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Abstract: We study the nonperturbative quantum evolution of the interacting O(N)

vector model at large-N , formulated on a spatial two-sphere, with time dependent couplings

which diverge at finite time. This model - the so-called “E-frame” theory, is related via

a conformal transformation to the interacting O(N) model in three dimensional global de

Sitter spacetime with time independent couplings. We show that with a purely quartic,

relevant deformation the quantum evolution of the E-frame model is regular even when the

classical theory is rendered singular at the end of time by the diverging coupling. Time

evolution drives the E-frame theory to the large-N Wilson-Fisher fixed point when the

classical coupling diverges. We study the quantum evolution numerically for a variety of

initial conditions and demonstrate the finiteness of the energy at the classical “end of time”.

With an additional (time dependent) mass deformation, quantum backreaction lowers the

mass, with a putative smooth time evolution only possible in the limit of infinite quartic

coupling. We discuss the relevance of these results for the resolution of crunch singularities

in AdS geometries dual to E-frame theories with a classical gravity dual.
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1 Introduction

Revealing possible mechanisms for resolving (spacelike) cosmological singularities in clas-

sical gravity is one of the major goals of any consistent microscopic framework for gravity.

This continues to be a challenge for descriptions of gravity involving the AdS/CFT cor-

respondence and holography where quantum gravity in asymptotically AdS spacetimes is

dual to a large-N field theory on the conformal boundary of such a spacetime [1–3].

Intriguingly, there exist several examples of asymptotically AdS backgrounds exhibiting

an FRW crunch singularity, dual to deformations of large-N CFTs placed in de Sitter

spacetime [4–12]. Such “crunching-AdS” geometries arise in de-Sitter-sliced, asymptotically

AdS spacetimes where the crunch singularity is cloaked behind a bulk horizon. Despite

superficial resemblance to the crunches in the interior of AdS black holes, the crunching

geometries in question are of a qualitatively distinct nature. They occur in globally defined

– 1 –



J
H
E
P
0
3
(
2
0
1
8
)
0
9
2

Figure 1. A depiction of an asymptotically globally AdS geometry, with (E-frame) time evolu-
tion ending in a crunch (blue), dual to a boundary CFT in global de Sitter space with relevant
deformations. The cone represents the horizon which only appears in the dS-sliced geometry.

asymptotically AdS geometries, wherein Hamiltonian evolution of the boundary QFT ends

at a singularity in finite time. At this “end of time”, the bulk crunch singularity meets

and engulfs the boundary. As emphasized in the works [9] and [10], this can be seen via

a simple “complementarity map” in the bulk which reduces to a conformal transformation

on the boundary. The transformation in question maps a CFT plus deformations on a

background de Sitter spacetime in d dimensions to the same CFT on Sd−1 ×Rτ , but with

time dependent deformation parameters:

LCFT +
∑

i

λiOi

∣∣∣∣∣
dSd

→ LCFT +
∑

i

λi

(cos τ)d−∆i
Oi

∣∣∣∣∣
Sd−1×Rτ

(1.1)

where ∆i are the conformal dimensions of operators Oi and the global de Sitter time t

related to conformal time as cos τ =
(
cosh t

R

)−1
.

For relevant deformations, the map (1.1) renders the classical theory singular at the end

of time τ = π
2 , when the corresponding couplings diverge. In cases where an appropriate

large-N limit exists, the theory on the static Einstein space Sd−1 × Rτ , henceforth called

the “E-frame” theory [9], is dual to gravity in asymptotically global AdSd+1 spacetime.

The appearance of a bulk crunch singularity may then be viewed as a singularity in the

time evolution of the boundary field theory driven by the divergent classical couplings.

Note that while the de Sitter evolution is perfectly smooth and well defined for all times,

evolution by the E-frame Hamiltonian is generically expected to be singular.

An important question then is whether, and under what circumstances, is the bulk

crunch singularity potentially resolvable within a consistent microscopic framework of the

bulk gravity theory. Various approaches towards answering this and similar questions

have been proposed and investigated [6, 7, 9, 10, 13–19] from both QFT and holographic

perpsectives. Holographic probes of such geometries and the associated bulk singularities

have also been considered in order to arrive at a precise interpretation of the singulari-

ties [11, 12, 20, 21], inspired by analogous investigations of the black hole singularity in

AdS/CFT [22–24].

– 2 –
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In this paper, we study the setup described above from a purely field theoretic stand-

point. In particular, we are interested in understanding whether a CFT with driven relevant

deformations of the kind shown in eq. (1.1) can have a smooth evolution towards the end of

time when the couplings diverge. We examine the interacting O(N) vector model in three

dimensions in the large-N limit, which is an exactly solvable theory, and also posesses a

classical, higher spin gravity dual [25–28]. The free theory has two relevant O(N)-singlet

deformations: a mass term which has conformal dimension ∆ = 1 and the quartic inter-

action with ∆ = 2. We consider both these deformations with the field theory on three

dimensional de Sitter spacetime (dS3), related by the conformal map (1.1) to the classically

singular E-frame description.

The large-N limit of the interacting O(N) model is controlled by a saddle point [29, 30]

which resums superdaisy/cactus diagrams. The saddle point conditions are nonlinear, self-

consistent equations which control the time evolution of the large-N field theory treated as

an initial value problem. We prepare the field theory in a time-independent, equilibrium

state on S2 for times τ < 0 and then subject the system to a “quench” by switching on

time dependent couplings for τ ≥ 0 as dictated by the E-frame Lagrangian (1.1). This

approach to large-N dynamics following a quench has been extensively used in a variety of

related physical situations (see e.g. [31–35]). Our main conclusions are:

• The theory with a purely quartic interaction (∆ = 2 in d = 3 and thus relevant),

where the renormalized mass of the theory is tuned to vanish, is non-conformal at

τ = 0, but subsequently driven to the large-N Wilson-Fisher critical point at τ = π
2 .

Since the theory is conformal at this point, it can be smoothly evolved through, even

though the classical Lagrangian is singular. We demonstrate this first for the theory

prepared in the vacuum state at τ = 0 and then more nontrivially, by numerical

evolution, in cases where the initial state is a finite energy excited configuration. In

the latter situation we show that E-frame energy per degree of freedom remains finite

throughout the quantum evolution, including at τ = π
2 . Specifically, the system is

gapped (on S2) and the gap remains finite in E-frame at all times. This is in stark

contrast to the energy of the classical system which necessarily diverges at τ = π
2 .

• The inclusion of a mass deformation in addition to the quartic deformation has a

significant effect. We find in this case that the large-N time evolution generically

drives the quantum fluctuations in the theory to reduce, but not completely cancel,

the magnitude of the effective mass in the de Sitter picture. This means that the

E-frame theory continues to be singular at τ = π
2 because the energy per degree of

freedom actually diverges at this time as ∼
(
π
2 − τ

)−2
, (equivalently, the gap diverges

with time) as would be expected from the classical Lagrangian (1.1) with a mass

deformation (∆ = 1 in d = 3). In the limit of infinite quartic coupling however, we

obtain numerical evidence that the effective mass is driven to zero by time evolution

in the quantum theory in de Sitter frame, suggesting a smooth time evolution of the

corresponding E-frame theory.
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• In both types of situations described above, we also consider initial conditions and

parameters which render the initial effective mass-squared of excitations sufficiently

negative so as to trigger instabilities. The nonperturbative resummation of quantum

effects incorporated within the large-N limit ensures that the growth of quantum

fluctuations backreacts on and stabilizes the system at late times, curing any putative

instabilities. In addition, the finite volume of the S2 precludes symmetry breaking

and thus the theory is always realized in an O(N)-symmetric stable phase.

One immediate inference following from these observations would be that relevant defor-

mations which drive a given CFT to a new fixed point should lead to smooth evolution of

the quantum theory in the E-frame description despite a diverging, time dependent micro-

scopic coupling. In particular, the dual gravitational description of such a situation should

be devoid of crunch singularities. We hasten to add that the O(N) model also has the

important feature that both its critical points (the free theory and the large-N version of

the Wilson-Fisher point) are endowed with an infinite set of higher spin conserved currents.

Therefore, both ingredients i.e. an approach to a conformal point and appearance of higher

spin currents may be necessary to avoid bulk crunch singularities within a dual gravita-

tional setting. This is of particular relevance to FRW crunch singularities occurring within

supergravity duals of large-N CFTs placed in de Sitter spacetime with relevant operators

turned on (and with a stable ground state for the resulting theory) [8, 11, 12]. Within

Einstein gravity, the theorem of Abbott and Coleman [36] implies that any deformation

of (dS-sliced) AdS will lead to a crunch singularity. This would also include any putative

deformation that drives the original CFT towards an IR fixed point. In such a situation

we would expect the bulk crunch to be resolved by the inclusion of higher spin or stringy

corrections.

The paper is organized as follows: we begin by laying out our conventions and notation

to set up the O(N) model in de Sitter spacetime, and its transformation to S2 × Rτ

or “E-frame”, in sections 2 and 3. In section 4 we review the large-N limit and write

down the ensuing saddle-point conditions as evolution equations in real time, suitable for

addressing initial value problems. This also includes a discussion of renormalization and

cutoff dependence which are relevant for numerical evolution of the system. Section 5 is

devoted to the detailed study of the massless theory with the quartic, relevant deformation.

Both analytic and numerical results are used to establish the smoothness of the time

evolution of this system in E-frame. In section 6, we turn to a detailed analysis of the

massive, interacting theory. In section 7 we verify that the evolution of the system (in the

de Sitter picture), with the initial conditions we employ, is consistent with an approach to

the standard Bunch-Davies vacuum at late times.

2 O(N) model on dS3

The O(N) vector model at large-N is exactly solvable. On R3, the theory exhibits two

critical points: the free fixed point in the UV and an IR fixed point which is the large-N

version of the Wilson-Fisher fixed point. We are interested in the dynamics of this theory

– 4 –
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in de Sitter spacetime in the spherical slicing or global coordinate system:

ds2 = −dt2 + R2 cosh2
(

t

R

)
dΩ2

2 . (2.1)

In conformal time, defined as,

dt = R cosh

(
t

R

)
dτ =⇒ cos τ =

1

cosh
(
t
R

) , (2.2)

the metric is conformal to the Einstein static universe (ESU) or S2 × Rτ :

ds2 =
R2

cos2 τ

(
−dτ2 + dΩ2

2

)
, −π

2
< τ <

π

2
. (2.3)

Our goal will be to understand the fate of real time dynamics of the O(N) model in the

conformal time or ESU picture which will be called the “E-frame”. The de Sitter metric

in E-frame (2.3), taken at face value, exhibits a divergent conformal factor at τ = ±π
2 . We

want to determine whether, and under what circumstances if any, the time evolution of

the interacting O(N) model treated as an initial value problem at τ = 0, can be continued

meaningfully to (and possibly, past) the “end of time” at τ = π
2 .

Our starting point is the interacting O(N) model defined on dS3 which will be called

the dS-frame picture. We consider the N -tuplet of scalars

Φ⃗ = (φ1,φ2 . . .φN ) , (2.4)

conformally coupled to the scalar curvature of a fixed background de Sitter spacetime in

2 + 1 dimensions in the global coordinate system (2.1). The O(N)-invariant Lagrangian

density for N conformally coupled scalars on this background with quartic interactions is

given by:

LdS3 =R2 cosh2
(

t

R

)
× (2.5)

[
1

2

(
∂tΦ⃗
)2

− 1

2
R−2 sech2

(
t

R

) (
∇S2 Φ⃗

)2
− 1

2

(
M2

0 + ξR
)
Φ⃗ · Φ⃗− λ

4N

(
Φ⃗ · Φ⃗

)2]
.

The conformal coupling ξ ≡ (d− 2)/4(d− 1) in d spacetime dimensions to the background

de Sitter scalar curvature R results in a constant shift of the bare mass M2
0 above:

ξR Φ⃗2 ≡ (d− 1)2 − 1

4R2
Φ⃗2 =

3

4R2
Φ⃗2 . (2.6)

In three dimensions, the quartic coupling has mass dimension one, and therefore there are

two tunable dimensionless parameters:

λ̃ = λ0R , M̃ = MrenR . (2.7)

Here Mren denotes the renormalized or physical mass. The relation between Mren and the

bare mass M0 will be made precise below. The coupling constant receives no divergent

renormalization in three dimensions. We will study the time evolution of this theory as an

initial value problem, by assuming that the de Sitter evolution switches on at t = 0 and

continues for all time t > 0.

– 5 –
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3 The “E-frame” model on S2 × Rτ

Since the global de Sitter metric is conformal to S2 ×Rτ according to eq. (2.3), the O(N)

model on the fixed de Sitter background can be mapped by a conformal rescaling to a

corresponding theory with time dependent couplings on S2 × Rτ :

cosh

(
t

R

)
≡ 1

cos τ
, Φ⃗E =

Φ⃗√
cos τ

. (3.1)

We refer to this as the E-frame theory and the associated (bare) Lagrangian density is (up

to certain boundary terms),

LRτ×S2 =
R3

2

[
R−2

(
∂τ Φ⃗E

)2
− R−2

(
∇S2 Φ⃗E

)2
(3.2)

−
(
M(τ)2 +

1

4R2

)
Φ⃗E · Φ⃗E − λ(τ)

4N

(
Φ⃗E · Φ⃗E

)2]

M(τ)2 ≡ M2
0

cos2 τ
, λ(τ) ≡ λ0

cos τ
.

When the mass and the quartic interaction are turned off, this yields a conformally coupled,

free massless theory on S2 × Rτ . The map takes the infinite de Sitter time evolution and

places it within a finite time interval in E-frame, τ ∈
(
−π

2 ,
π
2

)
. The dS-frame and E-frame

classical actions are equal provided we include the contribution from a total derivative in

the E-frame action:

Lbdry
Rτ×S2 = − R

4

d

dτ

(
Φ⃗E · Φ⃗E tan τ

)
. (3.3)

This term yields contributions from the initial time and the end of time at τ = π
2 which are

non-zero and potentially divergent unless the E-frame fields happen to vanish sufficiently

rapidly at the end of time.

The main question that we want to address in this paper is whether the E-frame theory,

with couplings diverging at finite time, has a well-defined evolution that could, in principle,

be continued past the end of time at τ = π
2 .

4 The large-N limit

The large-N limit of the interacting O(N) vector model on R3 describes a flow between

the UV free fixed point and an IR Gaussian fixed point where the operator

σ ≡ 1

N
Φ⃗ · Φ⃗ (4.1)

acquires nontrivial scaling dimension∆ = 2. On Rτ×S2 or equivalently, de Sitter spacetime

in global slicing, the finite spatial volume provides a spatial IR cutoff. However, the de

Sitter expansion also induces a red-shifting of the momentum modes, which manifests itself

as a time dependent coupling (3.2) in the E-frame. In particular, the E-frame coupling

λ(τ) diverges at finite time, arguably forcing the theory towards the strong coupling IR

fixed point. In order to analyze this possibility, we first implement the large-N limit in

– 6 –
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the E-frame description. As usual, the limit is implemented via a saddle-point of the path

integral and turns out to be equivalent to a mean field approximation.

An important aspect of formulating the theory in global dS3 or on Rτ × S2, is that we

are obliged to only focus attention on the manifestly O(N)-symmetric phase of the theory.

Symmetry breaking is precluded in a finite spatial volume even at large N (see e.g. [37] for

a related discussion). In order to discuss the large-N limit in E-frame, we introduce the

E-frame composite operator

σE ≡ 1

N
Φ⃗E · Φ⃗E . (4.2)

As is standard, the bare Lagrangian for the O(N) model on Rτ×S2 can be then rewritten in

terms of the fundamental scalars ΦE and the composite operator σE where the relation (4.2)

is implemented by a Lagrange multiplier field h:

LRτ×S2 =
R3

2

[
Φ⃗E ·

(
−R−2∂2

τ + R−2∇2 − M(τ)2 − 1

4R2
− h

)
Φ⃗E (4.3)

− Nλ(τ)

4
σ2
E + NhσE

]
.

Performing the Gaussian path integral over the elementary scalars Φ⃗E , we formally obtain

(in Lorentzian signature) the large-N effective action for the composite field σE ,

SRτ×S2 [σE ] = i
N

2
Tr ln

(
R−2! + M(τ)2 +

1

4R2
+ h

)
+ (4.4)

+N

∫
dτ d2Ω

R3

2

(
hσE − λ(τ)

4
σ2
E

)
,

where ! ≡ ∂2
τ − ∇2. Extremizing with respect to the fields h and σE , we arrive at the

large-N saddle point conditions:

⟨h⟩ =
λ(τ)

2
⟨σE⟩bare (4.5)

R3

2
⟨σE⟩bare = − i

2

1

Vol
Tr

1

R−2! + M(τ)2 + 1
4R2 + ⟨h⟩

.

This is the so-called gap equation for the mean field ⟨σE⟩, but now within a time dependent

setting. In a rotationally invariant initial state, ⟨σE⟩ can only depend on time. The formal

saddle point conditions can be written in the form of a well-defined initial value problem.

This is easy to make precise in the canonical quantization approach since the dynamics

about the large-N saddle point is Gaussian. In particular, we first expand the elementary

fields Φ⃗E in spherical harmonics:

ΦI
E(Ω, τ) ≡ 1√

R

∞∑

ℓ=0

ℓ∑

m=−ℓ

[
aIℓm Y m

ℓ (Ω) Uℓ(τ) + aI †ℓm Y m ∗
ℓ (Ω) U∗

ℓ (τ)
]
, (4.6)

[aIℓm , aJ †
ℓ′m′ ] = δIJ δℓ, ℓ′ δm,m′ I, J = 1, 2 . . . N .

– 7 –
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The mode functions Uℓ(τ) satisfy the equation of motion for each harmonic labelled by the

integer ℓ,

Üℓ(τ) +

[(
ℓ+

1

2

)2

+ R2M(τ)2 +
1

2
λ(τ)R2 ⟨σE⟩bare

]
Uℓ(τ) = 0 , (4.7)

subject to a normalization condition that fixes the Wronskian according to,

Uℓ(τ) U̇
∗
ℓ (τ) − U∗

ℓ (τ) U̇ℓ(τ) = i . (4.8)

It is then easy to see that each ΦI
E and its conjugate momentum ΠI ≡ RΦ̇I

E satisfies the

equal time canonical commutation relation,
[
ΦI
E(τ, Ω), Π

J(τ, Ω′)
]
= i δIJ δ(2)

(
Ω − Ω′) . (4.9)

Now, we can write down an explicit representation for the mean field ⟨σE⟩bare and subse-

quently understand how to obtain the renormalized equations of motion. Our focus will

be on an initial value problem wherein the system is prepared in the static, equilibrium

state of a free, time independent Hamiltonian for all times τ < 0 and the time evolution of

the coupling constants are switched on continuously at τ = 0. Therefore, for all τ < 0, the

mode functions Uℓ(τ) are simple exponentials, their normalization fixed by the condition

on the Wronskian above:

Uℓ(τ < 0) =
e−iRωℓτ

√
2Rωℓ

, ωℓ =

√(
ℓ+

1

2

)2

R−2 + M2
ren , (4.10)

Uℓ(0) =
1√
2Rωℓ

, U̇ℓ(0) = −i

√
Rωℓ

2
,

where Mren is the renormalized mass at τ = 0, to be defined below. The operators

{aℓm, a†ℓm} therefore refer to the oscillator states of the τ < 0 Hamiltonian. Taking the

initial state to be an equilibrium state (vacuum or thermal) of this Hamiltonian, the ex-

pression for the large-N mean field becomes,

⟨σE⟩bare =
1

4πR

ℓmax∑

ℓ=0

(2ℓ+ 1) |Uℓ(τ)|2 (2nℓ + 1) , (4.11)

⟨aI †ℓm aJℓ′m′⟩ = nℓ δ
IJ δℓ,ℓ′ δm,m′ ,

where ℓmax is a UV cutoff on the mode number. In an initially equilibrium thermal state

the occupations numbers nℓ are given by the Bose-Einstein distribution function:

nℓ =
1

eβωℓ − 1
. (4.12)

4.1 Renormalization

The bare mean field contains an ultraviolet divergence as it is an expectation value of

a composite operator. The nature of the divergence is clear at τ = 0, when the mode

functions are pure exponentials:

⟨σE⟩bare|τ=0 =
1

4πR

ℓmax∑

ℓ=0

(2ℓ+ 1)

2Rωℓ
(2nℓ + 1) ∼ ℓmax

4πR
. (4.13)

– 8 –
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The equation of motion (4.7), must necessarily be finite, which means that the left hand

side of the equation written in terms of bare quantities, must equal the corresponding

expression written in terms of renormalised quantities:

(RM0)2

cos2 τ
+

λ0

2 cos τ
⟨σE⟩bare(τ) =

(RMren)2

cos2 τ
+

λ0

2 cos τ
⟨σE⟩ren(τ) . (4.14)

At τ = 0, the (divergent) bare mean field can be absorbed into a shift of the bare mass,

M2
ren = M2

0 +
λ0

2
⟨σE⟩bare|τ=0 , (4.15)

so that the renormalized mean field is trivially vanishing at τ = 0:

⟨σE⟩ren(0) = 0 . (4.16)

We should now be able to write down the renormalized quantities for all times τ ̸= 0 and

the equations of motion in terms of these. The subtractions performed at τ = 0 essentially

suffice to determine the finite, renormalized quantities for all times. However, the way this

is realized is slightly subtle due to the time dependent couplings in E-frame or equivalently,

the de Sitter expansion. From a de Sitter frame perspective, the UV cutoff in momentum

space must be imposed at a fixed physical momentum so that:

ℓmax

cosh
(
t
R

) = ℓmax cos τ = ΛR , (4.17)

where Λ is a time independent UV scale which must be taken to infinity (ΛR → ∞) after

necessary subtractions have been performed.

E-frame equations of motion. The time evolution of the large-N theory in E-frame

is thus determined by the following set of equations expressed in terms of renormalized

quantities:

Üℓ(τ) +

[(
ℓ+

1

2

)2

+
(MrenR)2

cos2 τ
+

λ0R2

2 cos τ
⟨σE⟩ren(τ)

]
Uℓ(τ) = 0 , (4.18)

⟨σE⟩ren(τ) =
1

4πR

ΛR/ cos τ∑

ℓ=0

(2ℓ+ 1)

[
|Uℓ(τ)|2 coth

(
βωℓ

2

)
− 1

2Rωℓ

]

Uℓ(0) =
1√
2Rωℓ

, U̇ℓ(0) = −i

√
Rωℓ

2
.

This means that the number of spherical harmonic modes to be kept in the system grows

with time (exponentially in de Sitter time), which is due to the red-shifting of physical

momentum scales in de Sitter spacetime. In E-frame this is reflected by the unbounded

growth of the time dependent mass M2(τ) = M2
ren/ cos

2 τ as τ → π
2 causing all harmonics

with ℓ < M(τ) to freeze out, so that ℓmax must continually be updated with time.
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dS-frame equations of motion. The large-N saddle point conditions in dS-frame can

be directly obtained using the same steps outlined above. We can also arrive at the same,

by undoing the conformal transformations that took us to the E-frame, and introducing

the de Sitter space mode functions

cos τ =
1

cosh
(
t
R

) , Vℓ(t) =
Uℓ√

cosh
(
t
R

) , ⟨σdS⟩ =
⟨σE⟩

cosh
(
t
R

) , (4.19)

obtained by solving the coupled, nonlinear system:

V̈ℓ +
2

R
tanh

(
t

R

)
V̇ℓ +

(
ℓ(ℓ+ 1)

R2 cosh2
(
t
R

) + M2
ren +

3

4R2
+

λ0

2
⟨σdS⟩ren

)
Vℓ = 0 ,

⟨σdS⟩ren =
1

4πR

Λ cosh(t/R)∑

ℓ=0

(2ℓ+ 1)

[
|Vℓ(t)|2 coth

(
βωℓ

2

)
− 1

2Rωℓ cosh
(
t
R

)
]
, (4.20)

Vℓ(0) =
1√
2Rωℓ

, V̇ℓ(0) = −i

√
ωℓ

2R
.

E-frame energy. The expectation value of the energy of the system in E-frame can also

be obtained straightforwardly. Since the large-N limit is equivalent to mean field theory

and is Gaussian, the large-N Hamiltonian (in E-frame) is

HE =

∫
d2Ω

[
1

2R2
Π⃗2 +

1

2

(
∇S2Φ⃗E

)2
+

1

2

(
M2

effR
2 +

1

4

)
Φ⃗E · Φ⃗E

]
(4.21)

where

Π⃗ = R
˙⃗
Φ , M2

eff =
M2

ren

cos2 τ
+

λ0

2 cos τ
⟨σE⟩ren . (4.22)

Using the expansion of the field in terms of spherical harmonics and the fact that the

system is prepared in an initial equilibrium state, we find

E =
1

N
⟨HE⟩ (4.23)

=
∞∑

ℓ=0

(2ℓ+ 1)

2R

[∣∣∣U̇ℓ

∣∣∣
2
+

((
ℓ+

1

2

)2

+ M2
eff(τ)R

2

)
|Uℓ|2

]
coth

(
βωℓ

2

)
.

We can use this to define the average energy per harmonic:

E =
∞∑

ℓ=0

(2ℓ+ 1) Eℓ . (4.24)

An important point here is that the energy includes the zero-point fluctuations of each mode

and therefore is formally divergent. Later we will be interested in the total renormalized

energy.
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5 The massless theory: Mren = 0

We first discuss the theory with vanishing renormalized mass Mren = 0. In this case, we

may consider two separate situations:

1. ⟨σE⟩ren(0) = 0: when the renormalized mass vanishes and the mean field is also

vanishing in the initial state, the time evolution of the large-N saddle point is trivial.

It is straightforward to see that the self-consistent, renormalized gap equation is

solved by

⟨σE⟩ren(τ) = 0 , Uℓ(τ) =
e−iRωℓτ

√
2Rωℓ

. (5.1)

Although the mean field does not evolve with time, its correlations functions do. This

is one of the points we would like to address below, in order to understand whether

the E-frame theory is driven to strong coupling at late times.

2. ⟨σE⟩ren(0) ̸= 0: this is an interesting situation wherein the initial condition (temper-

ature) and/or the renormalization scheme is chosen such that the renormalized mean

field is non-vanishing at t = τ = 0. In the ESU frame, its effect on the equations

of motion is to introduce a time dependent mass term ∼ 1/(cos τ) which diverges at

τ = π
2 . Explicitly, we have (following eq. (4.18)),

λ0

cos τ
⟨σE⟩ren(τ) (5.2)

=
λ0

cos τ

[
1

4πR

ℓmax∑

ℓ=0

(2ℓ+ 1)

(
|Uℓ|2 coth

(
βωℓ

2

)
− 1

2Rωℓ

)
+ σ0

]
.

Physically, there are two ways to envisage a non-zero mean field ⟨σE⟩ at τ = 0. The

first is any non-zero temperature β−1 ̸= 0, and the second is a non-zero constant

value for σ0 due to an external source for σE , which is turned off at τ = 0. As we

have explained earlier, ℓmax ≃ ΛR/ cos τ , and formally the cutoff ΛR must be taken

to infinity. The large-N saddle point will then exhibit nontrivial evolution towards

late times which we will try to understand both numerically and analytically.

5.1 The massless “critical” theory

We have noted that in the theory with Mren = 0, the large-N mean field vanishes at all

times if it vanishes at the initial time τ = 0. Despite this, fluctuations around the saddle

point will exhibit nontrivial time dependence in correlation functions of the composite field

σE . In order to compute the two point correlator of σE about the trivial saddle ⟨σE⟩ = 0,

we expand the effective action for σE about this large-N saddle point to quadratic order:

Seff [σE ] = Seff [0] − i
N

16
Tr [G ◦ (λσE) ◦G ◦ (λσE)] + N

∫
dτ d2Ω

R3

4
λ(τ)σ2

E ,

G =
1

R−2!+ 1
4R2

. (5.3)
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Since λ depends on time, it is more convenient to define a rescaled field

σ̃E = λ(τ)σE , λ(τ) =
λ0

cos τ
. (5.4)

The effective action for σ̃E then has the form:

Seff [σ̃E ] = Seff [0] − i
N

16
Tr [G ◦ σ̃E ◦G ◦ σ̃E ] + N

∫
dτ d2Ω

R3

4
λ(τ)−1σ̃2

E . (5.5)

As τ approaches π
2 , the second term is vanishingly small, and the propagator for σ̃E is

determined by the first term,

S(2) |τ→π
2
= −i

N

16
R6
∫

d3x1

∫
d3x2 σ̃E(x1)G(x1, x2)

2 σ̃E(x1) , (5.6)

where x1,2 = (τ1,2, Ω1,2) and, crucially, G is the propagator for a conformally coupled

massless scalar on S2 × Rτ . This means that the late time two-point function of σ̃E can

be determined from (5.6) by conformally transforming S2 × Rτ (in Euclidean signature)

to R3. Performing the calculation on R3 by Fourier transforming to momentum space, we

then obtain the result on S2 × Rτ :

⟨σE(τ1,Ω1)σE(τ2,Ω2)⟩ |τ1,2→π
2
∼ R−4

N (λ0R)2
cos(τ1) cos(τ2)

[cos(τ1 − τ2) − cos(θ1 − θ2)]
2 . (5.7)

For sufficiently small proper separations, the correlator is non-vanishing as τ1,2 approach

the end of time, and scales as expected for an operator of dimension 2. This is the well

known scaling of the two point function of σE at the large-N Wilson-Fisher fixed point in

flat space. We therefore conclude that the massless theory on dS3 evolves to this nontrivial

conformal fixed point at late times. We note that at any other time, the theory is not

conformal, since the correlator for σ̃E will involve λ0 as an explicit scale (in addition to R).

5.2 The massless theory with ⟨σE⟩ ̸= 0

We now consider an initial state with non-zero mean field. As indicated above, this may

arise due to a thermally excited initial state or through a classical external source for σE
which is turned off at τ = 0, and the system then allowed to evolve.

5.2.1 Noninteracting classical picture

Let us first consider the classical equations of motion, without the quantum contributions

to the mean field. This means that the (quantum) interactions between the modes are set

to zero. In this case the (classical) modes U cl
ℓ would obey the equations,

Ü cl
ℓ +

[(
ℓ +

1

2

)2

+
λ0σ0R2

2 cos τ

]
U cl
ℓ = 0 . (5.8)

This is a Schrödinger-like equation with a potential diverging at τ = ±π
2 . In the vicinity

of the singularity at τ = π
2 , we have two independent behaviours for any fixed ℓ:

U cl
ℓ ≃ Aℓ

[(π
2
− τ
)
− 1

4
λ0σ0R

2
(π
2
− τ
)2

+ . . .

]
(5.9)

+Bℓ

[
1 − 1

2
λ0σ0R

2
(π
2
− τ
)
ln
(π
2
− τ
)
+ . . .

]
,
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where (Aℓ, Bℓ) are integration constants. Although both solutions are smooth near τ = π
2 ,

the expectation value of the energy per mode in the classical approximation (again ignoring

quantum contributions to the mean field) generically diverges in this limit:

Ecl
ℓ =

1

2R

(
|U̇ cl

ℓ |2 +

(
λ0σ0R2

2 cos τ
+

(
ℓ+

1

2

)2
)∣∣∣U cl

ℓ

∣∣∣
2
)
coth

(
βωℓ

2

)
(5.10)

∼ |Bℓ|2
π
2 − τ

.

Although there are fine tuned initial conditions for which the classical energy per mode

remains finite (those which correspond to Bℓ = 0 at late time), generically the divergence of

the effective mass forces the E-frame energies to diverge at the classical level. We identify

this as a singularity in the evolution of the classical field theory.

5.2.2 The quantum evolution

Inclusion of the quantum fluctuations and self-consistently solving the large-N saddle point

equations reveals dramatically different time evolution in the full theory. We solve the

nonlinear system (4.18) with renormalized mean field given by eq. (5.2), allowing for a

non-zero classical initial expectation value. Interestingly, σ0 can also be taken negative,

and so we will explore the two cases σ0 > 0 and σ0 < 0 separately.

Numerical approach. Numerically, it turns out to be convenient to solve the sys-

tem (4.18) in de Sitter time using the corresponding equations of motion (4.20). The

classical background σ0 for the mean field appears in the de Sitter equations of motion via

the replacement:

⟨σdS⟩ren → ⟨σdS⟩ren +
σ0

cosh
(
t
R

) , ⟨σE⟩ren =
⟨σdS⟩ren
cos τ

. (5.11)

In contrast to E-frame equations where σ0 introduces a diverging effective mass, the

late time contribution from σ0 decays exponentially in de Sitter time. We have found

numerical errors to be under better control in the latter setting. The de Sitter solutions

can then be unambiguously transformed to E-frame. The main drawback of the dS-frame

numerical evolution is that the UV cutoff on the spherical harmonic mode number must

scale exponentially with time,1

ℓmax ≫ cosh

(
t

R

)
, (5.12)

in order to avoid spurious cutoff-dependent unphysical results. In particular, this means

that the number of modes we need to track increases exponentially with time and therefore

limits how far we can follow the numerical evolution. In our numerical calculations we have

used ℓmax between 600−800, and carried out numerical evolution up to times tmax/R ≈ 4.5

which corresponds to an ESU time ∼ τmax ≈ π
2 −0.02. We also note that at each time step

the value of a mode function Uℓ with given ℓ, requires knowledge of all the modes at the

previous time step, due to the nonlinearity implicit in the large-N resummation.

1In E-frame the corresponding scaling is a power law at late times, ℓmax ≫
(
π
2 − τ

)−1
.
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Figure 2. Left : the evolution of M2
eff(τ) for 0 < τ < π

2 in the interacting theory (solid blue) with
λ0 = 40π and λ0σ0 = 0.2. For comparison we also show the classical (divergent) effective mass on
the same plot. Right : the evolution of effective mass for three different choices of λ0 with initial
condition λ0σ0 = 0.2.

Positive σ0. The renormalized mean field has two parts, one classical and one quantum:

⟨σE⟩ren = σ0 + σqu , σqu =
1

4πR

ℓmax∑

ℓ=0

(2ℓ+ 1)

(
|Uℓ|2coth

(
βωℓ

2

)
− 1

2Rωℓ

)
. (5.13)

At zero temperature β−1 = 0, and at τ = 0, the quantum portion σqu is vanishing. For

early times and for small enough λ0, we can ignore the effect of σqu on the evolution of the

system. As the (classical) effective mass ∼ λ0σ0/ cos τ grows with time, the magnitudes

of the mode functions |Uℓ| decrease, driving σqu to negative values. This has the effect

of reducing the effective mass. When backreaction from σqu becomes appreciable and the

system enters the nonlinear regime, the evolution must be followed numerically. Figure 2

shows the evolution of the effective mass:

M2
eff(τ) =

λ0

2 cos τ
(σqu + σ0) , (5.14)

which remains finite as τ approaches π
2 even though the classical effective mass squared

= λ0σ0/(2 cos τ) diverges in this limit. This means that σqu is negative, and at late times,

σqu|τ→π
2
≃ −σ0 + σ1

(π
2
− τ
)
, (5.15)

for some positive constant σ1. We can go a step further, since the numerical results show

that M2
eff flattens out and remains approximately constant for all time. This is already

evident at λ0 = 80π when M2
eff departs by less than 10% from its initial value. The

approximate constancy of M2
eff at strong coupling immediately implies,

σqu |λ0R≫1 ≈ −σ0 + σ0 cos τ , (5.16)

and the effective mass remains constant, after very early time transients. We have verified

numerically that this is a very good approximation to the time dependence of σqu at strong

coupling. For general values of λ0 the finiteness of M2
eff(τ) is ensured by the incorporation
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Figure 3. The energy per harmonic Eℓ divided by the initial frequency ωℓ, or the occupation
number per mode as a function of τ for λ0 = 40π and λ0σ0 = 0.2.

of the quantum fluctuations into the mean field and the value of the mass at late times is

a function of the interaction strength λ0 and the initial VEV σ0 of the mean field,

lim
τ→π

2

M2
eff(τ) = M2

final M2
final = M2

final (λ0R; σ0R) . (5.17)

Since the effective mass squared approaches a constant at the end of time, this means that

the modes Uℓ behave like free field modes with fixed finite mass. Therefore, at late times,

the energy per mode also approaches a constant:

Eℓ →
1

2R

[
|U̇ℓ|2 +

((
ℓ+

1

2

)2

+M2
finalR

2

)
|Uℓ|2

]
. (5.18)

Figure 3 shows the evolution of the energy for a few harmonics. Our main observation is

that the energy of each mode approaches a finite constant at late time. This is important

because it implies that the evolution of the modes is smooth at τ = π
2 . We can be more

precise about the correlators of the theory at this point. Since the masses of the modes

are finite, the analysis in section 5.1 for the two-point function of σE can be repeated,

with the only difference being that the full Green’s function G for each of the elementary

scalars Φi is that of a massive scalar with mass M2
final given by G ∼

(
R−2! + M2

final

)−1
,

while the propagator for the field σ̃E at τ ≈ π
2 is determined by (5.6). In the UV i.e.

for proper separations smaller than M−1
final this will yield the same scaling as the large-N

Wilson-Fisher fixed point. We can thus view the late time theory as a finite energy excited

state of the Wilson-Fisher point where the fluctuations propagate with a finite effective

dressed mass M2
final.

5.2.3 Total renormalized energy

Although we have shown that the individual modes only acquire finite energy in the E-

frame picture, we have not discussed the total energy which is formally UV divergent. It

turns out to be useful to rewrite the energy in a slightly different form using the equations

of motion:

E =
1

R

ℓmax∑

ℓ=0

(2ℓ+ 1)

[
1

4

d2|Uℓ|2

dτ2
+

((
ℓ+

1

2

)2

+ M2
eff(τ)R

2

)
|Uℓ|2

]
coth

(
βωℓ

2

)
. (5.19)
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We have traded the kinetic term for a total derivative using the equation of motion, and

in the process, have doubled the quadratic potential contribution. The advantage of this

formula for the total energy is that the first term (after summing over ℓ) is UV finite, and

all UV divergences originate from the second term. The large ℓ behaviour of the summand

can be deduced by assuming a WKB form for the high-ℓ modes:

Uℓ(τ) =
e−i

∫ τ ϖℓ(τ ′)

√
2ϖℓ(τ)

, ϖℓ(τ) =

√(
ℓ+

1

2

)2

+M2
eff(τ)R

2 +
3ϖ̇2

4ϖ2
− ϖ̈

2ϖ
. (5.20)

Performing a systematic large-ℓ expansion, we find that

(2ℓ+ 1)

4

d2|Uℓ|2

dτ2

∣∣∣∣
ℓ→∞

≃ R2

8ℓ2
d2M2

eff

dτ2
, (5.21)

which results in a UV finite sum, and

(2ℓ+ 1)

((
ℓ+

1

2

)2

+ M2
effR

2

)
|Uℓ|2

∣∣∣∣∣
ℓ→∞

≃
(
ℓ+

1

2

)2

+
1

2
M2

effR
2 , (5.22)

which leads to a UV divergent sum. In order to define a renormalization or subtraction

scheme, we first note that the bare expression for the energy depends on expectation values

of composite operators:

NE =

∫
d2Ω

[
1

2
⟨ ˙⃗Φ2

E⟩bare +
1

2

〈
∇S2Φ⃗E ·∇S2Φ⃗E

〉

bare
+

1

2

(
R2M2

eff +
1

4

)
⟨Φ⃗2

E⟩bare
]
.

The kinetic energy can be rewritten using the equations of motion, as we have done above

in terms of the mode functions:

˙⃗
Φ2
E =

1

2

d2 Φ⃗2
E

dτ2
+ ∇S2Φ⃗E ·∇S2Φ⃗E +

(
R2M2

eff +
1

4

)
Φ⃗2
E . (5.23)

Therefore the renormalized energy can be defined via the following renormalized expecta-

tion values:

1

N
⟨Φ⃗2

E⟩ren = ⟨σE⟩ren =
1

4πR

ℓmax∑

ℓ=0

(2ℓ+ 1)

[
|Uℓ|2coth

(
βωℓ

2

)
− 1

2Rωℓ

]
(5.24)

1

N
⟨∇Φ⃗E ·∇Φ⃗E⟩ren =

1

4πR

ℓmax∑

ℓ=0

(2ℓ+ 1)ℓ(ℓ+ 1)

[
|Uℓ|2coth

(
βωℓ

2

)
− 1

2Rωℓ

]

− ℓmax

8π

(
M2

ren − M2
eff(τ)

)
.

For the finite portion of the sum, the order of the time derivatives and ℓ-sums can be

exchanged and we obtain a compact expression for the total renormalized energy:

Eren = π
d2

dτ2
⟨σE⟩ren − ℓmax

2

(
M2

ren − M2
eff(τ)

)
(5.25)

+R−1
ℓmax∑

ℓ=0

(2ℓ+ 1)

((
ℓ+

1

2

)2

+ R2M2
eff(τ)

)[
|Uℓ|2 coth

(
βωℓ

2

)
− 1

2Rωℓ

]
.
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Figure 4. The change in the total renormalized energy as a function of τ for λ0 = 16π and
λ0σ0 = 0.2. The scale of the oscillations appear much larger than or comparable to the mean value.

The cutoff ℓmax must be sufficiently large compared to RMeff(τ). In the dS-frame, the

cutoff is naturally imposed at fixed physical momentum Λ = ℓmax/ cosh τ , so that ℓmax

must scale appropriately with time. The quantum evolution of the system ensures that the

total renormalized energy is finite at all times since the energy deposited in each harmonic

remains finite. This is shown explicitly in figure 4 for the theory with λ0 = 16π and

λ0σ0 = 0.2. The numerical results show significant oscillations on short time scales whose

origin is in the discretization errors inherent in the time evolution.

5.2.4 Negative σ0

It is interesting to analyze a situation where σ0 is negative. The effective mass-squared is

then initially negative. In this case we characterize the initial value problem as follows.

We define σ0(τ) as:

σ0(τ) = |σ0|Θ(−τ) − |σ0|Θ(τ) . (5.26)

This choice is necessary in order to have a well defined initial value problem, so that the

system is prepared in an equilibrium, stable state for τ < 0. In particular, the initial state

corresponds to a free field theory with a positive effective mass-squared for all fluctuations:

M2
eff(τ < 0) =

1

2
λ0|σ0| . (5.27)

At τ = 0, the time dependence in the couplings is switched on, along with a simultaneous

sign flip in σ0:

M2
eff(τ > 0) =

λ0

2 cos τ
(−|σ0| + σqu) . (5.28)

Without any interactions, or incorporation of quantum fluctuations, a large enough neg-

ative (growing) mass-squared would lead to growth of the modes at early times. A point

to note is that even in the non-interacting theory (i.e. σqu = 0), the modes do not grow

without bound. This is due to the 1/ cos τ time dependence of the negative mass-squared.

As in the positive σ0 situation, it leads to regular behaviour (5.9) for classical solutions

at τ = π
2 . However, if the modes followed classical behaviour at all times, the energy per

mode would diverge (to negative infinity) as eq. (5.10).
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Figure 5. Left : the effective mass squared starts off at a negative value (= −0.5) at τ = 0, but
rapidly saturates to a positive value ≈ 0.5 at large values of the coupling λ0 = 40π. Right : for the
same initial conditions are shown the evolution of energy per mode for three different ℓ harmonics.

In the interacting theory, the initial growth of quantum fluctuations backreacts on

the system through the mean field σqu. It is a priori not obvious that this growth in

quantum fluctuations will be sufficient to cancel the (1/ cos τ) dependence of the classical,

negative mass-squared. When the initial state is prepared at zero temperature, β−1 = 0,

the renormalized mean field σqu is vanishing. The equation of motion for any given mode,

Üℓ +

[(
ℓ+

1

2

)2

+ M2
eff(τ)R

2

]
Uℓ = 0 , (5.29)

suggests that when M2
eff is sufficiently negative for a fixed (low) ℓ, at early times the mode

will grow. This in turn will cause the quantum contribution σqu to the mean field to grow

to positive values. Whether the growth is sufficient to offset the time dependence of the

(negative) classical piece in M2
eff , can be understood numerically.

Figure 5 shows the numerical results for M2
eff(τ) with λ0 = 40π and λ0|σ0| = 1, for

which the ℓ = 0 harmonic starts off unstable at τ = 0. Due to the large value of the

coupling, we see rapid growth of M2
eff to positive values saturating at M2

eff ≈ 0.5:

σqu |τ→π
2
≈ |σ0|

(
1 +

(π
2
− τ
))

. (5.30)

In all cases we see a finite amount of energy deposited in each mode, consistent with a

smooth evolution of the system towards the end of time at τ = π
2 .

A noteworthy point here is that although the effective mass starts off negative, there

is no symmetry breaking and consequently there are no Goldstone bosons as the system is

in a finite volume.

5.3 Discussion and comparison with classical theory

The results of the quantum large-N evolution of the system are dramatically different from

pure classical field theory even after interactions are switched on in the classical system.

To make the comparison explicit, let us consider the classical interacting theory and in

particular, focus on the classical dynamics of the zero mode ϕ(τ) of one of the N -tuplet of
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Figure 6. The classical field evolves smoothly towards τ = π
2 whilst the energy diverges at this

time. The trajectory shown is for σ0 = 0.1, λ0 = 1, ϕ(0) = 0 and ϕ′(0) = 1.

scalars in E-frame (setting all other fields to zero consistently, and performing a rescaling

ϕ →
√
Nϕ):

Lcl =
1

2R2

(
ϕ̇2 − 1

4
ϕ2 − λ0σ0R2

2 cos τ
ϕ2 − λ0R2

4 cos τ
ϕ4

)
. (5.31)

The equation of motion for the driven system,

ϕ̈ +

(
1

4
+

λ0R2

2 cos τ

(
σ0 + ϕ2

))
ϕ = 0 , (5.32)

describes the motion of a particle in a time dependent quartic potential. The evolution of

ϕ(τ) is smooth, approaching a constant at τ = π
2 . The energy, on the other hand, diverges

(figure 6) as
(
π
2 − τ

)−1
. When σ0 is negative, we have an essentially identical situation.

In this case the energy diverges generically to either positive or negative infinity, and for a

sufficiently fine-tuned initial condition it can approach a finite value at τ = π
2 .

In the quantum (large-N) theory, ϕ2 is replaced by the quantum mean field σqu which

receives contributions from an infinite number of degrees of freedom. The coupled mode

equations then show that quantum fluctuations decrease from their initial value at τ = 0,

and the decrease is sufficiently rapid (see e.g. eq. (5.16)) to offset the putative divergence

in the classical couplings, resulting in a finite effective mass-squared M2
eff(τ). This ensures

that the energy per mode remains finite at the end of the time evolution. For negative σ0,

the quantum contributions increase rapidly with time and saturate to the positive value

given by |σ0|, yielding a finite positive M2
eff(τ) at late time. In particular, this endpoint is

a self-consistent solution to the field equations.

6 The massive case: Mren ̸= 0

The evolution of the system with a non-zero bare mass can be expected to be very different

to the critical case. This is because the effective mass squared has a classical piece that

diverges quadratically as τ approaches π
2 . The classical wave equation with ⟨σE⟩ren set to

zero (or noninteracting situation) is,

Ü cl
ℓ (τ) +

[(
ℓ+

1

2

)2

+
M2

0R
2

cos2 τ

]
U cl
ℓ (τ) = 0 . (6.1)
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The free mode equation can be solved analytically in terms of Legendre polynomials. The

divergence of the Schrödinger potential forces solutions U cl
ℓ (τ) for any finite ℓ to display

non-analytic behaviour at late times,

U cl
ℓ (τ) →

√
π

2
− τ

(
Aℓ

(π
2
− τ
)iδ

+ Bℓ

(π
2
− τ
)−iδ

)
, δ =

√
M2

0R
2 − 1

4
. (6.2)

Therefore when M2
0R

2 > 1
4 , all modes vanish at the end of time whilst the energy in the

E-frame (for each harmonic) diverges as

Ecl
ℓ ∼ 1(

π
2 − τ

) . (6.3)

For small masses M2
0R

2 < 1
4 , the modes continue to vanish and the energy diverges, with a

different exponent. The immediate question then is whether the quantum large-N dynamics

can cure this singularity. The effective mass-squared in E-frame,

M2
eff =

M2
ren

cos2 τ
+

λ0

2 cos τ
⟨σE⟩ren , (6.4)

can reach a finite value only if ⟨σE⟩ren → −2M2
ren/(λ0 cos τ) as τ → π

2 . This means that

⟨σE⟩ren must not only be negative, but must diverge. Before turning to the numerics, let

us explain how such a cancellation could potentially occur.

At any τ approaching π
2 , working at zero temperature, we may separate out the con-

tributions to the mean field, into a ‘UV’ and an ‘IR’ piece:

⟨σE⟩ren = σUV + σIR , σIR =
1

4πR

[MrenR/ cos τ ]∑

ℓ=0

(2ℓ+ 1)

[
|Uℓ|2 − 1

2Rωℓ

]
(6.5)

σUV =
1

4πR

∞∑

[RMren/ cos τ ]

(2ℓ+ 1)

[
|Uℓ|2 − 1

2Rωℓ

]
.

We focus attention on the weakly coupled theory (λ0R ≪ 1), so we can work with the free

(classical) modes. We also assume MrenR > 1
2 . This means that as τ → π

2 , the IR modes

vanish as |Uℓ| ∼
√

π
2 − τ , while most UV modes (large enough ℓ) that are oscillatory will

continue to have |Uℓ| ≈ 1
2ℓ . More carefully, using a WKB approximation for the large ℓ

modes we arrive at the estimates,

σIR ≈ − Mren

4π cos τ
, σUV ≈ Mren

8π cos τ
, ⟨σE⟩ren ≈ − Mren

8π cos τ
, (6.6)

which are valid as we approach the end of time τ → π
2 . The main point to take away

here is that (for positive M2
ren) the quantum mean field goes negative and grows at the

rate required to negate the effect of the classically divergent M2
eff in eq. (6.4). However, it

is also clear that a complete cancellation will not occur when λ0 is small. The remaining

question is whether such cancellation can occur as the coupling is increased. We analyze

this possibility below numerically.
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6.1 Large-N dynamics with Mren ̸= 0

We first recall that the quantum mean field in de Sitter and E-frames are related as,

⟨σE⟩ =
⟨σdS⟩
cos τ

, (6.7)

and the effective mass (6.4) is,

M2
eff =

1

cos2 τ

(
M2

ren +
λ0

2
⟨σdS⟩ren

)
. (6.8)

If the de Sitter mean field approaches a (negative) constant at late times, we expect on

general grounds that as τ → π
2 , assuming a regular power series expansion,

⟨σdS⟩ren =
∞∑

n=0

sn
(π
2
− τ
)n

, cos τ =
1

cosh
(
t
R

) . (6.9)

For smooth evolution in E-frame at late times we require λ0s0 = −2M2
ren and s1 = 0. We

have seen already that the theory with small λ0 does not exhibit a complete cancellation

of the leading late time divergence in M2
eff . In order to explore this numerically and for

arbitrary couplings, it is best to work with dS-frame equations of motion (4.20) and examine

the effective mass-squared in dS3:

M2
dS = M2

ren +
λ0

2
⟨σdS⟩ren . (6.10)

6.1.1 Positive M2
ren

We now present the numerical solutions to the massive saddle point equations in dS-frame.

For simplicity we set the initial temperature β−1 = 0. We keep a total of ℓmax = 600 modes,

and evolve from t = 0 to t/R ≈ 4.5. Numerically, the upper time limit is approximately

when the effects of the finite cutoff start kicking in and affecting the results. We find that

the effective mass (6.10) in dS-frame attains a constant asymptotic value M∞ such that

lim
t→∞

MdS(t) = M∞ , M∞ < Mren . (6.11)

We also observe (figure 7) that as the coupling λ0R is increased, the asymptotic value M2
∞

decreases monotonically. Remarkably, in the large-λ0 regime, the time evolution displays

a universality, independent of M2
ren.

We can draw certain useful inferences from this behaviour at strong coupling. In

particular, the late time asymptotics in dS-frame is consistent with that of a free field

theory with fixed mass M2
∞. In the theory with large λ0R, we find M2

∞R2 ≪ 1.

We know from standard free field results in de Sitter spacetime [38, 39] that in the

limit of small masses the quantum mean field in the Bunch-Davies vacuum state depends

quadratically on the mass:

⟨σdS⟩ |Bunch−Davies ≃ −1

8
M2

renR + O(M4
renR

3) , MrenR ≪ 1 , (6.12)
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Figure 7. The effective mass in dS-frame as a function of global de Sitter time for three different
values of the renormalized mass parameter M2

ren = 0.1, 1, 10, and for weak (left) and strong (right)
coupling. At strong coupling, the 3 distinct curves for M2

dS/M
2
ren lie on on top of each other.
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Figure 8. Left : σ∞ as a function of M2
ren for both the free and interacting theories. In both cases

we identify linear behaviour at small Mren. Right : C(λ0) as a function of λ0 is almost a constant
and close to the Bunch-Davies value 1/8 = 0.125. The plot obtained was for M2

renR
2 = 0.1.

In the large mass limit the Bunch-Davies mean field yields linear dependence on the mass:

⟨σdS⟩ ≃ −Mren/4π, independent of R.

In our case, although the interacting theory relaxes to an effective, free massive theory

on dS3 we do not know a priori, whether the state at late times approaches the Bunch-

Davies vacuum. Extracting the asymptotic value of ⟨σdS⟩ren for different values of M2
ren

in the free theory with the equilibrium initial conditions, we find (figure 8) that ⟨σdS⟩ is

negative and proportional to M2
ren for small mass.

From the observations made above we conclude that at strong coupling, when the late

time asymptotics reduces to that of a free theory with a small effective mass, the asymptotic

value of the dS-frame mean field takes the form,

lim
t→∞

⟨σdS⟩ren = σ∞ = −CM2
∞R + O(M4

∞) λ0R ≫ 1 . (6.13)

for C a positive constant, potentially depending on λ0. Then, applying the definition of

– 22 –



J
H
E
P
0
3
(
2
0
1
8
)
0
9
2

the dS-frame effective mass (6.10) at late times, we can write,

M2
∞ =

M2
ren

1 + 1
2λ0R C

≃ 2M2
ren

λ0R C , (6.14)

where the second step assumes that C is either a monotonic function of λ0 or a constant at

large λ0. Extracting C for different values of the interaction strength (figure 8) for small

values of M2
ren, we find that C ≈ 0.12, independent of λ0. Furthermore, using eqs. (6.13)

and (6.14), we find that

σ∞ ≃ −2M2
ren

λ0
, (6.15)

which is simply the condition for vanishing effective mass in de Sitter spacetime.

6.1.2 Negative M2
ren

The theory with negative mass-squared is ill-defined when the interaction strength λ0 is

vanishing and the mass squared is sufficiently negative i.e. when

R2M2
ren < −3

4
(6.16)

in three dimensional de Sitter spacetime. In this regime, free field modes in dS3 grow

exponentially with time. When interactions λ0 > 0 are switched on, the classical potential

has a minimum away from the origin. Recalling that finite volume precludes the breaking

of the global O(N)-symmetry, we consider the time evolution of the system prepared in

the O(N)-symmetric equilibrium initial state, where the interactions and time evolution

are switched on at t = 0:

dS-frame: M2(t) = |Mren|2Θ(−t) + M2
ren Θ(t) , (6.17)

E-frame: M2(τ) = |Mren|2Θ(−τ) +
M2

ren

cos2 τ
Θ(τ) .

This is an example of a quench where the mass-squared is rapidly driven to negative values

at t = 0, and the system finds itself in an unstable configuration at the top of the “mexican

hat” potential. For small λ0 at least, we expect that the instability leads to an exponential

growth in the modes Vℓ, which eventually feed into the growth of the mean field ⟨σdS⟩ren
and thus backreacts on the large-N dynamics. The numerical solutions agree with this

expectation: the quantum fluctuations first grow and then relax to an equilibrum value

at late times. For generic values of λ0 the system approaches a stable, free theory with

(see figure 9):

lim
t→∞

M2
dS(t) = M2

∞ > − 3

4R2
. (6.18)

We further find that as λ0 is increased, M2
∞ approaches zero.

Based on our analysis we infer that while interactions act systematically to reduce the

magnitude of the effective mass in de Sitter space, it is only zero in the strict λ0 → ∞ limit.

Therefore, except in this limit when the theory is in the vicinity of the large-N Wilson-

Fisher fixed point, the dynamics when transformed to E-frame is necessarily singular for

generic values of the mass and quartic coupling.
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Figure 9. The effective mass MdS in dS-frame as a function of de Sitter time, for different values
of the interaction strength and renormalized mass M2

ren = −2/R2.

It is nevertheless interesting that in the strong coupling limit the theory appears to

approach a massless limit at late times, which we expect to be regular by virtue of its

conformality.

6.1.3 Initial conditions and approach to Bunch-Davies

In this section we clarify certain aspects of the initial conditions we have used for our

system, and how they relate to standard Bunch-Davies or de Sitter-invariant boundary

conditions.

The initial conditions we discussed above break de Sitter invariance, since the theory

is prepared in a Gaussian, equilibrium state and de Sitter time evolution is switched on

at t = 0. The choice of initial states is clearly not unique, and it is natural to consider

alternate possibilities. We would also like to understand what happens to the system

if the initial state is chosen so the modes correspond to the Bunch-Davies vacuum and

compare the resulting evolution with equilibrium initial conditions above. The Bunch-

Davies or Euclidean vacuum is the one in which the modes are regular at one of the poles

of Euclidean dS3 ( ≃ the three-sphere S3). This has some other nice properties, to be

summarised below.

Bunch-Davies modes. The Bunch-Davies (BD) modes for free, conformally coupled

scalar fields of mass M , are given by

Vℓ(t) = sech

(
t

R

) √
π Γ(ℓ+ 1 + µ)

4Γ(ℓ+ 1− µ)
eiπµ/2

(
P−µ
ℓ

(
tanh

t

R

)
− 2i

π
Q−µ

ℓ

(
tanh

t

R

))
(6.19)

where µ =
√

1
4 − M2R2 and (Pµ

ℓ , Q
µ
ℓ ) are the associated Legendre functions. This is the

unique linear combination regular at t/R = −iπ/2. The corresponding E-frame modes are

Uℓ(τ) =
√
cos τ

√
π Γ[ℓ+ 1 + µ]

4Γ[ℓ+ 1− µ]
eiπµ/2

(
P−µ
ℓ (sin τ)− 2i

π
Q−µ

ℓ (sin τ)

)
. (6.20)
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Here, the modes are normalised so that UℓU̇∗
ℓ −U∗

ℓ U̇ℓ = i. In the massless conformal theory

when µ = ±1/2, the modes reduce to pure exponentials:

Uℓ(τ) =
1√

2ℓ+ 1
exp

(
i

(
ℓ+

1

2

)(π
2
− τ
)
− iπ

4

)
. (6.21)

The Bunch-Davies modes at t = 0 satisfy the initial conditions:

Vℓ(0) =
(−1)ℓi−ℓ2−1−µπ

√
Γ[1+ℓ+µ]
Γ(1+ℓ−µ)

cos π
2 (ℓ− µ)Γ

[
1
2 (1− ℓ+ µ)

]
Γ
[
1
2 (2 + ℓ+ µ)

] (6.22)

V̇ℓ(0) =
i1+ℓ2−µπ

√
Γ[1+ℓ+µ]
Γ[1+ℓ−µ]

sin π
2 (ℓ− µ)Γ

[
1
2 (−ℓ+ µ)

]
Γ
[
1
2 (1 + ℓ+ µ)

] . (6.23)

When M2 > 0, at early times, a power series expansion (in time) reveals that |Uℓ|2 =

|Uℓ(0)|2 + hℓ τ2 with hℓ < 0 for all ℓ. Thus the renormalized mean field, ⟨σE⟩ren begins

decreasing from its initial value at τ = 0. The late time value of the mean field can be

calculated with Bunch-Davies initial conditions and we find (for free fields), in the small

mass limit,

⟨σdS⟩ren(t) → −1

8
M2R , ⟨σE⟩ren(τ) → − M2R

8 cos τ
. (6.24)

We note that our renormalized mean field is not defined with a de Sitter invariant regulator.

This is the likely reason that it is actually time dependent and matches on to the de Sitter

invariant value only at late times.

Equilibrium initial conditions. For the free theory with equilibrium initial conditions

employed in this paper, the solution to the mode equations is,

Vℓ(t) = sech

(
t

R

)(
Aℓ P

−µ
ℓ

(
tanh

t

R

)
+BℓQ

−µ
ℓ

(
tanh

t

R

))
(6.25)

Aℓ =
i(−1)ℓ2ℓ−

3
2

π
√
ωℓ

Γ(y) sinπµ

[
ωℓ sin

πy

2
Γ

(
1 + x

2

)
Γ

(
1− y

2

)

− 2i cos
1

2
πy Γ

(
1 +

x

2

)
Γ
(
1− y

2

)]

Bℓ =
(−1)ℓ2µ−

3
2

π
3
2
√
ωℓ

sinπµ

[
xΓ

(
1 + y

2

)
Γ
(x
2

)
− iωℓ Γ

(y
2

)
Γ

(
1 + x

2

)]
, (6.26)

where µ is defined above and

x = µ+ ℓ, y = µ− ℓ . (6.27)

At late times we numerically observe (figure 10) that ⟨σdS⟩ren approaches a constant σ∞.

In the free field case, for small M we find,

σ∞ = −CM2R+O(M4) ,

where C > 0 is a non-zero constant matching the Bunch-Davies value of 1/8. At early times,

expanding the E-frame modes Uℓ in a power series, we find that |Uℓ|2 = |Uℓ(0)|2 + hℓ τ4
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Figure 10. The evolution of ⟨σdS⟩ren for the free theory with Bunch-Davies (blue) and equilibrium
(red) initial conditions, and M2R2 = 0.1.

with hℓ < 0 for all ℓ. Therefore ⟨σE⟩ren decreases from its initial value, but slower than

the Bunch-Davies modes.

In figure 10 we have numerically plotted the renormalized mean field in the free theory

for both Bunch-Davies and equilibrium initial conditions. At late times we observe that

the two cases asymptote to the same value.

7 Discussion and future work

This work was motivated by the existence of gravity duals of de Sitter space QFTs at large-

N , obtained by relevant deformations of (known) CFTs yielding bulk crunch singularities

in the holographic duals (e.g. [4, 5, 8, 11, 12]). Our goal was to understand whether

the E-frame evolution of such QFTs is always singular. We picked the O(N) model in

three dimensions as the simplest, nontrivial tractable example where this question could

be answered by solving the theory. We have learnt that at least one (relevant) deformation

of the free theory namely the quartic coupling, can result in a smooth quantum evolution,

even though the microscopic coupling diverges at the end of time in the E-frame description.

This regular behaviour appears to be tied to the appearance of a different critical point

(with the large-N Wilson-Fisher scaling) at the end of time.

This suggests a potential mechanism by which big crunch bulk singularities could be

avoided in special situations where the deformation drives the QFT towards a new fixed

point as a function of time. It would therefore be interesting to find other examples

where this can happen. An important point here is that any such example would require

ingredients in the gravity dual that go beyond the classical (super)gravity approximation

since the arguments of [36] rule out any possibility of smooth evolution within ordinary

gravity. It is likely that such an example will require inclusion of stringy corrections as is

already suggested by the O(N) model which posesses higher spin conserved currents at the

critical points.

The O(N) vector model also posesses marginal, sextic deformations at the free fixed

point. It would be interesting to understand the effect of these in conjunction with the

quartic interactions in the free theory. It is also worth noting that although the mass
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deformation of the theory at finite interaction strength appeared not to posess a regular

E-frame evolution, the disappearance of the mass gap at strong coupling deserves further

attention. Another aspect of our analysis is that the theory is always defined in a finite

volume and symmetry breaking never occurs even when the classical potential has an

unstable direction (negative mass-squared) at the origin. In such cases, at late times the

quantum fluctuations grow and drive the effective mass squared to positive or stable values.

It would be interesting to understand the relation of this type of behaviour to the same

situation considered in the (noncompact) inflationary patch [34, 35] of de Sitter spacetime.
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