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Experimental investigation of the flow past passive vortex 
generators on an airfoil experiencing three-dimensional 
separation 

Marinos Manolesos1, Spyros G. Voutsinas 

Laboratory of Aerodynamics, National Technical University of Athens, 9 Heroon Polytechneiou str., 

15780 Athens, Greece.  

Abstract 
The use of passive vortex generators (VGs) as a simple and effective way to delay or 

suppress separation on an airfoil optimized for wind turbine blades is examined 

experimentally. The profile experiences three-dimensional separation of the Stall Cell type. 

Pressure, Flow Visualization and Stereo Particle Image Velocimetry experiments are 

discussed for the case of triangular counter rotating VGs with common flow up. For a 

Reynolds number of 0.87×106, Stall Cell formation is delayed for 5°, and lift increases up to  

α = 15°. In total, maximum lift increases by 44%, while drag increases by 0.002 at pre-stall 

angles of attack. At α = 16° the flow bifurcates between separated and attached flow 

conditions. At α = 10° the flow is examined in detail and an investigation on the turbulence 

characteristics is carried out by correlating Reynolds stresses production to time averaged 

flow gradients. Strong turbulent interaction is observed between the two vortices and the 

underlying flow up to 37.2 VG heights downstream of the VGs, while further downstream 

(up to 47.2 VG heights) diffusion governs the flow. A wandering motion of the VG vortices 

leads to increased 𝑣′𝑣′̅̅ ̅̅ ̅̅  normal stress values between the two vortices. 

Keywords  

Passive Vortex Generators, Stall Cells, Stereo Particle Image Velocimetry 

Nomenclature 

𝐴0.1 area surrounded by the ω = 0.1ωmax isoline 
Cd Drag coefficient 
Cl Lift coefficient 
D Distance between two VG pairs 

𝐿𝑚 Interrogation area length 
𝑃𝑢𝑖𝑢𝑗

 Reynolds stress production tensor 

𝑅0.1 Vortex radius up to ω = 0.1ωmax 

𝑈 Normalized time averaged streamwise velocity 
Uinf Free stream velocity 
Ures Minimum resolvable velocity 

𝑉 Normalized time averaged vertical velocity 
𝑉𝑖(𝑦, 𝑧) Vortex velocity field 

𝑈𝑖(𝑦) mean flow velocity field  
𝑊 Normalized time averaged spanwise velocity 
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c Chord 
d spanwise distance between the LE of two VGs of the same pair 
h Vortex generator height 
l Vortex generator length 

𝑟𝑐 Vortex radius 
𝑢𝑖(𝑦, 𝑧, 𝑡) Instantaneous velocity field 

𝑢𝑖,𝑃𝐼𝑉(𝑦, 𝑧) time averaged velocity filed 

𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  Reynolds stress tensor 

x Chordwise coordinate 
xVG Chordwise position of the vortex generator trailing edge 

y Vertical coordinate 
z Spanwise coordinate 
  

α Angle of attack 
Δx Distance from the vortex generator trailing edge 

ΔCd Increase in drag due to the use of vortex generators 
β VG angle to the free stream flow 
δ Boundary layer height 

 ω Vorticity 
 ωmax Peak vorticity 

  
BL Boundary Layer 
HL High Lift 
LE Leading Edge 

LHS Left Hand Side 
LL Low Lift 

NTUA National Technical University of Athens 
PIV Particle Image Velocimetry 

RANS Reynolds Averaged Navier-Stokes 
Re Reynolds 
SC Stall Cell 
TE Trailing Edge 

TKE Turbulent Kinetic Energy 
VG Vortex Generator 
ZZ Zigzag 
3D Three-dimensional 

  



3 

 

1 Introduction 
Flow separation on aerodynamically shaped bodies is an unfavourable state often appearing 

over part of the operational envelope. Due to its implications on performance and reliability, 

numerous technologies have been developed in order to control or suppress separation [1, 

2]. Among them, passive vortex generators (VGs) are one of the simplest and most effective 

techniques available. Examples of successful use of passive VGs include, but are not limited 

to airfoils [3, 4], highly swept wings [5], bluff bodies [6], wind turbines [7], noise reduction 

[8] and internal flows [9]. In the present work the ability of VGs to suppress three‐

dimensional (3D) separation over a wing model is examined. 

It has been long known [10] that, at high enough angles of attack, the separated flow on a 

wing can be highly 3D, as coherent vortical structures known as Stall Cells (SCs) may form. 

SCs consist of a pair of counter rotating vortices [11, 12] and are formed on airfoils that 

experience Trailing Edge (TE) type of stall or a combination of Leading Edge (LE) and TE type 

of stall [13]. Recently, the onset of SCs has been reported on wind tunnel models of airfoils 

designed for or used on wind turbine blades [11, 12, 14-16], as well as on wind turbine 

blades at standstill [17, 18]. Despite the fact that SCs have been widely encountered there is 

limited research on their control using VGs or in fact any other device. 

In this context, the present study aims at (a) examining whether VGs can control SC 

formation and (b) analysing in detail the flow downstream of the VGs based on Stereo PIV 

recordings. This is the first time that the suppression of SC formation using VGs is 

investigated thoroughly. Furthermore, while detailed studies of VG induced flow on flat 

plates have been published in the past (e.g. [19-21]) there is limited research for the case of 

an airfoil flow  (e.g. [15]) at high Re number. 

The paper begins with a short overview of previous work on the flow past VGs and on SCs, as 

a pertinent manifestation of 3D separation on airfoils/wings. Then the experimental set up is 

described and, next, the experimental data are presented and discussed in terms of the 

mean flow and turbulence characteristics. The paper ends with a summary of the main 

findings. An extended description of the experimental configuration is given in the Appendix. 

All experimental data are freely available in the public domain2. A comparison with 

numerical results can be found in [22]. 

1.1 Previous Work  

1.1.1 Passive Vortex Generators 

The working principle and the underlying mechanisms of VG flow have been adequately 

described by various researchers, e.g. [23-25]. In brief, VGs favourably affect a separated 

boundary layer (BL) by bringing high momentum flow from the free stream closer to the 

solid surface and thus re-energizing the near wall flow. This is done by the tip vortices, shed 

from the free tips of the VGs.  

Since the first application of VGs on a wing [26], the literature on VGs as passive flow control 

devices has been quite extensive. Several studies [27-32] have provided design guidelines 

                                                           
2  http://www.aerolab.mech.ntua.gr/3D%20separation%20control.rar 



4 

 

under various flow conditions. The main focus has been on zero- and adverse-pressure 

gradient flows on a flat plates and bumps, while detailed studies of the flow past VGs on 

airfoils remain limited. 

Pearcey [29] applied inviscid theory to predict the vortex paths downstream of counter and 

co-rotating VGs. It was suggested that counter rotating vortices will eventually move away 

from the surface under mutual interaction; a mechanism that has been observed in various 

studies [24, 33, 34]. For the co-rotating vortices a lateral displacement under the influence 

of their image vortices was predicted, with no upward movement. In [35] it was found that 

counter rotating vortices with common downwash grow within the developing Boundary 

Layer (BL) under adverse pressure gradient and as a result they do move away from the solid 

surface. This is a viscous effect that the inviscid analysis in [29] could not predict. 

In general, VG vortices become less concentrated and weaker in strength, while peak 

vorticity drops at a higher rate than circulation due to diffusion [24]. The drop in circulation 

is linked to viscous dissipation and hence it is greater for vortices generated by low-profile 

VGs (h < δ) [36]. In the same study it was also found that for a single VG in a zero pressure 

gradient flow circulation dropped faster for vortices with greater initial strength (VGs at 

higher angle). 

For a single vortex in a zero pressure gradient BL the distribution of the turbulence 

quantities can be considered as the distortion of a boundary layer turbulence by a 

superimposed vortex [34]. Flow complexity increases when a pair of counter rotating 

vortices  are present, in which case a significant increase in the vertical and lateral velocity 

deviations is observed [33]. In [35] these peaks were linked to vortex wandering, while high 

𝑣′𝑣′̅̅ ̅̅ ̅̅  values were also measured at the centre of a laterally meandering vortex [37]. Despite 

the significant changes caused by the presence of the VG vortices, the state of anisotropy 

remains unchanged in the near wall region, since it is determined by the presence of the 

solid surface.  

1.1.2 Stall Cells 

SCs appear on the suction side of wings at angles of attack around maximum lift. They have 

been reported on wing models with various types of tip treatment (wall to wall models with 

or without wall suction [10, 38], tip with endplates [39], free tip [40]), and can form on both 

low and high aspect ratio (AR) wings (from AR = 1.5 in [41] to AR = 12 in [42]). It is widely 

agreed that for sufficiently high Re number (Re > 0.3x106) and turbulence intensity (T.I. > 

0.1%) SCs are dynamic structures. They have been reported to move in the spanwise 

direction [39, 43] or even form and disappear in a seemingly random manner [10, 44].  

In [45] it was found that the inherently unstable SCs can be stabilized by means of a large 

enough spanwise disturbance. In more detail, a zigzag (ZZ) tape was applied on the wing 

suction surface (at its centre for 10% of its span), which acted as a stabilizing mechanism. 

The ZZ tape effectively forced the flow to form a single stable SC. It is noted that the ZZ tape 

was not the generating mechanism for the SCs, which would form on the wing suction 

surface with or without the localized disturbance. The flow with the ZZ tape had the same 

amount of separated flow for angles of attack α > 9° and for Re numbers ranging from 

0.5x106 to 1.5x106. It was concluded that the ZZ tape effectively forces the flow to select one 
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of the possible modes. In the present study the same stabilization mechanism and the same 

wing model examined in [11, 12, 45] were used.  

With regard to SC control, the first and only documented successful attempt to delay SC 

formation using VGs was done by Moss and Murdin [46] on a NACA 0012 airfoil, at Re 

numbers of 0.9x106 and 1.7x106. More than four decades later, Velte and Hansen [41] 

reported the onset of SCs at post-stall angles of attack on a DU 91-W2-250 profile with VGs, 

also at a Re number of 0.9x106.  Table 1 below lists the published studies where VGs were 

applied on airfoils exhibiting SC formation. 

Study 
Moss & Murdin, 

1971, [46] 
Storms & Jang 

1994, [47] 
Velte & Hansen 

2012, [41] 
Present study 

Airfoil NACA 0012 NACA 4412 DU 91-W2-250 NTUA-t18 

Re [x106] 0.86, 1.68 2.0 0.9 0.87 

VG type Vanes Wishbones Vanes Vanes 

VG height 0.016c ~3.5δ 0.5δ δ 

VG 
position 

10% airfoil chord 12% airfoil chord 0.3% airfoil chord 0.3% airfoil chord 

Method 
Pressure 

measurements 

Pressure 
measurements 

Stereo PIV 
Pressure 

measurements, 
Stereo PIV 

Stall 
Cells? 

First mention of VGs 
applied on a wing that 
exhibits SC formation 

3D separation is 
mentioned but not 
examined further. 

SCs are simply 
mentioned for the 

case with VGs, at post 
stall 

VGs are specifically 
used to prevent SC 

formation 

Table 1: Investigations regarding 3D separation control using VGs. 

2 Experimental approach  
The tests concerned an 18% thick airfoil optimized for use on variable pitch and variable 

speed multi MW blades [48]. All experiments were carried out in the 1.4×1.8m (height × 

width) test section of the National Technical University of Athens (NTUA) wind tunnel. A 

schematic view of the test set up is given in Figure 1. The wing spanned the test section 

vertically and fences were used in order to minimize the effect of the wind tunnel wall 

boundary layer. A detailed description of the experimental set up is given in the Appendix, 

while the main points are outlined in this section. 

The central VG pair was studied in this investigation, i.e. the one that was located 

downstream of the ZZ tape and was always met by turbulent flow. The pressure taps were 

also located at the centre of the wing span, downstream of the stabilizing disturbance. 

All Stereo PIV measurements were taken at α = 10°. The flow was measured on three planes 

normal to the free stream, downstream of the central VG pair, at x/c = 0.6 (plane A), x/c = 

0.7 (plane B) and x/c = 0.8 (plane C), see Figure 2. With respect to their distance from the VG 

TE (𝛥𝑥), planes A, B and C were at 𝛥𝑥 = 27.2h, 37.2h and 47.2h, respectively. 𝛥𝑥 is defined 

as  
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𝛥𝑥 ≡  𝑥 − 𝑥𝑉𝐺 = 𝑥 − 0.328𝑐 (1)  

where xVG is the VG TE location and c is the wing chord. 

For each plane 2000 snapshots were taken and the results presented here are the averaged 

data. All data in the present paper refer to a wing of AR 2.0 at a Re number of 0.87×106. Data 

are non-dimensionalized with the wing chord and the free stream velocity (𝑈inf), unless 

otherwise stated. Further details on the measurement planes are given in Table 2. 

 
Figure 1: Schematic planform view of the test set up showing the wing, the fences, the pressure taps at the 

centre of the wing span, the stabilizing disturbance and the Stereo PIV cameras along with the measurement 

planes at x/c = 0.6 (plane A), x/c = 0.7 (plane B) and x/c = 0.8 (plane C). The camera contained angle (φ) for 

plane C is also indicated. 

 
Figure 2: Schematic top view of the test set up. Measurement planes A, B and C are shown with solid green 

lines. Two sets of axes are shown: the (x/c, y/c) set is scaled with the wing chord (c) with its x-axis starting at 

the wing LE, while the (Δx/h, y/h) set is scaled with the VG height (h) with its x-axis starting at the VG TE (see 

Eqn. (1)). In both sets y = 0 corresponds to the wing TE. Cameras were located 1.2c downstream of the wing TE.  

  

Tunnel Ceiling 

Tunnel Floor 

Localized 

Disturbance 

WING 

Cameras 
Fences 

Uinf 

A B C 

φ 

Pressure 

taps 

Vortex 

Generators 

Δx/h 
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 Plane A Plane B Plane C 

Chordwise location  0.6c 0.7c 0.8c 

Distance from VG trailing edge [h] 27.2 37.2 47.2 

Lenses 150mm 150mm 150mm 

Camera contained angle (φ) 62° 65° 69° 

Final interrogation area size [px] 16 

Final interrogation area size [mm] 0.8 

Minimum resolvable velocity  [m/s] 0.4 

Minimum resolvable velocity  
[normalized with respect to the free stream] 

2% 

Number of Snapshots 2000 
Table 2: Stereo PIV test details for all the planes measured 

Camera positioning effect and vibration analysis 

The cameras were located inside the test section, 1.2c downstream of the wing TE (see 

Figure 2). The camera base was secured on elastic anti-vibrating pads and both cameras 

were mounted on reinforced Scheimpflug angle adjustable mountings. Placing the cameras 

inside the test section raised two issues: a) whether and how the cameras affected the flow 

over the wing model and b) whether the cameras vibrated and, if yes, what the effect of this 

vibration on the results was. 

Regarding the first issue, pressure measurements on the wing surface taken with and 

without the cameras were practically identical so it was concluded that the cameras and the 

camera base did not affect the flow on the wing. 

In the past several researchers encountered the issue of camera vibration. Some applied a 

frame by frame correction to the measurements [49, 50], whereas others attributed non-

physical variation of the measured rms data to camera vibration [51, 52]. 

In the present case camera vibration was examined using a procedure similar to that 

described in [49, 50], using the wing TE position as a reference. However, during the actual 

measurements the wing TE edge was out of focus so it was not possible to apply a frame by 

frame correction. Instead the error introduced by the camera vibration was quantified and, 

as explained below, it was found to be negligible. 

The position of the TE was obtained with sub-pixel accuracy using a 3rd order curve fit on 

the light intensity data over a series of photos, as suggested in [49]. By analysing the TE 

displacement data, it was found that a) the camera vibration did not change with wing angle 

of attack, indicating that it was purely mechanical, and b) when the magnification factor was 

taken into account the camera displacement did not depend on the lens being used. The 

camera displacement followed a normal distribution with a mean value of 0μm, a standard 

deviation of 22μm and a 95% confidence interval of 1μm (for 2000 samples). Expressed in 

m/s, the 95% confidence interval for the measured velocities due to camera vibration is 

0.08m/s, i.e. an order of magnitude smaller than the minimum resolvable velocity, and 

hence considered negligible. A rigorous description of the quantification of camera 

displacement can be found in [53]. 

Sample size effect  
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For each measurement plane 2000 snapshots were taken. Figure 3 shows the effect of 

sample size on the measured streamwise velocity for a point inside one of the VG vortices, 

where flow temporal and spatial variations are stronger, compared to the region outside the 

vortices. Only the results for the streamwise component are shown since the behaviour of 

the other components was similar.  

In Figure 3, the time averaged streamwise velocity based on the maximum sample size, 2000 

snapshots, is drawn as a straight solid line. Above and below this line, two parallel lines are 

drawn at a distance equal to the minimum resolvable velocity (Ures = 0.4m/s, see Appendix). 

The 95% confidence interval is given with a dashed curved, above and below the time-

averaged velocity value. Mean values computed from groups of 100, 250, 500, and 1000 

samples are also plotted. For 2000 snapshots, the 95% confidence interval in the most 

unsteady region of the flow is approximately 0.09 m/s, i.e. an order of magnitude smaller 

than Ures. The corresponding confidence interval for the rms quantities is 6.0%. 

 

Figure 3: Sample size effect on the streamwise velocity component (U) at a point inside the left vortex. Data 

from plane C, normal to the flow at x/c = 0.8. 

Vortex generator geometry and lay-out  

Counter rotating triangular vanes with common flow up were selected as the basic concept 

of a CFD based parametric investigation [53]. The examined parameters are shown in Figure 

4. The best performing VG configuration from that study was investigated experimentally 

and the results are reported here. The VG height was equal to the local BL thickness, which 

was δ = 6mm, based on RANS simulations. The details of the selected configuration are given 

below: 

x = 0.3c chordwise position of the VG array 
β = 20° VG angle to the free stream flow 
h = δ  =  6mm VG height 
l = 3h VG length 

D = 11.7h distance between two VG pairs 
d = 3.7h spanwise distance between the LE of two VGs of the same pair 
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Figure 4: Triangular vane vortex generator parameters: X is the chordwise position of the VG array, l is the VG 

length, h is the VG height, β is the VG angle with respect to the free stream flow, d is the spanwise distance 

between the LE of two VGs of the same pair and D is the distance between two VG pairs. Uinf in the lower 

figure indicates the flow direction. 

Spatial Resolution 

Stereo PIV is a very popular technique for measuring vortex flows [32, 41, 54, 55], but 

achieving the required spatial resolution can be challenging, especially if steep spatial 

gradients are involved. In order to sufficiently resolve a vortex flow [56] the ratio of probe 

size to vortex core radius, αRES, should be: 

𝑎𝑅𝐸𝑆 =  
𝐿𝑚

𝑟𝑐
< 0.1 (2)  

where 𝐿𝑚 is the length of the interrogation area and 𝑟𝑐 is the vortex radius. 

In the present set of experiments this was particularly challenging, given the size of the 

generated vortices and the camera distance from the measurement planes. Plane A 

contained the smallest vortices and was furthest away from the cameras. The vortex radius 

on that plane, defined as the half distance between the two vorticity peaks, was found to be 

8mm. To achieve the desired resolution Macro lenses (150mm) and high resolution cameras 

(4Mpixel) were used. The image deformation technique, as described in [54], was applied to 

the data. The final interrogation area size was 0.8×0.8 mm, see Table 2.  

Velocity derivatives were computed using the least squares approach [57], as given in Eqn. 

(3).  This approximation is second order accurate, cancels out the effect of oversampling and 

produces smoother results. 

𝑑𝑉

𝑑𝑥
|

𝑖
=

2𝑉𝜄+2 + 𝑉𝜄+1 − 𝑉𝑖−1 − 2𝑉𝑖−2

10𝛥𝑋
 (3)  

h 

l 

D

  

β 

d 

x 

Uinf 
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3 Results and discussion 

3.1 Pressure measurements 
The lift and drag polars are shown in Figure 5 and Figure 6, respectively. The presence of VGs 

leads to lift enhancement at higher angles of attack. The linear part is extended from α = 6° 

to α = 11° while maximum lift appears at 16° giving an increase of 0.5 or 44%. A drag penalty 

of 0.002 was measured for α < 6°. As discussed later on, at 16° the pressure recordings 

indicate bifurcation of the flow, here denoted by a vertical dotted line. 

The pressure distribution at α = 10°, in Figure 7, shows that separation is successfully 

suppressed. The flow remains attached up to at least x/c = 0.9 and the suction peak is 

increased. The pressure data at the trailing edge region suggest recovery at higher values, 

which explains the pressure difference over the pressure side of the airfoil. Pressure 

perturbations around x = 0.02% in the experimental data are due to the local effect of the ZZ 

tape on the neighbouring pressure taps. 

 

Figure 5: Experimental lift coefficient polar for a wing with and without VGs.  
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Figure 6: Experimental drag coefficient polar for a wing with and without VGs.  

 

Figure 7: Pressure distribution along the wing chord for a wing with and without VGs at α = 10°. 

3.1.1 Bifurcation at 16° 

Initially all pressure measurements were taken at 200Hz sampling rate and for 5sec. During 

the measurements for the controlled case at 16°, however, significant unsteadiness was 

observed that led to extending the samples to 50sec. No unsteadiness was observed for  

α < 16°, even when longer samples were taken. 

It was found that the flow alternated between two distinct states: a High Lift (HL) state and a 

Low Lift (LL) state. The HL state, dominated the time series, whereas the less frequent LL 

VGs location 

ZZ tape location 
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state, would appear for time intervals that would not exceed 3sec. The difference in 

pressure level between the two states was more pronounced on the suction side, both 

upstream and downstream of the VGs. As an example, the time series from the suction side 

pressure tap at x/c = 0.265 is given in Figure 8 (left), clearly showing the two states. The 

histogram of this measurement is given in Figure 8 (right). 

A separate average value for each state was computed resulting in the two pressure 

distributions shown in Figure 9. The pressure distribution of the uncontrolled case (blue-

diamonds curve) is also given for reference. The similarity between the LL state and the 

uncontrolled case is clear. The HL state is significantly different and the pressure follows the 

trend found at lower angles, i.e. increased suction peak and limited separation. 

The cause of the unsteadiness is not clear. It is possible that the SC causes the destabilization 

of the VG vortices or that the VG vortices break up due to a different reason allowing the SC 

to reform. Based on the available data, however, no solid conclusion can be drawn. 

Simultaneous pressure measurements would be required to obtain a better understanding 

of the flow. In any case, the onset of such a bifurcation is quite unfavourable, since it would 

lead to fatigue loads and therefore the operational envelope would have to be reduced.  

 

Figure 8: (Left) Time series of pressure measurement taken from the pressure tap on the suction side of the 

wing located at x/c = 0.265. The states of High (black dashed line at Cp ≈ -2) and Low Lift (red solid line at  

Cp ≈ -1) are indicated. (Right) Histogram of the same measurement. 
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Figure 9: Pressure distribution along the wing chord for a wing with and without VGs. For the case with VGs, 

the two curves correspond to the High Lift state (blue diamonds) and the Low Lift state (green triangles). 

3.2 Oil flow visualization 
Figure 10 shows the oil flow pattern on the wing suction side at α = 10°, Re = 0.87×106, for 

the uncontrolled (left) and the controlled case (right). The flow is from left to right and, as 

the wing is located vertically in the tunnel, gravity affects the final pattern on the wing, 

dragging the oil mix downwards in areas of low velocity. Only the region for x/c > 0.3 is 

shown for greater detail.  

The SC structure is clearly visible in the uncontrolled case (Figure 10, left). Curve #1 indicates 

the SC boundary while arrows #2 and #3 show the SC vortex foci. The foci are located at  

z/S ≈ ±0.13 (the wing mid-span is at z/S = 0). Their chordwise location is  

x/c ≈ 0.91 and the most upstream point of the SC is at x/c ≈ 0.48. Arrow #4 highlights the 

tripping effect of the ZZ tape at the centre of the wing span.  

Adding the VGs confines separation to x/c ≈ 95% and suppresses SC formation (Figure 10, 

right). The separation line has a wavy pattern due to the presence of the VG vortices. Part of 

it is highlighted by the wavy curve #1. The separated region is smaller downstream of the 

downwash regions (see dashed line #2) and grows downstream of the upwash regions (see 

dashed line #3). The separated region is also increased downstream of the localised 

disturbance (see arrow #4). This is expected since the flow is less energetic at this region due 

to the presence of the ZZ tape. Vortex paths continue all the way to the separated region 

suggesting that the VG vortices remain close to the wing surface until at least x/c = 0.95. 

Three-dimensional corner flow is also apparent at the top (see arrow #5) and bottom (see 

arrow #6) of Figure 10 (right), where the fences are attached to the wing. The top region 

appears larger for two reasons; a) gravity drags the oil mix downwards at regions of low 

velocity and b) the top VG pair distance from the respective fence is greater than that of the 
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lower one by 1cm and consequently, separation control is more effective at the lower 

corner. 

 

Figure 10: Oil flow visualization for the case without VGs (a) and with VGs (b). Tape (0.2mm high) was used to 

protect the pressure tapping (at the centre of the wing span) and the VGs during the flow visualization tests. 
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3.3 Stereo PIV 
The analysis of the Stereo PIV data is based on the following indicators/definitions. The 

position of peak vorticity, ωmax, on a plane normal to the flow is considered as the vortex 

centre and the vortex path is defined by the vortex centre position on the three 

measurement planes. Circulation is used as a measure of the vortex strength and is 

computed as the surface integral of vorticity inside the vortex core. There is no consensus 

regarding the definition of the vortex core [58]. In the present analysis the vortex core is 

defined as the area around peak vorticity where ωmax ≥ ω ≥ ωlim, where ωlim = 0.1ωmax. The 

vortex core area, 𝐴0.1, is equal to the area surrounded by the ω = ωlim isoline. The “vortex 

radius”, 𝑅0.1, is equal to the radial distance from the vortex centre to the point where local 

vorticity is equal to ωmax/2. Since the vortex shape is not exactly circular, 𝑅0.1 was computed 

using:  

𝑅0.1 =  √𝐴0.1/𝜋 (4)  

Following Stillfried at al. [59], the vortex velocity field, 𝑉𝑖(𝑦, 𝑧), is defined as the difference 

between the time averaged velocity field, 𝑢𝑖,𝑃𝐼𝑉(𝑦, 𝑧) = 𝑢𝑖(𝑦, 𝑧, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and the mean flow, 

𝑈𝑖(𝑦) =< 𝑢𝑖,𝑃𝐼𝑉(𝑦, 𝑧) >. The latter is obtained by spanwise averaging 〈 〉 over the width of 

the VG pair. 

𝑉𝑖(𝑦, 𝑧) = 𝑢𝑖,𝑃𝐼𝑉(𝑦, 𝑧) − 𝑈𝑖(𝑦) (5)  

3.3.1 Mean flow 

Figure 11 compares the normalized profiles of 𝑈𝑥(𝑦) at x/c = 0.6 and x/c = 0.8 for both the 

controlled and the uncontrolled case (no data were available on plane B for the uncontrolled 

case [11]). The suppression of separation is confirmed. Furthermore, the flow outside the 

separated region is accelerated more in the uncontrolled case than in the case with the VGs 

due to greater boundary layer displacement of the flow.  

Figure 12 presents normalized streamwise velocity, 𝑈 = 𝑢𝑥,𝑃𝐼𝑉/𝑈𝑖𝑛𝑓, and vorticity contours 

on planes A, B and C along with vorticity isolines of ω = ωmax/2 and vectors of the vortex 

velocity field, 𝑉𝑖(𝑦, 𝑧). On the velocity contours a 𝑈 isoline is also drawn, indicating the BL 

height at the sides of the VG pair. The specific value of 𝑈 corresponds to the 𝑈 value at the 

height where 𝜕𝑈/𝜕𝑦 = 0, at z/h = ±6.  

The streamwise velocity shear layer has a distinct Ω shape on plane A, which is subsequently 

diffused on planes B and C. The VG vortices bring high momentum flow closer to the wing 

surface and through their combined upwash lift the low momentum flow in the region 

between them. As discussed later, this mechanism leads to a double peak in the streamwise 

velocity profile, which is smoothened by diffusion on planes B and C. 

Within the Ω region, the two VG vortices are clearly distinguished by the vorticity contours. 

Their shape on plane A appears stretched in the vertical direction, due to the close proximity 

of the vortices. Subsequently, the vortex shape changes from plane A to plane B, indicating 

strong strain, attributed to vortex interaction [24, 33]. This effect appears to diminish further 
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downstream, as the contour shapes on planes B and C are similar to each other suggesting 

that diffusion dominates over this part of the flow. The locations of peak vorticity (shown as 

black marks in Figure 12) are always at the lower part of the vorticity contours.  

 

Figure 11: Normalized streamwise velocity profiles at streamwise locations x/c = 0.6, x/c = 0.7, x/c = 0.8. For 

the uncontrolled case the profile at the centre of the wing span is plotted and negative streamwise velocity 

values are shown with blue circles. For the controlled case the streamwise component of the mean flow, 

𝑼𝒙(𝒚), is plotted. For the uncontrolled case, no data were available at x/c = 0.7.  

  

1.10 Uinf 
1.29 Uinf 

A 
B 

C 
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Figure 12: (Left Column) Normalized streamwise velocity contours and vectors of the in plane vortex velocity 

field.  One out of every four vectors is plotted for clarity. The solid white line is a 𝑼 isoline, at the height where 

∂U/∂y = 0, at z/h = ±6.  (Right Column) Normalized vorticity contours. Vorticity isolines ω = ωmax/2 for each 

vortex are also plotted. Top, middle and bottom rows correspond to planes A (x/c = 0.6, Δx/h = 27.2),  

B (x/c = 0.7, Δx/h = 37.2) and C (x/c = 0.8, Δx/h = 47.2), respectively. Vorticity peak locations are indicated by 

black marks. The wing surface is always at y/h = 0 and z/h = 0 is the centreline between the two VGs. 
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Vortex Path 

The vortex centre location on all measured planes is given in Figure 13 (left). It is observed 

that vortices move away from each other and away from the wing surface as they proceed 

downstream. On plane A (x/c = 0.6 or 27.2 heights downstream of the VG TE), the vortex 

centre is at 1.6h above the wing, indicating limited vortex displacement in the vertical 

direction since their formation. On the other hand, the vortex centre distance from the wing 

surface almost doubles from plane A to plane C. This cannot be attributed to vortex core 

growth since, as it will be shown, the vortex radius has only grown ~30% over the same 

distance. Conceivably the vortex cores are displaced in the vertical direction due mutual 

induction/upwash and surface curvature.  

The right vortex centre appears to be higher than the left vortex centre on planes B and C. 

This could be attributed to vortex interaction, since the left vortex, and hence its effect, is 

stronger than the right one (see vorticity isolines in Figure 12). The difference in vortex 

strength is attributed to inaccuracies in the VG construction. The right hand side VG was 

measured to be 0.5mm shorter and at ~1° lower angle with respect to the free stream than 

the left VG. 

Vortex Size 

The evolution of the vortex size is shown in Figure 13 (right) where the evolution of 𝑅0.1 is 

plotted. A linear growth of 𝑅0.1 is observed throughout the measurement range. Attention is 

drawn to the fact that, while 𝑅0.1 grows at an almost constant rate, the vortex shape 

changes from plane A to plane B (due to shear on the yz plane, as discussed later), whereas 

it is simply diffused from plane B to plane C. 

 

Figure 13: (Left) Vortex centre location on the XZ plane and (Right) “Vortex radius” at the three measurement 

planes.  

Vortex Strength 

Vortex circulation and peak vorticity on all measurement planes for both vortices are plotted 

in Figure 14. In order to examine the downstream decay of vorticity, both quantities are 

normalized by their respective values on plane A. The drop in circulation approaches the 

exponential decay suggested by LöGdberg et al. [19] for counter rotating vortices generated 

by low-profile VGs on a flat plate flow under zero pressure gradient. Peak vorticity drops at a 

higher rate in comparison to circulation, as expected. 
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Figure 14: (Left) Vortex circulation and (Right) absolute peak vorticity at the three measurement planes. Both 

quantities are normalized by their respective values on plane A. On the circulation graph the exponential 

decay suggested in [19]  is also shown.  

3.3.2 Turbulence characteristics 

In this section the measured Re stresses 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  (negative sign not included) are presented 

along with computed Re stress production terms and turbulent kinetic energy.  

The discussion on the downstream evolution of the VG vortices indentifies the following 

mechanisms. The early stage is dominated by strong turbulent momentum transport across: 

a) the Ω-shaped shear layer, as signified by high values of 𝜕𝑈/𝜕𝑦 and 𝜕𝑈/𝜕𝑧, and b) 

between the two vortices. Further downstream, diffusion takes over resulting in smoother 

distributions of the various turbulence quantities with reduced peak values. Regions of high 

normal stresses in all directions are related to strong velocity gradients. However, 

excessively high values of 𝑣′𝑣′̅̅ ̅̅ ̅̅  between the two vortices are attributed to vortex wandering, 

which adds to turbulence production.  

Reynolds Stresses distribution 

On plane A (Figure 15, top row), regions of high 𝑢′𝑢′̅̅ ̅̅ ̅̅  values unsurprisingly follow the shape 

of the streamwise velocity shear layer, (see also Figure 12). An area of high 𝑣′𝑣′̅̅ ̅̅ ̅̅  is formed at 

the top region between the two vortices, with values higher than those of the other normal 

stresses. Symmetric peaks of 𝑤′𝑤′̅̅ ̅̅ ̅̅  on the two sides of the z = 0 plane are observed, in 

agreement with [33, 35]. In [35] these peaks were linked to vortex wandering.  

Indication of vortex wandering was found in the measurement snapshots. They confirm that 

the vortices move at times independently in the spanwise direction (towards or away from 

each other) and at times as a pair, in the positive or negative Z direction. When the two 

vortices approach each other, the combined upwash between them becomes strong, 

whereas it is weakened when they move away from each other. Such a movement could 

explain the high 𝑣′𝑣′̅̅ ̅̅ ̅̅  values at the top region. The 𝑣′𝑣′̅̅ ̅̅ ̅ peak above the two vortices at the 

region of outflow was also observed in [21], where the case of counter rotating vortices in 

an adverse pressure gradient BL flow was studied.  

Moving to plane B, at x/c = 0.7, the shape of 𝑢′𝑢′̅̅ ̅̅ ̅ and 𝑣′𝑣′̅̅ ̅̅ ̅ distributions retains its form but 

peak values are now reduced and their spatial distribution diffused. Values of 𝑣′𝑣′̅̅ ̅̅ ̅ are no 

longer the highest amongst the normal Re stresses, which are now comparable in magnitude 

between them. Unlike the other normal stresses, 𝑤′𝑤′̅̅ ̅̅ ̅̅  distribution has changed: the two 

symmetric peaks give place to a smaller peak in the region of upwash between the two 

vortices. As shown later, this is not due to production of 𝑤′𝑤′̅̅ ̅̅ ̅̅ , but conceivably due to 

convection of the normal stress. 
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Finally, on plane C normal Re stress distributions are similar to those on plane B, supporting 

the view that between these two planes diffusion takes over as the main flow mechanism. 

On the contrary, the difference in Re stress distributions between plane A and B suggests 

that, in that region, vortex interaction and turbulent transport of momentum between the 

vortices and the underlying flow is still strong.  

Contours of the shear Re stresses on all planes are given in Figure 16. Shear stresses levels 

are one order of magnitude smaller than the normal stresses levels. Starting again with 

plane A, negative 𝑢′𝑣′̅̅ ̅̅ ̅ values follow the top part of the Ω-shaped shear layer while along the 

outer part of the same shear layer 𝑣′𝑤′̅̅ ̅̅ ̅̅  takes over. Positive 𝑢′𝑣′̅̅ ̅̅ ̅ values at approximately z/h 

= ±1, also follow the shape of the shear layer, but change sign due to its orientation. Both 

𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑣′𝑤′̅̅ ̅̅ ̅̅  have antisymmetric distributions, as expected. The high values of 𝑣′𝑤′̅̅ ̅̅ ̅̅  at the 

top of the two vortices indicate regions of strong shear on the yz plane. The overall structure 

is similar to the results presented in [33]. 

Further downstream, on plane B, the region of negative 𝑢′𝑣′̅̅ ̅̅ ̅ that bridges the two vortices 

has grown, while positive values are hardly visible as the shape of the streamwise velocity 

shear layer is now smoothened. Also, 𝑢′𝑤′̅̅ ̅̅ ̅̅  contours are significantly diffused. The vortex 

shape has changed mainly at the top part, where the concentration of 𝑣′𝑤′̅̅ ̅̅ ̅̅  is now smaller. 

Regions of high 𝑣′𝑤′̅̅ ̅̅ ̅̅  values are now concentrated inside the vortices indicating the end of 

strong turbulent transport across the outer shear layer of the vortex pair. Contours on plane 

C are very similar to those on plane B, only more diffused. 
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Figure 15: Normal 
Re stresses 
contours. Vorticity 
isolines for ω = 
ωmax/2 for each 
vortex are also 
plotted. The wing 
surface is always at 
y/h = 0 and z/h = 0 
is the centreline 
between the two 
VGs. 
 
Left Column:  

𝒖′𝒖′̅̅ ̅̅ ̅̅ /𝑼𝒊𝒏𝒇
𝟐  contours; 

 
Central Column:   

𝒗′𝒗′̅̅ ̅̅ ̅/𝑼𝒊𝒏𝒇
𝟐  contours; 

 
Right Column:  

𝒘′𝒘′̅̅ ̅̅ ̅̅ /𝑼𝒊𝒏𝒇
𝟐  

contours; 
 
Top row: Plane A,  
x/c = 0.6 or  
Δx/h = 27.2;  
 
Middle row: Plane 
B, x/c = 0.7 or  
Δx/h = 37.2;  
 
Bottom row: Plane 
C, x/c = 0.8 or  
Δx/h = 47.2;  
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Figure 16:  Shear Re 
stresses contours. 
Vorticity isolines for 
ω = ωmax/2 for each 
vortex are also 
plotted. The wing 
surface is always at 
y/h = 0 and z/h = 0 
is the centreline 
between the two 
VGs. 
 
Left Column: 

𝒖′𝒗′̅̅ ̅̅ ̅/𝑼𝒊𝒏𝒇
𝟐  contours; 

 
Central Column: 

𝒖′𝒘′̅̅ ̅̅ ̅̅ /𝑼𝒊𝒏𝒇
𝟐  

contours; 
 
Right Column: 

𝒗′𝒘′̅̅ ̅̅ ̅̅ /𝑼𝒊𝒏𝒇
𝟐   

contours; 
 
Top row: Plane A,  
x/c = 0.6 or  
Δx/h = 27.2;  
 
Middle row: Plane 
B, x/c = 0.7 or  
Δx/h = 37.2;  
 
Bottom row: Plane 
C, x/c = 0.8 or  
Δx/h = 47.2;  
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Relation to time averaged flow gradients 

In order to examine the relation between the time averaged velocity gradients, the Re stress 

production and the Re stresses themselves, their variation along vertical and horizontal lines 

is presented and discussed. The lines are shown graphically in Figure 17 and their exact 

positions are given in Table 3. Figure 17 also shows contours of the vertical (𝑉 = 𝑢𝑦,𝑃𝐼𝑉/

𝑈𝑖𝑛𝑓) and spanwise (𝑊 = 𝑢𝑧,𝑃𝐼𝑉/𝑈𝑖𝑛𝑓) time averaged flow components for reference. 

Figures from 18 to 20 refer to the vertical lines j1, j2 and j3 while figures from 21 to 23 refer 

to the horizontal lines i1, i2 and i3. The vertical lines are all taken on the left hand side (LHS) 

of the measurement planes, since conclusions from the right hand side are the same. All 

figures give the  𝑈 = 𝑢𝑥,𝑃𝐼𝑉/𝑈𝑖𝑛𝑓 profile along with 𝜕𝑈/𝜕𝑦 and 𝜕𝑈/𝜕𝑧 side by side with the 

turbulent kinetic energy (TKE), the normal and shear Re stresses and their production terms, 

𝑃𝑢𝑖𝑢𝑗
: 

𝑃𝑢𝑖𝑢𝑗
= −𝑢𝑖′𝑢𝑘′̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑈𝑗

𝜕𝑥𝑘
− 𝑢𝑗′𝑢𝑘′̅̅ ̅̅ ̅̅ ̅̅ 𝜕𝑈𝑖

𝜕𝑥𝑘
 (6)  

In Eqn. (6), the 𝑥 derivatives of the time averaged flow are considered small in comparison 

to the vertical and spanwise variations and are therefore omitted. 

Plane A B C 

Chordwise position (x/c) 0.6 0.7 0.8 

Distance form VG TE ((x-xVG)/h) 27.2 37.2 47.2 

Vertical lines spanwise 

location (z/h) 

j1, "between the two vortices" 0.0 0.0 0.0 

j2, "through the vortex centres" 1.3 1.5 1.7 

j3, "left of the LHS vortex" 2.6 3.0 3.4 

Horizontal lines distance 

from the wing surface (y/h) 

i1, "top part of the BL" 1.0 1.8 2.4 

i2, "through the vortices" 1.8 2.3 3.1 

i3, "top part of the vortex pair" 3.9 5.0 6.4 

Table 3: Details of the lines along which data are plotted in Figure 18 to Figure 23 

Starting with line j1 placed in between the two vortices, Figure 18, the 𝑈 profile is found to 

have double peaks, on all planes. This is due to the high velocity fluid entrained by the VG 

vortices inside the boundary layer. The upper part of the flow, i.e. the region higher than the 

lower 𝑈 peak, is dominated by the strong peak in 𝜕𝑈/𝜕𝑦, which is also present in all three 

planes. TKE, 𝑃𝑣𝑣, 𝑃𝑢𝑣, 𝑣′𝑣′̅̅ ̅̅ ̅ and 𝑢′𝑣′̅̅ ̅̅ ̅ also peak at maximum 𝜕𝑈/𝜕𝑦 in agreement with [21] 

where the effect of streamwise vortices on a separating BL was studied.  

In plane A, 𝑃𝑣𝑣 is the highest normal stress production term. This is due to vortex wandering 

as explained earlier. In planes B and C, on the other hand, where diffusion becomes 

dominant, 𝑃𝑢𝑢 and 𝑃𝑣𝑣 are comparable. In the region of peak 𝜕𝑈/𝜕𝑦, negative 𝑃𝑤𝑤 is 

connected to locally positive 𝜕𝑊/𝜕𝑧 (not shown here for the sake of readability of the 

plots). Limited 𝜕𝑈/𝜕𝑧 deviations from zero at the line between the two VGs are attributed 

to the VG model asymmetry. 

As the curved wing surface is approached on plane A, i.e. at positions lower than the first 𝑈 

peak, not only 𝑣′𝑣′̅̅ ̅̅ ̅ but also 𝑢′𝑢′̅̅ ̅̅ ̅ tend to zero faster than 𝑤′𝑤′̅̅ ̅̅ ̅̅ , while in the next two planes a 

rather balanced distribution is observed. Relatively high values of 𝑤′𝑤′̅̅ ̅̅ ̅̅   appear at the top 
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part of the BL on planes B and C, while the relevant production terms and the gradients of W 

(not shown here) in this region remain negligible. Therefore, this activity could be attributed 

to convection. Negative 𝑃𝑣𝑣 on plane A is connected to the inflection point in the 𝑈 profile.  

Along line j2 (passing through the vortex centre, Figure 19), both 𝑈 gradients are significant.  

𝑃𝑣𝑣 and 𝑃𝑢𝑣 as well as the corresponding Re stresses remain correlated to 𝜕𝑈/𝜕𝑦 on all 

measured planes. This is in agreement with [20] where the velocity deficit was found to have 

an important effect on the distribution of 𝑢′𝑣′̅̅ ̅̅ ̅ within the vortex core. TKE, 𝑢′𝑢′̅̅ ̅̅ ̅ and 𝑤′𝑤′̅̅ ̅̅ ̅̅  

appear correlated to 𝜕𝑈/𝜕𝑧 at this station, in agreement with [21]. 𝑃𝑣𝑤 and 𝑣′𝑤′̅̅ ̅̅ ̅̅  follow the 

variation of 𝜕𝑉/𝜕𝑧 (not shown here). An indication on the variation of 𝑉 and 𝑊 on all planes 

can be drawn from Figure 17 contours. 

On the left side of the LHS vortex (line j3, Figure 20), the flow is less affected by the three-

dimensionality of the vortical flow and the Re stress distribution resembles that of a 

turbulent BL [60]. There is indication of the presence of the VG vortices in the 𝑈 profile, 

which is associated to the small bump in the k distribution (indicated by vectors in Figure 

20). All activity is within y/h < 3. 𝜕𝑈/𝜕𝑦 is strong and combined with strong but balanced 

normal Re stresses and negative 𝑢′𝑣′̅̅ ̅̅ ̅ Re stress. The variation in 𝜕𝑈/𝜕𝑧 values is close to zero 

and the same holds for the corresponding production terms. 

Figure 21 shows the variation of the turbulence quantities along the horizontal line i1, 

located inside the BL. The vertical position of line i1 is defined by the height at which the 

local streamwise velocity at the sides of the Ω-shaped BL is ~0.8 times the local free stream 

velocity. The graphs show that outside the area that is affected by the vortices, 𝑃𝑢𝑣 is 

negative and 𝑃𝑤𝑤 is practically zero, as expected in a turbulent BL. 𝑃𝑣𝑣 on the other hand, 

takes positive values due to surface curvature. 𝑃𝑣𝑣 is reduced in the vortex region due to an 

increase in 𝜕𝑉/𝜕𝑦 (not shown here) and 𝑃𝑢𝑣 tends to zero as 𝜕𝑈/𝜕𝑦 decreases. The normal 

stresses peak at the location of the strongest velocity shear of their respective velocity 

components in agreement with [19] while they remain comparable in magnitude. On all  

planes, 𝑢′𝑤′̅̅ ̅̅ ̅̅  and 𝑃𝑢𝑤 show strong negative correlation with 𝜕𝑈/𝜕𝑧, in agreement with [21]. 

In comparison to the profiles at a greater distance from the wing surface (line i2, Figure 22 

and line i3, Figure 23), data from inside the BL are more noisy and the effect from the 

vortices is not as pronounced. 

Moving higher from the wing surface along the horizontal line passing through the vortex 

centres (line i2, Figure 22) the correlation between 𝑃𝑢𝑢, 𝑃𝑢𝑤 and the respective Re stresses 

with 𝜕𝑈/𝜕𝑧 is still strong. Also, 𝑃𝑢𝑣 negatively correlates with 𝜕𝑈/𝜕𝑦 especially on plane A. 

By comparing the shear stress distributions on the three planes, it follows that changes in 

shape are found between the first two planes while between planes B and C the shear stress 

profiles are basically smoothened, indicating once more the dominance of diffusion. 

At the top of the vortex pair (line i3, Figure 23), on plane A, production is dominated by high 

values of 𝑃𝑣𝑣 and 𝑃𝑢𝑣, both correlated to 𝜕𝑈/𝜕𝑦. Normal Re stress 𝑣′𝑣′̅̅ ̅̅ ̅ is also very strong 

following 𝑃𝑣𝑣. This is attributed to the spanwise wandering of the vortices as already 

discussed. The negative correlation of 𝜕𝑈/𝜕𝑦 with 𝑢′𝑣′̅̅ ̅̅ ̅ is related to turbulent transport 

through the 𝑈 shear layer. On plane B, 𝑃𝑣𝑣 and 𝑃𝑢𝑢 are comparable and the contribution of 

the normal stresses to TKE more balanced. On all three planes, 𝑃𝑢𝑤 follows 𝜕𝑈/𝜕𝑧 while 𝑃𝑣𝑤 
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follows 𝜕𝑉/𝜕𝑧 (not shown here). As in the previous horizontal lines, passage from plane B to 

C is dominated by diffusion.  

Figure 17: (Left Column) Normalized vertical velocity (V) contours. (Right Column) Normalized spanwise 

velocity (W) contours. Vorticity isolines for ω = ωmax/2 for each vortex are also plotted. Top, middle and 

bottom row correspond to planes A (x/c = 0.6 or Δx/h = 27.2), B (x/c = 0.7 or Δx/h = 37.2) and C (x/c = 0.8 or  

Δx/h = 47.2), respectively.  The wing surface is always at y/h = 0 and z/h = 0 is the centreline between the two 

VGs. Thick white cuts indicate the lines along which data are plotted in Figure 18 to Figure 23.  The exact 

positions of the lines/cuts are given in Table 3. 
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 Between the two vortices (centre of the VG pair)  

P
la

n
e

 A
, x

/c
 =

 0
.6

 

   

Figure 18: Profiles 
along line j1, defined 
in Figure 17.  

Top row: Plane A, x/c 
= 0.6 or Δx/h = 27.2  

Middle row: Plane B, 
x/c = 0.7 or Δx/h = 
37.2;  
 
Bottom row: Plane C, 
x/c = 0.8 or Δx/h = 
47.2;  
 
Left Column: 
Normalized time 
averaged streamwise 
velocity, ∂U/∂y and 
∂U/∂z 
 
Central Column: TKE, 
normal Re stresses 
and production 
terms;  
 
Right Column: shear 
Re stresses and 
production terms 
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  Through the LHS vortex centre  
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Figure 19: Profiles 
along line j2, defined 
in Figure 17. 

Top row: Plane A, x/c 
= 0.6 or Δx/h = 27.2;  

Middle row: Plane B, 
x/c = 0.7 or Δx/h = 
37.2;  

Bottom row: Plane C, 
x/c = 0.8 or Δx/h = 
47.2;  
 
Left Column: 
Normalized time 
averaged streamwise 
velocity, ∂U/∂y and 
∂U/∂z; 
 
Central Column: TKE, 
normal Re stresses 
and production 
terms;  

Right Column: shear 
Re stresses and 
production terms 
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 At the side of the LHS vortex  
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Figure 20: Profiles along 
line j3, defined in Figure 
17. 

Top row: Plane A, x/c = 
0.6 or Δx/h = 27.2;  

Middle row: Plane B, x/c 
= 0.7 or Δx/h = 37.2;  

Bottom row: Plane C, x/c 
= 0.8 or Δx/h = 47.2;  

Left Column: Normalized 
time averaged 
streamwise velocity, 
∂U/∂y and ∂U/∂z 

Central Column: TKE, 
normal Re stresses and 
production terms;  

Right Column: shear Re 
stresses and production 
terms 

Vectors indicate a "kick" 
in the profiles, sign of 
the vortex effect 

P
la

n
e 

B
, x

/c
 =

 0
.7

 

   

P
la

n
e 

C
, x

/c
 =

 0
.8

 

   
 

y/h 

y/h 

y/h 



29 

 

 Top part of the BL  
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Figure 21: Profiles along 
line i1, defined in Figure 
17. 

Top row: Plane A,  
x/c = 0.6 or Δx/h = 27.2;  

Middle row: Plane B, x/c 
= 0.7 or Δx/h = 37.2;  

Bottom row: Plane C, 
x/c = 0.8 or Δx/h = 47.2;  

Left Column: 
Normalized time 
averaged streamwise 
velocity, ∂U/∂y and 
∂U/∂z; 

Central Column: TKE, 
normal Re stresses and 
production terms;  

Right Column: shear Re 
stresses and production 
terms 
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 Through the vortex centres  
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Figure 22: Profiles 
along line i2, defined 
in Figure 17. 

Top row: Plane A, x/c = 
0.6 or Δx/h = 27.2;  

Middle row: Plane B, 
x/c = 0.7 or Δx/h = 
37.2;  

Bottom row: Plane C, 
x/c = 0.8 or Δx/h = 
47.2;  

Left Column: 
Normalized time 
averaged streamwise 
velocity, ∂U/∂y and 
∂U/∂z;  

Central Column: TKE, 
normal Re stresses and 
production terms;  

Right Column: shear 
Re stresses and 
production terms 
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 Top part of the vortex pair  
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Figure 23: Profiles 
along line i3, defined 
in Figure 17. 

Top row: Plane A, x/c = 
0.6 or Δx/h = 27.2;  
 
Middle row: Plane B, 
x/c = 0.7 or Δx/h = 
37.2;  

Bottom row: Plane C, 
x/c = 0.8 or Δx/h = 
47.2;  

Left Column: 
Normalized time 
averaged streamwise 
velocity, ∂U/∂y and 
∂U/∂z; 

Central Column: TKE, 
normal Re stresses and 
production terms;  
 
Right Column: shear 
Re stresses and 
production terms 
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4 Conclusions 
The effect of passive vortex generators on the performance of a wind turbine airfoil 

exhibiting 3D separation of the Stall Cell type has been investigated experimentally. Counter-

rotating triangular vanes with common flow up have been used. The reported data include 

pressure recordings at mid-span (on the wing surface and the wake) and Stereo PIV 

measurements at three chordwise stations positioned at 27.2, 37.2 and 47.2 VG heights 

downstream of the VG TE. Based on these data a detailed analysis of the flow is carried out 

revealing new features of the way VGs affect the onset of SCs on airfoils and of VG induced 

flow. The main findings are summarized below. 

It is found that SC formation can be delayed by 5°, resulting in significantly higher lift up to  

α = 15°. At lower incidences (α < 6°) a drag penalty of ΔCd = 0.002, inherent in passive VGs, 

was also measured. At 16° the flow bifurcated between two distinct states: a dominant High 

Lift state, in which the flow was mostly attached and a less frequent Low Lift state, when a 

large stall cell was formed. This bifurcating behaviour is associated with the state of the VG 

vortices, which can lead to SC re-establishment. The switching from one state to the other is 

intermittent and the less frequent Low Lift state lasted for a limited amount of time (less 

than 3sec for measurements of up to 180sec).  

It is noted that this bifurcating behaviour is different from the usually mentioned unstable 

nature of SCs with no flow control. In the latter case the SCs move in the spanwise direction 

or form and disappear in a seemingly random manner, however, there is always at least a 

single SC on the wing at some spanwise location. What was observed in the experiments 

presented here was a bifurcation between a case with and a case without a SC. 

The interpretation of the flow structure past the VGs as revealed by the Stereo PIV data is in 

agreement with previous studies conducted on flat plates with or without pressure gradient. 

From the presented results it is clear that for the space range considered, the averaged data 

show that the VG vortices grow in size and move away from each other and away from the 

wing surface during their downstream evolution. The streamwise velocity profile has a 

double peak due to high velocity flow being entrained by the VG vortices close to the wing 

surface.  

A detailed analysis of the Re Stress quantities and mean flow gradients is presented for the 

first time for this type of flow. Mean flow velocity gradients are well correlated to regions of 

intense turbulent transport, as indicated by high shear Re stresses and supported by the 

examination of the corresponding production terms. Regions of high normal Re stresses are 

well correlated to regions of high flow shear, while excessively strong 𝑣′𝑣′̅̅ ̅̅ ̅ indicates 

spanwise wandering of the vortices.  

The combined conclusion, from vortex evolution, vorticity contours and the distribution of 

turbulent quantities, is that up to the second measurement plane (37.2h downstream of the 

VG TE), turbulent transport between the VG vortices and the underlying flow is strong while 

from the second plane to the third (47.2h downstream of the VG TE) diffusion becomes the 

main mechanism that governs the flow. 
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Appendix 
Wind tunnel and wing model 

The NTUA wind tunnel is of the closed single-return type and the free-stream turbulence 

level in the 3.75 m long octagonal test section is 0.2%.  The wing model had a chord of 0.6m 

and the solid blockage of the model reached a maximum of 9.2% at the highest angle of 

attack α = 16o. Tuft flow visualization experiments reported in [45] showed that there was 

no flow "spillage" over the fences. The fences dimensions are given in Figure 24. 

 

Figure 24: Airfoil profile and fences. 

The model surface was painted with Rhodamine 6G, which shifts the wavelength of the 

impeding laser light through absorption and re-emission [61]. By applying suitable band-pass 

filters on the camera lenses it is possible to prevent the reflections from reaching the CCD 

sensors. Thus measurements closer to the surface can be performed. The technique was 

also used in [41]. Rhodamine 6G is a fluorescent substance and therefore a non-fluorescent 

pigment (TiO2) had to be used for oil flow visualization tests. 

The ZZ tape was oversized for tripping requirements, as its main use was to act as a large 

enough localized disturbance. Flow visualization results confirm that transition was triggered 

locally at the ZZ tape location, at the centre of the wing span, while free transition occurred 

at the sides of the ZZ tape.  

The VGs were constructed by a 0.2mm thick aluminium strip that was located on wing 

suction surface. This is a common technique [62-64] used to ensure that the VGs will have 

adequate rigidity and impose minimum distortion to the boundary layer.  

Pressure measurement instrumentation  

62 pressure taps were distributed along the wing chord at the centre of the wing span. They 

extended from the leading edge up to 88.8% of the chord. All wing pressure channels were 

fed through a pressure scanner (model FCS421, Furness Controls Ltd) to a Furness 

Manometer (FCO16) and then through a 16 bit A/D card (National Instruments - USB6251) to 

the lab computer.  

The wake rake was 39.1cm wide and consisted of 45 total pressure tubes and two static 

pressure tubes, located on a plane parallel, but offset with respect to the rake plane. The 

rake was positioned 0.82c downstream of the wing TE and could move both in the spanwise 



35 

 

direction and in the direction normal to the wing span. All rake tubes were connected to a 

Scanivalve sensor (Model J) and then to the A/D card. 

Force coefficients 

The lift coefficient was computed from the pressure distribution around the airfoil. Due to 

tap positioning, the Cl values reported in the present study refer to the 88.8% part of the 

profile. An analysis based on the numerical data reported in [12] showed that the 

experimentally measured Cl value is lower than the full profile Cl by 0.02 for angles -5° ≤ α ≤ 

9° and by 0.04 for angles 10° ≤ α ≤16°. 

For attached flow conditions the drag coefficient was computed from the wake pressure 

distribution according to [65]. For the case with VGs, drag varied significantly even under 

attached flow conditions due to the presence of the streamwise vortices shed by the 

actuators, as expected [66]. The drag was, hence, measured at four positions downstream of 

a VG pair and then averaged. The four measurement positions were equidistant and covered 

half the distance between two VG pairs. Position 0 was between the two VGs of the central 

VG pair and Position 3 was between the two consecutive VG pairs, see Figure 24, right. For 

separated flow conditions (α > 6° and α > 11° for the uncontrolled and the controlled case, 

respectively), drag was evaluated from the pressure measurements on the wing.  

 

Figure 25: Drag measurement positions for the case with the VGs 

Stereo PIV measurement equipment 

Stereo PIV measurements were performed using a 200mJ TSI Nd:YAG PIV laser with dual 

cavities. The light sheet thickness at the measurement plane was 1.8mm thick. The flow was 

seeded with oil droplets of 1μm mean diameter created by a commercial generator (TSI 

model 9307). Two 12-bit TSI Powerview Plus™ 4MP Cameras with Sigma 150mm f/2.8 lenses 

were used to obtain the data. 

Pulse separation time  

In order to reduce errors associated with flow acceleration and curvature effects, a small 

pulse separation time should be used [54]. Furthermore, when the measurement plane is 

normal to the main velocity component, as in the present case, a small pulse delay is 

required, in order to reduce the number of particles that go out of the measurement 

window. However, reducing the pulse delay reduces the measurement dynamic range and 

increases the relevant measurement error, so a compromise is necessary. In the present 

case a pulse separation time of 12 μsec was used as higher values would increase the 

measurement noise and make peak detection harder. For all planes the number of spurious 

Uinf

Uin
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vectors was always below 2% and the particle displacement was in all cases less than 1/4 of 

the 16 × 16px final interrogation areas. 

Given the number of parameters involved, estimating the uncertainty in a PIV system is not 

trivial [67]. Under optimal conditions the minimum displacement that can be accurately 

estimated is 0.1px [68, 69]. The corresponding minimum resolvable velocity for a pulse 

separation time of 12 μsec was Ures = 0.4m/s. Any estimated velocity lower than Ures is not 

reliable.  

Stereo PIV calibration 

A dual plane target was used, allowing the calibration coefficients computation without 

traversing the target in the out-of-plane direction. The calibration polynomial in the free 

stream direction was first order [54]. The side of the target was fitted with a mirror aligned 

with the centreline between the two planes of one side of the target. The optical path of the 

reflected sheet was made co-planar with the incident sheet to ensure the best possible 

alignment of the laser sheet with the calibration target. 

Image Processing 

The image processing was done using the Insight 4G (TSI) software. In pre-processing a 

background reflection image was subtracted from the measurement images to remove 

unwanted reflections. In processing, the overlap between interrogation areas was set to 50% 

and a Gaussian peak estimator was used. The signal-to-noise ratio was set to 1.5 and 

spurious vectors were replaced using a 3x3 local mean. Peak locking was examined by 

checking the displacement histograms from the measured data. No peak locking was 

observed in the results.  
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