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Abstract 

Posttraumatic Stress Disorder (PTSD) is associated with elevated noradrenergic signaling, 

which has an impact on emotional learning and memory. Fear extinction is thought to 

underlie the processes of exposure therapy, however the relationship between noradrenaline 

and extinction in PTSD is unclear. Participants with PTSD (n = 21), trauma-exposure without 

PTSD (TC; n = 36), and non-trauma-exposed controls (NTC; n = 27) completed a fear 

conditioning and extinction paradigm, and conditioned fear was indexed by skin conductance 

response (SCR). Salivary α-amylase (sAA) collected at baseline and immediately post-fear 

acquisition was used as an index of noradrenaline, and we were examined whether sAA in 

response to fear acquisition was a moderator between fear extinction and PTSD symptoms. 

While there was a significant increase in sAA from baseline to post-fear acquisition, this was 

not modulated by group. Compared to the comparison groupsTC and NTC, the PTSD group 

displayed a slower decline in SCRs during early extinction, which generalized across 

stimulus type, and was not moderated by sAA. These findings suggest that the relationship 

between fear extinction and PTSD symptoms does not change as a function of sAA levels; 

however previous research suggests other processes of fear learning may be associated with 

noradrenergic activity in PTSD. 

 

Keywords: PTSD; trauma; extinction; salivary α-amylase; sympathetic arousal. 
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1. Introduction 

Hyperactive noradrenergic signaling is considered a hallmark correlate of 

Posttraumatic Stress Disorder (Zoladz and Diamond, 2013), a chronic psychiatric condition 

that can develop following a traumatic event (American Psychiatric Association, 2013). 

Noradrenaline (NA) is a catecholamine released from the adrenal glands during situations of 

stress and physical arousal, and PTSD is often shown to be associated with elevated NA, 

relative to controls (Geracioti et al., 2001; Pietrzak et al., 2013; Yehuda et al., 1998; Yehuda 

et al., 1992). Elevated noradrenergic signaling is associated with enhanced emotional 

memory formation (Mueller and Cahill, 2010), and excessive sympathetic responding to a 

traumatic event may result in stronger trauma memories (Zoladz and Diamond, 2013). 

Impaired extinction of psychophysiological fear conditioning is widely considered to be a 

prominent feature of the fear-related symptoms of PTSD (Briscione et al., 2014; Pitman et 

al., 2012; Zuj et al., 2016b), and research is emerging to suggest a relationship between 

sympathetic arousal and fear extinction in PTSD. Further, fear extinction is considered to be 

the underlying theoretical basis of exposure therapy, and understanding the relationship 

between these processes is an important step in translating information from the laboratory to 

treatment.  

Prospective research shows that increased sympathetic arousal (indexed by higher 

resting heart rate) in the early stages post-trauma predicts increased PTSD symptom 

development (Bryant et al., 2000; Shalev et al., 1998). Alternatively, Videlock et al. (2008) 

measured plasma NA levels in emergency room admissions, finding that participants who 

developed greater PTSD symptoms at 5-months post-admission had lower plasma NA in the 

emergency room. A recent cross-sectional study, however, found that patients with current 

PTSD diagnosis had significantly higher urinary NA secretion than controls (Wingenfeld et 

al., 2015). While it is commonly agreed that PTSD is associated with increased sympathetic 
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arousal, the literature is somewhat inconsistent regarding the relationship between NA 

secretion, fear extinction, and PTSD symptoms (Zuj et al., 2016b). 

Consistently elevated noradrenergic activity in the aftermath of trauma is thought to 

contribute to the persistence of fear-related symptoms of PTSD (Zoladz and Diamond, 2013), 

and the use of pharmacological drugs to block NA receptors may prove useful in the 

treatment of PTSD. Fitzgerald et al. (2015) recently showed propranolol, a β1/β2-

adrenoceptor antagonist, enhanced fear extinction in rats when administered immediately 

following fear conditioning. In healthy humans, propranolol appears promising when 

administered immediately following a reactivated conditioned fear memory to target memory 

reconsolidation (Kindt et al., 2014; Soeter and Kindt, 2011, 2012). Further, a recent clinical 

study in humans showed that propranolol use by participants undergoing six treatment 

sessions for PTSD showed lower psychophysiological responses (indexed by skin 

conductance response (SCR) and heart rate response) to reactivated trauma memories, 

compared to control groups that did not receive propranolol (Brunet et al., 2014). These 

findings support an earlier pilot study showing that a 7-day course of propranolol in the acute 

aftermath of trauma resulted in lower PTSD symptoms two months post-trauma, compared to 

individuals who did not receive propranolol (Vaiva et al., 2003). Propranolol acts to block 

noradrenergic signaling, however Fitzgerald et al. (2015) highlight that the mechanism by 

which propranolol improves PTSD symptoms is largely unknown. It is possible that 

propranolol and the blockade of NA receptors reduce PTSD symptoms by enhancing the 

extinction of exaggerated emotional fear memories associated with the trauma. That is, we 

suggest that NA levels may moderate the relationship between fear extinction and PTSD 

symptoms. 

Impaired fear extinction learning is widely considered a prominent feature of the fear-

related symptoms of PTSD (Briscione et al., 2014; Pitman et al., 2012; Zuj et al., 2016b). 
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Research is largely consistent that NA modulates emotional learning and memory, and this 

effect also translates to fear extinction learning (Mueller and Cahill, 2010). Pharmacological 

studies in humans show that administration of yohimbine (an α2-receptor antagonist that 

increases NA release) to healthy controls prior to fear acquisition results in a stronger 

conditioned fear trace that was resistant to extinction (Soeter and Kindt, 2012). Alternatively, 

rodent studies show that yohimbine is associated with context- and dose-dependent 

enhancements in fear extinction when administered immediately prior to extinction (Cain et 

al., 2004; Morris and Bouton, 2007). Behavioral research in humans shows that strategically 

timed stress induction tasks (and associated increases in sympathetic arousal) have the 

capacity to strengthen fear acquisition (Antov et al., 2013), and enhance fear extinction 

(Antov et al., 2015), when the stress task is performed immediately prior to the respective 

acquisition/extinction phase. Mueller and Cahill (2010) argue that NA modulation on 

extinction is strongest when the relationship between the conditioned stimulus (CS) and the 

unconditioned stimulus (US) is most predictable. 

  α-amylase is an enzyme found in saliva that has been shown to increase in association 

with sympathetic arousal (Nater and Rohleder, 2009). As such, salivary α-amylase (sAA) has 

been proposed as an indicator of NA levels (Chatterton et al., 1996; Rohleder and Nater, 

2009), and has been used in a number of studies to examine the relationship between NA and 

intrusive memories in PTSD. For example, a recent study found the interaction between sAA 

and salivary cortisol to predict greater frequency of negative intrusive memories in a sample 

with PTSD, compared to trauma-exposed and non-exposed controls (Nicholson et al., 2014). 

Another recent study with healthy controls found that elevated sAA (following a cold pressor 

test) predicted greater frequency of intrusive memories to negative images in men but not 

women (Bryant et al., 2013). These findings suggest that sAA may present as a useful marker 

for noradrenergic signaling in fear-related features of PTSD. 
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 The current study used a standardized differential fear conditioning and extinction 

paradigm to investigate the effect of endogenous sAA activity on fear extinction. 

Specifically, we were interested in the role of sAA in response to fear conditioning as a 

moderator between fear extinction learning ability and PTSD symptom severity in a sample 

with current PTSD, trauma exposure without PTSD, and non-trauma-exposed controls. Based 

on recent research using sAA as an indicator of NA in intrusive memories (Bryant et al., 

2013; Nicholson et al., 2014), and the role of noradrenergic signaling in fear conditioning and 

extinction (Antov et al., 2015; Antov and Stockhorst, 2014; Soeter and Kindt, 2012), we 

predicted that sAA levels would moderate the relationship between fear extinction learning 

and PTSD symptoms. Specifically, we hypothesized that poorer fear extinction learning 

ability would be associated with greater PTSD symptom severity, and that this relationship 

would be stronger with lower sAA levels in response to fear conditioning. 

  

2. Method 

2.1. Participants 

 Eighty-four participants aged 18-63 years (M = 27.6 years, SD = 11.4) and comprising 

37 males and 47 females were involved in the study. Participants were recruited from 

University of Tasmania undergraduate populations and from local psychology clinics. The 

results from a subset of the participants in the current study have been reported elsewhere,1 

examining hours-since-waking, endogenous cortisol reactivity, and negative appraisals as 

potential moderators of fear extinction (Zuj et al., 2017a; Zuj et al., 2016a; Zuj et al., 2017b). 

                                                        
1 There are considerable differences in the samples presented in the current paper compared to previous studies 

from our lab. Specifically, the current study included 12 of 15 PTSD, 18 of 33 TC, and 12 of 22 NTC subjects 

from Zuj et al. (2016a); and 14 of 21 PTSD and 19 of 33 TC subjects from Zuj et al. (2017a). The current paper 

has the greatest overlap with Zuj et al. (2017b), with 17 of 18 PTSD, 31 of 33 TC, and 25 of 27 NTC 

participants. In total, 6 PTSD, 14 TC, and 12 NTC subjects have been included in all four studies. compared to 

Zuj et al. (2016a), and Zuj et al. (2017a). The current paper has greater overlap with Zuj et al. (2017b), and this 

is reflected in the strong similarity of findings in the fear conditioning and extinction paradigm. 
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Participants were allocated to groups on the basis of exposure to a criterion A stressor 

(American Psychiatric Association, 2013) using the Traumatic Events Questionnaire (TEQ; 

Vrana and Lauterbach, 1994).  

The PTSD Checklist-Civilian version (PCL-C; Weathers et al., 1994) was used to 

estimate PTSD symptom severity according to the diagnostic criteria of the DSM-IV 

(American Psychiatric Association, 2000). These diagnostic criteria include at least one 

intrusive memory symptom, three avoidance symptoms, and two hyperarousal symptoms. 

The PCL-C for the DSM-IV was used in the current study as data collection began prior to 

the availability of diagnostic instruments for the DSM-5. All participants in the PTSD group 

displayed the above symptomatology, with the exception of four participants who displayed 

less than three avoidance symptoms, but showed greater severity of intrusive memories and 

hyperarousal symptoms. This criteria resulted in the PTSD group showing a minimum PCL-

C total score of 40, with 52% showing a total score greater than 50. Participants who had 

experienced a criterion A stressor, but did not meet the minimum guidelines for PTSD in a 

general population sample (i.e., PCL-C total score < 30; National Center for Posttraumatic 

Stress Disorder, n.d.), were classified as trauma-exposed controls (TC). PCL-C total scores 

ranged from 17-29 in the TC group. Participants who reported no experience of a traumatic 

event were classified as non-trauma exposed controls (NTC).  

The above criteria resulted in three groups: PTSD (n = 21), TC (n = 36), and NTC (n 

= 27). Participants in the PTSD and TC groups were exposed to a variety of environmental 

and interpersonal traumas, including war exposure (n = 5), accident (n = 21), natural disaster 

(n = 27), witness to serious injury or death (n = 36), assaulted or molested (n = 22), 

threatened or held captive (n = 12), and tortured or the victim of terrorism (n = 2). Mean 

years since trauma for the PTSD group was 10.1 years (SD = 12.8 years), and 10.1 years (SD 

= 10.9 years) for the TC group. Participants also completed the Depression Anxiety Stress 
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Scale – 21 item version (DASS; Lovibond and Lovibond, 1995). The University of Tasmania 

Social Science Human Research Ethics Committee and the Tasmanian Health and Medical 

Research Ethics Committee approved this study. All participants gave full informed consent 

prior to involvement, and all testing was conducted in a single session. 

 

2.2. Fear conditioning and extinction paradigm 

 The differential fear conditioning and extinction paradigm in the current study has 

been used and described previously (Orr et al., 2000; Zuj et al., 2017a; Zuj et al., 2016a; Zuj 

et al., 2017b). The unconditioned stimulus (US) was a 500ms mild electric shock delivered to 

the first interroseous muscle of the dominant hand, and set to a level considered “highly 

annoying, but not painful” by each participants. Figure 1 displays the experimental paradigm 

used and relevant instructions provided to participants.  
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Figure 1. Each experimental phase consisted of five presentations of the CS+ and five 

presentations of the CS- (with four presentations of each stimulus in the habituation phase). 

Conditioned stimuli were self-made red and blue circles presented individually in the centre 

of a computer screen for 12s each, with an inter-trial interval ranging from 12-21s. Trial order 

was pseudo-random, with no more than two CS+/- presentations in a row. A 100% 

reinforcement schedule was used during the fear acquisition phase, whereby the US was 
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delivered immediately following the offset of every CS+ trial, as is commonly used in 

conditioning research (e.g., Jovanovic et al., 2014; Orr et al., 2000; Orr et al., 2014). 

Immediately following the acquisition phase, participants were instructed to provide a saliva 

sample, and when movement artefact normalized in the skin conductance recording, 

participants were then instructed to continue. Inter-phase intervals varied slightly between 

participants with some participants taking longer to provide saliva (intervals lasted no longer 

than 1 minute), and the entire paradigm took approximately 25 minutes to complete. 

 

2.3. Skin conductance response 

 Skin conductance level was measured through a 22mVrms, 75Hz constant-voltage 

coupler (FE116, ADInstruments) with bipolar electrodes on the intermediate phalange of the 

first and third fingers of the non-dominant hand, sampled at 512Hz and stored at 64Hz, and 

recorded in micro-Siemens (μS). Skin conductance response (SCR) to the CS+ and CS- was 

calculated by subtracting the mean SCL during the 2s prior to stimulus onset from the 

maximum SCL during the 12s stimulus duration. All SCR values were square-root 

transformed. For negative SCR values, the absolute value was transformed and given a 

negative sign (Milad et al., 2006) and the absolute value of negative scores was transformed 

and the negative sign replaced.  

 

2.4. Threat expectancy ratings 

 During the 12s stimulus presentation, participants were asked to rate their threat 

expectancy of the US on a 0-100 visual analogue scale (VAS; 0 “certain no electrical 

stimulus”; 100 “certain electrical stimulus”; as previously used by Lommen et al., 2013). 

Threat expectancy ratings are commonly included in studies of fear conditioning and 

extinction (e.g., Kindt and Soeter, 2013; Vervliet et al., 2007). 
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2.5. Salivary α-amylase 

 All participants provided saliva samples at the beginning of testing, and immediately 

post-fear acquisition. Endogenous noradrenergic activity was measured from sAA, which has 

received support from human and animal research as a valid biomarker of noradrenergic 

activity (Nater and Rohleder, 2009). Samples were collected immediately post-fear 

acquisition as sAA has an immediate peak latency response post-threat (Nater and Rohleder, 

2009). Thawed samples were centrifuged at 1500 × g for 15 minutes to collect clear saliva, 

which was used for all assays without further processing. All saliva samples were brought to 

room temperature before adding to the assay wells. Samples were analyzed using a 

commercially available ELISA assay (Salimetrics, USA) according to the manufacturers 

instructions. All samples were analyzed in duplicate, and had an intra-assay variability of 

5.6%, and an inter-assay variability of 6.3%. Baseline and post-acquisition sAA were square-

root transformed to normalize distributions. 

 

2.6. Statistical analyses 

 Three (group) × 2 (CS) × 5 (trial) mixed-model ANOVAs were conducted separately 

for each phase (with four trials each for habituation and acquisition). The first CS+/- trial of 

acquisition was omitted from statistical analyses as the US had not yet been encountered, and 

no fear learning would have occurred (Zuj et al., 2016a). Repeated measures ANCOVAs 

were conducted separately for early and late extinction, with a percentage of maximal 

conditioned responding serving as the covariate to correct for individual differences in 

conditioning. This value was computed according to Milad et al. (2006), whereby the largest 

differential conditioned response between the CS+ and CS- during acquisition was multiplied 

by 100. This value was mean centered prior to use as a covariate in line with previous 
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recommendations on conducting repeated measures ANCOVA (Aligna, 1982; Delaney & 

Maxwell, 1981). The final CS+ trial of the acquisition phase was included as a covariate in 

the extinction learning ANOVAs to account for individual differences in fear acquisition. All 

statistical analyses on SCR data used square-root transformed values. Greenhouse-Geisser 

corrections were made for within-subjects variables where necessary. Brown-Forsythe F-

ratio adjustments were made where necessary, and pairwise comparisons were conducted 

with Bonferroni corrections or Games-Howell tests where appropriate. Moderation analyses 

were conducted using the PROCESS macro for SPSS (Model 1; Hayes, 2013). An alpha level 

of α = 0.05 was used for all tests of statistical significance. Effect sizes are reported as 

Cohen’s d following the criteria of 0.2, 0.5, and 0.8 as small, moderate and large effects, 

respectively (Cohen, 1988). Partial-eta squared (ηp
2) are reported for mixed-model ANOVAs. 

 

3. Results 

3.1. Descriptive and clinical data 

 Descriptive and inferential statistics are displayed in Table 1. One-way ANOVA 

revealed a trend-level between-group difference on age and sex. As expected, there were 

significant between group differences in PCL total scores, F(2, 25.55) = 135.50, p < 0.001, 

with the PTSD group having significantly higher mean PTSD symptom severity than the TC 

and NTC groups (ps < 0.001), who also significantly differed (p < 0.001). There was also a 

significant between-group difference on DASS subscale scores, with the PTSD group 

showing significantly greater depression, anxiety, and stress scores than the TC and NTC 

groups (ps < 0.001). The TC group had significantly higher levels of stress than the NTC 

group (p = 0.003), however there was no significant difference on depression (p = 0.387), or 

anxiety (p = 0.159).



 13 

Table 1 

Mean scores and SDs of demographic, clinical and salivary measures 

Measures PTSD (n = 21) TC (n = 36) NTC (n = 27) Test statistic p 

Demographic data      

   - Age (years) 32.67 (14.62) 26.97 (9.76) 24.48 (9.67) F(2, 50.76) = 2.93 0.062 

   - Sex 13F, 8M 15F, 21M 19F, 8M χ2
(2) = 5.56 0.062 

PCL-C      

   - Total 52.52 (11.38) 23.47 (3.87) 19.93 (2.56) F(2, 25.55) = 135.50 < 0.001 

   - Intrusive 3.00 (1.22) 0.28 (0.51) 0.00 (0.00) F(2, 81) = 132.52 < 0.001 

   - Avoidance 4.24 (1.81) 0.39 (0.69) 0.19 (0.48) F(2, 27.28) = 84.48 < 0.001 

   - Hyperarousal 3.52 (1.03) 0.44 (0.77) 0.15 (0.46) F(2, 45.66) = 127.70 < 0.001 

DASS      

   - Depression 9.43 (5.76) 2.28 (2.37) 1.52 (2.15) F(2, 30.88) = 28.47 < 0.001 

   - Anxiety 8.14 (4.26) 1.94 (1.87) 1.11 (1.67) F(2, 32.19) = 39.33 < 0.001 

   - Stress 13.62 (6.34) 4.89 (3.07) 2.56 (2.36) F(2, 32.98) = 40.04 < 0.001 

AUDIT 6.86 (5.46) 6.22 (3.83) 6.11 (4.10) F(2, 55.50) = 0.18 0.837 

Note: PTSD = Posttraumatic Stress Disorder; TC = Trauma-exposed control group; NTC = Non-trauma exposed control group; PCL-C = PTSD 

Checklist-Civilian version; DASS = Depression Anxiety Stress Scale; AUDIT = Alcohol Use Disorders Identification Test. 
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3.2. Salivary α-amylase 

 A repeated measures ANOVA revealed there was a significant increase in sAA from 

baseline to post-acquisition, F(1, 81) = 4.64, p = 0.034, ηp
2 = 0.054, however there was no 

group × time interaction, F(2, 81) = 2.18, p = 0.120, ηp
2 = 0.051. Figure 2 displays mean sAA 

levels during baseline and post-acquisition. 

 

 

 

Figure 2. Baseline and post-acquisition sAA levels for each group and total levels. On 

average, all groups showed an increase in sAA levels from baseline to post-acquisition, 

however these levels did not differ significantly between groups. Figure shows raw sAA 

levels. * p < 0.05. Error bars represent 95% confidence intervals. 

 

60

80

100

120

140

160

180

PTSD TC NTC Total

S
a
li
v
a
ry

 α
-a

m
y
la

s
e

(U
/m

L
)

Group

Baseline

Post-acquisition

* 



  15 

3.3. Threat expectancy 

 Self-reported US-expectancy ratings collected during the fear conditioning and 

extinction paradigm indicated a significant CS × trial interaction during the acquisition phase 

F(3.40, 254.88) = 103.38, p < 0.001, ηp
2 = 0.580, ε = 0.850, with differential responding 

increasing across trials, pooled across groups. During early extinction, there was also a 

significant CS × trial interaction, F(3.46, 262.58) = 10.29, p < 0.001, ηp
2 = 0.119, ε = 0.864, 

with differential responding decreasing over early extinction. During late extinction there was 

still a significant CS × trial interaction as differential responding continued to decrease, 

F(3.63, 275.49) = 3.84, p = 0.006, ηp
2 = 0.048, ε = 0.906. Furthermore, ANOVA revealed a 

significant group main effect during late extinction, with the PTSD group reporting higher 

average US-expectancy ratings than the TC and NTC groups, pooled across CS and trials, 

F(2, 76) = 4.76, p = 0.011, ηp
2 = 0.111. 

 

3.4. SCR amplitude 

 Habituation. Mixed-model ANOVA revealed a significant main effect of trial, 

F(2.89, 233.80) = 3.08, p = 0.030, ηp
2 = 0.037, ε = 0.962, with SCRs decreasing over the four 

trials, pooled across groups (see Figure 3). No further main effects or interactions were 

significant. 

 Acquisition. There was a significant CS main effect, F(1, 81) = 79.90, p < 0.001, d = 

0.84, with the CS+ eliciting, on average, a significantly larger SCR (M = 0.90, 95% CI [0.79, 

1.02], SD = 0.52) than the CS- (M = 0.48 [0.37, 0.59], SD = 0.49). Further, there was a 

significant main effect of trial, F(3.64, 294.84) = 15.12, p < 0.001, ηp
2 = 0.157, ε = 0.910. 

Importantly, there was a significant group × CS interaction, F(2, 81) = 4.42, p = 0.015. Tests 

of simple effects revealed no between-group simple main effect for the CS+, F(2, 81) = 0.27, 

p = 0.763, ηp
2 = 0.007, however there was a significant between-group effect in responding to 
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the CS-, F(2, 81) = 3.35, p = 0.040, ηp
2 = 0.076. This effect shows that there were no 

significant differences between the PTSD and TC groups in responses to the CS- (p = 0.993), 

however both the PTSD and TC group displayed significantly greater responding to the CS- 

than the NTC group (p = 0.041, and p = 0.020, respectively). 

 Early extinction. With the percentage of maximal conditioned responding during 

acquisition included as a covariate, there was a significant main effect of CS, F(1, 80) = 8.26, 

p = 0.005, d = 0.27, with significantly larger SCR amplitude to the CS+ (M = 0.60 [0.51, 

0.69], SD = 0.41) compared to the CS- (M = 0.49 [0.40, 0.58], SD = 0.42). There was also a 

significant main effect of trial, F(3.77, 301.83) = 33.91, p < 0.001, ηp
2 = 0.298, ε = 0.943, 

which was superseded by a significant group × trial interaction, F(7.55, 301.83) = 2.96, p = 

0.004, ηp
2 = 0.069, ε = 0.943. With the final CS+ trial of acquisition included in the analysis 

as a covariate, there was no significant main effect of CS, F(1, 80) = 1.15, p = 0.287, d = 

0.33. There was, however a significant main effect of trial, F(3.70, 296.02) = 9.23, p < 0.001, 

ηp
2 = 0.103, ε = 0.925, and a significant group × trial interaction, F(7.40, 296.02) = 2.31, p = 

0.024, ηp
2 = 0.055, ε = 0.925. Tests of simple effects show the TC and NTC groups 

demonstrate significant reduction in SCRs from trial 1 to trial 2 (p < 0.001, and p = 0.003, 

respectively) and all further between-trial changes were non-significant, indicating rapid 

extinction in the TC and NTC groups. The PTSD group, however, showed a significant 

reduction in SCRs from trial 1 to trial 2 (p = 0.021) and from trial 2 to trial 3 (p = 0.002), 

with no significant between-trial changes after trial 3. These findings suggest that extinction 

learning is slower for the PTSD group, compared to TC and NTC groups (see Figure 3). 

 Late extinction. After controlling for the final CS+ trial of acquisitionpercentage of 

maximal conditioned responding, the ANCOVA revealed no significant main effects or 

interaction during the late extinction phase (Fs < 1.53, ps > 0.05).a significant but small 

magnitude main effect of CS, F(1, 80) = 4.74, p = 0.032, d = 0.19, with the CS+ still eliciting 
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a larger SCR amplitude (M = 0.50 [0.40, 0.83], SD = 0.47) than the CS- (M = 0.42 [0.34, 

0.51], SD = 0.40). Further, there was a significant main effect of trial, F(3.30, 264.12) = 

17.60, p < 0.001, ηp
2 = 0.180, ε = 0.825 

 

 

[INSERT FIGURE 3 ABOUT HERE]
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Figure 3. Square-root transformed SCRs for the PTSD (A), TC (B), and NTC (C) groups. 

There was a significant group × trial interaction during the early extinction phase, with the 

PTSD group displaying a slower rate of extinction across the first three to four trials, 

compared to the TC and NTC groups, who showed a rapid attenuation of SCRs from trial 1 to 

2. Error bars display 95% confidence intervals. * p < 0.05, ** p < 0.01. 

 

 

3.5. Fear extinction and salivary α-amylase moderation 

 As used in a previous study from our lab (Zuj et al., 2017b), a difference score was 

calculated between trial 1 and trial 2 of early extinction separately for the CS+ and the CS-, 

which served as predictor variables in separate moderation analyses (Models 1 and 2, 

respectively; Hayes, 2013). This difference score was computed to account for rapid 

extinction during the early trials of extinction learning. PCL total score was the outcome 

variable, and the difference between baseline sAA and post-acquisition sAA levels was 

entered as the moderator variable. Model 1 did not predict a significant amount of variance in 

PCL total, R = 0.23, R2 = 0.055, F(3, 80) = 1.54, p = 0.210. Further, Model 2 did not predict a 

significant amount of variance in PCL total, R = 0.16, R2 = 0.024, F(3, 80) = 0.67, p = 0.576. 

There were no significant main effects or interactions for either model. This was still the case 

after age, sex, and salivary cortisol were included in the models as covariates. 
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4. Discussion 

 The aim of the current study was to investigate the potential for endogenous sAA (as 

an index of NA and sympathetic arousal) to serve as a key influence on the relationship 

between fear extinction learning and PTSD, with important clinical implications. First, while 

we found a significant increase in sAA from baseline to post-acquisition, this effect did not 

change as a factor of group, with all groups showing comparable increases in sAA. Second, 

the PTSD group showed slower fear extinction learning during the early extinction phase, 

compared to the TC and NTC groups. Third, the moderation analyses revealed that sAA 

levels (both baseline and post-acquisition) did not moderate the relationship between fear 

extinction learning and PTSD symptoms. Further, SCR amplitude to the CS+ and CS- during 

the early extinction phase did not predict PTSD symptom severity in this sample, irrespective 

of sAA. 

 From a theoretical perspective, the fear extinction model has demonstrated good 

predictive validity in the translation of behavioral/pharmacological interventions from the 

laboratory model (extinction) to the treatment model (exposure therapy), and vice versa 

(Scheveneels et al., 2016). The findings of the current study suggest that noradrenergic 

activity may not be a moderating factor of immediate extinction learning, however increased 

noradrenergic signaling is known to enhance emotional learning and memory processes 

(Mueller and Cahill, 2010). Previous research has used behavioral (e.g., Antov et al., 2015; 

Antov et al., 2013) and pharmacological tasks (e.g., Soeter and Kindt, 2012) designed to 

activate the stress response and subsequent catecholamine release. The current study involved 

the collection of endogenous sAA levels prior to and immediately following fear acquisition. 

While the US (in this case, a mild electric shock) appeared to increase sAA release, these 

levels showed no interaction with group or fear extinction learning ability. Previous research 

showing clear links between NA (or sympathetic arousal) and fear extinction directly 
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manipulated noradrenergic signaling either through pharmacological intervention or via 

stress-induction tasks (Antov et al., 2015). These research design differences may have led to 

greater changes in NA, compared to changes seen in the current study. There also appears to 

be large individual variability in sAA levels, possibly contributing to the lack of between-

group differences. 

 The findings of the present study show specific group differences during early 

extinction learning, with a slower reduction in SCR amplitude to both the CS+ and CS- in the 

PTSD group, compared to the TC and NTC groups. These findings mirror the effects of a 

recent study from our lab, showing that endogenous cortisol reactivity was a significant 

moderator between fear inhibition to the safety signal during early extinction and PTSD 

symptom severity (Zuj et al., 2017b). The pattern of conditioning and extinction in the 

present study and in Zuj et al. (2017b) does, however, differ from previous conditioning and 

extinction studies in our lab (Zuj et al., 2016a; 2017a), which may be due to variations in skin 

conductance between changes in the sample. The findings of the current study require 

replication using alternative psychophysiological measures (i.e., fear-potentiated startle) to 

make robust conclusions.  

The findings of the current study, suggest that fear extinction is not moderated by 

endogenous sAA. Here we also showed a significant group × CS interaction during fear 

acquisition, showing that the PTSD and TC groups demonstrated elevated fear responding to 

the CS- compared to the NTC group. Prior understanding suggests that impaired safety signal 

learning is related to PTSD (Jovanovic et al., 2012), however the current study suggests that 

reduced safety signal learning during the fear acquisition stage may be a consequence of 

trauma-exposure, rather than a PTSD-specific trait. 

 A key methodological factor that should be taken into account is that the current study 

examined immediate extinction training, whereby the extinction phase was conducted 
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immediately following fear acquisition training. Using a paradigm involving delayed 

extinction (for a recent review of different experimental paradigms, see Lonsdorf et al., 

2017), may allow sufficient time for a sAA-moderated effect on extinction ability. 

Furthermore, assessing extinction recall the following day (or multiple days following 

extinction training) may also provide some insight into the relationship between endogenous 

sAA activity on extinction consolidation. Previous research used a cold pressor test prior to 

fear extinction learning to activate the stress response and enhance sympathetic arousal, 

resulting in a stronger extinction memory trace that was recalled the next day (Antov et al., 

2015). In the current study, all groups displayed comparable increases in sAA levels post-

acquisition, as well as similar patterns of extinction of SCR amplitude, save for the first few 

trials of the early extinction phase where the PTSD group displayed a slower attenuation of 

SCR amplitude. We speculate that these findings may be attributed to one of three 

possibilities: (1) the increase in sAA from baseline to post-acquisition was not large enough 

to detect an effect on fear conditioning and extinction; (2) the absence of a stress induction 

task decreased the sensitivity to reveal an interaction between sAA and fear extinction 

learning, or (3) noradrenergic enhancement may target a different fear learning process. We 

argue that the latter is more likely than the former options, as previous research has found 

propranolol administration during the reconsolidation window of reactivated fear memories 

reduces the return of fear (e.g., Kindt et al., 2014). Therefore we argue that increased 

noradrenergic signaling may be most effective when targeting the original fear memory, 

rather than extinction, which takes the form of a new inhibitory memory trace (Kindt et al., 

2009). It is important to note that there were large levels of individual variability in sAA 

levels, and this explanation for the current findings is speculative. 

 A further finding of the current study that warrants explanation is the pattern of rapid 

extinction learning over the first three trials of the early extinction phase. A likely 
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explanation for this finding is that the 100% US-reinforcement schedule during the 

acquisition phase resulted in a highly predictable CS+-US relationship with little ambiguity. 

The extinction learning phases also revealed an increased SCR to the CS- as well as the CS+ 

during extinction, which may be due in part to the instructions presented to participants on-

screen before each phase (i.e., “you may or may not receive a mild electric stimulus”). That 

is, potentially altering participants’ expectations of the CS+-US contingency. A final 

explanation for rapid extinction could also be that participants initially learn no association 

between the US and either CS+/- during habituation, followed by learning the CS+-US 

relationship during acquisition, and finally reverting back to the initial learning of the 

habituation phase during extinction (i.e., that neither CS predicts the US). 

 In conclusion, the current study found that PTSD is associated with a slower 

reduction of generalized SCRs in the early trials of the early extinction phase. Further, while 

there was an overall increase in sAA levels post-fear acquisition, sAA did not differ as a 

function of group, and did not interact with early extinction changes in responding to the CS+ 

or CS-. Previous research suggests that noradrenergic stimulation via propranolol 

immediately following the reactivation of a fear memory has the capacity to prevent the 

return of fear (Kindt et al., 2014), suggesting that increased noradrenergic activity may cause 

a reduction in fear expression following fear reactivation, rather than fear extinction. 
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