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Highlights

• The effect of varying gravity on nonlinear dynamics of an overhung rotor is studied numerically

• Regions of periodic, quasi-periodic and chaotic behaviour shown through methods such as

bifurcation analysis and Lyapunov exponent spectra.

• The results presented here show that gravity introduces rich dynamic phenomenon into the

rotor. For the zero gravity, case the system only has periodic and quasi-periodic solutions.

Upon increasing the gravity parameter, the system now exhibits multi-periodic and chaotic so-

lutions. Rotating frame used to give more insight into the nature of the solutions, particularly

for the zero gravity case.

• the isotropic assumption for stiff rotors was found to be reasonably robust in the presence of

imperfections since the orbits for the zero gravity case looked quite similar to that of g = 0.05

and 0.22.
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Effect of Gravity-Induced Asymmetry on the Nonlinear Vibration of
an Overhung Rotor

Elijah Chipato, A D Shaw, M I Friswell

College of Engineering, Swansea University Bay Campus, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, UK

Abstract

In this study a mechanical model of an overhung rotor is explored to determine the effect of gravity

on the nonlinear dynamics of an aero-engine. The model is an overhung disc with rotor-stator

contact. The model has two degrees of freedom with lumped parameters; friction is neglected in

the contact and the equations of motion are non-dimensionalised. A parametric study of the non-

dimensional gravity parameter is conducted. The bifurcation plots show that gravity plays a crucial

role in the nonlinear dynamics of such systems. With zero gravity, as explored in earlier studies,

the model has synchronous whirling solutions, and asynchronous partially contacting solutions that

are periodic only when viewed in a rotating coordinate system. If the gravity parameter is non-

zero, then the dynamics observed are much richer and show additional multi-periodic and chaotic

solutions in the stationary frame and continuous contact (full annular rub).

Keywords: Overhung rotor, Rotor stator contact, Bifurcation, Chaos, Internal resonance

1. Introduction

Rotor stator contact affects many rotating machines from drill strings to aero-engines. In most

cases the rub is initiated by static unbalance. There are three major classes of rotating machinery

vibrations namely axial, torsional and lateral vibration. For aero engines lateral vibrations are the

most destructive type of vibration and can include forward, backward and chaotic whirls. Forward

whirl (FW) is synchronous or asynchronous(with contact) and the rotor orbits in the same direction

as the rotor spin, whereas backward whirl (BW) is more destructive and characterized by an orbiting

rotor opposite to the direction of rotor spin and is initiated by the presence of a large frictional force

between rotor and stator. In chaotic whirl there is no preferential orbit of the rotor and it bounces

Preprint submitted to Journal of LATEX Templates February 15, 2018
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in any direction. Whirling shafts or rotors can subsequently interact with the stator/enclosure and

this rubbing action can also change the nature of the whirl.

Ehrich [1] gave a comprehensive study of a number of rubbing phenomena observed in turbo-

machinery, including period two solutions, chaos and subhamornic resonances. Some of these

phenomena were also observed in the present study, namely period two and chaos. Vijayan et al.

[2] studied the influence of rotor rub on backward whirl of a two disk rotor and found that vibration

modes excited in the system can be changed by altering the phase differences between eccentric

masses of the two disks and suggested that this controlled the initiation of backward whirl since

altering the eccentric masses might initiate continuous rubbing which increases the friction in the

system. Zilli et al. [3] examined the dynamics of an overhung rotor to try and understand bouncing

motion that had been observed in earlier experiments. The bouncing response was observed to occur

away from the primary resonance and the response was found to be composed of three frequency

components which are not spaced at harmonic or subhamornic intervals. It was then found out that

this bounce response at a constant rotor spin speed was obtained when there was synchronisation

between the three distinct frequency components, this then led to the approximate prediction of the

rotor spin speeds at which such bouncing motions can be predicted. Shaw et al. [4] suggested that

bouncing periodic motion can be initiated by an internal resonance condition in the system and

stressed that this internal resonance condition is only considered as a necessary rather than sufficient

condition for the onset of this motion; this motion was termed asynchronous partial contact orbits.

In other work, Zhou et al. [5] studied a nonlinear model of a rotor seal system including the

coupled effects of gravity, Muszynska‘s nonlinear seal fluid dynamic force and mass eccentricity.

The system was analysed using bifurcation diagrams, time history plots, orbit plots, Poincaré maps

and spectra and as the rotational speed is increased rich forms of dynamic behaviour were found

including periodic, multi-periodic, quasi periodic and chaotic dynamic motion. The effects of seal

drop pressure, seal length, seal clearance, distance between the two disks and mass of the discs

on the dynamics of the system was investigated and it was found that high seal drop pressure, an

optimised seal clearance, long seal length and a symmetrical disc structure can enhance the stability

of a double disc rotor-seal system.

Hui et al. [6] performed a comprehensive study of oil film instability in an overhung rotor

system with flexible coupling misalignment. A finite element model of the overhung rotor system

with gyroscopic effects was used and sliding bearings were simulated using a nonlinear oil film force
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model using the assumption of short-length bearings. The finite element model was validated using

experimental data. Their study shows that under perfectly aligned conditions, the onset of first and

second vibration mode instability in a run down are less than during run up due to the hysteresis

effect, this can also be viewed as the presence of multiple solutions, with different initial conditions

finding different solutions. When misaligned there was a delay in the onset of the first vibration

mode instability and this resulted in a decrease in the vibration amplitude.

Yang et al. [7] used time-frequency techniques for rub-impact detection in rotating machinery.

The authors introduced a new method based on the fast oscillation characteristics of instantaneous

frequency to detect rub-impact faults of rotor bearing systems. A fast time varying transient

stiffness (stiffening effect) of rub impact was formulated and a time frequency technique called

the nonlinear squeezing time frequency transform was introduced to extract the instantaneous

frequency. They show that the instantaneous frequency of the vibration response remained constant

at the rotor spin speed if there is no rub-impact fault. However, the instantaneous frequency

oscillated periodically around the basic harmonic frequency (rotor spin frequency) whenever a rub

impact fault occurred. Their proposed new analysis method was also validated using experiments.

Wang et al. [8] investigated the sudden unbalance and rub-impact caused by a blade off scenario

in an overhung rotor and used both theoretical and experimental approaches to study the system.

Their results reveal that the sudden unbalance caused by blade loss will introduce an impact effect

in the rotor and the frequency spectrum shows that the first critical speed frequency (including

the backward whirling frequency) appears. Also, the authors noted that rubbing action between

the rotor and constraint ring induces a load path to absorb the unbalance loads and generates

additional stiffness which causes the resonance speed to rise and the resonance region to expand.

Other authors have also reported significant research on the rub impact problem. Comprehensive

experimental work was done by [9–13] to try and understand the rotor-stator contact problem. Jiang

and Chen [14] summarised the literature on rotor stator rubbing based on work that has been done

in the past half century from the point of view of dynamics and control. Ehrich [15] found that high

speed rotors with bearing clearance exhibit very high orders of subharmonic vibration particularly

for systems with low damping and extreme nonlinearity. The analysis of nonlinear motions with rub

have also been classified using bifurcation plots, time series analysis, rotor orbits, Poincaré sections

and the response spectra [16–20].

Rotors can be classified into two categories namely vertical shaft systems and horizontal shaft
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systems. Normally for vertical shaft systems, the effect of gravity can be ignored but for Horizontal

shaft systems the effect of gravity has to be checked, although most researchers do not justify why

gravity is neglected in their modelling [21, 22]. The main reason for including gravity in horizontal

shaft systems is that they are susceptible to a gravity sag. Also even when gravity is ignored we see

very interesting phenomena happening. In this paper we intend to unravel how these interesting

phenomena evolve as gravity effects become stronger. An overhung rotor model is presented and

the equations of motion are derived using the Lagrange method. The 4th order Runge-Kutta

method is employed to calculate the nonlinear response of the system. Bifurcation diagrams for

different rotor speeds while varying the gravity parameter are used to identify the values of the

gravity parameter with potentially interesting solutions. Then bifurcation diagrams with rotor spin

speed for different values of the gravity parameter are plotted with their corresponding Lyapunov

exponents to characterize the nature of the solutions particularly for chaos. Vibration responses,

orbit trajectories, Poincaré maps and amplitude spectra in stationary and rotating frames are

presented and a discussion of the effect of gravity is given.

2. Theoretical model

This study uses a lumped parameter model of an overhung rotor which is described using

ordinary differential equations. This finite dimensional representation of the system provides a

good description of the dynamics experienced by a stiff rotor with flexible supports. In this work a

two degree of freedom system model is formulated which is inspired by the work of Zilli et al. [3].

The idealized model is shown in Figure 1. For a more detailed description of the system the

reader is referred to [3]. Using the Lagrange formulation the equations of motion are derived as [3]




Jsφ̈y − Jpθ̇φ̇x +Dφ̇y + kφφy = ame(θ̇2 cos θ + θ̈ sin θ) +Mφy

Jsφ̈x + Jpθ̇φ̇y +Dφ̇x + kφφx = ame(θ̈ sin θ − θ̇2 cos θ) +Mφx + amg

(1)

where φx and φy are rotations about the x and y axes respectively, m is the mass of disk, g is the

acceleration due to gravity, θ is the rotation angle, Js is the equivalent moment of inertia of the

overhung rotor system and is given by Js = (Jt + a2m), Jt is the transverse moment of inertia, Jp

is the polar moment of inertia, e is mass unbalance eccentricity, Mφx and Mφy are the generalized
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Figure 1: Schematic of overhung rotor

moments associated with the normal snubbing force Fn where friction is ignored and are given by

Mφy = H(||rc|| − c∗)ksb2φy
(

c

b
√
φ2x + φ2y

− 1

)
(2)

Mφx = H(||rc|| − c∗)ksb2φx
(

c

b
√
φ2x + φ2y

− 1

)
(3)

H(||rc|| − c∗) is a heaviside step function which activates Equations (2) and (3) when there is

contact in the system and introduces non-linearities in the equations of motion, rc is the radial

displacement of disk’s center, c is the radial clearance and c∗ = ca
b is the displacement of the disk

centre that leads to contact. Equations (1) can be nondimensionalised, which reduces the number

of parameters by lumping them together into dimensionless groups which also simplifies the analysis

[23]. The equations of motion of this system are given in the dimensionless form [3] where a caret

( ˆ ) and apostrophe ( ′ ) represents a nondimensional quantity and a derivative with respect to

nondimensional time respectively. Nondimensional time is given by τ = ωnt, where ω2
n = kφ/Js,
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and the rotations are scaled as φ̂x = φx
a
c∗ and φ̂y = φy

a
c∗ . Thus





φ̂′′y − Ĵpθ′φ̂′x + 2ζφ̂′y + φ̂y = m̂ê(θ′2 cos θ + θ′′ sin θ) + M̂φy

φ̂′′x + Ĵpθ
′φ̂′y + 2ζφ̂′x + φ̂x = m̂ê(θ′′ sin θ − θ′2 cos θ) + M̂φx + m̂ĝ

M̂φy = H(||r̂c|| − 1)βφ̂y

(
1√

φ̂2
x+φ̂

2
y

− 1

)

M̂φx = H(||r̂c|| − 1)βφ̂x

(
1√

φ̂2
x+φ̂

2
y

− 1

)

(4)

where ĝ = g
c∗ω2

n
, m̂ = ma2

Js
, ê = e/c∗, β is the ratio between snubbing stiffness and the linear stiffness

of the rotor, ks
kr

, and kr =
kφ
b2 . The gravity parameter ĝ depends on the ratio of the gravity force

to the rotor stiffness, and hence depends on the static deflection of the rotor due to gravity. For

example, if Jt is negligible, so that m̂ = 1, then if ĝ = 1 the stationary rotor just touches the stator

with the static deflection due to gravity. The gravity parameter also introduces asymmetry into the

rotor. Although gravity can be neglected for vertical shaft systems, often gravity is neglected for

horizontal shaft systems without any justification. Varney and Green [17] highlighted that gravity

has a significant effect on the response of nonlinear rotor systems, particularly at low rotational

speeds, which corresponds to the low stiffness case identified here. For systems with very stiff rotors,

such as aero engines, gravity can be neglected (ĝ ≈ 0). At the opposite extreme, drill strings have

very flexible rotors, and gravity becomes significant when the bore is only slightly non-vertical.

3. Numerical analysis and results

The numerical analysis in this study used the fourth order Runge-Kutta numerical method with

an adaptive step control to lower the local truncation error. Representative test parameters are

shown in Table 1 following the studies made by Zilli et al. [3]. The numerical calculation used

the ODE45 solver in MATLAB for a given initial condition, where the events function was used

to identify the exact point where contact is made which will trigger the step control mechanism to

reduce the step size for accuracy during contact. To perform numerical calculations it is convenient

to transform Equation (4) into state space form.

3.1. Bifurcation Analysis

Bifurcation diagrams show the qualitative changes that occur as a system parameter is varied.

In rotordynamics, rotor spin speed has a great impact on the dynamics of rotating machinery mainly
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Table 1: Nondimensionalised system parameters

Symbol Parameter Value

m̂ Normalised mass 0.9285

Ĵp Normalised polar moment of inertia 0.143

β Stiffness nonlinearity 1.32

ê Normalised rotor eccentricity 0.494

ζ Damping ratio 0.01

because it determines the magnitude of the unbalance force, for an unbalanced rotor system it is the

excitation frequency and that in the presence of gyroscopic effects it causes a frequency split between

FW and BW vibration frequencies. In this study both the dimensionless rotor spin speed, Ω̂, and

the gravity parameter, ĝ, are used as control parameters. Figure 2 shows bifurcation diagrams where

ĝ is varied for two different rotor spin speeds which lie inside and outside the contacting region for

the zero gravity case studied by [3]. This enables the values of ĝ with interesting solutions to be

studied. Figure 2a is for Ω̂ outside the bistability region and for ĝ less than 1.2 there is only one

value of radial displacement for a given value of ĝ showing that the system is periodic. The system

then bifurcates into period 2 solutions and then back to period one solutions. For the bifurcation

diagram for Ω̂ inside the contacting region shown in Figure 2b, we see that for the range ĝ is less

than 1.28 there is an interchange between periodic motion and non periodic motion. Later, the

Lyapunov spectrum for ĝ in these non-periodic regions will prove that this in fact evidence of the

existence chaotic solutions. It is also important to note that Figure 2 also shows that for high values

of ĝ the rotor remains in contact with the stator (full annular rub) and that static displacements

due to gravity begin to dominate the response. From Figure 2 values of ĝ of 0, 1.27, 2.14 and

3.44 were chosen for further study. It is important to note that the zero gravity case, ĝ = 0 was

studied in [3]. Figure 3 shows the bifurcation analysis for the effect of rotational speed, Ω̂, on the

dynamics of the overhung rotor system for different values of ĝ. Each bifurcation diagram for each

gravity case has been plotted for two sets of initial conditions, firstly using random initial conditions

and then doing a sweep up that takes the final state of a simulation at a given value of Ω̂ as the

initial condition of the next simulation. This type of representation demonstrates one property of

nonlinear systems which is the existence of multiple solutions.
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(a) Ω̂ = 3.20 (b) Ω̂ = 3.38

Figure 2: The bifurcation plots with ĝ as control parameter for two rotor spin speeds. Vertical dashed

lines show the value of ĝ chosen for further studies. The horizontal dashed lines indicate the clearance,

and hence when the rotor is in contact with the stator.

Bifurcation diagrams might appear to show chaos in many cases but often these cases are actually

quasi-periodic/ asynchronous rather than truly chaotic. Therefore, to characterize the dynamics

of the system more conclusively, particularly for chaos, the largest Lyapunov exponent spectra for

the four cases are computed [24, 25] and shown in Figure 4. The largest Lyapunov exponents

give a direct measure of sensitive dependence on initial conditions (SDIC) [23, 24, 26]. A positive

largest Lyapunov exponent shows that there is chaotic motion on a strange attractor. If the largest

Lyapunov exponent is zero then we have periodic/ quasi-periodic motion and if the largest Lyapunov

exponent is negative then the stable critical point is an attractor [27]. From Figure 4a, which is

the zero gravity case, it is observed that the Lyapunov exponents of the system are mostly negative

and we see that in the regions where quasi periodic solutions are present the lyapunov exponent

approaches zero .

However, increasing the gravity parameter, for example to 0.05, the bifurcation diagram appears a

little different from the zero gravity case and more increase to 0.22, 1.27 and 2.14 results in richer

dynamics of the system being observed and now includes chaos and multi-periodic solutions(period

2, period 3, etc). As the gravity parameter was further increased to 3.44, it was noted that no

chaos was detected although the dynamics are still richer than the zero gravity case with regions

of period two solutions. In this case the static deflection due to gravity dominates the response

9
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(c) ĝ = 0.22 (d) ĝ = 1.27

(e) ĝ = 2.14 (f) ĝ = 3.44

Figure 3: The bifurcation plots with rotor spin speed for different values of ĝ.

and full annular rub is often experienced. However the rotor still has solutions where it bounces in

and out of contact. Figure 5 shows the vibration responses, orbit trajectories, Poincaré maps and

amplitude spectra in both the stationary and rotating frames for Ω̂ = 3.47 for ĝ = 0 . Figure 5b

shows that the motion is not periodic when viewed in the stationary frame as the orbit shows that

the rotor is in continuous precession. However, viewing the motion in the rotating frame shows

that the motion is rather simple and periodic [4]. To better understand the response an FFT of

the rotation, in the stationary,φx and rotating frames, φ̃x is taken. In the stationary frame three

peaks are observed at 3.47, 1.319 and 0.856. The dominant frequency corresponds to the rotor

10
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(f) ĝ = 3.44

Figure 4: The largest Lyapunov spectra for different values of ĝ.

spin speed/ excitation frequency and the other two frequencies correspond to the first forward and

backward whirling frequencies as shown in the Campbell diagram in Figure 6. The value of the

forward and backward whirling frequencies at a reference speed of 3.47 is found to be 1.2784 and

0.7822 and are slightly lower than the values obtained from the FFT by 3% and 9% respectively.

Since the frequencies obtained from the Campbell diagram are lower than that of the FFT this can

be regarded as a stiffening effect induced by the stator.

However , something more interesting happens in the rotating frame. The peaks obtained from

Figure 5h are 2.151 and 4.326 and these two frequencies are in a 2:1 ratio approximately. The
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Figure 5: Vibration responses (5a and 5e), phase trajectories (5b and 5f), Poincaré maps (5c and 5g)

and amplitude spectra (5c and 5g) for Ω̂ = 3.47 for the zero gravity case, ĝ = 0. Figures (5a - 5d)

are for stationary frame and figures (5e - 5h) are for the rotating frame of reference.
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Figure 6: Campbell diagram showing forward and backward whirl speed at reference rotor spin speed

Ω̂ = 3.47
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FFT of the response in the rotating frame only shows two peaks, unlike that for the stationary

frame which has three peaks. In the rotating frame the unbalance force is not harmonic but static

and therefore the third peak in the FFT for the stationary frame, which represents the rotor spin

frequency, does not appear in the FFT for the rotating frame. Note that the Poincaré section in

Figure 5g does not show two isolated points because the sampling rate is determined by the rotor

spin speed, whereas the periodicity of the response is determined by the natural frequencies in the

rotating frame. By definition, in the stationary frame BW is negative and FW is positive. In the

rotating frame the same applies but when the natural frequencies are less than the rotor spin speed

then both BW and FW are negative. The whirl velocities in the stationary frame can be related to

that of the rotating frame by [4],

ŵs = ŵr + Ω̂ (5)

where ŵr is the whirling velocity in rotating frame and ŵs is the whirling velocity in stationary
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Figure 7: Vibration responses (7a and 7e), phase trajectories (7b and 7f), Poincaré maps (7c and 7g)

and amplitude spectra (7h and 7d) for Ω̂ = 3.47 for ĝ = 0.05. Figures (7a - 7d) are for stationary

frame and Figures (7e - 7h) are for the rotating frame of reference.

frame. This therefore shows that to convert the frequencies obtained from the FFT for the rotating
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Figure 8: Vibration responses (8a and 8e), phase trajectories (8b and 8f), Poincaré maps (8c and 8g)

and amplitude spectra (8h and 8d) for Ω̂ = 3.47 for ĝ = 0.22. Figures (8a - 8d) are for stationary

frame and Figures (8e - 8h) are for the rotating frame of reference.

frame one should add the rotor spin speed. This then gives 0.856 = (4.326-3.47) and -1.319 =

(2.151-3.47) which corresponds to the values obtained from the FFT of the stationary frame. The

fact that both the forward and backward whirling frequencies are present in both frames shows that

there is an interaction/ energy exchange taking place between the FW mode and the BW mode

that is to say an internal resonance.

Figures 3b and 3c shows bifurcations for ĝ = 0.05 and 0.22. The two gravity cases were used to

check the robustness of the zero gravity case. Figures 7b and 8b shows the orbit for ĝ = 0.05 and

0.22 at 3.47 (similar to Figure 5), here we see that the isotropic assumption is reasonably robust

in the presence of imperfections which are introduced by the inclusion of gravity since the orbits

visualised in stationary frame look quite similar to that of the zero gravity case (Figure 5b). The

orbits visualised in the rotating frame for the two gravity cases shown in Figures 7f and 8f are

similar to Figure 5f, however they deviate from this orbit due to the gravity force, which is not

constant in the rotating frame.
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Figure 9: Vibration responses (9a and 9e), phase trajectories (9b and 9f), Poincaré maps (9c and 9g)

and amplitude spectra (9d and 9h) for Ω̂ = 2.61 for ĝ = 1.27. Figures (9a - 9d) are for stationary

frame and figures (9e - 9h) are for the rotating frame of reference.

Figure 4d shows the largest Lyapunov spectrum for ĝ = 1.27 and shows that gravity introduces

some chaos into the system since at rotor spin speeds 2.09, 2.39 and 2.68 to 2.82 the largest

Lyapunov exponents are positive. Figure 9 shows period 7 motion and Figure 10 chaotic motion for

ĝ = 1.27 for both stationary and rotating frames. It was noted that the character of the dynamics

is the same in both frames, that is, the simplification in the rotating frame (see Figure 5) for ĝ = 0

does not happen for ĝ = 1.27. Figure 9a - 9d shows the results for Ω̂ = 2.61 for stationary frame.

The Poincaré map shown in Figure 9c shows that the motion is period 7, the FFT in Figure 9d

shows 3 peaks at 1.114,1.496 and 2.61 which are BW, FW and the excitation frequency (rotor spin

speed). The 3 peaks are related in such a way that they give a period 7 response by -3*(1/BW) +

4*(1/FW) = 7*(1/2.61). There is significant difference between the Campbell diagram values and

FFT frequency values as compared to the zero gravity case. The reason for this huge difference

could be that increasing the gravity parameter will mean that there is more significant contact

and therefore more stiffening which results in the FFT values being larger. Also note that the
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Figure 10: Vibration responses (10a and 10e), phase trajectories (10b and 10f), Poincaré maps (10c

and 10g) and amplitude spectra (10h and 10d) for Ω̂ = 2.80 for ĝ = 1.27. Figures (10a - 10d) are for

stationary frame and Figures (10e - 10h) are for the rotating frame of reference.

FFT for the rotating frame now has 3 peaks unlike for the zero gravity case where it only had

two. The reason for this observation is that in the rotating frame the unbalance force is static

but gravity is harmonic and therefore the rotor spin frequency peak appears. Figures (10e - 10h)

shows the response, orbit, Poincaré map and FFTs obtained for a rotor spin frequency of 2.80 for

both stationary and rotating frames. The plots show evidence of chaos as the orbits show strange

attractors, the Poincaré maps have points which are distributed in no particular order and the

FFTs show a broadband response showing the presence of finite frequency components in the time

series signal.

Figure 11 and 12 shows period 2 and period 3 solution for ĝ = 2.14 at rotational speeds of

2.11 and 5.23 respectively and both motions are visualised in the stationary and rotating frames.

Figures 11a and 11b show the time series and the orbit in stationary frame and from this the

motion is periodic. The Poincaré map in Figure 11c shows two isolated points and the frequency

ratio between the two peaks in the Fourier transform in Figure 11d is 2:1 showing that this solution
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Figure 11: Vibration responses (11a and 11e), phase trajectories (11b and 11f), Poincaré maps (11c

and 11g) and amplitude spectra (11d and 11h) for Ω̂ = 2.11 for ĝ = 2.14. Figures (11a - 11d) are for

stationary frame and figures (11e - 11h) are for the rotating frame of reference.

is indeed period 2 motion. When visualised in the rotating frame, the somewhat complicated orbit

in Figure 11b is simplified in 11f and the FFT in Figure 11h shows synchronous peaks at 0.5Ω̂, Ω̂

and 3Ω̂. Figure 12 shows a period 3 solution, where the Poincaré maps in Figure 12c and 12g now

show three isolated points proving that it is period 3. The two major peaks in the FFT visualised

in the stationary frame are in ratio of 3:1 and in the rotating frame there are peaks at 3.482, 5.23

and 6.978 with the second and third peak being 1.5 and two times the first peak respectively.

Figure 13 shows the complicated nonlinear motions of the rotor for ĝ = 3.44 at a rotor spin speed

of 2.55. The motion here is also visualised in both frames and as seen in Figures 13b and 13f the

orbits in both frames look quite complicated; visualising the motion in the rotating frame did not

simplify the orbit. To understand the motion we look at the Lyapunov spectrum, Poincaré maps and

amplitude spectra. The Poincaré maps shown in Figures 13c and 13g both show a closed loop, the

Lyapunov exponent shown in Figure 4f is approximately zero and the FFTs shown in Figures 13d

and 13h show discrete peaks. Thus the complicated nonlinear motion shown here is quasi-periodic.
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Figure 12: Vibration responses (12a and 12e), phase trajectories (12b and 12f), Poincaré maps (12c

and 12g) and amplitude spectra (12d and 12h) for Ω̂ = 5.23 for ĝ = 2.14. Figures (12a - 12d) are for

stationary frame and figures (12e - 12h) are for the rotating frame of reference.

A closer look at the frequency components in Figure 13d shows three major peaks at 2.55, 1.18

and 1.559. To understand where these originate we examine the linear natural frequencies of the

system from the Campbell diagram shown in Figure 6 at 2.55 and they were found to be 0.8342 and

1.1988. These are the BW and FW natural frequencies and these two frequencies are significantly

different from those in the FFT because at ĝ = 3.44 the static deflection due to gravity dominates

the response and thus there is a lot of stiffening due to the contact with the stator. Hence the

natural frequencies of the linear stiffened system with complete contact are more representative of

the motion; these natural frequencies are obtained using (1+ β) as the nondimensionalised stiffness

in the linear and unforced versions of the equations of motion given by Equation (4). The values

of BW and FW obtained for the stiffened system are 1.3517 and 1.7164 which are 10% and 14%

higher than the corresponding FFT values. The FFT frequencies are slightly lower because the

rotor is not always in contact whereas the natural frequencies of the stiffened system assume that

contact is maintained.
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Figure 13: Vibration responses (13a and 13e), phase trajectories (13b and 13f), Poincaré maps (13c

and 13g) and amplitude spectra (13d and 13h) for Ω̂ = 2.55 for ĝ = 3.44. Figures (13a - 13d) are for

stationary frame and figures (13e - 13h) are for the rotating frame of reference.

4. Conclusions

In this paper the effect of gravity on the nonlinear vibration phenomenon of an overhung rotor

was investigated. The 4th order Runge Kutta method was used to obtain bifurcation diagrams,

Lyapunov exponent spectra, amplitude spectra, orbit diagrams, phase trajectories and Poincaré

maps that show the nonlinear behaviour of the rotor system. After nondimensionalising the equa-

tions of motion it was noted that the gravity parameter is a function of shaft stiffness. It was noted

that when the shaft stiffness of the rotor is high, the gravity parameter is very small. This is the

case explored in earlier studies and can be safely approximated to a zero gravity term. However,

the opposite case of low shaft stiffness was explored in this study. The results presented here show

that gravity introduces rich dynamic phenomenon into the rotor. For the zero gravity case the

system only had periodic and quasi periodic solutions. Upon increasing the gravity parameter the

system now exhibited multi-periodic and chaotic solutions. It was also observed that visualising

the dynamic motion of systems in the rotating frame can give more insight into the nature of the
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solutions particularly for the zero gravity case. The frequency content for the motion visualised in

the rotating frame for the gravity case showed an additional peak not available in the zero gravity

case showing that, in the rotating frame gravity is harmonic. It was also noted that rotor stator

contact increases the effective stiffness(stiffening effect) and hence the shift in BW and FW natural

frequencies. Lastly, the isotropic assumption for stiff rotors was found to be reasonably robust in

the presence of imperfections since the orbits for the zero gravity case looked quite similar to that

of ĝ=0.05 and 0.22.
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