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The hair-trigger effect for a class of nonlocal
nonlinear equations

Dmitri Finkelshtein1 Pasha Tkachov2
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Abstract
We prove the hair-trigger effect for a class of nonlocal nonlinear evolu-

tion equations on Rd which have only two constant stationary solutions, 0
and θ > 0. The effect consists in that the solution with an initial condition
non identical to zero converges (when time goes to ∞) to θ locally uni-
formly in Rd. We find also sufficient conditions for existence, uniqueness
and comparison principle in the considered equations.

Keywords: hair-trigger effect, nonlocal diffusion, reaction-diffusion
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1 Introduction
We will deal with the following nonlinear nonlocal evolution equation on the
Euclidean space Rd, d ≥ 1:

∂u

∂t
(x, t) = κ(a ∗ u)(x, t)−mu(x, t)− u(x, t)(Gu)(x, t) (1.1)

for t > 0, x ∈ Rd, with an initial condition u(x, 0) = u0(x), x ∈ Rd. Here
m,κ > 0; a is a nonnegative probability kernel on Rd, i.e. 0 ≤ a ∈ L1(Rd) and∫

Rd
a(x) dx = 1; (1.2)

(a ∗ u)(x, t) means the convolution (in x) between a and u, namely,

(a ∗ u)(x, t) =

∫
Rd
a(x− y)u(y, t)dy; (1.3)

and G is a mapping on a space of bounded on Rd functions.
We interpret u(x, t) as a density of a population at the point x ∈ Rd at the

moment of time t ≥ 0. The probability kernel a = a(x) describes distribution
1Department of Mathematics, Swansea University, Singleton Park, Swansea SA2 8PP, U.K.
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of the birth of new individuals with constant intensity κ > 0. Individuals in
the population may also die either with the constant mortality rate m > 0 or
because of the competition, described by the density dependent rate Gu, where
G is an (in general, also nonlinear) operator on a space of bounded functions
(cf. the discussion in [53]).

The equation (1.1) can be also rewritten in a reaction-diffusion form

∂u

∂t
(x, t) = κ(a ∗ u)(x, t)− κu(x, t) + (Fu)(x, t), (1.4)

where
Fu := u(κ −m−Gu) (1.5)

plays the role of the so-called reaction term, whereas

Lu := κ(a ∗ u)− κu (1.6)

describes the non-local diffusion generator, see e.g. [4] (note that L is also known
as the generator of a continuous time random walk in Rd or of a compound
Poisson process on Rd). As a result, the solution u to the equation (1.4) may
be interpreted as a density of a species which invades according to a nonlocal
diffusion within the space Rd meeting a reaction F ; see e.g. [28, 49,55].

Below, we restrict ourselves to the case where (1.1) has two constant solutions
u ≡ 0 and u ≡ θ > 0 only. The main aim of the present paper is to find sufficient
conditions for the so-called hair-trigger effect. The latter means that, unless
u0 ≡ 0, the corresponding solution to (1.1) achieves an arbitrary chosen level
between 0 and θ uniformly on an arbitrary chosen domain of Rd after a finite
time. In other words, u(x, t) converges, as t→∞, locally uniformly in x ∈ Rd to
the positive stationary solution u ≡ θ. The latter constant solution, therefore,
is globally asymptotically stable in the sense of the topology of local uniform
convergence. Therefore, the equation (1.1) appears of the so-called monostable
type; cf. also Remark 5.5 below.

Firstly, a reaction-diffusion equation of the form (1.4) was considered in the
seminal paper [44] by Kolmogorov–Petrovsky–Piskunov (KPP). There, for the
local reaction Fu = f(u) = u(1−u)2 (that corresponds to Gu = 2u−u2 in (1.5);
we set also here κ−m = 1), the equation (1.4) was derived from a model for the
dispersion of a spatially distributed species. To analyze the model, the authors
used a diffusion scaling, which led to the classical local diffusion generator κ∆u
(for d = 1) instead of L in (1.4). Moreover, they proposed the method which
covered more general local reactions Fu = f(u) as well. We will say that such
local reaction F has the KPP-type if f : R→ R is Lipschitz continuous on [0, θ]
and

f(0) = f(θ) = 0; f ′(0) > 0; 0 < f(r) ≤ f ′(0)r, r ∈ (0, θ). (1.7)

In particular, the logistic reaction f(u) = u(θ − u), that corresponds to the
identical mapping Gu = u in (1.5), satisfies (1.7). The corresponding model
was considered early by Fisher [34], it described the advance of a favorable
allele through a spatially distributed population. Note that the conditions for
the mapping G (and hence, by product, for the reaction F ) which we postulate
in Section 2 below are reduced, in the case of a local reaction Fu = f(u), to
(1.7) (see Example 1 below).
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Later, the significance of nonlocal terms in diffusion and/or reaction in (1.4)
was stressed by many authors, in particular, in ecology and population biology,
see e.g. [14, 16, 45]; see also recent papers [8, 50] where the importance and
observed effects of nonlocal interactions in biological models are discussed.

A natural nonlocal analogue of the Fisher–KPP equation with the mentioned
local reaction f(u) = u(θ−u) is the equation (1.4) with both nonlocal diffusion
generator (1.6) and the linear nonlocal mapping Gu = κ−a− ∗u in (1.5), where
κ− > 0, 0 ≤ a− ∈ L1(Rd) with

∫
Rd a

−(x) dx = 1, and the convolution is defined
as in (1.3) (see Example 2 below). The corresponding equations (1.1), or (1.4),
similarly to the classical Fisher–KPP equation, may be obtained from different
models. In particular, for the case κ = κ−, a = a−, it was obtained, for m = 0
in [47, 48] from a model of simple epidemic, whereas, for m > 0, it was derived
in [27] from a crabgrass model on the lattice Zd. For different kernels a and
a−, the equation (1.1) appeared in [11] from a population ecology model; see
also [12,23] and the rigorous derivation of (1.1) in [29,35]

More generally, a nonlocal analogue of the local KKP-type reaction f(u) =
u(θ − u)n is, naturally, the reaction

Fu = γnu(θ − a− ∗ u)n, n ∈ N, (1.8)

with a− is as above and γn > 0 (see Example 3 below). Note also that the
equation (1.4) with the nonlocal diffusion (1.6) and a local KPP-type reaction
Fu = f(u) was considered in [54] motivated by an analogy to Kendall’s epidemic
model [43].

The first (up to our knowledge) result about the hair-trigger effect described
above, for a non-linear evolution equation with the local diffusion, was shown
by Kanel [42], for the cases of the combustion and the Fisher–KPP reaction-
diffusion equations in the dimension d = 1. Multidimensional analogues were
shown by Aronson and Weinberger [6,7]; in the latter reference the notion ‘hair-
trigger’ was, probably, firstly used.

For the nonlocal diffusion (1.6), the first result about the hair-trigger effect
for a solution to (1.4) was obtained in [46]: for the one-dimensional case d = 1,
under additional restrictions on the probability kernel a = a(x), and for a local
reaction Fu = f(u) of the KPP-type given by (1.7).

For the nonlocal diffusion in Rd with d > 1, the hair-trigger effect, for the
local reaction term f(u) = u1+p(1−u) with p > 0, has been shown recently in [2],
under additional assumptions on a = a(x) (in particular, its radial symmetry
was assumed). From this, by comparison-type arguments, it might be possible to
show the hair-trigger effect for a local KPP-type reaction Fu = f(u) described
by (1.7), provided that, additionally, f ′(θ) < 0.

To the best of our knowledge, the present paper is the first one that shows the
hair-trigger effect for non-local reactions. In particular, we allow the reaction
(1.8) in (1.4)–(1.5), provided that an appropriate comparison between a and a−
is assumed (see Examples 2–3 below).

Another novelty of the present paper, even for the case of the local KPP-
type reactions Fu = f(u) given by (1.7) is that we allow general anisotropic
probability kernels a = a(x), x ∈ Rd (see Example 1 below). Note, that,
however, we do not cover the local reaction f(u) = u1+p(1 − u) with p > 0,
considered in [2].

For results about the hair-trigger effect in other types of non-local equations
see also [24].
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The hair-trigger effect is an important tool in the study of the long-time
behavior of evolution equations. In particular, it allows one to study the front
propagation of the solutions to the equations [31, 32, 36]; it also yields the non-
existence of other stationary solutions between the given two (see [30, Proposi-
tion 5.12] and cf. a discussion in [22]) and allows to demonstrate instability of
non-monotonic traveling waves, cf. [39].

Since the hair-trigger effect means just that a level set for a solution to
(1.1) is going to contain an arbitrary large compact in Rd when time grows, it
is naturally based on a estimate from below for the solution. Note that, for
the class of equations of the form (1.1) with a non-negative operator G (see
the assumption (A2) below), one can estimate the corresponding non-negative
solution from above by the solution to the linearization of (1.1) at zero. Indeed,
by the Duhamel’s principle, if v(·, 0) ≡ u(·, 0) and ∂tv = κa ∗ v − mv, then
u(·, t) ≤ v(·, t) point-wise for all t ≥ 0. Then one can use estimates on v (see
e.g. [4, 33, 38]) to estimate u. However, an estimate from below appears much
more delicate problem, that seems to be typical for monostable-type evolution
equations, since the nonlinear structure of the equation (1.1) is essential in this
case.

Both nonlocal diffusion and, in general nonlocal, reaction in (1.4) require
new methods in the proof of the hair-trigger effect. The mentioned results for
the local diffusion (the Laplace operator instead of L in (1.4)–(1.6)) were based
on the application of an auxiliary boundary-value problem [42] (which works
for d = 1 only) or, in addition to properties of the Laplace operator, on the
locality of the reaction term [6,7]. These approaches are difficult (if possible at
all) to repeat for (1.4) even for a local reaction in Rd. Stress also that, in the
case of a nonlocal reaction in (1.4), the comparison principle (which is necessary
for the hair-trigger effect) requires additional restrictions (see Theorem 2.3 and
also Remark 4.1).

Our approach is based on an extension of the classical Weinberger’s result
for discrete dynamical systems [57] to the continuous-time dynamics defined
by (1.1). That result required, additionally, specific restrictions on the initial
condition to (1.1) (see the beginning of Section 5 for details) or, equivalently, it
requires an additional analysis for small level sets of the solution to (1.1) (which
we provide in Propositions 5.15–5.16 below). A disadvantage of this approach
is that we apply ‘a black box’, meaning that the result sacrifices the complete
understanding for the behaviour of large level-sets of u. On the other hand, our
approach is rather general and could be applied to other (nonlocal) evolution
equations.

The paper is organized as follows. We prove the hair-trigger effect for (1.1)
(Theorems 2.5, 2.7) in Section 5, applying Weinberger’s results [57] and getting
its time-continuous counterpart for (1.1) in Proposition 5.11; we also, in Propo-
sitions 5.15–5.16, get rid of the restrictions on the initial conditions imposed
in Weinberger’s paper. The proof is done under additional assumptions on G
presented in Section 2, which, in particular, ensure the comparison principle
(Theorem 2.3). In Sections 3 and 4, we prove the existence/uniqueness (Theo-
rem 3.3) and the comparison principle (Theorem 4.2) for some generalizations
of (1.1).
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2 Assumptions and main results
Recall, that we treat u = u(x, t) as the local density of a system at the point
x ∈ Rd and at the moment of time t ∈ R+ := [0,∞). We assume that the initial
condition u0 to (1.1) is a bounded function on Rd.

Namely, we will consider the following Banach spaces of real-valued functions
on Rd: the space Cb(Rd) of bounded continuous functions on Rd with sup-
norm, the space Cub(Rd) of bounded uniformly continuous functions on Rd
with sup-norm, and the space L∞(Rd) of essentially bounded (with respect to
the Lebesgue measure) functions on Rd with esssup-norm.

Let E be either of the spaces Cub(Rd), Cb(Rd) or L∞(Rd) with the corre-
sponding norm denoting by ‖ · ‖E . For an interval I ⊂ R+, let C(I → E)
and C1(I → E) denote the sets of all continuous and, respectively continuously
differentiable, E-valued functions on I.

Definition 2.1. Let I be either a finite interval [0, T ], for some T > 0, or the
whole R+ := [0,∞). A function u ∈ UI := C(I → E)∩C1((I \{0})→ E) which
satisfies (1.1) and such that u(·, 0) = u0(·) in E is said to be a classical solution
to (1.1) on I. For brevity, we denote also

UT := U[0,T ], T > 0; U∞ := UR+
. (2.1)

We will write v ≤ w, for v, w ∈ E, if v(x) ≤ w(x), x ∈ Rd. Here and below,
for the case E = L∞(Rd), we will treat the latter inclusion a.e. only. Set also,
for an r > 0,

E+
r := {v ∈ E : 0 ≤ v ≤ r}.

We denote by Ty : E → E, y ∈ Rd, the translation operator, given by

(Tyv)(x) = v(x− y), x ∈ Rd. (2.2)

A sequence of functions (vn)n∈N ⊂ E is said to be convergent to a function
v ∈ E locally uniformly if (vn)n∈N converges to v uniformly on all compact
subsets of Rd. We denote this by

vn
loc

==⇒ v, n→∞,

Let also Br(x0) denote the ball in Rd with the radius r > 0 centered at the
x0 ∈ Rd. In the case x0 = 0 ∈ Rd, we will just write Br := Br(0).

In Section 3, we prove an existence and uniqueness result for a more general
equation than (1.1); it can be read in the case of (1.1) as follows

Theorem 2.2. Let 0 ≤ a ∈ L1(Rd) and (1.2) hold. Let G : E → E be such
that Gv ≥ 0 for all 0 ≤ v ∈ E and, for some κ > 0,

‖Gv −Gw‖E ≤ eκr‖v − w‖E , v, w ∈ E+
r , r > 0.

Then, for any T > 0 and 0 ≤ u0 ∈ E, there exists a unique nonnegative classical
solution u to (1.1) on [0, T ]. In particular, u ∈ U∞.

To exclude the trivial case when ‖u(·, t)‖E converges to 0 uniformly in time,
we assume that

β := κ −m > 0. (A1)
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We suppose that there exist two constant solutions u ≡ 0 and u ≡ θ > 0 to
(1.1), more precisely,

there exists θ > 0 such that

0 = G0 ≤ Gv ≤ Gθ = β, v ∈ E+
θ .

(A2)

We will also assume that G is (locally) Lipschitz continuous in E+
θ , namely,

there exists lθ > 0, such that

‖Gv −Gw‖E ≤ lθ‖v − w‖E , v, w ∈ E+
θ .

(A3)

We restrict ourselves to the case when the comparison principle for (1.1)
holds. Namely, we assume that the right-hand side of (1.1) is a (quasi-)monotone
operator:

for some p ≥ 0 and for any v, w ∈ E+
θ with v ≤ w,

κa ∗ v − v Gv + pv ≤ κa ∗ w − wGw + pw.
(A4)

In Section 4, we also prove that the comparison principle holds for a more
general equation than (1.1); in the case of (1.1) it gives the following result.

Theorem 2.3. Let (A1)–(A4) hold.

1. Let T > 0 be fixed and u1, u2 ∈ UT be such that, for all t ∈ (0, T ], x ∈ Rd,

∂u1

∂t
− κa ∗ u1 +mu1 + u1Gu1 ≤

∂u2

∂t
− κa ∗ u2 +mu2 + u2Gu2,

0 ≤ u1(x, t) ≤ θ, 0 ≤ u2(x, t) ≤ θ,
0 ≤ u1(x, 0) ≤ u2(x, 0) ≤ θ.

Then, for all t ∈ [0, T ], x ∈ Rd,

0 ≤ u1(x, t) ≤ u2(x, t) ≤ θ. (2.3)

2. Let u ∈ U∞ be a classical solution to (1.1), given by Theorem 2.2, such
that 0 ≤ u0 ≤ θ. Then, for all t ∈ R+, x ∈ Rd,

0 ≤ u(x, t) ≤ θ.

In particular, combining two previous parts, we get the following state-
ment.

3. Let functions u1, u2 ∈ U∞ solve (1.1) and 0 ≤ u1(x, 0) ≤ u2(x, 0) ≤ θ,
x ∈ Rd. Then (2.3) holds for all t ∈ R+, x ∈ Rd.

We assume next that the kernel a is not degenerate at the origin, namely,

there exists % > 0 such that a(x) ≥ % for a.a. x ∈ B%(0). (A5)

Stability of the solution to (1.1) with respect to the initial condition in the
topology of locally uniform convergence requires continuity ofG in this topology:

for any vn, v ∈ E+
θ , such that vn

loc
==⇒ v, n→∞, one has

Gvn
loc

==⇒ Gv, n→∞.
(A6)
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We will consider the translation invariant case only:

let Ty, y ∈ Rd, be a translation operator, given by (2.2), then

(TyGv)(x) = (GTyv)(x), v ∈ E+
θ , x ∈ Rd.

(A7)

Under (A7), for any r ≡ const ∈ (0, θ), Gr ≡ const. In this case, we assume
also that

Gr < β, r ∈ (0, θ). (A8)

In Section 5, we prove the hair-trigger effect for the solutions to (1.1). For
technical reasons, it will be done separately for kernels with and without the
first moment. Namely, for the kernels which satisfy the condition∫

Rd
|y|a(y)dy <∞, (A9)

we set

m := κ
∫
Rd
xa(x) dx ∈ Rd, (2.4)

and assume, additionally to (A4), that

there exist q ≥ 0, δ > 0, 0 ≤ b ∈ C∞(Rd) ∩ L∞(Rd), such that

a(x)− b(x) ≥ δ11Bδ(0)(x), x ∈ Rd,
w Gw ≤ κb ∗ w + qw, w ∈ E+

θ .

(A10)

Remark 2.4. We are going to formulate now our main results about the hair-
trigger effect for a solution to (1.1). It requires that the initial condition to (1.1)
is not degenerate: if E is a space of continuous functions, this means that u0

is not identically equal to zero, u0 6≡ 0. For a brevity of notations, in the case
E = L∞(Rd), we will treat u0 6≡ 0 as follows: there exists δ > 0 and x0 ∈ Rd,
such that u0(x) ≥ δ for a.a. x ∈ Bδ(x0).

Then we can formulate the following

Theorem 2.5. Let the conditions (A1)–(A10) hold. Let u0 ∈ E+
θ , u0 6≡ 0 (cf.

Remark 2.4), and let u be the corresponding solution to (1.1). Then, for m
defined by (2.4) and any compact set K ⊂ Rd,

lim
t→∞

essinf
x∈K

u(x+ tm, t) = θ. (2.5)

Remark 2.6. Note that the correction term tm = tκ
∫
Rd ya(y)dy in (2.5) equals

to the expected value of the compound Poisson process with the probability
density a and the intensity κ.

An evident example of a probability kernel with an infinite first moment is
the density a(x) = c(1 + |x|2)−

1+d
2 , x ∈ Rd of the multivariate Cauchy distribu-

tion; here |·| denotes the Euclidean norm in Rd, and c is the normalizing factor
to ensure (1.2). To include this and other cases, for the kernels which do not
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satisfy (A9), we consider the following assumption:

for each n ∈ N, let there exist

0 ≤ an ∈ L1(Rd), κn > 0, Gn : E → E, θn ∈ (0, θ]

which satisfy (A1)–(A10) instead of a, κ, G, θ,
correspondingly, such that

mn := κn
∫
Rd
xan(x)dx ∈ R, θn ≥ θ −

1

n
, n ∈ N,

κnan ∗ w − wGnw ≤ κa ∗ w − wGw, w ∈ E+
θn
.

(A11)

Then the following counterpart of Theorem 2.5 holds.

Theorem 2.7. Let the condition (A11) hold. Let u0 ∈ E+
θ , u0 6≡ 0 (cf. Remark

2.4), and let u be the corresponding solution to (1.1). Then, for any compact
set K ⊂ Rd and for any n ∈ N,

θ − 1

n
≤ lim inf

t→∞
essinf
x∈K

u(x+ tmn, t) ≤ lim sup
t→∞

essinf
x∈K

u(x+ tmn, t) ≤ θ.

In particular, if mn = m̃ ∈ R for all n ≥ n0 ∈ N, then

lim
t→∞

essinf
x∈K

u(x+ tm̃, t) = θ.

In particular, if (A1)–(A10) hold and m = 0 ∈ Rd or if (A11) holds and
mn = 0 ∈ Rd for all n ≥ n0 ∈ N, then one gets the desired hair-trigger effect
described above.

Remark 2.8. Note that, indeed, for a properly ‘slanted’ anisotropic kernel a
with m 6= 0 ∈ Rd, the solution to (1.1) may converge to 0 uniformly on any ball
centered at the origin, whereas it will converge to θ on the ‘time-moving’ ball
according to Theorems 2.5 or 2.7; see [30] for the corresponding result in the
case of the Example 2 described below.

Examples
Example 1 (Reaction–diffusion equation with a local reaction). A par-
ticular example of (1.4), with F (u) = f(u) for a function f : R → R, was
considered e.g. in [1,3,10,16–20,36,56,58]. We assume (A1) and (A5) as before,
whereas the assumptions (A2)–(A4), (A6)–(A8), (A10) are fulfilled if only

f is Lipschitz continuous on [0, θ];

lim
r→0+

f(r)

r
= β;

f(0) = f(θ) = 0; 0 < f(r) ≤ βr, r ∈ (0, θ).

If (A9) does not hold, then, to fulfill (A11), it is enough to take κn = κ,
an(x) := 11Λn(x)a(x), provided that Λn ⊂ Rd are such that Λn ↑ Rd and∫

Λn
xa(x)dx = m̃. In particular, if a(−x) = a(x), x ∈ Rd, one can take Λn :=

Bn(0).
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Example 2 (Spatial logistic equation: Gu = κ−a− ∗ u). Let κ− > 0 and
a−(x) be a probability kernel. We consider Gu = κ−a− ∗ u, i.e. (1.1) has the
form

∂u

∂t
= κ(a ∗ u)− κ−u(a− ∗ u)−mu.

This equation first appeared, for the case κa = κ−a−, m = 0, in [47,48]; for the
case κa = κ−a−, m > 0 in [27], and for the different kernels in [11], where the
so-called Bolker–Pacala model of spatial ecology was considered. The equation
was rigorously derived from the Bolker–Pacala model in [35] for integrable u
and in [29] for bounded u. The long-time behavior of this equation was studied
in [30–32], see also [52].

We assume (A1) and (A5) as before. Under (A1), we have in this case

θ =
κ −m
κ−

> 0. Then the conditions (A2)–(A3), (A6)–(A8) are satisfied. The
condition (A4) holds if and only if

κa(x) ≥ (κ −m)a−(x), x ∈ Rd. (2.6)

Condition (A10) holds if we additionally assume that there exists δ > 0, such
that

κa(x)− (κ −m)a−(x) ≥ δ11Bδ(0)(x), x ∈ Rd.

In this case we can put, in (A10), b(x) = (κ −m)a−(x), q = 0.
If (A9) does not hold, then, to fulfill (A11), one can proceed as in the

previous example. Namely, we define an as before, and we set Gnu = κ−a−n ∗u,
where a−n (x) := 11Λn(x)a−(x), x ∈ Rd.

Example 3 (The case Gu = κ−a− ∗ u − g1(a
− ∗ u)). Let g(s) = κ−s −

g1(s), where κ− > 0, g1 : [0, θ] → R+ is increasing and Lipschitz continuous,
such that g1(s) = o(s), as s → 0 and κ−s ≥ g1(s), for s ∈ (0, θ). We define
Gv = g(a− ∗ v), where a− is a probability kernel. Namely, we consider the
following equation,

∂u

∂t
= κ(a ∗ u)− κ−u(a− ∗ u) + ug1(a− ∗ u)−mu.

As in the previous example, (A4) holds if and only if (2.6) holds. The rest
of the assumptions can be characterized straightforward. Typical example is
g(s) = β

(
1−

(
1− s

θ

)n). In this case, the corresponding reaction is

F (u) =
β

θn
u(θ − a− ∗ u)n.

3 Existence and uniqueness
In this Section, we will show the existence and uniqueness of non-negative so-
lutions to a generalized version of (1.1) on R+, see Theorem 3.3 below. Note
that the equation (1.1) itself is a semi-linear evolution (parabolic) equation
on E. The condition (A3) ensures that the nonlinear term uGu in (1.1) is
locally Lipschitz. The general theory of semi-linear parabolic equations (see
e.g. [51, Theorem 6.1.4]) provides existence and uniqueness of the so-called mild
solution to (1.1) on the time interval [0, tmax) for some tmax ≤ ∞. Since the
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operator (1.6) in (1.1) is bounded on E and G is continuous, this solution will be
the classical one. Moreover, if tmax <∞, then, with necessity, ‖u(·, t)‖E →∞,
as t ↗ tmax. However, given u0 ≥ 0, the general theory does not ensure that
u(·, t) ≥ 0, t ∈ [0, tmax).

Remark 3.1. 1) Note that if we know a priori that u is non-negative on [0, tmax),
then tmax = ∞, provided that Gv ≥ 0 for all 0 ≤ v ∈ E (cf. (A2) and the
conditions of Theorem 2.2). Indeed, Duhamel’s principle would imply then that
0 ≤ u(x, t) ≤ e−mtetAu0(x), where (Av)(x) := (a ∗ v)(x), and hence ‖u(·, t)‖E
remains bounded on any finite time interval.

2) Another sufficient condition that would guarantee tmax =∞ is, therefore,
the a priori global boundedness of u. In the case of the ‘local’ operator G,
corresponding to the local reaction Fu = f(u) in (1.4) (cf. Example 1), the
global boundedness will follow from the comparison arguments considered in
the Section 4 below (cf. Theorem 2.3). However, the case of a nonlocal operator
G, and hence a nonlocal reaction F , would require a restrictive assumption (A4)
for comparison. Moreover, one can modify the example in [40, pp. 2738–2739]
to show that, in general, a solution to (1.1) does not need to be globally bounded
on R+.

3) Note also, that any globally Lipschitz reaction F (and hence globally
Lipschitz product uGu) would lead to tmax = ∞ (see e.g. [25, Theorem 3.2,
3.3], [24, Theorem 2.1]).

To avoid aforementioned additional assumptions for the non-local case of
G and F , we consider here a direct proof of the existence and uniqueness of
non-negative solutions to (a generalized version of) the equation (1.1). Our
proof uses standard fixed point-arguments to get existence and uniqueness on
consecutive time intervals [Υj ,Υj+1], j ≥ 0, Υ0 = 0. Then, using Lemma 3.2
below, we will show that

∑
j≥0(Υj+1−Υj) =∞ that implies the existence and

uniqueness on an arbitrary time-interval.

Lemma 3.2. Let {rn}n∈N be a sequence of numbers, such that r1 > 0 and the
following recurrence relation holds

rn+1 = rn + pe−qrn , n ∈ N, (3.1)

where p, q > 0. Then the series
∑
n∈N

1

rneqrn
is divergent.

Proof. By (3.1), rn, n ∈ N is a positive increasing sequence. Passing to the limit
in (3.1) when n→∞, one gets that rn →∞, as n→∞. Hence, without loss of
generality, one can assume that bn := e−qrn < (pq)−1, n ∈ N. One can rewrite
then (3.1) as follows: bn+1 = bne

−pqbn . It is straightforward to check that

x

1 + pqx(e− 1)
≤ ye−pqy, 0 < x ≤ y ≤ 1

pq
,

Therefore, if we set c1 := b1 and cn+1 := cn
1+pq(e−1)cn

, n ∈ N, we get cn ≤
bn, n ∈ N. On the other hand, 1

cn+1
= 1

cn
+ pq(e− 1), that leads to

1

cn+1
=

1

c1
+ n(e− 1)pq, n ∈ N. (3.2)
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Therefore, ∑
n∈N

1

rneqrn
=
∑
n∈N

bn
−q ln bn

≥
∑
n∈N

cn
−q ln cn

=∞,

since, by (3.2),
cn
− ln cn

∼ 1

pq(e− 1)n lnn
, n→∞.

The statement is proved.

Let I ⊂ R+ be a closed interval. The set Cb(I → E) of all continuous
bounded E-valued functions on I becomes a Banach space being equipped with
the norm

‖u‖Cb(I→E) := sup
t∈I
‖u(·, t)‖E .

For simplicity of notation, we denote also

‖u‖T1,T2
:= ‖u‖Cb([T1,T2]→E), 0 < T1 < T2;

‖u‖T := ‖u‖Cb([0,T ]→E), T > 0.
(3.3)

We are ready to prove now the existence and uniqueness result.

Theorem 3.3. Let A,G : E → E be such that Gv ≥ 0 and Av ≥ 0 for all
0 ≤ v ∈ E, and, for some κ,κ > 0,

‖Av −Aw‖E ≤ κ‖v − w‖E , v, w ∈ E, v ≥ 0, w ≥ 0, (3.4)

‖Gv −Gw‖E ≤ eκr‖v − w‖E , v, w ∈ E+
r , r > 0. (3.5)

Then, for any T > 0 and 0 ≤ u0 ∈ E, there exists a unique nonnegative classical
solution u ∈ UT (cf. Definition 2.1) to the equation

∂u

∂t
(x, t) = (Au)(x, t)−mu(x, t)− u(x, t)(Gu)(x, t),

u(x, 0) = u0(x),
(3.6)

where t ∈ (0, T ], x ∈ Rd.

Proof. First, we note that, by (3.4),

‖Av‖E ≤ ‖A0‖E + κ‖v‖E , 0 ≤ v ∈ E. (3.7)

We set f0 := ‖A0‖E .
Let T > 0 be arbitrary. Take any 0 ≤ v ∈ Cb([0, T ]→ E). For any τ ∈ [0, T ),

consider the following linear equation in the space E on the interval [τ, T ]:
∂u

∂t
(x, t) = (Av)(x, t)−mu(x, t)− u(x, t)(Gv)(x, t), t ∈ (τ, T ]

u(x, τ) = uτ (x),
(3.8)

where 0 ≤ uτ ∈ E, τ > 0, and u0 is the same as in (3.6). By assumptions on
A and G, we have that Av,Gv ∈ Cb([0, T ] → E) for all v ∈ Cb([0, T ]→ E). In
the right-hand side of (3.8), there is a time-dependent linear bounded operator
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(acting in u) in the space E whose coefficients are continuous on [τ, T ]. There-
fore, there exists a unique solution to (3.8) in E on [τ, T ], given by u = Φτv
with

(Φτv)(x, t) := (Bv)(x, τ, t)uτ (x) +

∫ t

τ

(Bv)(x, s, t)(Av)(x, s) ds, (3.9)

for x ∈ Rd, t ∈ [τ, T ], where we set

(Bv)(x, s, t) := exp

(
−
∫ t

s

(
m+ (Gv)(x, p)

)
dp

)
, (3.10)

for x ∈ Rd, t, s ∈ [τ, T ]. Note that, in particular, (Φτv)(·, t), (Bv)(·, s, t) ∈ E.
Clearly, (Φτv)(x, t) ≥ 0 and, for any Υ ∈ (τ, T ],

‖Φτv(·, t)‖E ≤ ‖uτ‖E + (f0 + κ‖v‖τ,Υ)(Υ− τ), t ∈ [τ,Υ], (3.11)

where we used (3.7) and the notation (3.3). Therefore, Φτ maps {0 ≤ v ∈
Cb([τ,Υ]→ E)} into itself, Υ ∈ (τ, T ].

For any T2 > T1 ≥ 0 and r > 0, we define

X+
T1,T2

(r) :=
{
v ∈ Cb([T1, T2]→ E)

∣∣ v ≥ 0, ‖v‖T1,T2 ≤ r
}
. (3.12)

Let now 0 ≤ τ < Υ ≤ T , and take any v, w ∈ X+
τ,Υ(r). By (3.9), one has, for

any x ∈ Rd, t ∈ [τ,Υ],∣∣(Φτv)(x, t)− (Φτw)(x, t)
∣∣ ≤ J1 + J2, (3.13)

where

J1 :=
∣∣(Bv)(x, τ, t)− (Bw)(x, τ, t)

∣∣uτ (x),

J2 :=

∫ t

τ

∣∣(Bv)(x, s, t)(Av)(x, s)− (Bw)(x, s, t)(Aw)(x, s)
∣∣ ds.

Clearly, for each a ∈ L1(Rd), f ∈ E,∣∣(a ∗ f)(x)
∣∣ ≤ ‖f‖E ‖a‖L1(Rd). (3.14)

Since |e−a− e−b| ≤ |a− b|, for any constants a, b ≥ 0, one has, by (3.10), (3.14),

J1 ≤ eκr(Υ− τ)‖uτ‖E‖v − w‖τ,Υ. (3.15)

Next, for any constants a, b, p, q ≥ 0,∣∣pe−a − qe−b∣∣ ≤ e−a|p− q|+ qmax
{
e−a, e−b

}
|a− b|,

therefore, by (3.10), (3.14),

J2 ≤ κ
∫ t

τ

(Bv)(x, s, t) ds‖v − w‖τ,Υ

+

∫ t

τ

max
{

(Bv)(x, s, t), (Bw)(x, s, t)
}
|(Aw)(x, s)|(t− s)eκr‖v − w‖τ,Υ ds

≤ κ(Υ− τ)‖v − w‖τ,Υ + eκr(f0 + κ‖w‖τ,Υ)‖v − w‖τ,Υ
∫ t

τ

e−m(t−s)(t− s) ds

≤
(
κ + (f0 + κ‖w‖τ,Υ)

eκr

me

)
(Υ− τ)‖v − w‖τ,Υ, (3.16)
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as re−r ≤ e−1, r ≥ 0.
Take any µ ≥ ‖uτ‖E . By (3.11)–(3.16), one has,∣∣(Φτv)(x, t)− (Φτw)(x, t)

∣∣ ≤ (µeκr + κ + (f0 + κr)
eκr

me

)
(Υ− τ)‖v − w‖τ,Υ,∣∣(Φτv)(x, t)

∣∣ ≤ µ+ (f0 + κr)(Υ− τ).

Therefore, Φτ will be a contraction mapping on the set X+
τ,Υ(r) if only(

µeκr + κ + (f0 + κr)
eκr

me

)
(Υ− τ) < 1 and µ+ (f0 + κr)(Υ− τ) ≤ r.

If f0

κ ≤ r, it is sufficient to show(
µeκr + κ + 2κr

eκr

me

)
(Υ− τ) < 1 and µ+ 2κr(Υ− τ) ≤ r. (3.17)

Take for α ∈ (0, 1),

r := µ+ αme1−κµ, Υ := τ +
αme

2κreκr
. (3.18)

Then, the second inequality in (3.17) holds, since eκr is increasing, namely,

µ+ 2κr(Υ− τ) = µ+ αme1−κr ≤ µ+ αme1−κµ = r.

Next(
µeκr + κ +

2κreκr

me

)
(Υ− τ) =

αmeµ

2κr
+

αme

2reκr
+ α ≤ αme

2κ
+

αme

2reκr
+ α.

In order to satisfy the second inequality in (3.17) it is sufficient to check,

αme

2κ
+

αme

2reκµ
< 1− α,

but reκµ = µeκµ + αme, i.e. we need

αme

2(µeκµ + αme)
+
αme

2κ
< 1− α. (3.19)

Choose α ∈ (0, 1), such that αme
2κ < 1 − α, and then choose µ > 0 large

enough to ensure (3.19). As a result, one gets that Φτ will be a contraction on
the set X+

τ,Υ(r) with Υ and r given by (3.18); the latter set naturally forms a
complete metric space. Therefore, there exists a unique u ∈ X+

τ,Υ(r) such that
Φτu = u. This u will be a solution to (3.6) on [τ,Υ].

To fulfill the proof of the statement, one can do the following. Set τ := 0,
choose r0 > max{‖u0‖E , f0

κ } and α ∈ (0, 1) that satisfy (3.19) with µ = r0.
One gets a solution u to (3.6) on [0,Υ1] with ‖u‖Υ1

≤ r0 + αme1−κr0 =: r1,
Υ1 = αme1−κr1

2κr1 .
Iterating this scheme, take sequentially, for each n ∈ N, τ := Υn, x ∈ Rd,

rn := rn−1 + αme1−κrn−1 ≥ ‖u(·,Υn)‖E .
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Since rn > rn−1 and eκr is increasing, the same α as before will satisfy (3.19)
with µ = rn as well. Then, one gets a solution u to (3.6) on [Υn,Υn+1] with
initial condition uΥn , where

Υn+1 := Υn +
αme1−κrn

2κrn
, (3.20)

and
‖u‖Υn,Υn+1

≤ rn + αme1−κrn = rn+1.

As a result, we will have a solution u to (3.6) on intervals [0,Υ1], [Υ1,Υ2],
. . . , [Υn,Υn+1], n ∈ N. By (3.4)–(3.5), the right-hand side of (3.6), will be
continuous on each of constructed time-intervals, therefore, one has that u is
continuously differentiable on (0,Υn+1] and solves (1.1) there. By (3.20) and
Lemma 3.2,

Υn+1 =
αme

2κ

n∑
j=0

1

rjeκrj
→∞, n→∞,

therefore, one has a solution to (3.6) on any [0, T ], T > 0.
To prove uniqueness, suppose that v ∈ Cb([0, T ]→ E) is a solution to

(3.6) on [0, T ], with v(x, 0) ≡ u0(x), x ∈ Rd. Choose r0 > ‖v‖T ≥ ‖u0‖E .
Since {rn}n≥0 above is an increasing sequence, v will belong to each of sets
X+

Υn,Υn+1
(rn+1), n ≥ 0, Υ0 := 0, considered above. Then, being solution to

(3.6) on each [Υn,Υn+1], v will be a fixed point for ΦΥn . By the uniqueness of
such a point, v coincides with u on each [Υn,Υn+1] and, thus, on the whole [0, T ].
As a result, u(x, t) = (Φ0u)(x, t), for x ∈ Rd, t ≥ 0. Since u ∈ Cb([0, T ]→ E),
then u = Φ0u ∈ C1((0, T ]→E). Thus u is a classical solution to (1.1). The
proof is fulfilled.

Remark 3.4. Since Av := κa∗v, v ∈ E, evidently satisfies conditions of Theorem
3.3, one gets Theorem 2.2.

Proposition 3.5. Let the conditions of Theorem 3.3 hold. Suppose, addition-
ally, that A and G are continuous on {0 ≤ v ∈ E} in the topology of locally
uniform convergence, i.e. for any vn, v ∈ E, vn ≥ 0, v ≥ 0, with vn

loc
==⇒ v, one

has
Avn

loc
==⇒ Av, Gvn

loc
==⇒ Gv, n→∞.

Let T > 0 be fixed and, for some % > 0, {u(·, 0), un(·, 0) : n ∈ N} ⊂ E+
% be the

initial conditions to (3.6), and let {u(·, t), un(·, t) : n ∈ N} be the corresponding
solutions to (3.6) on [0, T ]. Assume that un(·, 0)

loc
==⇒ u(·, 0), n → ∞. Then

un(·, t) loc
==⇒ u(·, t), n→∞ uniformly in t ∈ [0, T ].

Proof. By the proof of Theorem 3.3, there exist 0 = τ0 < τ1 < . . . < τN = T
and % = r0 ≤ r1 ≤ . . . ≤ rN =: r, such that the following holds. Let, for any
τ = τk, Υ = τk+1, 0 ≤ k ≤ N − 1, the mapping Φτ be defined by (3.9) for
t ∈ [τ,Υ], with uτ (x) = u(x, τ), x ∈ Rd; and, for each n ∈ N, we set

(Φτ,nv)(x, t) := (Bv)(x, τ, t)uτ,n(x) +

∫ t

τ

(Bv)(x, s, t)(Av)(x, s) ds,

where uτ,n(x) = un(x, τ), x ∈ Rd. Then v ∈ X+
τ,Υ(rk+1), {uτ , uτ,n : n ∈ N} ⊂

Erk implies {Φτv,Φτ,nv : n ∈ N} ⊂ X+
τ,Υ(rk+1), (cf. (3.12)).
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Prove that if, for some {w,wn : n ∈ N} ⊂ X+
τ,Υ(rk+1), we have that

wn(·, t) loc
==⇒w(·, t), n→∞, uniformly in t ∈ [τ,Υ], then

Φτ,nwn(·, t) loc
==⇒ Φτw(·, t), n→∞, (3.21)

uniformly in t ∈ [τ,Υ]. Indeed, applying the inequalities,

|e−a − e−b| ≤ |a− b|,
∣∣pe−a − qe−b∣∣ ≤ |p− q|+ q|a− b|,

for a, b, p, q ≥ 0, we get, for any bounded Λ ⊂ Rd,

11Λ(x)
∣∣(Φτ,nwn)(x, t)− (Φτw)(x, t)

∣∣
≤ 11Λ(x)

∣∣(Φτ,nwn)(x, t)− (Φτ,nw)(x, t)
∣∣+ 11Λ(x)

∣∣(Φτ,nw)(x, t)− (Φτw)(x, t)
∣∣

≤ 11Λ(x)
∣∣uτ,n(x)− uτ (x)

∣∣+ rk

∫ t

τ

11Λ(x)
∣∣(Gwn)(x, p)− (Gw)(x, p)

∣∣ dp
+

∫ t

τ

11Λ(x)
∣∣(Awn)(x, s)− (Aw)(x, s)

∣∣ ds
+

∫ t

τ

11Λ(x)
∣∣(Aw)(x, s)

∣∣ ∫ t

s

∣∣(Gwn)(x, p)− (Gw)(x, p)
∣∣ dp ds

≤
∥∥11Λ

(
uτ,n − uτ

)∥∥
E

+ rk

∫ Υ

τ

∥∥11Λ

(
(Gwn)(·, p)− (Gw)(·, p)

)∥∥
E
dp

+

∫ Υ

τ

∥∥11Λ

(
(Awn)(·, s)− (Aw)(·, s)

)∥∥
E
ds

+ (‖A(0)‖E + κr)
∫ Υ

τ

∫ Υ

s

∥∥11Λ

(
(Gwn)(·, p)− (Gw)(·, p)

)∥∥
E
dp ds.

Hence (3.21) holds. Iterating this scheme, one gets that, for each m ∈ N,
v ∈ X+

τ,Υ(rk+1),

(Φτ,n)mv(·, t) loc
==⇒ (Φτ )mv, n→∞, (3.22)

uniformly in t ∈ [τ,Υ]. Therefore, for any bounded Λ ⊂ Rd,∣∣11Λ(x)(un(x, t)− u(x, t))
∣∣

≤
∣∣11Λ(x)

(
un(x, t)− (Φτ,n)mv(x, t)

)∣∣+
∣∣11Λ(x)

(
(Φτ,n)mv(x, t)− (Φτ )mv(x, t)

)∣∣
+
∣∣11Λ(x)

(
u(x, t)− (Φτ )mv(x, t)

)∣∣
≤
∥∥un − (Φτ,n)mv‖τ,Υ + sup

t∈[τ,Υ]

∥∥11Λ

(
(Φτ,n)mv(·, t)− (Φτ )mv(·, t)

)∥∥
E

+
∥∥u− (Φτ )mv‖τ,Υ,

for any m ∈ N. Passing m to ∞, one gets then the statement by (3.22).

4 Comparison principle
The comparison principle is a standard tool in studying parabolic- and elliptic-
type equations, see e.g. [21,37]. For instance, it allows to estimate an unknown
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solution, constructing explicit sub- and super-solutions [5–7]. See also [17,18,54]
for comparison results and its applications in studying traveling waves for non-
local equations. To the best of our knowledge, the first detailed proof of the
comparison principle for the parabolic equation in the case of nonlocal diffusion
(1.6) in (1.4), was done by Yagisita [58] in the case of globally Lipschitz KPP-
type reaction Fu = f(u) (see also [46, Lemma D.1]). The comparison principle
is often used in other articles without any reference on the proof. Also we do not
know any result on the comparison principle in the case of a non-local reaction.

We will get in Theorem 4.2 the comparison principle related to an abstract
evolution equation

∂u

∂t
(x, t) = (Hu)(x, t),

where H : E → E is locally Lipschitz continuous and such that the operator
H + p is monotone on E for some p > 0. Here and below we use the same
notation for a constant and for the operator of multiplication by this constant
in the space E.

Remark 4.1. For the equation (1.1), the monotonicity of H + p has the form
(A4). Note that in the case of a local operator G (cf. Example 1), there
exists p > 0, such that (A3) implies (A4), and hence the comparison indeed
does not require any additional assumptions. However, for a nonlocal G the
assumption (A4) is restrictive. For instance, in Example 2, (A4) is necessary
and sufficient (and hence optimal) condition to ensure the comparison principle
in E+

θ , see [30, Remark 3.6].

We introduce some additional notations. For any v ∈ E, r ∈ R, we set

(v ∧ r)(x) := min{v(x), r}, (v ∨ r)(x) := max{v(x), r}.

Let H : E → E. For any u ∈ UT , cf. (2.1), and r > 0, we define

(Fru)(x, t) :=
∂u

∂t
(x, t)−H(0 ∨ u ∧ r)(x, t), t ∈ (0, T ], x ∈ Rd. (4.1)

Here and below we consider the left derivative at t = T only.

Theorem 4.2. Let H : E → E and h, p, r > 0 be such that H is Lipschitz
continuous on E+

r with the Lipschitz constant h > 0, and H + p is monotone
on E+

r , namely,

‖Hw −Hv‖E ≤ h‖w − v‖E , w, v ∈ E+
r , (4.2)

Hv + pv ≤ Hw + pw, v ≤ w, w, v ∈ E+
r . (4.3)

Let T > 0 be fixed. Suppose that u1, u2 ∈ UT are such that

0 ≤ u1(x, t), u2(x, t) ≤ r, (x, t) ∈ Rd × (0, T ], (4.4)

(Fru1)(x, t) ≤ (Fru2)(x, t), (x, t) ∈ Rd × (0, T ], (4.5)

u1(x, 0) ≤ u2(x, 0), x ∈ Rd. (4.6)

Then u1(x, t) ≤ u2(x, t) for all (x, t) ∈ Rd × [0, T ].
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Proof. Define, cf. (4.5), the following function

φr(x, t) := (Fru2)(x, t)− (Fru1)(x, t) ≥ 0, (4.7)

for (x, t) ∈ Rd × [0, T ]. For a constant K > 0, which will be specified later,
consider the mapping

Θ(t, w) : = Kw + eKt
(
H
(
0 ∨ (e−Ktw + u1) ∧ r

)
−H(u1 ∧ r)

)
+ eKtφr(x, t), w ∈ Cb([0, T ]→ E). (4.8)

We have, for w ≥ 0,

0 ≤ u1 ∧ r ≤ (e−Ktw + u1) ∧ r ≤ r.

Since, for any x ≥ y ≥ 0, z ≥ 0,

0 ≤ x ∧ z − y ∧ z ≤ x− y,

one has, by (4.3), (4.7), that 0 ≤ w ∈ Cb([0, T ]→ E) yields

Θ(t, w) ≥ (K − p)w + eKtφr(x, t) ≥ 0,

if only K ≥ p that we will assume in the following.
Next, applying (4.2) to (4.8), we will get that w ∈ Cb([0, T ]→ E) implies,

for all t ∈ [0, T ],

‖Θ(t, w)‖T ≤ (K + h)‖w‖T + eKt‖φr‖T .

Therefore, since u1, u2 ∈ UT implies, by (4.1), (4.7), that φr ∈ Cb([0, T ] → E),
one gets that Θ(t, w) ∈ Cb([0, T ]→ E).

Define also the function

v(x, t) := eKt(u2(x, t)− u1(x, t)), x ∈ Rd, t ∈ [0, T ].

Clearly, v ∈ UT , and it is straightforward to check that

Θ(t, v(x, t)) =
∂

∂t
v(x, t), x ∈ Rd, t ∈ (0, T ].

Therefore, v solves the following integral equation in E:v(x, t) = v(x, 0) +

∫ t

0

Θ(s, v(x, s))ds, (x, t) ∈ Rd×(0, T ],

v(x, 0) = u2(x, 0)− u1(x, 0), x ∈ Rd,
(4.9)

where v(x, 0) ≥ 0 by (4.6).
Consider also another integral equation in E:

ṽ(x, t) = (Ψṽ)(x, t) (4.10)
where, for w ∈ Cb([0, T ]→ E),

(Ψw)(x, t) := v(x, 0) +

∫ t

0

max
{

Θ(s, w(x, s)), 0
}
ds. (4.11)
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If we take T̃ < T such that the following inequality holds

q1 := 2r(K + h) + eKT ‖φr‖T ≤
r

T̃
,

then, w ∈ X+

T̃
(2r) yields Ψw ∈ X+

T̃
(2r), where, cf. (3.12), X+

T̃
(2r) := X+

0,T̃
(2r).

Let w1, w2 ∈ XT̃ (2r); by (4.2), (4.8), we have, for all (t, x) ∈ [0, T̃ ]× Rd,

|Θ(t, w1)−Θ(t, w2)| ≤ (K + h)‖w1 − w2‖T̃ =: q2‖w1 − w2‖T̃ .

Therefore, using the elementary inequality |max{a, 0} − max{b, 0}| ≤ |a − b|,
a, b ∈ R, we obtain from (4.11), that

‖Ψw1 −Ψw2‖T̃ ≤ q2T̃‖w2 − w1‖T̃ .

Therefore, for T̃ < max{ r
2q1
, 1
q2
}, Ψ is a contraction on X+

T̃
(2r). Thus, there

exists a unique solution ṽ to (4.10) on [0, T̃ ]. By (4.10), (4.11),

ṽ(x, t) ≥ v(x, 0) ≥ 0, x ∈ Rd, t ∈ [0, T̃ ]. (4.12)

By the considerations above, 0 ≤ w ∈ Cb([0, T ]→ E) yields 0 ≤ Θ(s, w(x, s)) ∈
Cb([0, T ]→ E). Hence ṽ is a solution to (4.9) on [0, T̃ ] as well. Namely,

ṽ(x, t) = v(x, 0) +

∫ t

0

Θ(s, ṽ(x, s)) ds =: Ξ(ṽ)(x, t).

By the same arguments as the above, Ξ is a contraction on XT̃ (2r), for the
same T̃ . We deduce that v = ṽ on Rd × [0, T̃ ]. Then, by (4.12), v(x, t) ≥ 0 on
Rd × [0, T̃ ], that yields

0 ≤ u1(x, T̃ ) ≤ u2(x, T̃ ) ≤ r, x ∈ Rd.

In the same way, the proof can be extended on [T̃ , 2T̃ ], [2T̃ , 3T̃ ], . . . , keeping
the same q1 and q2, and, therefore, on the whole [0, T ]. Then v(x, t) ≥ 0 on
Rd × [0, T ], that yields the statement.

Clearly, Theorem 4.2 in the case r = θ, Hv = κa ∗ v − vGv −mv, v ∈ E,
implies the first statement of Theorem 2.3. The following Proposition yields the
second statement of Theorem 2.3.

Proposition 4.3. Let (A1)–(A4) hold and 0 ≤ u0 ≤ θ. Then there exists a
unique (classical) solution u to (1.1), and 0 ≤ u(x, t) ≤ θ for any x ∈ Rd, t ≥ 0.

Proof. We set Hv := κa ∗ v − vGv −mv for v ∈ E+
θ , and Hv := H(0 ∨ v ∧ θ)

for v ∈ E \ E+
θ . Prove, first, that H is (globally) Lipschitz continuous on E.

Indeed, for any x, y ∈ R,

|x ∧ θ − y ∧ θ| = 1

2

∣∣(x+ θ − |x− θ|)− (y + θ − |y − θ|)
∣∣ ≤ |x− y|

and, similarly, |x ∨ 0− y ∨ 0| ≤ |x− y|. Therefore, denoting vθ := 0 ∨ v ∧ θ for
v ∈ E, one gets that ‖vθ − wθ‖E ≤ ‖v − w‖E for w, v ∈ E, and hence

‖Hw −Hv‖E ≤ (κ +m+ sup
v∈E
‖G(0 ∨ v ∧ θ)‖E + θlθ)‖w − v‖E

= (2κ + θlθ)‖w − v‖E .
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As a result, for any T > 0, the initial value problem

∂ũ

∂t
(x, t) = (Hũ)(x, t), ũ(x, 0) = u0(x), x ∈ Rd, t ∈ (0, T ],

has a unique classical solution ũ, i.e., for Fθ defined by (4.1), Fθũ ≡ 0.
Note that, for any r ≥ θ, v ∈ E+

r implies Hv = H(v ∧ θ). In particular,
applying this for v = 0 ∨ ũ ∧ r, one gets

Frũ = Fθũ ≡ 0. (4.13)

Moreover, by (A4), there exists p ≥ 0, such that, for any r ≥ θ, v, w ∈ E+
r ,

v ≤ w,

p(w − v) +Hw −Hv ≥ p(w ∧ θ − v ∧ θ) +H(w ∧ θ)−H(v ∧ θ) ≥ 0.

Assume that ‖ũ‖T > θ. Then, by the arguments above and (4.13), we may
apply Theorem 4.2 for the case r = ‖ũ‖T , u1 ≡ 0, u2 = ũ (note that, evidently,
Fr0 = 0). It yields ũ ≥ 0. Next, similarly, we can apply Theorem 4.2 for the
case r = θ, u1 = ũ, u2 ≡ θ (since Fθθ = 0). It implies then that ũ ≤ θ, that
contradicts the assumption, therefore, ‖ũ‖T ≤ θ. Apply once more Theorem 4.2
for the case r = θ, u1 ≡ 0, u2 = ũ, then ũ ≥ 0. As a result, the function
ũ = 0 ∨ ũ ∧ θ solves (1.1).

Choose an arbitrary extension of G on {0 ≤ v ∈ E} such that (3.5) holds.
By Theorem 2.2, there exists a unique classical solution u to (1.1). Hence
0 ≤ u = ũ ≤ θ. The proof is fulfilled.

5 The hair-trigger effect: proofs of Theorems 2.5, 2.7
We are going to prove our main Theorems 2.5 and 2.7. The Section is organized
as follows. First, in Propositions 5.1–5.2, we show some properties of solutions to
(1.1) with continuous initial conditions. Note that, by existence and uniqueness
Theorem 2.2, the solutions will be also continuous and, moreover, by comparison
Theorem 2.3, any solution in E = L∞(Rd) can be estimated from above and
below by continuous ones taking the corresponding estimates for the initial
condition u0 6≡ 0, cf. Remark 2.4.

Next, we describe general Weinberger’s scheme [57] for a dynamical system
in discrete time in the context of the equation (1.1) (Propositions 5.4 and 5.7,
Lemma 5.8), and prove the corresponding result for continuous time (Proposi-
tion 5.11). The latter result is proved under additional assumptions inherited by
general Weinberger’s approach: a technical assumption (5.17) on the dynamical
system and an assumption (5.18) on the initial condition u0, which cannot be
verified for particular examples of u0, cf. Remark 5.9.

Then, in Proposition 5.13, by using Lemma 5.12, we prove that the technical
assumption (5.17) holds. To get rid of restrictions on initial condition u0, one
needs more machinery. Namely, we find in Proposition 5.14 a useful sub-solution
to the linearization of the equation (1.1) around the zero solution. Next, we show
that (being multiplied on a small enough constant) it will be a sub-solution to
the nonlinear equation (1.1) as well (Proposition 5.15) and, in Proposition 5.16,
we show that a solution to (1.1) becomes larger than the sub-solution after a big
enough time. As a result, one can show that Weinberger’s assumption (5.18)
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on the initial condition is fulfilled (just starting from a moment of time t0 > 0
rather than from 0). Finally, in the proof of Theorem 2.7, we show how to deal
with the kernels without the first moment (where the assumption (A9) fails).

Proposition 5.1. Let 0 ≤ u0 ∈ Cub(Rd), and suppose that u is the corre-
sponding classical solution to (1.1). Suppose also, that there exists C > 0, such
that

0 ≤ u(x, t) ≤ C, x ∈ Rd, t ≥ 0,

and gC := sup
v∈E+

C

|Gv| <∞. Then u ∈ Cub(Rd×R+) and, moreover, ‖u(·, t)‖E ∈

Cub(R+). In particular, these inclusions hold if we assume (A1)–(A4).

Proof. Being classical solution to (1.1), u satisfies the integral equation

u(x, t) = u0(x) +

∫ t

0

(
κ(a ∗ u)(x, s)−mu(x, s)− u(x, s)(Gu)(x, s)

)
ds.

Hence for any x, y ∈ Rd, 0 ≤ τ < t, one has∣∣u(x, t)− u(y, τ)
∣∣ ≤ (2κC + 2mC + CgC)(t− τ),

that fulfills the proof of the first inclusion. Then, the second one follows from
the inequality

∣∣‖u(·, t)‖E − ‖u(·, τ)‖E
∣∣ ≤ ‖u(·, t)− u(·, τ)‖E , t, τ ∈ R+. Finally,

if the conditions (A1)–(A4) hold, then, by Proposition 4.3, one gets that the
solution u exists and satisfies the conditions above if only C := θ. Moreover,
(A3) implies that, for any v ∈ E+

θ ,

‖Gv‖E ≤ ‖G0‖E + lθ‖v‖E ≤ ‖G0‖E + θlθ <∞,

that fulfills the proof.

The maximum principle is a ‘standard counterpart’ of the comparison princi-
ple, see e.g. [17]. We will use in the sequel that, under some additional assump-
tions, the solutions to (1.1) are strictly positive; this is a quite common feature
of linear parabolic equations, however, in general, it may fail for nonlinear ones.
Consider the corresponding statement.

Proposition 5.2. Let E = Cb(Rd). Let (A1)–(A5) hold with G : E → E,
such that Gl 6≡ β, for l ∈ (0, θ). (In particular, the latter holds, if we assume,
additionally, (A7)–(A8).) Let u0 ∈ E+

θ , u0 6≡ θ, u0 6≡ 0, be the initial condition
to (1.1) and u be the corresponding solution. Then

u(x, t) > inf
y∈Rd
s>0

u(y, s) ≥ 0, x ∈ Rd, t > 0.

Proof. By Proposition 4.3, 0 ≤ u(x, t) ≤ θ, x ∈ Rd, t ≥ 0. We denote

(Lau)(x, t) = κ(a ∗ u)(x, t)− κu(x, t). (5.1)

Then, by (A2),

∂u

∂t
(x, t)− (Lau)(x, t) = u(x, t)(β − (Gu)(x, t)) ≥ 0. (5.2)
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Prove that, under (5.2), u cannot attain its infimum on Rd × (0,∞) without
being a constant. Indeed, suppose that, for some x0 ∈ Rd, t0 > 0,

u(x0, t0) ≤ u(x, t), x ∈ Rd, t > 0. (5.3)

Then, clearly,

∂u

∂t
(x0, t0) = 0, (5.4)

and (5.2) yields (Lau)(x0, t0) ≤ 0. On the other hand, (5.1) and (5.3) imply
(Lau)(x0, t0) ≥ 0. Therefore,∫

Rd
a(x0 − y)(u(y, t0)− u(x0, t0)) dy = 0.

Then, by (A5), for all y ∈ B%(x0),

u(y, t0) = u(x0, t0). (5.5)

By the same arguments, for an arbitrary x1 ∈ ∂B%(x0), we obtain (5.5), for all
y ∈ B%(x1). Hence, (5.5) holds on B2%(x0), and so on. As a result, (5.5) holds,
for all y ∈ Rd, thus u(·, t0) is a constant, i.e.

u(x, t0) = u(x0, t0) =: l0 ∈ [0, θ], x ∈ Rd.

Then, considering (1.1) at (x0, t0), and taking into account (5.4), one gets

0 = u(x0, t0)
(
β − (Gu)(x0, t0)

)
= l0(β −Gl0).

By the assumption, the latter equality is possible if only l0 ∈ {0, θ}, i.e. either
u(·, t0) ≡ 0 or u(·, t0) ≡ θ. By (5.3), u(x0, t0) = θ ≥ supy∈Rd,s>0 u(y, s) implies
u ≡ θ, that contradicts u0 6≡ θ. Hence u(x, t0) = u(x0, t0) = 0, x ∈ Rd. Then,
by Theorem 3.3, u(x, t) = 0, x ∈ Rd, t ≥ t0. And now one can consider the
reverse time in (1.1) starting from t = t0. Namely, we set w(x, t) := u(x, t0− t),
t ∈ [0, t0], x ∈ Rd. Then w(x, 0) = u(x, t0) = 0, x ∈ Rd, and

∂w

∂t
(x, t) = w(x, t)(Gw)(x, t)− κ+(a+ ∗ w)(x, t) +mw(x, t). (5.6)

Prove that the equation (5.6) with the initial condition w(·, 0) ≡ 0 has a unique
classical solution w ≡ 0 in Cb([0, t0]→ E). Indeed, let w ∈ Cb([0, t0]→ E) solve
(5.6). Suppose that the set

K :=
{
t ∈ [0, t0]

∣∣ ‖w(·, t)‖E > 0
}

is not empty, i.e. w 6≡ 0. We define then T := inf K. In particular, ‖w(·, t)‖E =
0 for t ∈ [0, T ) (note that the latter interval might be empty if T = 0). Since
the function τ 7→ ‖w(·, τ)‖E is continuous, we have that ‖w(·, T )‖E = 0 as
well. Therefore, T = t0 would contradict the assumption K 6= ∅; hence T < t0.
Consider now the equation (5.6) for t ∈ [T, t0] with the initial value w(·, T ) ≡ 0.
It is straightforward to check that the assumptions on G imply that, for any
r > 0, there exists ∆T > 0, such that T + ∆T < t0 and the mapping

Ψ(w)(x, t) =

∫ T+t

T

w(x, s)(Gw)(x, s)− κ(a ∗ w)(x, s) +mw(x, s)ds.
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is a contraction on Cb([0,∆T ] → E). Therefore, by the uniqueness arguments,
w(·, t) ≡ 0 for t ∈ [T, T + ∆T ] that contradicts the choice of T . Therefore,
K = ∅, i.e. w(·, t) ≡ 0 for all t ∈ [0, t0], in particular, u(·, 0) = w(·, t0) ≡ 0, that
contradicts u0 6≡ 0. Thus, the initial assumption was wrong, and (5.3) can not
hold. The proof is fulfilled.

In the sequel, it will be useful to consider the solution to (1.1) as a nonlinear
transformation of the initial condition.

Definition 5.3. For a fixed t > 0, define the mapping Qt on {f ∈ E | f ≥ 0}
by

(Qtf)(x) := u(x, t), x ∈ Rd, (5.7)

where u(x, t) is the solution to (1.1) with the initial condition u(x, 0) = f(x).

Let us collect several properties of Qt needed below.

Proposition 5.4. Let (A1)–(A8) hold. Then, for any fixed t > 0, the mapping
Q := Qt : {f ∈ E | f ≥ 0} → {f ∈ E | f ≥ 0} satisfies the following properties

(Q1) Q : E+
θ → E+

θ ;

(Q2) let Ty, y ∈ Rd, be a translation operator, given by (2.2), then

(QTyf)(x) = (TyQf)(x), x, y ∈ Rd, f ∈ E+
θ ;

(Q3) Q0 = 0, Qθ = θ, and Qr > r, for any constant r ∈ (0, θ);

(Q4) if f, g ∈ E+
θ and f ≤ g, then Qf ≤ Qg;

(Q5) if fn
loc

==⇒ f , then (Qfn)(x)→ (Qf)(x) for (a.a.) x ∈ Rd.

Proof. The property (Q1) follows from Proposition 4.3. To prove (Q2) we note
that, by (A7), TyG = GTy, and Ty(a ∗ u) = a ∗ (Tyu), and then, by (3.10),
B(Tyv) = Ty(Bv). Using further the notations in the proof of Theorem 3.3,
we will proceed by the induction in n. Namely, assume that QtTy = TyQt for
t ∈ [0,Υn−1]. Denote Φτ [uτ ] := Φτ , given by (3.9) (to specify the dependence
on the initial condition uτ ). Then Ty(Φτ [uτ ]v) = Φτ [Tyuτ ](Tyv) for all v ∈
X+
τ,Υ(rn), where [τ,Υ] := [Υn−1,Υn]. Then, for t ∈ (τ,Υ],

QtTyf = lim
N→∞

(
Φτ [QτTyf ]

)N(
Tyv(·, t)

)
= lim
N→∞

(
Φτ [TyQτf ]

)N(
Tyv(·, t)

)
= lim
N→∞

Ty(Φτ [Qτf ])Nv(·, t) = TyQtf.

By (Q2), u0(x) ≡ r ∈ (0, θ) yields u(·, t) = const, t ≥ 0. Then, by (A2) and
(A8), for any t ≥ 0, we have

Qr = u(t) = r +

∫ t

0

u(s)(β − (Gu)(s))ds > 0.

Hence the property (Q3) holds. The property (Q4) holds by Theorem 4.2. The
property (Q5) is a weaker version of Proposition 3.5.
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Remark 5.5. Take an arbitrary constant r ∈ (0, θ). One can treat then r as a
constant function from E+

θ . By (Q3) and (Q4), the sequence
(
Qnt r

)
n≥1
⊂ (0, θ]

is non-decreasing for an arbitrary t > 0. Hence there exists the limit r∞ :=
lim
n→∞

Qnt r ∈ (0, θ]. Next, by (Q5),

Qtr∞ = Qt lim
n→∞

Qnt r = lim
n→∞

Qn+1
t r = r∞.

Hence, by (Q3), r∞ = θ. By Proposition 5.1, Qtr is uniformly continuous
in t > 0. As a result, lim

t→∞
Qtr = θ. Therefore, by (Q4), for any u0 ∈ E with

0 < r ≤ u0 ≤ θ, we have

θ = lim
t→∞

Qtr ≤ lim
t→∞

Qtu0 ≤ θ, and hence lim
t→∞

Qtu0 = θ.

As a result, u ≡ 0 is unstable and u ≡ θ is asymptotically stable solutions to
(1.1) in E+

θ . For this reason, we refer to (1.1) as to a monostable-type equation.
Let Sd−1 denote a unit sphere in Rd centered at the origin:

Sd−1 =
{
x ∈ Rd

∣∣ |x| = 1
}

;

in particular, S0 = {−1, 1}.

Definition 5.6. A function f ∈ E is said to be increasing (decreasing, constant)
along the vector ξ ∈ Sd−1 if, for a.a. x ∈ Rd, the function f(x+sξ) = (T−sξf)(x)
is increasing (decreasing, constant) in s ∈ R, respectively.

Proposition 5.7. Let (A1)–(A8) hold. Let u0 ∈ E+
θ be the initial condition

for the equation (1.1) which is increasing (decreasing, constant) along a vector
ξ ∈ Sd−1; and u(·, t) ∈ E+

θ , t ≥ 0, be the corresponding solution (cf. Propo-
sition 4.3). Then, for any t > 0, u(·, t) is increasing (decreasing, constant,
respectively) along the ξ.

Proof. Let u0 be decreasing along a ξ ∈ Sd−1. Take any s1 ≤ s2 and consider
two initial conditions to (1.1): ui0(x) = u0(x+ siξ) = (T−siξu0)(x), i = 1, 2 (cf.
(2.2)). Since u0 is decreasing, u1

0(x) ≥ u2
0(x), x ∈ Rd. Then, by Proposition 5.4,

T−s1ξQtu0 = QtT−s1ξu0 = Qtu
1
0 ≥ Qtu2

0 = QtT−s2ξu0 = T−s2ξQtu0,

that proves the statement. The cases of a decreasing u0 can be considered in the
same way. The constant function along a vector is decreasing and decreasing
simultaneously.

To prove the hair-trigger effect (Theorems 2.5, 2.7), we will follow the ab-
stract scheme proposed in [57] for a dynamical system in discrete time. Note
that all statements there were considered in the space E = Cb(Rd).

Consider the set Nθ of all non-increasing functions ϕ ∈ C(R), such that
ϕ(s) = 0, s ≥ 0, and

ϕ(−∞) := lim
s→−∞

ϕ(s) ∈ (0, θ).

For arbitrary s ∈ R, c ∈ R, ξ ∈ Sd−1, define the following mapping Vs,c,ξ :
L∞(R)→ L∞(Rd)

(Vs,c,ξg)(x) = g(x · ξ + s+ c), x ∈ Rd. (5.8)
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Fix an arbitrary ϕ ∈ Nθ. For t > 0, c ∈ R, ξ ∈ Sd−1, consider the mapping
Rt,c,ξ : L∞(R)→ L∞(R), given by

(Rt,c,ξg)(s) = max
{
ϕ(s), (Qt(Vs,c,ξg))(0)

}
, s ∈ R, (5.9)

where Qt : E → E is a mapping which satisfies the conditions (Q1)–(Q5) in
Proposition 5.4 (in particular, one can consider Qt given by (5.7) provided that
(A1)–(A8) hold). Consider now the following sequence of functions

fn+1(s) = (Rt,c,ξfn)(s), f0(s) = ϕ(s), s ∈ R, n ∈ N ∪ {0}. (5.10)

By Proposition 5.4 and [57, Lemma 5.1], 0 ≤ φ(s) ≤ θ, s ∈ R, implies 0 ≤
fn(s) ≤ fn+1(s) ≤ θ, s ∈ R, n ∈ N; hence one can define the following limit

ft,c,ξ(s) := lim
n→∞

fn(s), s ∈ R. (5.11)

Also, by [57, Lemma 5.1], for fixed ξ ∈ Sd−1, t > 0, n ∈ N, the functions fn(s)
and ft,c,ξ(s) are non-increasing in s and in c; moreover, ft,c,ξ(s) is a lower semi-
continuous function of s, c, ξ, as a result, this function is continuous from the
right in s and in c. Note also, that 0 ≤ ft,c,ξ ≤ θ. Then, for any c, ξ, one can
define the limiting value

ft,c,ξ(∞) := lim
s→∞

ft,c,ξ(s).

Next, for any t > 0, ξ ∈ Sd−1, we define

c∗t (ξ) = sup{c | ft,c,ξ(∞) = θ} ∈ R ∪ {−∞,∞},

where, as usual, sup ∅ := −∞. By [57, Propositions 5.1, 5.2], one has

ft,c,ξ(∞) =

{
θ, c < c∗t (ξ),

0, c ≥ c∗t (ξ),
(5.12)

cf. also [57, Lemma 5.5]; moreover, c∗t (ξ) is a lower semi-continuous function
of ξ. It is crucial that, by [57, Lemma 5.4], neither ft,c,ξ(∞) nor c∗t (ξ) depends
on the choice of ϕ ∈ Nθ. Note that the monotonicity of ft,c,ξ(s) in s and (5.12)
imply that, for c < c∗t (ξ), ft,c,ξ(s) = θ, s ∈ R.

Define

Υt :=
{
x ∈ Rd

∣∣ x · ξ ≤ c∗t (ξ), ξ ∈ Sd−1
}
, t > 0. (5.13)

For A ⊂ Rd, x ∈ Rd, s ∈ R, we denote also

x+A := {x+ y | y ∈ A} ⊂ Rd, sA := {sy | y ∈ A} ⊂ Rd.

We will need the following Weinberger’s result:

Lemma 5.8 (cf. [57, Theorem 6.2]). Let E = Cb(Rd) and v0 ∈ E+
θ . Let, for

some fixed t > 0, Q = Qt : E → E be a mapping which satisfies the conditions
(Q1)–(Q5) in Proposition 5.4, and Υt be defined by (5.13). Suppose that

int(Υt) 6= ∅. (5.14)
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Then, for any compact set Ct ⊂ int(Υt) and for any σ ∈ (0, θ), one can choose
a radius rσ = rσ(Qt,Ct) > 0, such that, for any fixed x0 ∈ Rd,

v0(x) ≥ σ, x ∈ Brσ (x0), (5.15)

implies

lim
n→∞

min
x∈nCt

Qnt v0(x) = θ. (5.16)

Remark 5.9. Note that, in [57, Theorem 6.2], the existence of rσ is proved only;
there are not any estimates on it. As a result, for a given v0 ∈ E+

θ , the condition
(5.15) cannot be checked directly.

Remark 5.10. There is no loss of generality if we assume that (5.15) holds for
x0= 0 only. Indeed, for any x0 ∈ Rd, Ct ⊂ int(Υt), there exist N = N(x0,Ct),
C̃t ⊂ int(Υt), such that, for all n ≥ N , one gets x0 + nCt ⊂ nC̃t. Therefore, we
have

θ ≥ lim
n→∞

min
x∈nCt

(Qnt T−x0u0)(x) = lim
n→∞

min
x∈nCt

(T−x0Q
n
t u0)(x)

= lim
n→∞

min
x∈x0+nCt

(Qnt u0)(x) ≥ lim
n→∞

min
x∈nC̃t

(Qnt u0)(x) = θ.

The following statement presents a counterpart of Lemma 5.8 for continuous
time provided that the mapping Qt is given by the solution to (1.1) as in (5.7).

Proposition 5.11. Let (A1)–(A8) hold and u0 ∈ Cub(Rd). Let Qt, t > 0, be
given by (5.7), and let the corresponding Υt, t > 0, be given by (5.13). Suppose
that, for some compact C ⊂ int(Υ1), there exists n∈ int(C ), such that

1

j
n ∈ int(Υ 1

j
), j ∈ N. (5.17)

Let σ ∈ (0, θ) and rσ = rσ(Q1,C ) be chosen according to Lemma 5.8. Suppose
that

u0(x) ≥ σ, x ∈ Brσ(Q1,C ). (5.18)

Then, for the corresponding solution u to (1.1) and for any compact K ⊂ Rd,
the following limit holds

min
x∈K

u(x+ tn, t)→ θ, t→∞. (5.19)

Proof. First, we note that, by Proposition 5.4, the conditions (Q1)–(Q5) hold
for all Q = Qt, t > 0. We denote K1 := −n + C . Because of (5.18), one
can apply Lemma 5.8 for t = 1 and v0(x) := u0(x), x ∈ Rd. Namely, since
Qn1 v0(y) = Qn1u0(y) = u(y, n), y ∈ Rd, one gets, by (5.16),

min
x∈nK1

u(x+ nn, n) = min
y∈nC

u(y, n)→ θ, n→∞. (5.20)

Next, by (5.17), 0 ∈ − 1
2n + int(Υ 1

2
). Choose now any compact K2 ⊂ − 1

2n +

int(Υ 1
2
), such that 0 ∈ int(K2). By Lemma 5.8 for t = 1

2 and C 1
2

:= K2 + 1
2n ⊂
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int(Υ 1
2
) there exists a radius rσ(Q 1

2
,C 1

2
) > 0. By (5.20), there exists N1 ≥ 1,

such that, for all n ≥ N1,

Brσ(Q 1
2
,C 1

2
)(0) ∪K ⊂ nK1, u(x+ nn, n) ≥ σ, x ∈ nK1. (5.21)

Set S1 := N1; by the latter inclusion and (5.21), one can apply Lemma 5.8 for
v0(x) := u(x+ S1n, S1), x ∈ Rd. Then

Qn1
2
v0(y) = u

(
y + S1n, S1 +

n

2

)
, y ∈ Rd,

and hence

min
x∈nK2

u
(
x+

(
S1 +

n

2

)
n, S1 +

n

2

)
= min
y∈nC 1

2

u
(
y + S1n, S1 +

n

2

)
→ θ, n→∞. (5.22)

Similarly, choose a compact K3 ⊂ − 1
3n+int(Υ 1

3
) with 0 ∈ int(K3), and consider

Lemma 5.8 with t = 1
3 and C 1

3
:= K3 + 1

3n ⊂ int(Υ 1
3
). Then, there exists a

radius rσ(Q 1
3
,C 1

3
) > 0, and, by (5.22), there exists N2 ≥ 2 such that for all

n ≥ N2,
Brσ(Q 1

3
,C 1

3
) ∪K ⊂ nK2

and
u
(
x+
(
S1 +

n

2

)
n, S1 +

n

2

)
≥ σ, x ∈ nK2.

Set S2 := S1 + N2

2 = N1 + N2

2 ≥ 2 and apply Lemma 5.8 with v0(x) :=
u(x+ S2n, S2), x ∈ Rd. We have

min
x∈nK3

u
(
x+

(
S2 +

n

3

)
n, S2 +

n

3

)
= min
x∈nC 1

3

u
(
x+ S2n, S2 +

n

3

)
→ θ, n→∞.

By induction, for any Kj ⊂ − 1
j n+int(Υ 1

j
), j ≥ 3, with 0 ∈ int(Kj), one can set

C 1
j

:= Kj + 1
j n ⊂ int(Υ 1

j
) and choose Nj−1 ≥ j − 1 such that for all n ≥ Nj−1,

Brσ(Q 1
j
,C 1
j

) ∪K ⊂ nKj−1,

u
(
x+
(
Sj−2 +

n

j − 1

)
n, Sj−2 +

n

j − 1

)
≥ σ, x ∈ nKj−1.

Set
Sj−1 := Sj−2 +

Nj−1

j − 1
= N1 +

N2

2
+ . . .+

Nj−1

j − 1
≥ j − 1.

Then, by Lemma 5.8, similarly to the above,

min
x∈nKj

u
(
x+

(
Sj−1 +

n

j

)
n, Sj−1 +

n

j

)
→ θ, n→∞. (5.23)

Suppose that (5.19) does not hold. Then, for some ε > 0, there exist se-
quences xm ∈ K, m ∈ N, and tm →∞ as m→∞, such that

u(xm + tmn, tm) ≤ θ − ε. (5.24)
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Since u0 ∈ Cub(Rd), then by Proposition 5.1, u ∈ Cub(Rd × R+). Thus there
exists δ = δ(ε), such that

|u(x, t)− u(y, s)| < ε

2
, |x− y| < δ, |t− s| < δ.

We choose j ∈ N such that max{1, |n|} < δj. By (5.23), there exists N ′j > Nj−1,
such that, for all n ≥ N ′j , we have that K ⊂ nKj and

min
x∈K

u
(
x+

(
Sj−1 +

n

j

)
n, Sj−1 +

n

j

)
> θ − ε

4
.

Choosem, such that tm ≥ Sj−1+
N ′j
j
. Let nm be the entire part of j(tm−Sj−1).

Then nm ≥ N ′j and, for qm := Sj−1 +
nm
j

, we easily get that

max{1, |n|} |tm − qm| < δ.

Therefore,

u(xm+tmn, tm) ≥ min
x∈K

u(x+ tmn, tm)

≥ min
x∈K

u(x+ qmn, qm)−max
x∈K

∣∣u(x+ qmn, qm)− u(x+ tmn, tm)
∣∣

≥ min
x∈K

u(x+ qmn, qm)− ε

2
> θ − 3

4
ε,

that contradicts (5.24). Therefore (5.19) holds and the proof is fulfilled.

We are going now to get rid of the assumptions (5.17) and (5.18) in Propo-
sition 5.11. We start with the following lemma.

Lemma 5.12. Let b ∈ L1(R→ R+) be such that∫
R
b(s) ds = 1,

∫
R
|s|b(s)ds <∞,

and let v ∈ L∞(R→ R+) be a non-increasing function. Then the following limit
holds

lim
r→∞

∫ r

−r

(
(b ∗ v)(s)− v(s)

)
ds =

(
v(−∞)− v(∞)

) ∫
R
s b(s) ds. (5.25)

Proof. For r > 0 and % :=
r

2
, we have, by Fubini’s theorem,∫ r

−r
(b ∗ v)(s)ds−

∫ r

−r
v(s)ds =

∫ ∞
−∞

b(y)

∫ r

−r
v(s− y)dsdy −

∫ r

−r
v(s)ds

=

∫ ∞
−∞

b(y)Wr(y) dy = I1(r) + I2(r),

where

Wr(y) :=

∫ r−y

−r−y
v(s)ds−

∫ r

−r
v(s)ds, y ∈ R,

I1(r) :=

∫
|y|≤%

b(y)Wr(y) dy, I2(r) :=

∫
|y|>%

b(y)Wr(y) dy.
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Clearly,
sup
|y|≤%

b(y)|Wr(y)| ≤ 2‖v‖E |y|b(y) ∈ L1(R).

Next, because of the monotonicity of v, we have,

yv(−r) ≤
∫ −r
−r−y

v(s)ds ≤ yv(−r − y). (5.26)

Since −r − y < − r2 for |y| ≤ % = r
2 , we have that

11|y|≤%

∫ −r
−r−y

v(s)ds→ v(−∞)y, r →∞;

and, similarly, 11|y|≤%
∫ r
r−y v(s)ds → v(∞)y. Therefore, by the dominated con-

vergence theorem,

lim
r→∞

I1(r) =
(
v(−∞)− v(∞)

) ∫
|y|≤%

yb(y)dy. (5.27)

On the other hand,

|I2(r)| ≤ 2v(−∞) r

∫
|y|>%

b(y)dy ≤ 4v(−∞)
r

%

∫
|y|>%

b(y)|y|dy → 0, (5.28)

as r →∞. Combining (5.27) and (5.28), one gets the statement.

The following statement yields sufficient conditions for (5.17).

Proposition 5.13. Let (A1)–(A9) hold. Let Υt, t > 0, be defined by (5.13),
and m be defined by (2.4). Then

tm ∈ int(Υt). (5.29)

Proof. Fix t > 0. For a ξ ∈ Sd−1, we set

c := κt
∫
Rd
y ·ξa(y)dy = tm·ξ ∈ R. (5.30)

Let ft,c,ξ be defined by (5.11). By the definition of Υt and (5.12), we have that
if ft,c,ξ(∞) = θ for all ξ ∈ Sd−1, then (5.29) holds. Suppose, in contrast, that,
for some ξ ∈ Sd−1, ft,c,ξ(∞) = 0. Fix such a ξ, consider the corresponding c
according to (5.30), and denote f := ft,c,ξ. Note that, by [57, Lemma 5.2] and
the discussion thereafter, f(−∞) = θ.

We set u0(x) := f(x · ξ), x ∈ Rd, and consider the corresponding solution u
to (1.1). Then, by (5.8), we evidently have

(Vs,c,ξf)(x) = (T−(c+s)ξu0)(x), x ∈ Rd.

Next, as it was mentioned above, the functions fn and f = ft,c,ξ in (5.11) are
monotone, hence the limit in (5.11) is locally uniform. Therefore, passing n to
∞ in (5.10), we will get from (5.9) and Proposition 5.4, that

f(s) = max
{
ϕ(s), (Qt(Vs,c,ξf))(0)

}
= max

{
ϕ(s), (T−(c+s)ξQtu0)(0)

}
= max

{
ϕ(s), u

(
(c+ s)ξ, t

)}
. (5.31)
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Since f is non-increasing on R, u0 is non-increasing along ξ, cf. Definition 5.6;
then, by Proposition 5.7, u also has the same property. As a result, the function

v(s) := u
(
(c+ s)ξ, t

)
, s ∈ R (5.32)

is non-increasing on R. Next, by our assumptions, f(−∞) = θ > ϕ(−∞) and
f(∞) = 0; therefore, we get from (5.31), that

lim
s→∞

v(s) = 0, lim
s→−∞

v(s) = θ. (5.33)

Next, (5.31) implies that, for each s ∈ R, cf. (1.4),

u0(sξ) ≥ u
(
(c+ s)ξ, t

)
= u0

(
(c+ s)ξ

)
+

∫ t

0

κ
(

(a ∗ u)
(
(c+ s)ξ, τ

)
− u
(
(c+ s)ξ, τ

))
dτ

+

∫ t

0

u
(
(c+ s)ξ, τ

)(
β − (Gu)

(
(c+ s)ξ, τ

))
dτ.

Therefore, for r > c,

0 ≥ κ
∫ r

−r

∫ t

0

(
(a ∗ u)

(
(c+ s)ξ, τ

)
− u
(
(c+ s)ξ, τ

))
dτ ds

+

∫ r

−r

∫ t

0

u
(
(c+ s)ξ, τ

)(
β − (Gu)

(
(c+ s)ξ, τ

))
dτ ds

+

∫ r

−r

(
u0

(
(c+ s)ξ

)
− u0(sξ)

)
ds =: S1(r) + S2(r) + S3(r). (5.34)

Note that u0 is constant along any η ∈ Sd−1 orthogonal to ξ, cf. Defini-
tion 5.6; and, by Proposition 5.7, u has the same property. Namely, for each
s ∈ R and η ∈ Sd−1 orthogonal to ξ,

u(x, t) = u(x+ sη, t), t ≥ 0, x ∈ Rd. (5.35)

For d ≥ 2, choose any {η1, η2, ..., ηd−1} ⊂ Sd−1 which form a complement of
ξ ∈ Sd−1 to an orthonormal basis in Rd. Then

(a ∗ u)(sξ, t) =

∫
Rd
a(y)u(sξ − y, t)dy

=

∫
Rd
a

( d−1∑
j=1

yjηj + ydξ

)
u

(
−
d−1∑
j=1

yjηj + (s− yd)ξ, t
)
dy1 . . . dyd

=

∫
R

(∫
Rd−1

a

( d−1∑
j=1

yjηj + ydξ

)
dy1 . . . dyd−1

)
u
(
(s− yd)ξ, t

)
dyd, (5.36)

where we used (5.35) with η = −
d−1∑
j=1

yjηj , which is orthogonal to the ξ. There-

fore, one can set

ǎ(s) :=


∫
Rd−1

a

( d−1∑
j=1

yjηj + sξ

)
dy1 . . . dyd−1, d ≥ 2,

a±(sξ), d = 1
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for s ∈ R. We also denote ǔ(s, t) := u(sξ, t), s ∈ R. Then one can continue
(5.36), as follows: (a ∗ u)(sξ, t) = (ǎ ∗ ǔ)(s, t), where the convolution in the
right-hand side is in s ∈ R. Since

∫
R ǎ(s)ds =

∫
Rd a(y)dy = 1 and (A9) yields∫

R
|s|ǎ(s)ds =

∫
Rd
|y · ξ|a(y)dy <∞,

we may apply Lemma 5.12 with b = ǎ and v given by (5.32). Then, by (5.25),
(5.33) and the dominated convergence theorem, we have

S1(r) = κ
∫ t

0

∫ r

−r

(
(ǎ ∗ ǔ)(s+ c, τ)− ǔ(s+ c, τ)

)
dsdτ

→ κtθ
∫
R
sǎ(s)ds = κθt

∫
Rd
y ·ξa(y)dy = κθt ξ ·m, (5.37)

as r →∞. Next, by (5.33), (5.30), we have, cf. (5.26),

S3(r) =

∫ r+c

r

u0(sξ)ds−
∫ −r+c
−r

u0(sξ)ds→ −θc = −θκt ξ ·m, (5.38)

as r → ∞. Therefore, combining (5.34), (5.37), (5.38) with the inequality
u(β −Gu) ≥ 0, we deduce that∫ ∞
−∞

∫ t

0

u
(
(c+ s)ξ, τ

)(
β − (Gu)

(
(c+ s)ξ, τ

))
dτ ds = lim

r→∞
S2(r) = 0. (5.39)

Let w0 ∈ Cb(Rd) be such that 0 ≤ w0 ≤ u0 and w0 6≡ 0. The by Theorem 4.2
and Proposition 5.2, we have

u(x, τ) ≥ w(x, τ) > 0, x ∈ Rd, τ > 0.

Hence (5.39) is possible if and only if (Gu)
(
sξ, τ

)
= β for (a.a.) s ∈ R and all

τ ∈ [0, t]; note that u(·, τ) is continuous in τ ≥ 0 and G is continuous on E+
θ

because of (A3). In particular, (Gu0)
(
sξ
)

= β, s ∈ R. Then we have by (A7)
that, for any p > 0,

(GT−pξu0)(sξ) = (T−pξGu0)(sξ) = (Gu0)((s+ p)ξ) = β, s ∈ R. (5.40)

Since, (T−pξu0)(x) = f(x · ξ + p), x ∈ Rd, and f(∞) = 0, we have that
T−pξu0

loc
==⇒ 0, as p → ∞. Then, by (A6), (A2) we get that GT−pξu0

loc
==⇒

G0 = 0, as p→∞, that contradicts (5.40). The proof is fulfilled.

Therefore, under assumptions (A1)–(A9), one has that (5.14) holds for all
T > 0 and, moreover, (5.17) holds for n = m given by (2.4). Now, we are going
to get rid of the condition (5.18).

We find first a useful sub-solution to the linearization of (1.1) around the
zero solution, namely

∂v

∂t
(x, t) = κ(a ∗ v)(x, t)−mv(x, t). (5.41)
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Proposition 5.14. Let (A1), (A5), (A9) hold and m be given by (2.4). Then
there exists α0 > 0, such that, for all α ∈ (0, α0), there exists T = T (α) > 0,
such that, for all q > 0, the function

w(x, t) = q exp

(
−|x− tm|

2

αt

)
, x ∈ Rd, t > T, (5.42)

is a sub-solution to (5.41) on t > T ; i.e., cf. (4.1),

(F̃w)(x, t) :=
∂w(x, t)

∂t
− κ(a ∗ w)(x, t) +mw(x, t) ≤ 0 (5.43)

for all x ∈ Rd, t > T .

The proof is very similar to that in [30, Proposition 5.19]. For reader con-
venience, we provide the proof in the Appendix.

Now, we will show that (5.42) is a sub-solution to (1.1) provided that q is
small enough.

Proposition 5.15. Let (A1)–(A9) hold and m be given by (2.4). Then there
exists q0 ∈ (0, θ) and α0 > 0, such that, for all α ∈ (0, α0), there exists T =
T (α) > 0, such that, for all q ∈ (0, q0), the function (5.42) is a sub-solution to
(1.1) on t > T ; i.e., cf. (4.1) and (5.43),

(Fθw)(x, t) :=
∂w(x, t)

∂t
− κ(a ∗ w)(x, t) +mw(x, t) + w(x, t)(Gw)(x, t) ≤ 0

for all x ∈ Rd, t > T .

Proof. By (A2), (A3), for each 0 < q0 < min
{
θ, β

2lθ

}
(where, recall, β = κ−m),

we have that v ∈ E+
q0 yields 0 ≤ Gv ≤ β

2 . Then, for each q ∈ (0, q0),

Fθw ≤
∂w

∂t
− κa ∗ w +

(
m+

β

2

)
w.

Since (A1) yields m + β
2 < κ, the statement follows from Proposition 5.14

applied for (5.43) with m replaced by m+ β
2 .

The next statement shows that a solution to (1.1) becomes larger than the
sub-solution (5.42) after a big enough time.

Proposition 5.16. Let (A1)–(A10) hold. Then, there exists t1 > 0, such that,
for any t > t1 and for any τ > 0, there exists q1 = q1(t, τ) > 0, such that the
following holds. If u0 ∈ E+

θ is such that there exist η > 0, r > 0, x0 ∈ Rd with
u0(x) ≥ η, x ∈ Br(x0) and u is the corresponding solution to (1.1), then

u(x, t) ≥ q1 exp
(
−|x− x0|2

τ

)
, x ∈ Rd.

The proof is, as a matter of fact, the same as that in [30, Proposition 5.20].
Again, for reader convenience, we provide the proof in the Appendix.

Now we are finally ready to proof Theorems 2.5, 2.7.

31



Proof of Theorem 2.5. As it was mentioned above, one can get the statement,
combining Propositions 5.11 and 5.13, provided that (5.18) holds. To get rid of
the latter assumption, one can literally follow the proof of [30, Theorem 5.10]
using the results of Propositions 5.15 and 5.16.

Proof of Theorem 2.7. Without loss of generality we can assume that θ−θn ≤ θ
2 ,

n ∈ N. Consider v0 ∈ E+
θ/2 ∩ C

∞(Rd), such that for some x0 ∈ Rd, δ ∈ (0, θ2 ),

δ11Bδ(x0)(x) ≤ v0(x) ≤ u0(x), x ∈ Rd.

Let un(x, 0) = v0(x) and un solves the following equation

F (n)
θn
un :=

∂un
∂t
− κnan ∗ un + unGnun +mun = 0. (5.44)

Therefore by (A11) we obtain,

F (n)
θn
un = 0 = Fθu ≤ F (n)

θn
u.

Hence by Theorem 4.2 applied to F (n)
θn

, we obtain

0 ≤ un(x, t) ≤ u(x, t) ≤ θ.

Applying Theorem 2.5 to the equation (5.44), we have

θ − 1

n
≤ θn = lim

t→∞
essinf
x∈K

un(x+ tmn, t) ≤ lim inf
t→∞

essinf
x∈K

u(x+ tmn, t)

≤ lim sup
t→∞

essinf
x∈K

u(x+ tmn, t) ≤ θ,

that fulfills the proof.
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Appendix
Proof of Proposition 5.14. For q > 0, consider the function (5.42). By (5.43),
one gets

(F̃w)(x, t) = w(x, t)

(
|x|2

αt2
− |m|

2

α

)
− κ(a ∗ w)(x, t) +mw(x, t).

Therefore, to have F̃w ≤ 0, it is enough to claim that, for all x ∈ Rd,

m+
|x|2

αt2
− |m|

2

α
≤ κ exp

(
|x− tm|2

αt

)∫
Rd
a(y) exp

(
−|x− y − tm|

2

αt

)
dy.
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By changing x onto x+tm and a simplification, one gets an equivalent inequality

m+
|x|2

αt2
+

2x ·m
αt

≤ κ
∫
Rd
a(y) exp

(
2x · y
αt

)
exp

(
−|y|

2

αt

)
dy =: I(t). (5.45)

One can rewrite I(t) = I0(t) + I+(t) + I−(t), where

I0(t) := κ
∫
Rd
a(y)e−

|y|2
αt dy; I+(t) := κ

∫
x·y≥0

a(y)e−
|y|2
αt

(
e

2x·y
αt − 1

)
dy;

I−(t) := κ
∫
x·y<0

a(y)e−
|y|2
αt

(
e

2x·y
αt − 1

)
dy.

Using that es − 1 ≥ s, for all s ∈ R, and es − 1 ≥ s+ s2

2 , for all s ≥ 0, one gets
the following estimates

I+(t) ≥ 2κ
αt

∫
x·y≥0

a(y)e−
|y|2
αt (x · y)dy +

2κ
α2t2

∫
x·y≥0

a(y)e−
|y|2
αt (x · y)2dy,

I−(t) ≥ 2κ
αt

∫
x·y<0

a(y)e−
|y|2
αt (x · y)dy.

Therefore,

I(t) ≥ I0(t) +
2

αt
x · I1(t) +

2

α2t2
I2(t), (5.46)

where

I1(t) := κ
∫
Rd
a(y)e−

|y|2
αt y dy ∈ Rd,

I2(t) := κ
∫
x·y≥0

a(y)e−
|y|2
αt (x · y)2dy ∈ R.

By (A9), (2.4), and the dominated convergence theorem, we will get that
I0(t) ↗ κ > m and I1(t) → m ∈ Rd as t → ∞. Therefore, for any ε > 0 with
m+ 2ε < κ, there exists T1 = T1(ε) > 0, such that, for all α > 0 and t > 0 with
αt > T1, one has

κ ≥ I0(t) > m+ ε, |I1(t)−m| < ε. (5.47)

Let T > T1

α be chosen later. The function I2(t) is also increasing in t > 0.
Therefore, by (5.46) and (5.47), one gets, for t > T > T1

α ,

I(t) > m+ ε+
2

αt
x · (I1(t)−m) +

2

αt
x ·m +

2

α2t2
I2(t)

≥ m+ ε− 2ε

αt
|x|+ 2

αt
x ·m +

2

α2t2
I2(T ). (5.48)

Let % > 0 be as in (A5). For an arbitrary x ∈ Rd, consider the set

Bx =
{
y ∈ Rd

∣∣∣ |y| ≤ %, 1

2
≤ x · y
|x||y|

≤ 1
}
.

Then

I2(T ) ≥ κ%
4
|x|2

∫
Bx

|y|2e−
|y|2
αT dy. (5.49)
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The set Bx is a cone inside the ball B%(0), with the apex at the origin, the
height which lies along x, and the apex angle 2π/3. Since the function inside
the integral in the right-hand side of (5.49) is radially symmetric, the integral
does not depend on x. Fix an arbitrary x̄ ∈ Rd and denote

A(τ) = A(τ, %) =

∫
Bx̄

|y|2e−
|y|2
τ dy ↗

∫
Bx̄

|y|2dy =: B̄%, τ →∞. (5.50)

Then, by (5.48) and (5.49), one has, for t > T ,

I(t) > m+ ε− 2ε

αt
|x|+ 2

αt
x ·m +

κ%A(αT )

2α2t2
|x|2. (5.51)

By (5.51), to prove (5.45), it is enough to show that

ε− 2ε

αt
|x|+ κ%A(αT )

2α2t2
|x|2 ≥ |x|

2

αt2
, t > T, x ∈ Rd,

or, equivalently, for 2α < κ%A(αT ),

(√
κ%A(αT )− 2α

2

|x|
αt
− ε

√
2

κ%A(αT )− 2α

)2

+ ε− ε2 2

κ%A(αT )− 2α
≥ 0. (5.52)

To get (5.52), we proceed as follows. For a given % > 0 which provides (A5),
we set α0 := 1

2κ%B̄%, cf. (5.50). Then, for any α ∈ (0, α0), there exists T2 =
T2(α) > 0, such that

2α < κ%A(αT2) < κ%B̄δ.

Choose now ε = ε(α) > 0, such that m+ 2ε < κ and

ε <
1

2
(κ%A(αT2)− 2α) <

1

2
(κ%A(αT )− 2α), T > T2. (5.53)

Then, find T1 = T1(α) > 0 which gives (5.47) for αt > T1; and, finally, take
T = T (α) > T2 such that αT > T1. As a result, for t > T , one has αt > αT >
T1, thus (5.47) holds, whereas (5.53) yields (5.52). The latter inequality gives
(5.45), and hence, for all q > 0, Fw ≤ 0, for w given by (5.42). The statement
is proved.

Proof of Proposition 5.16. By (Q2) in Proposition 5.4, it is enough to prove the
statement for x0 = 0. Consider arbitrary functions j, v0 ∈ C∞(Rd), such that

supp j = Bδ(0), 0 < j(x) = j(|x|) ≤ δ, x ∈ int(Bδ(0));

supp v0 = Br(0), 0 < v0(x) ≤ η, x ∈ int(Br(0));

∃ 0 < p < min{r, 1}, 0 < ν < η, such that v0(x) ≥ ν, x ∈ Bp(0),

where δ is the same as in (A10). We choose p and b as in (A10). Then one can
rewrite (1.1) as follows

∂

∂t
u(x, t) = κ(j ∗ u)(x, t)− (m+ q)u(x, t) + f(x, t),

34



where, for all x ∈ Rd and t ≥ 0,

f(x, t) := κ((a− j) ∗ u)(x, t)− u(x, t)(Gu)(x, t) + qu(x, t) ≥ 0,

because of (A10). Since j ≥ 0 and Ju = j ∗ u defines a bounded operator on
L∞(Rd), one has that etJf(x, s) ≥ 0, for all t, s ≥ 0, x ∈ Rd. By the same
argument, u0(x) ≥ η11Br(0)(x) ≥ v0(x) ≥ 0 implies (etJu0)(x) ≥ (etJv0)(x).
Therefore,

u(x, t) = e−t(m+q)(etJu0)(x) +

∫ t

0

e−(t−s)(m+q)(e(t−s)Jf)(x, s)ds

≥ e−t(m+q)(etJu0)(x) ≥ e−(m+q−〈j〉)t(etLjv0)(x), x ∈ Rd. (5.54)

where 〈j〉 :=
∫
Rd j(x) dx > 0 and Lju = Ju− 〈j〉u.

We are going to apply now the results of [9]. To do this, set α := 〈j〉−1.
Then,

(etLjv0)(x) = (e〈j〉t(αLj)v0)(x) = v(x, 〈j〉t), (5.55)

where v solves the differential equation d
dtv = αLj . Since

∫
Rd αj(x) dx = 1,

then, by [4, Theorem 1.4, Lemma 1.6],

v(x, t) = e−tv0(x) + (w ∗ v0)(x, t), (5.56)

where w(x, t) is a smooth function. Moreover, by [9, Proposition 5.1], for any
ω ∈ (0, δ) there exist c1 = c1(ω) > 0 and c2 = c2(ω) ∈ R, such that

w(x, t) ≥ h(x, t), x ∈ Rd, t ≥ 0,

h(x, t) := c1t exp
(
−t− 1

ω
|x| log |x|+ (log t− c2)

[ |x|
ω

])
.

(5.57)

Here [α] means the entire part of an α ∈ R, and 0 log 0 := 1, log 0 := −∞.
Set t1 = ec2 > 0. Since [α] > α− 1, α ∈ R, one has, for t > t1,

h(x, t) ≥ c1ec2 exp
(
−t− 1

ω
|x| log |x|+ (log t− c2)

|x|
ω

)
≥ c3g(x, t),

where c3 = c1e
c2 > 0 and

g(x, t) := exp
(
−t− 1

ω
|x| log |x|

)
, x ∈ Rd, t > t1.

Since v0 ≥ ν11Bp(0), one gets from (5.56) and (5.57), that

v(x, t) ≥ νe−t11Bp(0)(x) + νc3

∫
Bp(x)

g(y, t) dy (5.58)

Set Vp :=
∫
Bp(0)

dx. For any fixed t > t1, since g(·, t) ∈ C(Bp(x)), there exists
y0, y1 ∈ Bp(x), such that g(y, t) attains its minimal and maximal values on
Bp(x) at these points, respectively. Since Bp(x) is a convex set, one gets that,
for any γ ∈ (0, 1), yγ := γy1 + (1− γ)y0 ∈ Bp(x). Then

Vpg(y0, t) ≤
∫
Bp(x)

g(yγ , t) dy ≤ Vpg(y1, t).
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Therefore, by the intermediate value theorem there exists, ỹt = ỹ(x, t) ∈ Bp(x),
t > t1, x ∈ Rd, such that

∫
Bp(x)

g(y, t) dy = Vpg(ỹt, t). Hence one gets from
(5.54), (5.55), (5.58), that

u(x, t) ≥ c4e−(m+q−〈j〉)tg
(
ỹt, 〈j〉t

)
= c4 exp

(
−(m+ q)t− 1

ω
|ỹt| log |ỹt|

)
, (5.59)

for ỹt = ỹ(x, t) ∈ Bp(x), t > t1; here c4 = c3νVp > 0.
As a result, to get the statement, it is enough to show that, for any t > t1

and for any τ > 0, there exists q1 = q1(t, τ) > 0, such that the r.h.s. of (5.59)

is estimated from below by q1e
− |x|

2

τ , i.e. that

(m+ q)t+
1

ω
|ỹt| log |ỹt| − log c4 ≤

|x|2

τ
− log q1, x ∈ Rd, (5.60)

Note that ỹt ∈ Bp(x) implies |ỹt| ≤ p+ |x|, x ∈ Rd.
Let p + |x| ≤ 1. Then log |ỹt| ≤ 0, and the l.h.s. of (5.60) is majorized by

(m+ q)t− log c4. Therefore, to get (5.60), it is enough to have q1 < c4e
−(m+q)t,

regardless of τ .
Let now |x| + p > 1. Recall that we chose p < 1. The function s log s is

increasing on s > 1. Hence to get (5.60), we claim

(|x|+ 1) log(|x|+ 1) ≤ ω

τ
|x|2 − ω(m+ q)t+ ω log c4 − ω log q1. (5.61)

Consider now the function f(s) = as2 − (s + 1) log(s + 1), s ≥ 0, a = ω
τ > 0.

Then f(0) = 0, f ′(s) = 2as− log(s+1)−1, f ′(0) = −1, f ′′(s) = 2a− 1
s+1 . Since

f ′′(s)↗ 2a > 0, s→∞, there exists s0 > 0, such that f ′′(s) > 0, for all s > s0,
i.e. f ′(s) increases on s > s0. Since f ′(s) → ∞, s → ∞, there exists s1 > s0,
such that f ′(s) > 0, for all s > s1, i.e. f is increasing on s > s1. Finally, for
any t > t1, one can choose q1 = q1(t, τ) > 0 small enough, to get

min
s∈[0,s1]

f(s)− ω(m+ q)t+ ω log c4 − ω log q1 > 0

and to fulfill (5.61), for all x ∈ Rd. The statement is proved.
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