Linearised approach
DC-stage
In a similar manner, the linearised approach takes the form of a time-independent Newton-Raphson iteration. Find
𝛅q

DC[k] ∈ R4N such that
K̃𝛅q

DC[k] = −R̃DC[k]
q , (21a)

qDC[k+1] = qDC[k] + 𝛅q
DC[k], (21b)

qDC[0] = 𝟎, (21c)
with the iteration performed until |RDC[k]

q | < TOL, which follows from the discretisation of (16). The convergence of|RDC[k]
q | to 0 will again be quadratic.

AC-stage
The linearised approach also requires the solution of the semidiscrete initial value problem. Find 𝛅q

[k](t) ∈ R4N at each
time t ∈ (0,T] such that

M̃𝜹q + C̃𝛅q + K̃𝛅q = −R̃q, (22a)

𝛅q(0) = 𝛅q(0) = 𝟎, (22b)
which follows from the discretisation of (17), where M̃, C̃, K̃, and R̃q are the discrete mass, damping and stiffness matrices,
and the residual vector, respectively, obtained by discretising the terms in (18). Explicit expressions for the matrices can
be found in the work of Bagwell.47 The semidiscrete solution for the linearised approach is q(t) = qDC + 𝛅q(t).

4.2 Temporal discretisation
There are a considerable number of alternative time integration techniques that could be employed for the temporal
integration of (20) and (22), such as Euler schemes,52 trapezoidal schemes,53 and the Newmark method.54 In this paper,
we choose to adopt a second-order generalised-𝛼 scheme (see the work of Chung and Hulbert55) to discretise our system
of equations. This scheme is designed to allow for tailor-made numerical dissipation in the solution and is of sufficient
degree, given the second-order nature of (20) and (22). Given the complexity of the coupled system, it is difficult to know
the true initial conditions for the full transient problem, when applying a forced excitation. The numerical dissipation
of the generalised-𝛼 scheme is therefore beneficial as it can be used to damp out any artificial frequencies that pollute
the solution. There exists also a number of high-order integration schemes, such as backward differentiation formulas,56

explicit Runge-Kutta and leap-frog type methods,57,58 that allow for higher-order accuracies in time and larger time steps,
although with increased temporal accuracy comes a significant increase in computational cost. However, for our problem,
the required time step size is dictated by the need to capture the excitation frequency and resonant frequencies of the
system (typically in the region of 5000 Hz). For this reason, the need for higher-order accuracy is significantly outweighed
by the requirement of smaller time step sizes anyway, and thus, the generalised-𝛼 scheme appears a sensible choice.

4.2.1 Generalised-𝜶 time integration scheme (second order)
In this section, we focus on the development of the temporal discretisation of (20), which can similarly be developed
for (22). The implicit form of this scheme evaluates the system of nonlinear equations in (20) at an intermediate time step
tn+1−𝛼𝑓 as

M𝛅q
[k]
n+1−𝛼m

+ C|[k]tn+1−𝛼𝑓
𝛅q

[k]
n+1−𝛼𝑓

+ K|[k]tn+1−𝛼𝑓
𝛅q

[k]
n+1−𝛼𝑓

= −Rq|[k]tn+1−𝛼𝑓
, (23)

where C|[k]tn+1−𝛼𝑓
, K|[k]tn+1−𝛼𝑓

, and Rq|[k]tn+1−𝛼𝑓
are evaluated at the intermediate time step tn+1−𝛼𝑓 and the values of the fields at

this time step are given by
q̈[k]

n+1−𝛼m
= (1 − 𝛼m)q̈[k]

n+1 + 𝛼mq̈n, (24a)
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q̇[k]
n+1−𝛼𝑓

= (1 − 𝛼𝑓 )q̇[k]
n+1 + 𝛼𝑓 q̇n, (24b)

q[k]
n+1−𝛼𝑓

= (1 − 𝛼𝑓 )q[k]
n+1 + 𝛼𝑓qn, (24c)

tn+1−𝛼𝑓 = (1 − 𝛼𝑓 )tn+1 + 𝛼𝑓 tn. (24d)

The generalised-𝛼 scheme, described in the aforementioned work,55 expresses q[k]
n+1 and q̇[k]

n+1 in terms of q̈[k]
n+1, known

as an acceleration-based formulation. This can be manipulated into a displacement based formulation, where q̇[k]
n+1 and

q̈[k]
n+1 are expressed in terms of q[k]

n+1, as

q̈[k]
n+1 = 1

𝛽

(
q[k]

n+1 − qn

Δt2 −
q̇n

Δt
−
(1

2
− 𝛽

)
q̈n

)
, (25a)

q̇[k]
n+1 = 𝜍

𝛽

(
q[k]

n+1 − qn

Δt
+
(
𝛽

𝜍
− 1

)
q̇n +

(
𝛽

𝜍
− 1

2

)
Δt q̈n

)
, (25b)

where 𝜍 ∶= 1
2
− 𝛼m + 𝛼𝑓 , 𝛽 ∶= 1

4
(1 − 𝛼m + 𝛼𝑓 )2, 𝛼m ∶= 2𝜌∞−1

𝜌∞+1
, 𝛼𝑓 ∶= 𝜌∞

𝜌∞+1
, Δt is the time step size and 𝜌∞ denotes the

user-specified value of the spectral radius in the high-frequency limit.¶

4.2.2 Predictor-multi-corrector step
A predictor-corrector approach has been followed from the implementation standpoint.59 The prediction step [k = 0],
based on a initial guess of the displacement field q[0]

n+1, is defined as

q̈[0]
n+1 = 1

𝛽

(
q[0]

n+1 − qn

Δt2 −
q̇n

Δt
−
(1

2
− 𝛽

)
q̈n

)
, (26a)

q̇[0]
n+1 = 𝜍

𝛽

(
q[0]

n+1 − qn

Δt
+
(
𝛽

𝜍
− 1

)
q̇n +

(
𝛽

𝜍
− 1

2

)
Δt q̈n

)
, (26b)

where (26a) and (26b) are consistent with (25a) and (25b), respectively. In other words both the velocity and accelerations
predictors preserve second-order accuracy, as discussed in the work of Jansen et al.60 If we return our attention to (25b)
and (25a) and substitute the fields at iteration step [k+1], we obtain that the update variables of the first- and second-order
fields are

𝛅q
[k]
n+1 = 1

𝛽Δt2 𝛅q
[k]
n+1, (27a)

𝛅q
[k]
n+1 = 𝜍

𝛽Δt
𝛅q

[k]
n+1. (27b)

4.2.3 Fully discrete nonlinear approach
Using the relations between the updates, in (27), we may rewrite the discrete system, in (23), in terms of the update in
the zeroth-order solution vector 𝛅q

[k]
n+1 at time tn+1 as the following Newton-Raphson procedure. Find 𝛅q

[k]
n+1 ∈ R4N for

n = 0, 1, 2, … ,NΔt = T∕Δt such that(
(1 − 𝛼m)
𝛽Δt2 M +

𝜍(1 − 𝛼𝑓 )
𝛽Δt

C|[k]tn+1−𝛼𝑓
+ (1 − 𝛼𝑓 )K|[k]tn+1−𝛼𝑓

)
𝛅q

[k]
n+1 = −Rq|[k]tn+1−𝛼𝑓

, (28a)

q[k+1]
n+1 = q[k]

n+1 + 𝛅q
[k]
n+1, (28b)

q̇0 = 𝟎, (28c)

q0 = qDC, (28d)
with the predictors (26) used to provide the initial guesses q̈[0]

n+1 and q̇[0]
n+1, which are used to start the iteration over [k]

until |R[k]
q | < TOL.

¶Traditionally with the generalised 𝛼 method, 𝛾 is used to refer to the first stability parameter; however, given our formulation reserves 𝛾 for the material
conductivity, we use instead the alternative symbol 𝜍.
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4.2.4 Fully discrete linearised approach
AC-stage
The fully discrete version of (23) for the linearised approach is similarly expressed. Find 𝛅qn+1 ∈ R4N for n =
0, 1, 2, … ,NΔt = T∕Δt such that(

(1 − 𝛼m)
𝛽Δt2 M̃ +

𝜍(1 − 𝛼𝑓 )
𝛽Δt

C̃ + (1 − 𝛼𝑓 )K̃
)
𝛅q n+1 = −R̃q|tn+1−𝛼𝑓

, (29a)

�̇�q 0 = 𝛅q 0 = 𝟎, (29b)

where the system matrices M̃, C̃, and K̃ are independent of the previous temporal solutions, and R̃q depends only on the
evaluation of J AC at time level tn+1−𝛼𝑓 and so can be solved in a single step, which is a simplified version of (28).

4.3 Solution algorithm
A general algorithm for computing the transient variation in the fields for both the nonlinear and linearised approaches,
proposed above, under a generalised-𝛼 scheme is summarised in Algorithm 1. In the nonlinear approach, the algorithm
involves 2 nested loops, the first over n performs the integration of the coupled system over time and, the second, over
[k] resolves the nonlinearity through the application of a Newton-Raphson iteration. In the linearised approach, this
simplifies to a single loop over n to perform the time integration. Furthermore, Figure 4 summarises the steps required to
construct the discretised Newton-Rapshon iterative scheme in (28) from the transient nonlinear transmission problem (1).

5 NUMERICAL EXAMPLES

In this section, we discuss two benchmark MRI test problems to justify that the conditions presented in Section 3.2 do
hold in practice. We study the linearity of the fields for a range of different current density values in the coils to determine
the validity of the linearised approach.
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(A) (B) (C) (D)

FIGURE 4 Summary of steps to solving transient nonlinear system. A, Residual weak form of coupled non-linear system; B, Linearisation
of the nonlinear system; C, Discretisation of the directional derivatives; D, Temporal discretisation and building system matrix [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 5 Test magnet problem: components of the simplified geometry. OVC, outer vacuum chamber [Colour figure can be viewed at
wileyonlinelibrary.com]

5.1 Test magnet problem
First, we consider solutions to the industrially relevant test magnet problem, which was previously presented in our other
work13 as the “Siemens benchmark problem.” The conducting region Ωc of the test magnet consists of three metallic
shields, known as the outer vacuum chamber (OVC) ΩOVC

c , 77◦K radiation shield Ω77K
c , and 4◦K helium vessel Ω4K

c , each
with different material parameters (𝛾 , 𝜇, 𝜆, G, 𝜌). The exact geometries and material parameters of the conducting com-
ponents are commercially sensitive and as such are not displayed in this paper. By choosing to study only the Z-gradient
coils and noting that the currents in the main coils and geometry of the conducting components are rotationally sym-
metric, the problem may be reduced to an axisymmetric description and solved in cylindrical coordinates (r, 𝜙, z) on the
meridian plane Ωm. The full 3-dimensional representation of this simplified MRI scanner is depicted in Figure 5.

A pair of main magnet coils, each with a static current source JDC = JDC
𝜙

(r, z)e𝜙, are located on the outside of the three
shields and a pair of Z-gradient magnet coils, each with alternating current source JAC(t) = JAC

𝜙
(t, r, z)e𝜙, are located

within the imaging bore, both of which are assumed as Biot-Savart conductors and are located in free space. Realistic
excitations of the gradient coil are nonsinusoidal in nature; however, for the purposes of comparison between the lin-
earised and nonlinear approaches, we restrict ourselves to sinusoidal excitations, where the current density is described by
JAC
𝜙

(t) = Re(|JAC
𝜙

|ei𝜔t). We consider several frequencies of excitation of 𝜔 = 2𝜋[1000, 1500, 2000]rad/s, which lie outside
of the resonance region of 𝜔 ≥ 2𝜋[3500], predicted in our other works.13,34 The magnitude of the static |JDC

𝜙
| and gradient

current sources |JAC
𝜙

| to be considered are obtained from manufacturer's data.6-8 This data quotes the maximum capable
flux density on the central axis of the imaging bore (r = 0) and to obtain the corresponding current densities we have used
the model described in Section 3.2.1, the results of which are summarised, for key clinical field strengths, in Table 1.

Given criteria 4) in Section 3.2, and hence the implication of the current density ratios, the greatest nonlinearity should
appear for a magnet with the weakest static field of 1.5 T and the strongest gradient field of 100× 10−3 T/m. This would
result in a ratio between the static and gradient current density values of |JAC

𝜙
|∕|JDC

𝜙
| ≈ 7.2% for this problem. We therefore

study the two approaches across a range of current density ratios of |JAC
𝜙

|∕|JDC
𝜙

| = [5, 10, 15, 20]% to provide a rigourous
test of the linearised approach for applications of higher levels of nonlinearity than current MRI scanners are capable of.
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TABLE 1 Test magnet problem: typical values of the current densities in static and
gradient coils and ranges of static and gradient field strengths from manufacturers
data6-8

Main Coil Gradient Coil

max |||BDC
z=0

|||[T] |||JDC
𝜙

|||[×10−6A/m2] max |||BAC
z=0

|||[×10−3T/m
] |||JAC

𝜙

|||[×10−6A/m2]
1.5 218.35 30 4.70
3 436.70 80 12.53
11.7 1703.10 100 15.66

The problem is subject to the following boundary conditions: we fix the Dirichlet boundaries of the conductors to uD = 0
to fix the conductors in space, as in Section 2, and we set the value of the magnetic vector potential on the outer boundary
to A𝜙 = 0 due to the eddy current decay. The initial conditions of the problem are defined by (3).

We treat this problem computationally for both the linearised and nonlinear approaches. We truncate the nonconducting
free-space region, comprised of air, and create the domain Ωm, which is the same as in our other work.13 In terms of spatial
discretisation, we analyse the solution for a single unstructured mesh of 2842 triangles of maximum size h = 0.25 m, but
with substantial refinement in the conductors Ωm

c , resulting in 570 elements in Ωm
c . The mesh parameters used are the

same as in our other work13; however, due to improvements in the mesh generator used,61 resulted in a better distribution
of elements and hence fewer elements. We apply a single layer of 18 infinite (quadrilateral) elements on the outer boundary
of Ωm to resolve the static decay of the magnetic field, so that the boundary condition A𝜙 = 0 is effectively imposed at
infinity. We consider p-refinement for elements of order p = [1, 2, 3, 4, 5]. The temporal discretisation used to resolve
these waves are studied for a time step size of Δt = 2𝜋∕(𝜔NΔt), where we vary the number of points per wavelength of
the excitation frequency NΔt = [10, 20, 30, 40]. The spectral radius of the 𝛼-scheme time integrator 𝜌∞ allows for damping
of certain frequency regimes. For 𝜌∞ = 1 the amplitude of the wave is fully preserved and no damping of any high
frequencies is introduced. For 𝜌∞ = 0, the scheme is fully dissipative and higher frequency waves are completely damped;
however, the damping of physical modes also occurs. Given that we wish to recover only physical modes in our problem,
we therefore chose the value of 𝜌∞ = 0.8, to allow for numerical damping of any nonphysical high frequencies induced
through the forcing, whilst still preserving the physical lower frequency waves.

Solutions to this problem are obtained by applying Algorithm 1 for both the nonlinear and linearised approaches across
the range of current densities and excitation frequencies discussed.

5.1.1 Convergence study in outputs of interest
We consider quantities of industrial interest for both the mechanical and electromagnetic fields. For the electromagnetic
field, we are concerned with the output power dissipation in the conducting components Po

Ωc
and for the mechanical field

we are concerned with the kinetic energy of the conducting components Ek
Ωc

. The formal definition of these quantities in
a full time-domain description, where the quantities are averaged over the time period T of excitation frequency, are

Po
Ωc
(t,A) = 1

T ∫
t+T

t ∫Ωc

𝛾|At|2dΩdt, E k
Ωc
(t,u) = 1

T ∫
t+T

t

1
2∫Ωc

𝜌|ut|2dΩdt, (30)

which reduce, in a time harmonic representation, to

Po
Ωc
(𝜔,A) = 1

2∫Ω
𝛾𝜔2|A(𝜔)|2dΩ, E k

Ωc
(𝜔,u) = 1

4∫Ω
𝜌𝜔2|u(𝜔)|2dΩ, (31)

where A(𝜔) and u(𝜔) are the complex amplitudes of their respective fields as A(t) = Re (A(𝜔) ei𝜔t) and u(t) = Re (u(𝜔) ei𝜔t),
as described in our other work.13 To compute these quantities for the test magnet problem, using either the transient solu-
tions obtained by the linearised or nonlinear approaches, Algorithm 1 is run at specific NΔt, Δt, 𝜌∞ for a sufficiently long
time until the field responses reach steady state periodic solution. Equation (30) is approximated by Gaussian quadra-
ture for the spatial integration (with sufficient quadrature points corresponding to the degree of the integrand) and a
Trapezoidal rule for the temporal integration so that no further approximations are made.

In order to determine suitable spatial resolution in the solution, we perform a p-refinement study. We apply Algorithm 1
for NΔt = 30, 𝜌∞ = 0.8 using the linearised approach to compute the output power and kinetic energy across the frequency
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FIGURE 6 Test magnet problem. Results for element order p = [1, 2, 3, 4, 5]. A, Output power of the OVC (outer vacuum chamber);
B, Kinetic energy of the OVC [Colour figure can be viewed at wileyonlinelibrary.com]

spectrum for 𝜔 ≤ 2𝜋[5000], the results of which are illustrated in Figure 6. For p ≤ 3 the computed curves, illustrated in
Figure 6, do not match one another and so the results have not yet reached convergence. The curves for p = 4 and p = 5,
however, are practically indistinguishable for both the output power and kinetic energy and suggests that for elements
of order p = 4 the results are sufficiently converged. We hence decide to adopt elements of p = 4 for all subsequent
computations of this problem on the mesh specified previously.

A similar study to determine the required time step size was also carried out, where a range of number of time steps
per wavelength NΔt = [10, 20, 30, 40] for p = 4 elements were studied. The results suggest that NΔt = 30 offers sufficient
temporal resolution to capture the amplitudes of the dominant frequency as well as frequencies twice the dominant
frequency 2𝜔. The importance of this frequency doubling will be explained later in Section 5.1.3. Thus, for an excitation
frequency of 𝜔 = 2𝜋[1000], the time step size Δt = 3.333 × 10−5s, for 𝜔 = 2𝜋[1500] the Δt = 2.222 × 10−5s and for
𝜔 = 2𝜋[2000] the Δt = 1.667 × 10−5s. For the full set of results, see our other work.47

Using these parameters, in Section 5.1.4, we compute the quantities in (30) by applying Algorithm 1 for the linearised
and nonlinear approaches in the time domain and compare them with our previous frequency domain solver.13 However,
first we consider the results for the linearised and nonlinear approaches for transient electromagnetic and mechanical
fields.

5.1.2 Electromagnetic field
To perform comparisons between the linearised and nonlinear approaches, we compare the transient response of the
magnetic field for both approaches. Given that the output power of the conductors Po

Ωc
, described above, is driven by the

temporal derivative of the magnetic vector potential At, we measure and compare the response of this field.
Figure 7 summarises the transient results of both approaches for the 𝜔 = 2𝜋[2000]rad/s sinusoidal excitation. The

graphs in the left-hand column plot the time signal obtained from both the linearised approach (in red) and nonlinear
approach (in black). The right hand column plots the corresponding frequency spectrum of the signal, obtained by per-
forming fast Fourier transforms (FFTs). We can see from this figure that the linearised approach provides an accurate
approximation of the magnetic vector potential across the full range of current density ratios. The relative norm of the
difference in the time signals is 1.829 × 10−4 for |JAC

𝜙
|∕|JDC

𝜙
| = 5% and 2.1888 × 10−4 for |JAC

𝜙
|∕|JDC

𝜙
| = 20%. The magni-

tude of the frequencies across the spectrum are almost identical and the linearised approach is even capable of capturing
all the fundamental frequencies, around 𝜔 = 2𝜋[3500 − 4000]rad/s.

Figure 8 plots the transient response and corresponding frequency spectrum for a current density ratio of |JAC
𝜙

|∕|JDC
𝜙

| =
20% and a range of excitation frequencies. These plots again illustrate the agreement between the linearised and nonlinear
approaches for different excitation frequencies.
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FIGURE 7 Test magnet problem. Time signals and corresponding fast Fourier transforms (FFTs) of At for both the linearised (red line) and
nonlinear approaches (black line), for various values of |JAC

𝜙
|∕|JDC

𝜙
| subject to a 𝜔 = 2𝜋[2000]rad/s sinusoidal excitation [Colour figure can be

viewed at wileyonlinelibrary.com]
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FIGURE 8 Test magnet problem. Time signals and corresponding fast Fourier transforms (FFTs) of At for both the linearised and nonlinear
approaches, for |JAC

𝜙
|∕|JDC

𝜙
| = 20% subject to various frequencies of excitation [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Test magnet problem. Time signals and corresponding fast Fourier transforms (FFTs) of (ur)t for both the linearised and
nonlinear approaches, for various values of |JAC

𝜙
|∕|JDC

𝜙
| subject to a 𝜔 = 2𝜋[1000]rad/s sinusoidal excitation [Colour figure can be viewed at

wileyonlinelibrary.com]

5.1.3 Mechanical field
We now compare the response of the mechanical field for both the linearised and nonlinear approaches. Given that the
kinetic energy of the conductors E k

Ωc
, described in Section 5.1.1, is driven by their mechanical velocity ut, we measure and

compare the response of this field.
Figure 9 summarises the transient results of both approaches for the 𝜔 = 2𝜋[1000]rad/s sinusoidal excitation. The

graphs in the left-hand column plot the time signal obtained from both the linearised approach (in red) and nonlinear
approach (in black). From the plots it appears as though the two approaches offer good agreement, especially when looking
at the time signals. The relative norm of the differences between signals being 4.039 × 10−3 for |JAC

𝜙
|∕|JDC

𝜙
| = 5% and

1.465 × 10−2 for |JAC
𝜙

|∕|JDC
𝜙

| = 20%. However, in the frequency spectrum there appears to be an extra frequency at 𝜔 =
2𝜋[2000]rad/s that is picked up in the nonlinear approach, but not in the linearised approach. This term appears due
to the nonlinearity in the Maxwell stress tensor (2), which we can observe is quadratic in the magnetic field. From a
decomposition of the magnetic field into static and dynamic components, as shown in Section 3.1.2, it can be shown that
this nonlinear term comprises of a product of the dynamic component of the field with itself, which disappears in the
linearised approach. This term causes a frequency doubling effect, in other words it results in a component of excitation
of the mechanical field that is double the frequency of the AC currents. So for a 𝜔 = 2𝜋[1000]rad/s wave, as in Figure 10,
an excitation at 𝜔 = 2𝜋[2000]rad/s would also appear, which matches exactly with the results obtained. However, from
Figure 10, it is clear that the magnitude of this term is far smaller than that of the amplitude associated with the exciting
frequency and thus has little effect on the solution. As the ratio of the current densities increases so too does the magnitude
of this term. However, even for a ratio of 20% the magnitude is still several orders smaller than the main excitation and
smaller also than the most dominant resonant frequencies. Thus the magnitude of this doubled frequency component
provides a useful measure in determining the nonlinearity of the problem.

Figure 10 plots the transient response and corresponding frequency spectrum for a current density ratio of |JAC
𝜙

|∕|JDC
𝜙

| =
20% and a range of excitation frequencies. We see from these plots that for the AC current frequencies of 1500 Hz,
the agreement between the two approaches results in almost indistinguishable time signals. The relative norm of the
differences between signals being 0.0349 for 𝜔 = 2𝜋[1500]rad/s and 0.0667 for 𝜔 = 2𝜋[2000]rad/s. However, for the
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FIGURE 10 Test magnet problem. Time signals and corresponding fast Fourier transforms (FFTs) of (ur)t for both the linearised and
nonlinear approaches, for |JAC

𝜙
|∕|JDC

𝜙
| = 20% subject to various frequencies of excitation [Colour figure can be viewed at

wileyonlinelibrary.com]

𝜔 = 2𝜋[2000]rad/s AC currents' differences in the time signal become more visible. This is because the doubled fre-
quency excitation component of 4000 Hz lies within the resonance region. When exciting close to the resonance region,
the problem results in matrices of high condition numbers, which are close to singular. Consequently, the tangent stiff-
ness matrix inversion becomes more challenging and less reliable and, as a result, can lead to differences in the amplitudes
across the frequency spectrum. Despite this effect however, the differences in the time signal are still very small and the
characteristics of the system and prediction of the resonance region remain well captured by the linearised approach.

5.1.4 Comparison of linearised and nonlinear approaches
To benchmark the accuracy of the solution from the linearised approach with the nonlinear approach, we compare the
computation of the outputs of interest for the two approaches, presented in Section 5.1.1, across the range of frequencies
𝜔 ≤ 2𝜋[5000]rad/s. Figure 11 illustrates the outputs of interest computed by the linearised approach in both frequency
and time domain and the nonlinear approach in time domain, using the definitions in (30) and (31) for a current density
ratio of |JAC

𝜙
|∕|JDC

𝜙
| = 10%.

Using the frequency domain approach, described in our other work,13 the outputs of interest Po
Ωc

and Ek
Ωc

can be directly
computed for a given excitation frequency. Whereas, in the time domain, we must run the time solver until steady state is
obtained and then apply the definition in (30) across a time period. Due to the increased computational cost of computing
the outputs of interest for transient solutions, we have chosen to compute them for a coarser frequency sweep compared
with the frequency domain results. Figure 11A plots the output power in the OVC Po

ΩOVC
c

(𝜔,AAC) and Figure 11B plots
the kinetic energy in the OVC Ek

ΩOVC
c

(𝜔,AAC). For the results of the other shields, which show similar agreement, see our
other work.47 From the plots, the curves produced by the linearised and nonlinear approaches are almost indistinguishable
across the frequency spectrum which suggests that the linearised approach provides a very accurate approximation to the
full nonlinear approach across the full spectrum for |JAC

𝜙
|∕|JDC

𝜙
| = 10% for the two outputs of interest. In fact, given that

the individual fields, analysed in Sections 5.1.2 and 5.1.3, also show very good agreement for |JAC
𝜙

|∕|JDC
𝜙

| = 20%, we can
hypothesise this to be the case also for the outputs of interest as they are directly related.
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FIGURE 11 Test magnet problem. Results for the linearised approach in time and frequency domain as well as the nonlinear approach.
A, Output power of the OVC (outer vacuum chamber); B, Kinetic energy of the OVC [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Test magnet problem: average computational times per time
step of the linearised and nonlinear approaches for specific element order
p = [1, 2, 3, 4, 5]

Linearised Approach Nonlinear Approach

p Computational time [s] p Computational time [s] Speed-up
1 0.037 1 14.175 383
2 0.181 2 49. 327 273
3 0.489 3 116.830 239
4 1.150 4 206.424 179
5 2.187 5 358.914 164

We now compare the displacements of the mechanical shields by plotting the displacements of the OVC, in three dimen-
sions, at interesting instances of the time signal for the radial velocity (ur)t computed for the case of |JAC

𝜙
|∕|JDC

𝜙
| = 20%

and 𝜔 = 2𝜋(2000)rad/s in Figure 12. The chosen time instances across the time signal are plotted, where the difference
in the mechanical velocities between the linearised and nonlinear approaches is noticeable. The contour plots of the dis-
placement fields are all scaled such that the colour maps between the linearised and nonlinear approaches are the same.
The displacements in Figure 12 are scaled by several orders of magnitude to show visually the displacement shapes of the
shield. We can see that for all snapshots the differences between the two approaches are almost indistinguishable. This
suggests that even for JAC

𝜙
|∕|JDC

𝜙
| = 20% and an excitation frequency of 𝜔 = 2𝜋(2000)rad/s, where the doubled frequency

component of 𝜔 = 2𝜋(4000)rad/s resides in the resonance region, see Section 5.1.3, that the linearised approach provides
accurate and comparable results to the full nonlinear approach. For the results of the other shields, see our other work.47

The average computational timings, per time step, for the two approaches across a range of different element orders p
are summarised in Table 2. The comparison between the computational timings of the two approaches suggests that the
linearised approach is orders of magnitude more efficient in terms of computational cost than the nonlinear approach.
For low-order p = 1 elements the linearised approach requires 383 times less computational effort than the nonlinear
approach. Whereas, for higher-order p = 5 elements the linearised approach requires 164 times less computational effort
than the nonlinear approach. This speed-up factor appears to offer an inverse exponential behaviour with p, which is due
to the higher requirement on the solver for higher-order elements. Nevertheless, the computational timings displayed in
the table suggest that the linearised approach offers orders of magnitude increase in computational efficiency over the
nonlinear approach.

5.2 Realistic magnet problem
We now consider a more realistic problem that represents, very accurately, the sorts of MRI scanner designs currently
used in clinical operation. The geometry is illustrated in Figure 13A. This problem consists of a similar construction to
the previous problem, where the conducting region is comprised of the three radiation shields Ωc = ΩOVC

c ∪ Ω77K
c ∪ Ω4K

c ,

(r=0)

Grad Coils
Main Coils
Rad Shields
Bore Axis

(A) (B)

FIGURE 13 Realistic magnet problem: components of the simplified geometry. A, R3 domain, Ω; B, Positive Half Meridian domain, Ωm

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 14 Full magnet problem. Displacements of the outer vacuum chamber (OVC) at different times for |JAC
𝜙

|∕|JDC
𝜙

| = 15% and
𝜔 = 2𝜋(1500)rad/s [Colour figure can be viewed at wileyonlinelibrary.com]

each with different material parameters (𝛾 , 𝜇, 𝜆, G, 𝜌). The geometry of the radiation shields, however, is more complex
and their topology represents that of closed cylindrical shells of trapezoidal cross section, with curved face end sections.
However, despite the increased complexity in topology, the geometry is still cylindrical and can be treated as axisymmetric.
Again, the exact geometries and material parameters of the conducting components are commercially sensitive and as
such are not displayed in this paper. The configuration of the static main coil consists of the same block cross section as

FIGURE 15 Full magnet problem. Distorted outer vacuum chamber (OVC), main coils, and corresponding static magnetic field lines for
the static problem where Js = JDC and t = 0 s [Colour figure can be viewed at wileyonlinelibrary.com]
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the test magnet problem, but contains more sets of coils including also a set of secondary coils, which act to minimise
the magnetic stray field by reversing the polarity of the magnetic field. The gradient coils of this problem represent a far
more realistic Z-gradient coil structure, which also contains a set of primary and secondary coils for shielding. The coils

(A) (B)

(C) (D)

(E) (F)

(G) (H)

FIGURE 16 Full magnet problem. Snapshots of the distorted outer vacuum chamber (OVC), gradient coils and corresponding gradient
magnetic field lines at various time intervals for |JAC

𝜙
|∕|JDC

𝜙
| = 15% and 𝜔 = 2𝜋(1500)rad/s. A, t = 0.0056 s; B, t = 0.0076 s; C, t = 0.0082 s;

D, t = 0.0096 s; E, t = 0.0101 s; F, t = 0.0113 s; G, t = 0.0115 s; H, t = 0.0118 s [Colour figure can be viewed at wileyonlinelibrary.com]
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are sourced in the same way as the test magnet problem. The cross section of this problem, projected onto the positive
half axisymmetric meridian domain Ωm(r, z ≥ 0), is illustrated in Figure 13B.

Given criteria 4) in Section 3.2, and hence the implication of the current density ratios, the greatest nonlinearity is
expected to appear for a magnet with weakest static field of 1.5 T and strongest gradient field of 100× 10−3 T/m. This
would result in a ratio between the static and gradient current density values of |JAC

𝜙
|∕|JDC

𝜙
| ≈ 12.3% for this problem. We

therefore study the two approaches for an extreme case of a current density ratio of |JAC
𝜙

|∕|JDC
𝜙

| = 15% to rigourously test
the linearised approach. The form of the excitation of JAC

𝜙
is as described in Section 5.1.

In terms of boundary conditions, we truncate the nonconducting free-space region, comprised of air, and create the
domainΩm and apply those similar to the test magnet problem, whereby we set the Dirichlet boundaries of the conductors
to uD = 0 to fix the conductors in space. We also set the magnetic vector potential to be A𝜙 = 0 on the outer boundary.

In terms of spatial discretisation, we analyse the solution for an unstructured mesh of 19 218 triangles of maximum size
h = 0.25 m, but with substantial refinement in the conductors Ωm

c , resulting in 4085 elements in Ωm
c . We then apply a

single layer of 40 (quadrilateral) infinite elements on the outer boundary of Ωm to resolve the static decay of the magnetic
field. Having carried out similar convergence studies to those presented for the test magnet problem, we have chosen to
use order p = 4 elements, NΔt = 30 time steps per excitation frequency 𝜔, and set 𝜌∞ = 0.8 for the solutions to this
problem.

We now compare the displacements of the mechanical shields by plotting the velocity magnitude of the system across
the time signal using both approaches for |JAC

𝜙
|∕|JDC

𝜙
| = 15% and 𝜔 = 2𝜋(1500)rad/s in Figure 14. Given that the

differences in both the time signal and the displaced shapes of the OVC between the two approaches are almost indistin-
guishable, we highlight instead snapshots of the mechanical displacement in the inner OVC shell at various time instances
across the time signal for the linearised approach. For the full results of the other shields (see our other work47). We plot
the displaced OVC and static magnetic field for the static problem, in Figure 15, and the corresponding gradient fields, at
various time instances, in Figure 16. The displacements in Figures 14, 15, and 16 are scaled by several orders of magnitude
to show visually the displacement shapes of the OVC.

6 CONCLUSION

In this paper, we have described a framework for both the linearised and nonlinear approaches to obtain transient solutions
to the acousto-magneto-mechanical coupling in MRI scanners. We have demonstrated numerically that the linearised
approach is in excellent agreement with the nonlinear approach and have estimated the energy present in the nonlinear
approach, which is not captured by the linearised approach. In terms of the two questions we posed at the start of the paper,
through the numerical examples presented in Section 5, we have shown that: (i) there is accurate agreement between
the two approaches and that, not only does the linearised approach provide accurate approximations to the transient
response of the fields, but also accurately predicts the quantities of interest and the resonance behaviour of MRI scanners,
and (ii) the linearised approach provides accurate results across the full region of interest in the frequency spectrum
𝜔 ≤ 2𝜋[5000]rad/s for a range of current density ratios JAC

𝜙
∕JDC

𝜙
≤ 20% for a range of outputs of interest. In terms of

current clinical MRI scanner applications, this ratio is restricted to around 4% to 12% and thus our analysis validates the
use of the linearised approach in providing accurate solutions in current and future MRI scanner design, with orders of
magnitude saving in the computational cost over the nonlinear approach.
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APPENDIX : ESTIMATES OF THE ENERGY NOT CAPTURED BY THE LINEARISED APPROACH

We investigate the energy in the nonlinear approach that is not captured by the linearised approach. To do this, we choose
as solutions and weights A = A𝛿 = ADC+AAC, u = u𝛿 = uDC+uAC and �̂� = �̂�𝛿 = �̂�DC+�̂�AC in (4). By doing so, the residuals

RA
(

ADC + AAC; ADC + AAC,uDC + uAC, JDC + JAC) ≠ 0, (A1a)

Ru
(

uDC + uAC; ADC + AAC,uDC + uAC, �̂�DC + �̂�AC) ≠ 0, (A1b)

R�̂�

(
�̂�DC + �̂�AC; ADC + AAC,uDC + uAC, �̂�DC + �̂�AC) ≠ 0, (A1c)

represent the energy present in the nonlinear approach at each time t for the aforementioned choice of solution. An
analogous procedure can be used to determine the energy captured by the linearised approach at each time t when using (5)
and (6). Subtraction of the latter and (A1) leads to the energy not captured by the linearised approach when A = A𝛿 =
ADC + AAC, u = u𝛿 = uDC + uAC and �̂� = �̂�𝛿 = �̂�DC + �̂�AC, namely

RA(t) = −∫Ωc

(
𝛾(uAC)t × (∇ × AAC) · (ADC + AAC)

)
dΩ, (A2a)

Ru(t) = ∫Ωc

(
𝝈

e(AAC) ∶ ∇(uDC + uAC)
)

dΩ − ∫
𝜕ΩN

c

(
(uDC + uAC) · 𝝈e(AAC)|||+𝜕Ωc

n
)

dS, (A2b)

R�̂�(t) = −∫supp(JAC)

(
((∇ × AAC) × JAC) · ∇(�̂�DC + �̂�AC)

)
dΩ. (A2c)

Applying the Cauchy-Schwartz inequality to each of these expressions, in turn, we find the following.

RA term

|RA(t)| ≤ ||||||𝛾(uAC)t
||||||L2(Ωc)

||∇ × AAC||L2(Ωc)
(||ADC||L2(Ωc) + ||AAC||L2(Ωc)

)
, (A3)

where ||u||2L2(Ωc)
∶= ∫Ωc

|u|2dΩ. It can be shown44

||ADC||L2(Ωc) ≤ C||∇ × ADC||L2(Ωc), ||AAC||L2(Ωc) ≤ C||∇ × AAC||L2(Ωc) (A4)

and || · ||L2(Ωc) ≤ |Ωc||| · ||L∞(Ωc) is well known, where |Ωc| defines the size of the domainΩc and ||u||L∞(Ωc) = supx∈Ωc
|u(x)|.

Thus, combining with (A3) and (A4) gives

|RA(t)| ≤ C||||||𝛾(uAC)t
||||||L∞(Ωc)

||∇ × AAC||L∞(Ωc)
(||∇ × ADC||L∞(Ωc) + ||∇ × AAC||L∞(Ωc)

)
. (A5)

Provided that ||∇ × AAC||L∞(Ωc) ≪ ||∇ × ADC||L∞(Ωc) for all time t, or equivalently ||BAC(t)||L∞(Ωc) ≪ ||BDC||L∞(Ωc),
we find |RA(t)| ≤ C||||||𝛾(uAC)t

||||||L∞(Ωc)
||BDC||2L∞(Ωc)

, (A6)

where C depends on the size of the domain Ωc.

Ru term
Following similar steps to above we find that|Ru(t)| ≤ ||∇ × AAC||2L2(Ωc)

(||∇uDC||L2(Ωc) + ||∇uAC||L2(Ωc)
)

+ ||∇ × AAC||2
L2(𝜕ΩN

c )
(||uDC||L2(𝜕ΩN

c ) + ||uAC||L2(𝜕ΩN
c )
)

≤ C
(||∇ × AAC||2L∞(Ωc)

(||∇uDC||L∞(Ωc) + ||∇uAC||L∞(Ωc)
)

+ ||∇ × AAC||2
L∞(𝜕ΩN

c )
(||uDC||L∞(𝜕ΩN

c ) + ||uAC||L∞(𝜕ΩN
c )
))

≤ C
(||BAC||2L∞(Ωc)

(||∇uDC||L∞(Ωc) + ||∇uAC||L∞(Ωc)
)

+ ||BAC||2
L∞(𝜕ΩN

c )
(||uDC||L∞(𝜕ΩN

c ) + ||uAC||L∞(𝜕ΩN
c )
))

, (A7)
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where C depends on the size of Ωc and 𝜕ΩN
c .

Rp̂ term
Finally, by applying similar steps and noting that ∇ × AAC = 𝜇0HAC in supp(JAC) we have

|R�̂�(t)| ≤||∇ × AAC||L2(supp(JAC))||JAC||L2(supp(JAC))
(||∇�̂�DC||L2(supp(JAC)) + ||∇�̂�AC||L2(supp(JAC))

)
≤𝜇0||HAC||L2(supp(JAC))||JAC||L2(supp(JAC))

(||∇�̂�DC||L2(supp(JAC)) + ||∇�̂�AC||L2(supp(JAC))
)

≤C𝜇0||HAC||L∞(supp(JAC))||JAC||L∞(supp(JAC))
(||∇�̂�DC||L∞(supp(JAC)) + ||∇�̂�AC||L∞(supp(JAC))

)
, (A8)

where C depends on the size of the gradient coils supp(JAC).


