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Abstract. Based on a recent result in [14], in this paper, we extend it to stochas-
tic evolution equations with jumps in Hilbert spaces. This is done via Galerkin type
finite-dimensional approximations of the infinite-dimensional stochastic evolution equa-
tions with jumps in a manner that one could then link the characterisation of the path-
independence for finite-dimensional jump type SDEs to that for the infinite-dimensional
settings. Our result provides an intrinsic link of infinite-dimensional stochastic evolution
equations with jumps to infinite-dimensional (nonlinear) integro-differential equations.

1. Introduction

The object of this paper is to characterise the path-independent property of the den-
sity process (via the exponent process) of Girsanov transformation for stochastic evolution
equations with jumps in Hilbert spaces, a class of semi-linear stochastic partial differen-
tial equations (SPDEs) with jumps. The latter class of SPDEs with jumps was studied
analytically in [11], which is continuously to be a hot topic nowadays. As a result, we
derive an intrinsic link of stochastic evolution equations with jumps in Hilbert spaces
to infinite-dimensional (nonlinear) integro-differential equations. The derived nonlinear
equations involve a Burgers-KPZ type nonlinearity, which should link very well to sta-
tistical physics, such as studies of infinite interacting systems with non-Gaussian noise
driven stochastic dynamics (cf. e.g. the discussions in [16]).

The investigation of path-indepedent property of the density of Girsanov transformation
for Itô type SDEs on R

d started in [15, 18], which was inspired by interesting considerations
needed in economics and mathematical finance (cf. e.g. references in [18]). In [16], Wang
and the second author considered stochastic evolution equations in Hilbert spaces driven
by cylindrical Brownian motion, and obtained a characterisation theorem via Galerkin
type finite-dimensional approximations developed in [17]. Moreover, in [14], we studied
the characterising path-independence problem for non-Lipschnitz SDEs with jumps on
R

d, where we derived a link of SDEs with jumps to integro-differential equations via a
proper setting of Girsanov transformation for SDEs with jumps.

AMS Subject Classification(2010): 60H15, 60H30, 35R60.
Keywords: An Itô formula, a Girsanov transformation, path-independence, characterization theorems.
*This work was partly supported by NSF of China (No. 11001051, 11371352).
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Due to the complexity of SPDEs with jumps, our extension can not be a straightforward
analogy to [16]. In fact, we have to overcome several difficulties arising from handling
equations with jumps in infinite dimensions, as well as need to establish a suitable Gir-
sanov transformation for such equations and most importantly the Itô formula for the
solutions of our stochastic evolution equations with jumps in Hilbert spaces, which we
could not find in the literature. The obtained results extend both characterisation results
in [16] and in [14].

The rest of the paper is organized as follows. In the next section, we will formulate
and prove a proper Girsanov theorem. The equations which we are concerned with are
introduced in Section 3, where we follow [17] to develop a Galerkin type finite-dimensional
approximation which extends the corresponding result in [17]. Moreover, we derive an
Itô’s formula for the solutions by utilising the Galerkin type finite-dimensional approx-
imation. Section 4 is devoted to proving the main results of the characterisation for
infinite-dimensional equations with jumps involving and not involving cylindrical Brown-
ian motion, respectively.

2. The Girsanov theorem

In the section, we state and show a Girsanov theorem for Brownian motions and random
measures in a real separable Hilbert space. We introduce our framework first.

Give a filtered probability space (Ω,F , {Ft}t∈[0,∞),P). Let {βi(t, ω)}i>1 be a family of
mutual independent one-dimensional Brownian motions on (Ω,F , {Ft}t∈[0,∞),P). For a
real separable Hilbert space (H, 〈·, ·〉H, ‖ · ‖H), construct a cylindrical Brownian motion on
H with respect to (Ω,F , {Ft}t∈[0,∞),P) by

Wt := Wt(ω) :=

∞
∑

i=1

βi(t, ω)ei, ω ∈ Ω, t ∈ [0,∞),

where {ei}i>1 is a complete orthonormal basis for H which will be specified later. It is
easy to justify that the covariance operator of the cylindrical Brownian motion W is the
identity operator I on H. Note that W is not a process on H. It is convenient to realize
W as a continuous process on an enlarged Hilbert space H̃, the completion of H under
the inner product

〈x, y〉
H̃
:=

∞
∑

i=1

2−i〈x, ei〉〈y, ei〉, x, y ∈ H.

Next, we introduce the jump measures. Let (U,U , ν) be a given σ-finite measure space
(which is interpreted as a parameter space measuring jumps) and let λ : [0,∞)×U → (0, 1)
be a measurable function. Then, following e.g. Theorem I.8.1 of [6], there exists an
integer-valued random measure on [0,∞)× U

Nλ : B([0,∞)× U × Ω → N0 := N ∪ {0} ∪ {∞}

with intensity measure (i.e., its predictable compensator) λ(t, u)dtν(du):

ENλ(dt, du, ·) = λ(t, u)dtν(du).

Set
Ñλ(dt, du) := Nλ(dt, du)− λ(t, u)dtν(du),

and then Ñλ(dt, du) is the associated compensated martingale measure of Nλ(dt, du).
Moreover, we assume that Wt and Nλ are independent.
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Fix arbitrarily T > 0 and U0 ∈ U with ν(U \ U0) <∞. Set for any t ∈ [0, T ]

Zt := Wt +

∫ t

0

γ(s, x)ds+

∫ t

0

∫

U0

ϕ(s, x, u)Ñλ(ds, du)

+

∫ t

0

∫

U\U0

ψ(s, x, u)Nλ(ds, du),

where γ : [0, T ]×Ω×H 7→ H̃ is P⊗B(H)/B(H̃)-measurable, and ϕ : [0, T ]×Ω×H×U0 7→

H̃ is P ⊗ B(H) ⊗ U |U0
/B(H̃)-measurable and ψ : [0, T ] × Ω × H × (U \ U0) 7→ H̃ is

P ⊗B(H)⊗U |U\U0
/B(H̃)-measurable, therein P stands for the predictable σ-algebra on

[0, T ]× Ω. Put

Λt : = exp

{

−

∫ t

0

〈γ(s, x), dWs〉H̃ −
1

2

∫ t

0

‖γ(s, x)‖2
H̃
ds−

∫ t

0

∫

U0

log λ(s, u)Nλ(ds, du)

−

∫ t

0

∫

U0

(1− λ(s, u))ν(du)ds

}

.

We will use Λt to define a new probability measure P̂ and show that under the measure
P̂, Zt has a simpler form, namely, we get the following Girsanov theorem in our present
framework.

Theorem 2.1. Assume that

E[ΛT ] = 1. (1)

Then under the probability dP̂ := ΛTdP, the process Zt, t ∈ [0, T ], has the following form

Zt = Ŵt +

∫ t

0

∫

U0

ϕ(s, x, u)Ñ(ds, du) +

∫ t

0

∫

U\U0

ψ(s, x, u)Nλ(ds, du), t ∈ [0, T ],

where, on the new filtered probability space (Ω,F , {Ft}t∈[0,T ], P̂), Ŵt := Wt +
∫ t

0
γ(s, x)ds

is a cylindrical Brownian motion, and the predictable compensator and the compensated
martingale measure of Nλ(dt, du) are dtν(du) and Ñ(dt, du), respectively.

Proof. For the cylindrical Brownian motion W , one could use the method similar to that
in [4, Theorem 10.14] with some slight modifications. The proof is then completed by
directly applying Theorem 3.17 in [7] to the random measure Nλ(dt, du). �

In Section 4, the above theorem will be used to transform certain relevant processes.

Next, we would like to present a sufficient condition on γ and λ such that ΛT fulfills the
assumption (1). Note that Λt, t ∈ [0, T ], is the Doléans-Dade exponential ofMt, t ∈ [0, T ],
i.e.,

Mt : = −

∫ t

0

〈γ(s, x), dWs〉H̃ +

∫ t

0

∫

U0

1− λ(s, u)

λ(s, u)
Ñλ(ds, du), t ∈ [0, T ].

Thus, we will analyze Mt to get the desired sufficient condition. Firstly, we have

∆Mt :=Mt −Mt− =
1− λ(t, u)

λ(t, u)
=

1

λ(t, u)
− 1 > −1, t ∈ [0, T ].

Secondly, we assume the following
3



(H2.1)

E

[

exp
{1

2

∫ T

0

‖γ(s, x)‖2
H̃
ds+

∫ T

0

∫

U0

(

1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds
}]

< ∞.

Then, under (H2.1), Mt is a locally square integrable martingale. Moreover, let M c and
Md stand for continuous and purely discontinuous martingale parts of M , respectively,
then

E

[

exp
{1

2
< M c,M c >T + < Md,Md >T

}]

= E

[

exp
{1

2

∫ T

0

‖γ(s, x)‖2
H̃
ds+

∫ T

0

∫

U0

(

1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds
}]

< ∞.

Thus, it follows from [12, Theorem 6] that Λt, t ∈ [0, T ] is a exponential martingale and
satisfies the condition (1).

3. Stochastic evolution equations with jumps on H

In the section, we consider stochastic evolution equations with jumps in our infinite
dimensional setting. Let us begin with some notions and notations. For the Hilbert space
H given in the previous section, L(H) is the set of all bounded linear operators L : H → H

and LHS(H) is the collection of all Hilbert-Schmidt operator L : H → H equipped with
the Hilbert-Schmidt norm ‖ · ‖HS.

Fix a linear, unbounded, negative definite and self-adjoint operator (A,D(A)) on H,
where D(A) is the domain of the operator A. Let {etA}t≥0 be the contraction C0-
semigroup generated by A. Moreover, LA(H) stands for the family of all densely defined
closed linear operators (L,D(L)) on H so that etAL can extend uniquely to a Hilbert-
Schmidt operator still denoted by etAL for any t > 0. And then LA(H), endowed with the
σ-algebra induced by {L → 〈etALx, y〉H | t > 0, x, y ∈ H}, becomes a measurable space.

Give T > 0. Consider the following stochastic evolution equation with jumps on H







dXt = {AXt + b(t, Xt)}dt+ σ(t, Xt)dWt +

∫

U0

f(t, Xt−, u)Ñλ(dt, du), 0 < t 6 T

X0 = x0 ∈ H,
(2)

where b : [0,∞) × H → H̃, σ : [0,∞) × H → LA(H) and f : [0,∞) × H × U0 7→ H̃ are
all Borel measurable mappings. Set ‖x‖H = ∞, x /∈ H. Let us give a definition of mild
solutions to Eq.(2), which will be used in the sequel.

Definition 3.1. A H-valued predictable process Xt, t ∈ [0, T ] is called a mild solution of
Eq.(2) if for any t ∈ [0, T ]

E

∫ t

0

‖e(t−s)Ab(s,Xs)‖
2
H
ds+ E

∫ t

0

‖e(t−s)Aσ(s,Xs)‖
2
HSds

+E

∫ t

0

∫

U0

‖e(t−s)Af(s,Xs−, u)‖
2
H
λ(s, u)ν(du)ds <∞,
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and P-a.s.

Xt = etAx0 +

∫ t

0

e(t−s)Ab(s,Xs)ds+

∫ t

0

e(t−s)Aσ(s,Xs)dWs

+

∫ t

0

∫

U0

e(t−s)Af(s,Xs−, u)Ñλ(ds, du).

Next, let us derive existence and uniqueness for the mild solution of Eq.(2). To this
end, we assume the following

(H3.1) There exists an integrable function Lb : (0, T ] → (0,∞) such that

‖esA(b(t, x)− b(t, y))‖2
H
6 Lb(s)‖x− y‖2

H
, s ∈ (0, T ], t ∈ [0, T ], x, y ∈ H,

and
∫ T

0

sup
r∈[0,T ]

‖esAb(r, 0)‖2
H
ds <∞.

(H3.2) There exists an integrable function Lσ : (0, T ] → (0,∞) such that ∀s ∈ (0, T ], t ∈
[0, T ] and ∀x, y ∈ H

‖esA (σ(t, x)− σ(t, y)) ‖2HS 6 Lσ(s)‖x− y‖2
H

and
∫ T

0

sup
r∈[0,T ]

‖esAσ(r, 0)‖2HSds <∞.

(H3.3) There exists an integrable function Lf : (0, T ] → (0,∞) such that ∀s ∈ (0, T ], t ∈
[0, T ] and ∀x, y ∈ H

∫

U0

‖esA(f(t, x, u)− f(t, y, u))‖2
H
λ(t, u)ν(du) 6 Lf (s)‖x− y‖2

H

and
∫ T

0

∫

U0

sup
r∈[0,T ]

(

‖esAf(r, 0, u)‖2
H
λ(r, u)

)

ν(du)ds <∞.

Remark 3.2. (i) Under (H3.1)-(H3.3), the following hold

‖esAb(t, x)‖2
H

6 2Lb(s)‖x‖
2
H
+ 2‖esAb(t, 0)‖2

H
,

‖esAσ(t, x)‖2HS 6 2Lσ(s)‖x‖
2
H
+ 2‖esAσ(t, 0)‖2HS,

∫

U0

‖esAf(t, x, u)‖2
H
λ(t, u)ν(du) 6 2Lf(s)‖x‖

2
H
+ 2

∫

U0

‖esAf(t, 0, u)‖2
H
λ(t, u)ν(du).

These conditions are nothing but similar to linear growth conditions.
(ii) Comparing (H3.1)-(H3.3) with those in [8, Theorem 2.3], one could find that our

conditions are more general.

We are now ready to give the existence and uniqueness result of the mild solution of
Eq.(2) under (H3.1)-(H3.3).

Theorem 3.3. Suppose that b, σ, f satisfy (H3.1)-(H3.3). Then there exists a unique
mild solution X of Eq.(2) with the following property

sup
t∈[0,T ]

E‖Xt‖
2
H
<∞.
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Proof. Denote by H the set of all H-valued predictable processes Y = (Yt)t∈[0,T ] satisfying
sup

t∈[0,T ]

E‖Yt‖
2
H
<∞. For Y ∈ H, set

J(Y )(t) := etAx0 +

∫ t

0

e(t−s)Ab(s, Ys)ds+

∫ t

0

e(t−s)Aσ(s, Ys)dWs

+

∫ t

0

∫

U0

e(t−s)Af(s, Ys−, u)Ñλ(ds, du),

and then J(Y ) ∈ H. In fact, by the isometry formula and Remark 3.2, it holds that for
0 6 s < t 6 T ,

E‖

∫ t

0

∫

U0

e(t−r)Af(r, Yr−, u)Ñλ(dr, du)−

∫ s

0

∫

U0

e(s−r)Af(r, Yr−, u)Ñλ(dr, du)‖
2
H

6 2E‖

∫ s

0

∫

U0

e(t−r)Af(r, Yr−, u)Ñλ(dr, du)−

∫ s

0

∫

U0

e(s−r)Af(r, Yr−, u)Ñλ(dr, du)‖
2
H

+2E‖

∫ t

s

∫

U0

e(t−r)Af(r, Yr−, u)Ñλ(dr, du)‖
2
H

= 2E

∫ s

0

∫

U0

‖e(t−r)Af(r, Yr−, u)− e(s−r)Af(r, Yr−, u)‖
2
H
λ(r, u)ν(du)dr

+2E

∫ t

s

∫

U0

‖e(t−r)Af(r, Yr−, u)‖
2
H
λ(r, u)ν(du)dr

6 2‖e(t−s)A − I‖2E

∫ s

0

∫

U0

‖e(s−r)Af(r, Yr−, u)‖
2
H
λ(r, u)ν(du)dr

+2E

∫ t

s

∫

U0

‖e(t−r)Af(r, Yr−, u)‖
2
H
λ(r, u)ν(du)dr

6 4‖e(t−s)A − I‖2
(

sup
t∈[0,T ]

E‖Yt‖
2
H

∫ s

0

Lf (r)dr
)

+4‖e(t−s)A − I‖2
(

∫ s

0

∫

U0

sup
r∈[0,T ]

(

‖evAf(r, 0, u)‖2
H
λ(r, u)

)

ν(du)dv
)

+4 sup
t∈[0,T ]

E‖Yt‖
2
H

∫ t−s

0

Lf(r)dr + 4

∫ t−s

0

∫

U0

sup
r∈[0,T ]

(

‖evAf(r, 0, u)‖2
H
λ(r, u)

)

ν(du)dv.

Taking the limits on two sides as s→ t, we obtain that
∫ t

0

∫

U0

e(t−r)Af(r, Yr−, u)Ñλ(dr, du)

is mean square continuous in t. And mean square continuity of etAx0,
∫ t

0
e(t−s)Ab(s, Ys)ds,

∫ t

0
e(t−s)Aσ(s, Ys)dWs is easy to verify. Therefore, J(Y )(t) is mean square continuous in t

and then is predictable.
Moreover, it follows from the above definition, the Hölder inequality and the isometry

formula that

E‖J(Y )(t)‖2
H

6 4‖etAx0‖
2
H
+ 4tE

∫ t

0

‖e(t−s)Ab(s, Ys)‖
2
H
ds+ 4E‖

∫ t

0

e(t−s)Aσ(s, Ys)dWs‖
2
H
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+4E‖

∫ t

0

∫

U0

e(t−s)Af(s, Ys−, u)Ñλ(ds, du)‖
2
H

6 4‖etAx0‖
2
H
+ 4tE

∫ t

0

‖e(t−s)Ab(s, Ys)‖
2
H
ds+ 4E

∫ t

0

‖e(t−s)Aσ(s, Ys)‖
2
HSds

+4E

∫ t

0

∫

U0

‖e(t−s)Af(s, Ys−, u)‖
2
H
λ(s, u)ν(du)ds.

Remark 3.2 then let us to obtain further

E‖J(Y )(t)‖2
H

6 4‖etAx0‖
2
H
+ 8t

∫ t

0

Lb(t− s)E‖Ys‖
2
H
ds + 8

∫ t

0

Lσ(t− s)E‖Ys‖
2
H
ds

+8

∫ t

0

Lf (t− s)E‖Ys‖
2
H
ds+ 8

∫ t

0

[

t‖e(t−s)Ab(s, 0)‖2
H
+ ‖e(t−s)Aσ(s, 0)‖2HS

+

∫

U0

‖e(t−s)Af(s, 0, u)‖2
H
λ(s, u)ν(du)

]

ds

6 4‖etAx0‖
2
H
+ 8 sup

t∈[0,T ]

E‖Yt‖
2
H

(

t

∫ t

0

Lb(s)ds+

∫ t

0

Lσ(s)ds+

∫ t

0

Lf (s)ds

)

+8

∫ t

0

[

t sup
r∈[0,T ]

‖esAb(r, 0)‖2
H
+ sup

r∈[0,T ]

‖esAσ(r, 0)‖2HS

+

∫

U0

sup
r∈[0,T ]

(

‖esAf(r, 0, u)‖2
H
λ(r, u)

)

ν(du)

]

ds.

By (H3.1) (H3.2) (H3.3) again, it holds that sup
t∈[0,T ]

E‖J(Y )(t)‖2
H
<∞.

Next, let us calculate sup
s∈[0,t]

E‖J(Y 1)(s)−J(Y 2)(s)‖2
H
for Y 1, Y 2 ∈ H. By similar deriva-

tion to the above, one could have

sup
s∈[0,t]

E‖J(Y 1)(s)− J(Y 2)(s)‖2
H

6 3

(

t

∫ t

0

Lb(r)dr +

∫ t

0

Lσ(r)dr +

∫ t

0

Lf (r)dr

)

· sup
s∈[0,t]

E‖Y 1
s − Y 2

s ‖
2
H
.

Since lim
t→0

3
(

t
∫ t

0
Lb(r)dr +

∫ t

0
Lσ(r)dr +

∫ t

0
Lf (r)dr

)

= 0, there exists a 0 < t0 6 T such

that 3
(

t0
∫ t0

0
Lb(r)dr +

∫ t0

0
Lσ(r)dr +

∫ t0

0
Lf (r)dr

)

< 1. Thus on [0, t0] the mapping J

has a unique fixed point Y which is a unique mild solution of Eq.(2). If t0 = T , the proof
is finished. If t0 < T , we repeat the above procedure to get a unique mild solution of
Eq.(2) on [t0, t1] for some t1 ∈ (t0, T ]. The approach is further utilsed till tn = T so that a
unique mild solution of Eq.(2) on the whole interval [0, T ] is obtained. We are done. �

Next, we will construct a finite dimensional approximation to Eq.(2) to set up a rela-
tion between Eq.(2) and a finite dimensional SDE with jumps. To be more precise, we
will set up the Galerkin approximation to Eq.(2), for which we shall need the following
assumption:
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(H3.4) The operator −A has the following eigenvalues

0 < λ1 6 λ2 6 . . . 6 λj 6 . . .

counting multiplicities such that

∞
∑

j=1

1

λj
<∞ .

We would like to emphasize here that the complete orthonormal basis {ej}j∈N is
taken as the eigen-basis of −A throughout the rest of the paper.

Remark 3.4. Note that by (H3.4), there are invertible operators on H in LA(H), such
as the identity operator I.

Recall that from now on we have the fixed complete orthonormal basis {ej}j∈N for H
as specified in (H3.4). Set

πn : H → Hn := span{e1, · · · , en}, n ∈ N,

πnx :=
n

∑

i=1

〈x, ei〉Hei, x ∈ H,

and then πn is the orthogonal project operator from H to Hn. Moreover, πne
tA = etAπn

for t ≥ 0. Again set An := A |Hn
, bn := πnb, σn := πnσ and fn := πnf . And then consider

the following SDE with jumps in Hn

{

dXn
t = {AnX

n
t + bn(t, X

n
t )}dt+ σn(t, X

n
t )dWt +

∫

U0

fn(t, X
n
t−, u)Ñλ(dt, du),

Xn(0) = πnx0.
(3)

Under (H3.1)-(H3.4), one can justify that the coefficients bn, σn and fn are Lipschitz
continuous and linearly growing. For example, for σn, noting that Wt =

∑∞
j=1 βj(t, ω)ej,

we deduce that
∞
∑

j=1

‖σn(t, x)ej‖
2
Hn

=
∞
∑

j=1

n
∑

i=1

|〈σ(t, x)ej, ei〉H|
2 =

∞
∑

j=1

n
∑

i=1

e2λiT |〈σ(t, x)ej , e
−λiT ei〉H|

2

=

∞
∑

j=1

n
∑

i=1

e2λiT |〈σ(t, x)ej, e
TAei〉H|

2 6 e2λnT

∞
∑

j=1

n
∑

i=1

|〈eTAσ(t, x)ej , ei〉H|
2

6 e2λnT‖eTAσ(t, x)‖2HS 6 e2λnT
(

2Lσ(T )‖x‖
2
H
+ 2‖eTAσ(t, 0)‖2HS

)

,

i.e. σn is linearly growing. Thus, by [6, Theorem 9.1], there exists a unique strong solution
Xn

t ∈ Hn, t ∈ [0, T ] to Eq.(3). Moreover, we have the following result.

Lemma 3.5. Under (H3.1)-(H3.4),

lim
n→∞

E‖Xn
t −Xt‖

2
H
= 0, t ∈ [0, T ]. (4)
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Proof. Note that Xn, the unique strong solution to Eq.(3), also satisfies the following
equation

Xn
t = etAnπnx0 +

∫ t

0

e(t−s)Anbn(s,X
n
s )ds+

∫ t

0

e(t−s)Anσn(s,X
n
s )dWs

+

∫ t

0

∫

U0

e(t−s)Anfn(s,X
n
s−, u)Ñλ(ds, du), t ∈ [0, T ]. (5)

Based on this and Definition 3.1, we compute E‖Xn
t − Xt‖

2
H
. By the Hölder inequality

and the isometry formula, it holds that

E‖Xn
t −Xt‖

2
H

6 4‖etAnπnx0 − etAx0‖
2
H
+ 4tE

∫ t

0

‖e(t−s)Anbn(s,X
n
s )− e(t−s)Ab(s,Xs)‖

2
H
ds

+4E

∫ t

0

‖e(t−s)Anσn(s,X
n
s )− e(t−s)Aσ(s,Xs)‖

2
HSds

+4E

∫ t

0

∫

U0

‖e(t−s)Anfn(s,X
n
s−, u)− e(t−s)Af(s,Xs−, u)‖

2
H
λ(s, u)ν(du)ds

=: I1 + I2 + I3 + I4.

For I1, since e
tAnπnx0 = πne

tAx0,

I1 6 4‖πn − I‖2‖etAx0‖
2
H
. (6)

And then we deal with I2. It follows from (H3.1) that

I2 6 4tE

∫ t

0

[

2‖e(t−s)Anbn(s,X
n
s )− e(t−s)Anbn(s,Xs)‖

2
H

+2‖e(t−s)Anbn(s,Xs)− e(t−s)Ab(s,Xs)‖
2
H

]

ds

6 4tE

∫ t

0

[

2‖e(t−s)Ab(s,Xn
s )− e(t−s)Ab(s,Xs)‖

2
H

+2‖πn − I‖2‖e(t−s)Ab(s,Xs)‖
2
H

]

ds

6 8t

∫ t

0

Lb(t− s)E‖Xn
s −Xs‖

2
H
ds

+8t‖πn − I‖2
∫ t

0

E‖e(t−s)Ab(s,Xs)‖
2
H
ds. (7)

By the similar deduction to the above, we obtain that

I3 + I4 6 8

∫ t

0

(Lσ(t− s) + Lf (t− s))E‖Xn
s −Xs‖

2
H
ds

+8‖πn − I‖2
∫ t

0

E‖e(t−s)Aσ(s,Xs)‖
2
HSds

+8‖πn − I‖2
∫ t

0

∫

U0

E‖e(t−s)Af(s,Xs−, u)‖
2
HSλ(s, u)ν(du)ds. (8)

9



Combining (6) (7) with (8), we have further that

E‖Xn
t −Xt‖

2
H

6 4‖πn − I‖2‖etAx0‖
2
H
+ 8‖πn − I‖2Ut

+8

∫ t

0

(TLb(t− s) + Lσ(t− s) + Lf(t− s))E‖Xn
s −Xs‖

2
H
ds, (9)

where

Ut := t

∫ t

0

E‖e(t−s)Ab(s,Xs)‖
2
H
ds+

∫ t

0

E‖e(t−s)Aσ(s,Xs)‖
2
HSds

+

∫ t

0

∫

U0

E‖e(t−s)Af(s,Xs−, u)‖
2
HSλ(s, u)ν(du)ds.

By Definition 3.1 and Theorem 3.3, it holds that Ut <∞ and sup
t∈[0,T ]

E‖Xt‖
2
H
<∞.

Next, we compute sup
n>1

sup
t∈[0,T ]

E‖Xn
t ‖

2
H
. For Eq.(5), by the similar calculation to that in

the proof of Theorem 3.3, one could have that

E‖Xn
t ‖

2
H

6 4‖etAx0‖
2
H
+ 8t

∫ t

0

Lb(t− s)E‖Xn
s ‖

2
H
ds + 8

∫ t

0

Lσ(t− s)E‖Xn
s ‖

2
H
ds

+8

∫ t

0

Lf (t− s)E‖Xn
s ‖

2
H
ds+ 8

∫ t

0

[

t‖e(t−s)Ab(s, 0)‖2
H
+ ‖e(t−s)Aσ(s, 0)‖2HS

+

∫

U0

‖e(t−s)Af(s, 0, u)‖2
H
λ(s, u)ν(du)

]

ds

6 4‖etAx0‖
2
H
+ 8 sup

s∈[0,t]

E‖Xn
s ‖

2
H

(

t

∫ t

0

Lb(s)ds+

∫ t

0

Lσ(s)ds+

∫ t

0

Lf (s)ds

)

+8

∫ t

0

[

t sup
r∈[0,T ]

‖esAb(r, 0)‖2
H
+ sup

r∈[0,T ]

‖esAσ(r, 0)‖2HS

+

∫

U0

sup
r∈[0,T ]

(

‖esAf(r, 0, u)‖2
H
λ(r, u)

)

ν(du)

]

ds.

Furthermore, by taking t0 with 8
(

t0
∫ t0

0
Lb(s)ds+

∫ t0

0
Lσ(s)ds+

∫ t0

0
Lf (s)ds

)

< 1/2, it

holds that

sup
s∈[0,t0]

E‖Xn
s ‖

2
H

6 8‖et0Ax0‖
2
H
+ 16

∫ t0

0

[

t0 sup
r∈[0,T ]

‖esAb(r, 0)‖2
H
+ sup

r∈[0,T ]

‖esAσ(r, 0)‖2HS

+

∫

U0

sup
r∈[0,T ]

(

‖esAf(r, 0, u)‖2
H
λ(r, u)

)

ν(du)

]

ds.

On [t0, 2t0], [2t0, 3t0], . . . , [mt0, T ] for m ∈ N, by the same way to the above we deduce
and conclude that

sup
s∈[0,T ]

E‖Xn
s ‖

2
H

6 8m+1‖et0Ax0‖
2
H
+ 16

m
∑

i=1

8i
∫ it0

(i−1)t0

[

t0 sup
r∈[0,T ]

‖esAb(r, 0)‖2
H

+ sup
r∈[0,T ]

‖esAσ(r, 0)‖2HS +

∫

U0

sup
r∈[0,T ]

‖esAf(r, 0, u)‖2
H
λ(r, u)ν(du)

]

ds
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+16

∫ T

mt0

[

t0 sup
r∈[0,T ]

‖esAb(r, 0)‖2
H
+ sup

r∈[0,T ]

‖esAσ(r, 0)‖2HS

+

∫

U0

sup
r∈[0,T ]

(

‖esAf(r, 0, u)‖2
H
λ(r, u)

)

ν(du)

]

ds.

This shows sup
n>1

sup
t∈[0,T ]

E‖Xn
t ‖

2
H
<∞.

Thus, taking the super limit on two sides of the inequality (9) as n→ ∞, by the Fatou
lemma we obtain that

lim sup
n→∞

E‖Xn
t −Xt‖

2
H

6

∫ t

0

(TLb(t− s) + Lσ(t− s)

+Lf(t− s)) lim sup
n→∞

E‖Xn
s −Xs‖

2
H
ds.

Based on the proof in [17, Theorem 3.1.2], one could get

lim sup
n→∞

E‖Xn
t −Xt‖

2
H
= 0.

Thus, the proof is completed. �

In the following, we will apply the Galerkin finite-dimensional approximation in the
above lemma to deduce an Itô formula for real-valued functions of the solution Xt, t ∈
[0, T ] to Eq.(2). Now, there exist some Itô formulas for real-valued functions of these
solutions processes for these infinite-dimensional semi-linear SDEs with jumps containing
Eq.(2), such as [2, Theorem 2.4] and [9, Theorem 27.1]. Unfortunately, they don’t work
here because of two requirements in them that the diffusion coefficient σ in Eq.(2) is
a Hilbert-Schmidt operator and that the solution Xt to Eq.(2) is a strong solution. In
present, we will prove an Itô formula for Eq.(2) with σ ∈ LA(H) and a unique mild
solution Xt. Therefore, the result is independently interesting.

Proposition 3.6. Assume (H3.1)-(H3.4), and let v : [0, T ]×H → R be in C1,2
b ([0, T ]×

H) such that [∇v(t, x)] ∈ D(A) for any (t, x) ∈ [0, T ] × H and ‖A∇v(t, ·)‖H is bounded
locally and uniformly in t ∈ [0, T ]. Then we have

v(t, Xt) = v(0, x0) +

∫ t

0

[

∂

∂s
v(s,Xs) + 〈∇v(s,Xs), b(s,Xs)〉H̃ + 〈A∇v(s,Xs), Xs〉H

]

ds

+

∫ t

0

〈σ∗(s,Xs)∇v(s,Xs), dWs〉H̃ +
1

2

∫ t

0

Tr[(σσ∗)(s,Xs)∇
2v(s,Xs)]ds

+

∫ t

0

∫

U0

[v(s,Xs− + f(s,Xs−, u))− v(s,Xs−)] Ñλ(ds, du)

+

∫ t

0

∫

U0

[

v(s,Xs− + f(s,Xs−, u))− v(s,Xs−)

−〈f(s,Xs−, u),∇v(s,Xs−)〉H̃

]

λ(s, u)ν(du)ds, (10)

where σ∗(t, x) stands for the transposed matrix of σ(t, x), ∇ and ∇2 stand for the first
and second Fréchet operators with respect to the second variable, respectively.
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Proof. First of all, take the approximation sequence {Xn
t , t ∈ [0, T ]}n∈N for the solution

{Xt, t ∈ [0, T ]} of Eq.(2). Note that {Xn
t , t ∈ [0, T ]} is a n-dimensional process. Applying

the Itô formula in [6] to v(t, Xn
t ) for any t ∈ [0, T ], one could obtain that

v(t, Xn
t ) = v(0, πnx0) +

∫ t

0

〈∇nv(s,X
n
s ), σn(s,X

n
s )dWs〉H

+

∫ t

0

∫

U0

[

v(s,Xn
s− + fn(s,X

n
s−, u))− v(s,Xn

s−)
]

Ñλ(ds, du)

+

∫ t

0

[ ∂

∂s
v(s,Xn

s ) + 〈∇nv(s,X
n
s ),AnX

n
s + bn(s,X

n
s )〉H

]

ds

+
1

2

∫ t

0

Tr[∇2
nv(s,X

n
s )(σn(s,X

n
s )(Id)

1

2 )(σn(s,X
n
s )(Id)

1

2 )∗]ds

+

∫ t

0

∫

U0

[

v(s,Xn
s− + fn(s,X

n
s−, u))− v(s,Xn

s−)

−〈fn(s,X
n
s−, u),∇nv(s,X

n
s−)〉H

]

λ(s, u)ν(du)ds

= v(0, πnx0) +

∫ t

0

〈σ∗
n(s,X

n
s )∇nv(s,X

n
s ), dWs〉H

+

∫ t

0

∫

U0

[

v(s,Xn
s− + fn(s,X

n
s−, u))− v(s,Xn

s−)
]

Ñλ(ds, du)

+

∫ t

0

[ ∂

∂s
v(s,Xn

s ) + 〈∇nv(s,X
n
s ),AnX

n
s + bn(s,X

n
s )〉H

]

ds

+
1

2

∫ t

0

Tr[(σnσ
∗
n)(s,X

n
s )∇

2
nv(s,X

n
s )]ds

+

∫ t

0

∫

U0

[

v(s,Xn
s− + fn(s,X

n
s−, u))− v(s,Xn

s−)

−〈fn(s,X
n
s−, u),∇nv(s,X

n
s−)〉H

]

λ(s, u)ν(du)ds, (11)

where ∇n· :=
∑n

j=1〈∇·, ej〉Hej .

Firstly, by continuity of v(t, x), ∂
∂s
v(s, x) with respect to x and Lemma 3.5, it is clear

that

lim
n→∞

v(t, πnx0) = v(t, x0),

lim
n→∞

v(t, Xn
t ) = v(t, Xt),

lim
n→∞

∂

∂s
v(s,Xn

s ) =
∂

∂s
v(s,Xs) a.s..

Those assumptions on v and self-adjoint property of the operator A admit us to obtain
that

lim
n→∞

∫ t

0

〈[σ∗
n∇nv](s,X

n
s ), dWs〉H =

∫ t

0

〈[σ∗∇v](s,Xs), dWs〉H̃ ,

lim
n→∞

∫ t

0

∫

U0

[

v(s,Xn
s− + fn(s,X

n
s−, u))− v(s,Xn

s−)
]

Ñλ(ds, du)

12



=

∫ t

0

∫

U0

[v(s,Xs− + f(s,Xs−, u))− v(s,Xs−)] Ñλ(ds, du),

in the mean square sense and

lim
n→∞

∫ t

0

〈∇nv(s,X
n
s ),AnX

n
s 〉Hds =

∫ t

0

〈A∇v(s,Xs), Xs〉Hds ,

lim
n→∞

∫ t

0

〈∇nv(s,X
n
s ), bn(s,X

n
s )〉Hds =

∫ t

0

〈∇v(s,Xs), b(s,Xs)〉H̃ds ,

lim
n→∞

∫ t

0

Tr[(σnσ
∗
n)(s,X

n
s )∇

2
nv(s,X

n
s )]ds =

∫ t

0

Tr[(σσ∗)(s,Xs)∇
2v(s,Xs)]ds,

lim
n→∞

∫ t

0

∫

U0

[

v(s,Xn
s− + fn(s,X

n
s−, u))− v(s,Xn

s−)

−〈fn(s,X
n
s−, u),∇nv(s,X

n
s−)〉H

]

λ(s, u)ν(du)ds

=

∫ t

0

∫

U0

[

v(s,Xs− + f(s,Xs−, u))− v(s,Xs−)

−〈f(s,Xs−, u),∇v(s,Xs−)〉H̃

]

λ(s, u)ν(du)ds, a.s..

Finally, taking the limits on two sides of (11) as n→ ∞, by the above equalities we have
(10). The proof is completed. �

4. The characterization theorem on H

In the section, we shall state and prove two characterization theorems, which are the
main results in the paper. First of all, consider Eq.(2), i.e.
{

dXt = (AXt + b(t, Xt))dt+ σ(t, Xt)dWt +
∫

U0

f(t, Xt−, u)Ñλ(dt, du), t ∈ [0, T ],

X0 = x0 ∈ H.

Moreover, we assume:

(H3.3’) There exists an integrable function L′
f : [0, T ] → (0,∞) such that

∫

U0

‖esA(f(t, x, u)− f(t, y, u))‖2
H
λ(t, u)ν(du) 6 L′

f (s)‖x− y‖2
H
, s, t ∈ [0, T ], x, y ∈ H,

and for q = 2 and 4
∫

U0

‖esAf(t, x, u)‖q
H
λ(t, u)ν(du) 6 L′

f (s)(1 + ‖x‖H)
q.

(H4.1) (Non-degeneracy) σ(t, x) is invertible for any (t, x) ∈ [0, T ] × H and the inverse
operator of σ(t, x) is uniformly bounded on (t, x) ∈ [0, T ]×H.

It is obvious that the assumption (H3.3’) is stronger than (H3.3). In the following, we
define the support of a H-valued random variable ([10]) and give out a support theorem
under these assumptions.

Definition 4.1. The support of a H-valued random variable Y is defined to be

supp(Y ) := {x ∈ H|(P ◦ Y −1)(B(x, r)) > 0, for all r > 0}

where B(x, r) := {y ∈ H|‖y − x‖H < r}.
13



Lemma 4.2. Under (H3.1)-(H3.2) (H3.3’) (H3.4) and (H4.1), supp(Xt) = H for
t ∈ [0, T ].

Proof. Since it is easy to see supp(Xt) ⊂ H, we only prove supp(Xt) ⊃ H. Moreover, from
Definition 4.1, we only need to show that for any x ∈ H and r > 0,

P{‖Xt − x‖H < r} > 0,

or equivalently,

P{‖Xt − x‖H > r} < 1.

On one hand, by Lemma 3.5 and the Chebyshev inequality, it holds that for any small
0 < ε < r and 0 < η < 1, there exists a N ∈ N such that for n > N ,

P{‖Xt −Xn
t ‖H > ε/2} < η/2, P{‖πnx− x‖H > ε/2} < η/2.

On the other hand, for Xn
t , [13, Proposition 2.4] admits us to obtain that

P{‖Xn
t − πnx‖H > r − ε} < 1− η.

Thus, combining these inequalities, we furthermore have that

P{‖Xt − x‖H > r} 6 P{‖Xt −Xn
t ‖H > ε/2}+ P{‖Xn

t − πnx‖H > r − ε}

+P{‖πnx− x‖H > ε/2}

< 1.

So, the proof is completed. �

In order to give main results, we also need the following assumption.

(H4.2)

E

[

exp
{1

2

∫ T

0

∥

∥σ−1(s,Xs)b(s,Xs)
∥

∥

2

H
ds+

∫ T

0

∫

U0

(

1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds
}]

< ∞.

Taking

Λt = exp

{

−

∫ t

0

〈σ−1(s,Xs)b(s,Xs), dWs〉H̃ −
1

2

∫ t

0

∥

∥σ−1(s,Xs)b(s,Xs)
∥

∥

2

H
ds

−

∫ t

0

∫

U0

log λ(s, u)Nλ(ds, du)−

∫ t

0

∫

U0

(1− λ(s, u))ν(du)ds

}

,

by Section 2 we know that Λt is a exponential martingale under (H4.2) and satisfies the

condition (1). Thus, by Theorem 2.1, one can obtain that under the measure P̂ Eq.(2) is
transformed as

dXt = AXtdt + σ(t, Xt)dW̃t +

∫

U0

f(t, Xt−, u)Ñ(dt, du),

where

W̃t := Wt +

∫ t

0

σ−1(s,Xs)b(s,Xs)ds.

Next, we observe Λt. Set

Yt := − log Λt
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=

∫ t

0

〈σ−1(s,Xs)b(s,Xs), dWs〉H̃ +
1

2

∫ t

0

∥

∥σ−1(s,Xs)b(s,Xs)
∥

∥

2

H
ds

+

∫ t

0

∫

U0

log λ(s, u)Nλ(ds, du) +

∫ t

0

∫

U0

(1− λ(s, u))ν(du)ds.

Clearly, Yt is a one-dimensional stochastic process with the stochastic differential form

dYt = 〈σ−1(t, Xt)b(t, Xt), dWt〉H̃ +
1

2

∥

∥σ−1(t, Xt)b(t, Xt)
∥

∥

2

H
dt

+

∫

U0

log λ(t, u)Nλ(dt, du) +

∫

U0

(1− λ(t, u))ν(du)dt.

Now, we state and prove the first result of the section.

Theorem 4.3. Assume (H3.1)-(H3.2) (H3.3’) (H3.4) and (H4.1)-(H4.2). Let v :
[0, T ]×H → R be a scalar function which is C1 with respect to the first variable and C2 with
respect to the second variable such that [∇v(t, x)] ∈ D(A) for any (t, x) ∈ [0, T ]×H and
‖A∇v(t, ·)‖H is bounded locally and uniformly in t ∈ [0, T ], and ‖A∇v(t, ·)‖H : H → [0,∞)
is continuous (in the variable x ∈ H) for each t ∈ [0, T ]. Then the Girsanov density Λt

for Eq.(2) has the following path-independent property:

Λt = exp{v(0, x0)− v(t, Xt)}, t ∈ [0, T ], (12)

if and only if

b(t, x) = (σσ∗∇v)(t, x), (t, x) ∈ [0, T ]×H, (13)

λ(t, u) = exp{v(t, x+ f(t, x, u))− v(t, x)}, (t, x, u) ∈ [0, T ]×H× U0, (14)

and v satisfies the following time-reversed integro-differential equation(IDE),

∂

∂t
v(t, x)

= −
1

2
[Tr(σσ∗)∇2v](t, x)−

1

2
‖σ(t, x)∗∇v(t, x)‖2

H
− 〈x,A∇v(t, x)〉H

−

∫

U0

[

ev(t,x+f(t,x,u))−v(t,x) − 1− 〈f(t, x, u),∇v(t, x)〉
H̃
ev(t,x+f(t,x,u))−v(t,x)

]

ν(du).

(15)

Proof. Firstly, let us show sufficiency. Assume that there exists a C1,2-function v(t, x) sat-
isfying (13)(14)(15). For the composition process v(t, Xt), the Itô formula in Proposition
3.6 admits us to get

dv(t, Xt) =
∂

∂t
v(t, Xt)dt + 〈AXt,∇v(t, Xt)〉Hdt

+〈b(t, Xt),∇v(t, Xt)〉H̃dt+
1

2
[Tr(σσ∗)∇2v](t, Xt)dt

+

∫

U0

[

v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)

−〈f(t, Xt−, u),∇v(t, Xt−)〉H̃

]

λ(t, u)ν(du)dt

+

∫

U0

[v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)] Ñλ(dt, du)

15



+〈(σ∗∇v)(t, Xt), dWt〉H̃. (16)

Combining (13)(14)(15) with (16), one could have

dv(t, Xt)

=

[

1

2

∥

∥σ−1(t, Xt)b(t, Xt)
∥

∥

2

H
+

∫

U0

(

(

log λ(t, u)
)

λ(t, u) +
(

1− λ(t, u)
)

)

ν(du)

]

dt

+

∫

U0

log λ(t, u)Ñλ(dt, du) + 〈σ−1(t, Xt)b(t, Xt), dWt〉H̃

= 〈σ−1(t, Xt)b(t, Xt), dWt〉H̃ +
1

2

∥

∥σ−1(t, Xt)b(t, Xt)
∥

∥

2

H
dt

+

∫

U0

log λ(t, u)Nλ(dt, du) +

∫

U0

(1− λ(t, u))ν(du)dt.

Integrating the above equality from 0 to t ∈ [0, T ], we know that

v(t, Xt)− v(t, x0) = Yt = − log Λt.

By simple calculation, that is exactly (12).
Next, we prove necessity. On one side, there exists a C1,2-function v(t, x) such that

v(t, Xt) satisfies (12), i.e.

dv(t, Xt) = −d log Λt = dYt =
[1

2

∥

∥σ−1(t, Xt)b(t, Xt)
∥

∥

2

H

+

∫

U0

(

(

log λ(t, u)
)

λ(t, u) +
(

1− λ(t, u)
)

)

ν(du)
]

dt

+

∫

U0

log λ(t, u)Ñλ(dt, du) + 〈σ−1(t, Xt)b(t, Xt), dWt〉H̃. (17)

Moreover, based on (17) we conclude that v(t, Xt) is a càdlàg semimartingale with a
predictable finite variation part. On the other side, note that Xt solves Eq.(2) and v(t, x)
is a C1,2-function. Applying Proposition 3.6 to the composition process v(t, Xt), one could
obtain (16), i.e.

dv(t, Xt) =
∂

∂t
v(t, Xt)dt + 〈AXt,∇v(t, Xt)〉Hdt

+〈b(t, Xt),∇v(t, Xt)〉H̃dt+
1

2
[Tr(σσ∗)∇2v](t, Xt)dt

+

∫

U0

[

v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)

−〈f(t, Xt−, u),∇v(t, Xt−)〉H̃

]

λ(t, u)ν(du)dt

+

∫

U0

[v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)] Ñλ(dt, du)

+〈(σ∗∇v)(t, Xt), dWt〉H̃.

Thus, the above equality is another decomposition of the semimartingale v(t, Xt). By
uniqueness for decomposition of the semimartingale ([5]), it holds that for t ∈ [0, T ],

σ−1(t, Xt)b(t, Xt) = σ(t, Xt)
∗∇v(t, Xt),

log λ(t, u) = v(t, Xt− + f(t, Xt−, u))− v(t, Xt−), u ∈ U0,
16



and
1

2

∥

∥σ−1(t, Xt)b(t, Xt)
∥

∥

2

H
+

∫

U0

(

(

log λ(t, u)
)

λ(t, u) +
(

1− λ(t, u)
)

)

ν(du)

=
∂

∂t
v(t, Xt) + 〈AXt,∇v(t, Xt)〉H + 〈b(t, Xt),∇v(t, Xt)〉H̃ +

1

2
[Tr(σσ∗)∇2v](t, Xt)

+

∫

U0

[

v(t, Xt− + f(t, Xt−, u))− v(t, Xt−)− 〈f(t, Xt−, u),∇v(t, Xt−)〉H̃

]

λ(t, u)ν(du), a.s..

Based on Lemma 4.2 and our assumptions on A∇v(t, x), we have that

σ−1(t, x)b(t, x) = σ(t, x)∗∇v(t, x), (t, x) ∈ [0, T ]×H, (18)

log λ(t, u) = v(t, x+ f(t, x, u))− v(t, x), (t, x, u) ∈ [0, T ]×H× U0, (19)

and
1

2

∥

∥σ−1(t, x)b(t, x)
∥

∥

2

H
+

∫

U0

(

(

log λ(t, u)
)

λ(t, u) +
(

1− λ(t, u)
)

)

ν(du)

=
∂

∂t
v(t, x) + 〈Ax,∇v(t, x)〉

H
+ 〈b(t, x),∇v(t, x)〉

H̃
+

1

2
[Tr(σσ∗)∇2v](t, x)

+

∫

U0

[

v(t, x+ f(t, x, u))− v(t, x)− 〈f(t, x, u),∇v(t, x)〉
H̃

]

λ(t, u)ν(du). (20)

By simple computation, (18)(19) correspond to (13)(14), respectively. Moreover, (18)(19)
together with (20) yield to (15). The proof is completed. �

The above theorem gives a necessary and sufficient condition, and hence a characteri-
zation of path-independence for the density Λt of the Girsanov transformation for a SEE
with jumps in terms of a IDE. Namely, we establish a bridge from Eq.(2) to a IDE.

Remark 4.4. Let f(t, x, u) = 0, and then Eq.(2) has no jumps. In Theorem 4.3, based
on (14), we know that λ(t, u) = 1 for u ∈ U0. Thus, Eq.(12) becomes

Λt = exp{−

∫ t

0

〈σ−1(s,Xs)b(s,Xs), dWs〉H̃ −
1

2

∫ t

0

∥

∥σ−1(s,Xs)b(s,Xs)
∥

∥

2

H
ds}

= exp{v(0, x0)− v(t, Xt)}.

By Theorem 4.3, the above equation holds if and only if

b(t, x) = (σσ∗∇v)(t, x), (t, x) ∈ [0, T ]×H,

∂

∂t
v(t, x) = −

1

2
[Tr(σσ∗)∇2v](t, x)−

1

2
‖σ(t, x)∗∇v(t, x)‖2

H
− 〈x,A∇v(t, x)〉H.

This is exactly Theorem 3.1 in [16]. That is, our result is more general.

Remark 4.5. Let f(t, x, u) = 0, and then Eq.(15) becomes the following time-reversed
partial differential equation,

∂

∂t
v(t, x) = −

1

2
[Tr(σσ∗)∇2v](t, x)−

1

2
‖σ(t, x)∗∇v(t, x)‖2

H
− 〈x,A∇v(t, x)〉H.

The above type of equations has been analyzed in [16]. Moreover, in some special cases
(cf. Example 3.1 and 3.2 in [16]) it is an infinite-dimensional analogy of the Burgers-
KPZ equation that is well known in statistics physics. If f(t, x, u) 6= 0, the special kind
of Eq.(15) appears in [3]. There its classical solution and viscosity solution are defined
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and studied. Furthermore, it is worthwhile to mention that a family of option prices is its
viscosity solution.

Next, we consider Eq.(2) with σ(t, x) = 0, i.e.
{

dX̄t = (AX̄t + b(t, X̄t))dt +
∫

U0

f(t, X̄t−, u)Ñλ(dt, du), t ∈ [0, T ],

X̄0 = x0,
(21)

where b : [0,∞) × H → H and f : [0,∞) × H × U0 7→ H are two Borel measurable
mappings. Since Eq.(21) is driven by a purely jump process, some conclusions about it
will be different from that about Eq.(2). Let us describe them in details. By Theorem
3.3, Eq.(21) has a unique mild solution denoted by X̄t. Assume:

(H4.3)

exp
{

∫ T

0

∫

U0

(

1− λ(s, u)

λ(s, u)

)2

λ(s, u)ν(du)ds
}

<∞.

Set

Λ̄t := exp

{

−

∫ t

0

∫

U0

log λ(s, u)Nλ(ds, du)−

∫ t

0

∫

U0

(1− λ(s, u))ν(du)ds

}

,

and then by similar deduction to the above, Λ̄t is an exponential martingale. Define a
measure P̄t via

dP̄t

dP
= Λ̄t.

Under P̄t, by Theorem 2.1, the system (21) is transformed as

dX̄t = (AX̄t + b(t, X̄t))dt+

∫

U0

f(t, X̄t−, u)Ñ(dt, du).

Note that the drift term still exists.
Now, we study path-independence of Λ̄t. By the similar proof to that in Theorem 4.3,

we obtain the following result.

Theorem 4.6. Assume (H3.1) (H3.3’) (H3.4) and (H4.3). Let v̄ : [0, T ]×H → R be
a scalar function which is C1 with respect to the first variable and C2 with respect to the
second variable such that [∇v̄(t, x)] ∈ D(A) for any (t, x) ∈ [0, T ]×H and ‖A∇v̄(t, ·)‖H
is bounded locally and uniformly in t ∈ [0, T ]. Then the Girsanov density Λ̄t for Eq.(21)
has the following path-indenpendent property:

Λ̄t = exp{v̄(0, x̄0)− v̄(t, X̄t)}, t ∈ [0, T ],

if and only if

λ(t, u) = exp{v̄(t, x+ f(t, x, u))− v̄(t, x)}, (t, x, u) ∈ [0, T ]× R
d × U0,

and v̄ satisfies the following time-reversed equation,

∂

∂t
v̄(t, x) = −〈Ax+ b(t, x),∇v̄(t, x)〉

H
−

∫

U0

[

ev̄(t,x+f(t,x,u))−v̄(t,x) − 1

−〈f(t, x, u),∇v̄(t, x)〉
H
ev̄(t,x+f(t,x,u))−v̄(t,x)

]

ν(du).
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