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An Explicit Formula for the Magnetic Polarizability
Tensor for Object Characterization

Paul D. Ledger and William R. B. Lionheart

Abstract— The magnetic polarizability tensor (MPT) has
attracted considerable interest due to the possibility it offers
for characterizing conducting objects and assisting with the
identification and location of hidden targets in metal detection.
An explicit formula for its calculation for arbitrary-shaped
objects is missing in the electrical engineering literature. Further-
more, the circumstances for the validity of the magnetic dipole
approximation of the perturbed field, induced by the presence of
the object, are not fully understood. On the other hand, in the
applied mathematics community, an asymptotic expansion of the
perturbed magnetic field has been derived for small objects and
a rigorous formula for the calculation of the MPT has been
obtained. The purpose of this paper is to relate the results of the
two communities, to provide a rigorous justification for the MPT,
and to explain the situations in which the approximation is valid.

Index Terms— Buried object detection, Eddy currents, mag-
netic induction, metal detectors, polarizability tensors.

I. INTRODUCTION

THE characterization of a highly conducting object from
the measurements of the low-frequency time harmonic

magnetic field, which is perturbed by its presence, has impor-
tant applications in metal detection, where the goal is to
locate and identify a concealed conductive permeable inclusion
in an otherwise low conducting background. Metal detectors
are used in the search for artifacts of archaeological sig-
nificance or of monetary value, the detection of landmines
and unexploded ordnance, the recycling of metals, ensuring
food safety, as well as in security screening at airports and
public events. To improve their performance and reduce the
number of false positives, there is considerable interest in
the development of low-cost approaches and, in particular,
the ability to characterize the shape, material properties, and
frequency behavior of a conducting object by a small number
of parameters using a symmetric rank 2 magnetic polarizability
tensor (MPT) description. In the engineering community,
the perturbed magnetic field response to the presence of a
conducting permeable object and its interaction with a time
harmonic background field is frequently approximated by
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a magnetic dipole. This, in turn, is approximated by the
product of an MPT, which is independent of position, and
the background field.

Wait [40] obtained an analytical solution that describes
the response of a conducting permeable sphere to a uniform
time harmonic background field. He found that the magnetic
moment induced by the presence of the object takes a simple
form consisting of a scalar, depending on the radius, conduc-
tivity, frequency, and permeability contrast of the object, multi-
plied by the uniform background field employed. Although no
reference to an MPT is made, this does fit the aforementioned
description. Here, the MPT is a scalar multiple of the identity
tensor and the perturbed magnetic field resulting from the
induced magnetic moment description, in this case, coincides
with the exact representation of the perturbed field, as the alter-
native derivation in [38, p. 375] shows. An analytical solution
for a conducting permeable sphere placed in a time harmonic
background field generated by a coil, approximated as a dipole
source, has also been obtained [41]. Here, the leading order
term in the infinite series solution involves the same scalar
function, which characterizes the sphere’s radius, conductivity,
and permeability for a given frequency, as found in the uniform
excitation case. The case of a general sphere excited by a
time harmonic dipole field has also been considered in [42].
Furthermore, Wait and Spies [43] have obtained an analytical
expression for the perturbed magnetic field when a conducting
permeable sphere is placed in a background field consisting
of either a pulse or a step function. Their solution is in terms
of a time-dependent operator, which can be expanded in terms
of poles of a scalar transcendental equation.

The first mention of a rank 2 MPT appears to be in [20,
p. 197] (note the Russian edition predates this English ver-
sion). They state that the magnetic moment induced by a
conductor can be expressed as a linear combination of the
background magnetic field through a symmetric MPT. They
further state that the MPT is complex valued, depends on
the orientation of the object in the background field as well
as its shape and the frequency of excitation. For simpler
electro/magnetostatic problems, the representation of electric
and magnetic moments in terms of background fields and
electric/MPTs, which describe the shape and material contrast
of dielectric and magnetic objects, is older still and related
work on the depolarizing and demagnetization coefficients
of ellipsoids has been published as early as in 1945 by
Osborn [32] (see also [6], [19], [22], and [39]).

Baum has made considerable contributions to the descrip-
tion of conducting objects. He generalizes the work of Wait
and Spies’ on spheres to the description of the response from
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a general conducting permeable object when the background
field is transient. The complex analysis he performs results in
a characterization of a conducting permeable object using a
rank 2 MPT expressed as an infinite sum of poles associated
with the object in consideration [9], [10]. He promotes this
technique as the singularity expansion method and the poles
of his MPTs as being a suitable means to characterize different
conducting permeable objects [11] (for further details on the
singularity expansion method, see [12] and references therein).

(Semi)analytical solutions have been derived for the
magnetoquasi-static response for a conducting permeable
spheroid placed in a uniform time harmonic background
magnetic field under axial excitation [14] by the group of
O’Neill. In the case of excitation at a frequency close to
the quasi-static limit, the group employs a type of impedance
boundary condition in order to simplify the treatment of the
transmission conditions and avoid the challenging problem of
small skin depths and interior–exterior coupling of the field
equations. The perturbed magnetic field due to the presence of
a conducting permeable spheroid is obtained from the leading
order term in a multipole expansion, and by considering
the induced magnetic moment for this object, the diagonal
component of the MPT associated with the axial excitation can
be identified. The group has generalized this to the treatment of
spheroids excited by background fields of arbitrary orientation,
thereby allowing the identification of the other diagonal MPT
coefficients [7], and has explored how the MPT coefficients
vary over a broadband frequency range in [8]. This has
been extended still further to the treatment of conducting
permeable ellipsoids in [17]. These (semi)analytical solutions
involve truncated infinite series solution involving Legendre
and Bessel functions, and to overcome this complexity, a sim-
pler treatment involving perfectly conducting spheroids has
been presented in [31], where the excitation is by a time
harmonic background magnetic field generated by a coil rather
than a uniform field.

The group of Shubitidze has developed the method of
auxiliary sources [34], [36], [37] as a low-cost approach to
describe the field perturbations caused by the presence of
general conducting permeable objects. They introduce point
and surface charges on imaginary surfaces, which are usually
chosen to be conformal to the object’s surface and located
on both its interior and exterior, and develop an approximate
integral equation solution. When applied to eddy-current prob-
lems [36], [37], the group assumes the perturbed magnetic field
to be irrotational in the nonconducting background medium,
so that it can be expressed as the gradient of a scalar potential.
However, this is only true for simply connected objects, and
for multiply connected objects with loops (e.g., a torus or ring),
the unbounded region surrounding the object is also multiply
connected and there are curl free magnetic fields in this region
that cannot be expressed as the gradient of a scalar potential.
These loop fields remain present at large distances from
the object and consequently their approach is not applicable
to such objects (see [13], [22, Proof of Lemma 1], and
references therein, which give a full explanation in terms of
Betti numbers). In addition, the reduction in the governing
curl–curl equation in the interior of the object to a vector

Helmholtz equation, by the assumption of a solenoidal mag-
netic field, is only correct if the object has a smooth boundary
and is not valid for general objects that may have sharp edges
and corners. More recently, the group of Shubitidze has sub-
sequently extended the method of auxiliary sources to apply it
to heterogeneous objects and objects placed in a background
media that are conductive (e.g., sea water) [34]. Their more
recent work does not require the eddy approximation to made,
so that it can be applied to objects excited by higher frequency
background fields.

For practical object classification using an MPT, its coef-
ficients need to be related to field measurements. Multiple
measurements are required in order to reliably fit the tensor
to the data and alternative approaches can be conceived. One
possibility is to have a single exciter and a single measurement
coil and to take measurements at a large number of different
positions (and orientations) by either fixing the exciter and
moving the measurement coil or moving them together in
a fixed unit (such as in a hand-held metal detector) [15].
Here, ideas (and terminology) can be borrowed from the
radar cross section (RCS) in electromagnetic scattering where
bistatic involves a fixed exciter and moving the receiver and
monostatic involves keeping a fixed exciter–receiver distance.
Another approach is to have an array of coils, where one coil
is excited at a time and the others are used for taking the
measurements [24], [35], which, in the context of RCS, would
be multistatic. Indeed, there is a further connection between
the MPT in metal detection and the RCS pattern of an object.
The latter describes the far-field power of waves scattered by
an object and can be approximated in terms of a different class
of polarizability tensors, which provide an approach to object
characterization at higher frequencies (see [22] and references
therein for further details).

Techniques involving MPTs (and those closely related to it)
have been applied to a variety of applications. Electromagnetic
induction spectroscopy [30] is a related empirical technique,
where the focus is on the broadband frequency response
to a given waveform, rather than a simple time harmonic
signal, and has been applied to landmine clearance. The
simultaneous identification of multiple unexploded ordnance
has been considered in [18], where an MPT representation,
in which the coupling between the eddy currents in multiple
bodies is neglected, has been applied. The group of Peyton has
applied real-time MPT inversion and classification of multiple
objects to the problem of security screening [26]–[29], [45]
and is developing techniques for measuring MPTs for a range
of threat and nonthreat items illuminated by harmonic fields,
in the lab [1], [16] and field. The group of Bilas and Vasić has
also made field measurements of MPTs for a range of objects
using harmonic and impulse excitation [2] and is developing
systems for mine clearance in partnership with the group of
Peyton.

Despite the considerable attention, the MPT has received in
the engineering literature an explicit formula for its calculation
for arbitrary-shaped object is, to the best of our knowledge,
not available. (Semi)analytical solutions are only available for
spheres and ellipsoids with the latter requiring approximations
to be made. Engineers are aware that the dipole approximation
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works well for excitation by uniform fields and coincides with
the exact description for a spherical object, but its accuracy for
other objects is unclear. The magnetic dipole approximation
has also been shown to work well when the excitation is by
a current carrying coil placed sufficiently far from the object,
but a rigorous justification of the constraints required (on the
material parameters, object size, and frequency), in order for
it to apply, does not appear to be available. In contrast, in the
applied mathematics community, an asymptotic formula for
the perturbed magnetic field for the eddy-current problem
of a conducting (permeable) object in a low-frequency time
harmonic background field has been rigorously derived for
the case where the object size tends to zero [4], [5]. For
this case, an explicit formula for the computation of the
MPT coefficients has also been derived [21], [22] and our
previous analysis clearly states what the requirements are on
the material parameters, frequency, and object size in order
for it to apply. In these articles, we have described how the
MPT coefficients can be computed for a general-shaped object
and included a range of illustrative examples to show that our
computations agree with both known analytical solutions and
experimental data. We have shown how the MPT transforms
under the rotation of an object and also how the number of
independent complex coefficients of an MPT can be much
fewer than six if the object has rotational and/or mirror
symmetries.

The purpose of this paper is to relate the results of the
electrical engineering and applied mathematics communities,
to provide a rigorous justification for the MPT, and to
explain the situations in which the approximation is valid.
We begin, in Section II, with the key equations that describe
the underlying eddy-current model, which describe the field
perturbation caused by the presence of a conducting permeable
object. Then, in Section III, we discuss different alternative
approaches for representing the perturbed magnetic field in
the presence of such an object. In Section IV, we establish
the validity of engineering approach for the MPT and explain
when the approximation is valid. Then, in Section V, we apply
the asymptotic formula to a series of realistic metal detection
scenarios. We close with some concluding remarks, which jus-
tify the validity of the multipole expansion and its connection
with the aforementioned asymptotic expansion.

II. EDDY-CURRENT MODEL

We set the scene by recalling the eddy-current model that
describes the electromagnetic fields in the metal detection
problem. In the presence of a highly conducting object Bα (i.e.,
the target) with homogenous conductivity σ∗ and permeability
μ∗, the magnetic and electric interaction fields, Hα and Eα,
respectively, satisfy the eddy-current equations

∇ × Eα = iωμ∗ Hα, ∇ × Hα = σ∗ Eα (1)

in Bα where i := √−1 and ω := 2π f is the angular frequency.
For the aforementioned applications, the background medium
is either nonconducting or its conductivity is significantly less
than that of Bα and, therefore, the region Bc

α := R3 \ Bα

surrounding the object is assumed to be an unbounded region

of nonconducting region free space. In this region, the fields
satisfy

∇ × Eα = iωμ0 Hα, ∇ × Hα = J0 (2)

where J0 is an external current source and μ0 is the per-
meability of free space. The two regions are coupled by the
transmission conditions

[n × Eα]�α = [n × Hα]�α = 0 (3)

where [·]�α
denotes the jump, which applies on the surface of

the object �α := ∂ Bα. In addition, the fields satisfy suitable
decay conditions as |x| → ∞1 and the model is completed
by the requirement that ∇ · Eα = 0 in Bc

α . Combining (1)–(3)
and the aforementioned conditions represents a transmission
problem that needs to be solved for Eα and Hα . In the
absence of the object, the transmission problem simplifies
to finding the background fields E0 and H0 that satisfy (2)
with α = 0 in R3 and decay as |x| → ∞. If the excitation
is instead by a background field H0, which is known and
uniform in R3, and E0 is a corresponding known linear field,
the transmission problem for Eα and Hα takes a similar
form except that J0 = 0 and the decay conditions become
(Eα − E0)(x) = O (1/|x|) and (Eα − H0)(x) = O(1/|x|)
as |x| → ∞.

To assist with the detection and location of a conducting
object from field measurements, the task is to find an expres-
sion for the perturbed magnetic field (Hα − H0)(x), with x
exterior to the object, which characterizes Bα in terms of a
small number of parameters independent of its position. In
the following, we consider excitation both by a current source
and by a uniform background field.

III. REPRESENTATION AND APPROXIMATION OF THE

PERTURBED FIELD

To be able to characterize the shape and material properties
of an object, independent of its position, an approximate
method for representing (Hα − H0)(x) for x outside the
object is needed. We begin with the multipole representation
of the perturbed magnetic field, (Hα − H0)(x), which is well
known in the engineering community. We also present an
exact representation of the perturbed field and an asymptotic
expansion valid for a small object.

A. Multipole Expansion

In the engineering community, (Hα−H0)(x), for x exterior
to the object, is frequently approximated by a multipole
expansion and, in particular, by the term associated with an
equivalent magnetic dipole, which, in orthonormal coordinates,
has the form

(Hα − H0)(x)i ≈ 1

4πr3 (3r̂ ⊗ r̂ − I)i j (m) j

= �
D2

x G(x, z)
�

i j m j (4)

1 E = O(1/|x|) and H = O(1/|x|) as |x| → ∞, here the big O-Landau
notation implies that the fields go to 0 at least as fast as 1/|x| but can be
quicker in practice.
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where m is a constant magnetic dipole moment, which is cho-
sen assuming that the response resembles a magnetic dipole.
Furthermore, as shown in Fig. 1(a), x = r+ z, with r denoting
a coordinate measured from the center of the object, z denoting
the position of the center of the object relative to the origin,
and r̂ = r/r , r = |r|. Einstein summation convention has also
been used2 and has included an alternative form involving the
free space Laplace Green’s function G(x, z) := 1/(4π |x − z|)
for later comparison.

Rewriting (1) in the alternative form

∇ × Eα = iωμ0(Hα + Mα), ∇ × Hα = Je
α (5)

it is clear that the magnetization Mα := ((μ∗/μ0) − 1)Hα is
nonzero for a permeable object and the eddy current Je

α :=
σ∗ Eα is nonzero for a conducting object. Replacing the pres-
ence of Bα by an equivalent magnetization and induced eddy
current, as shown in Fig. 1(b), the induced magnetic dipole
moment, such that (4) provides a reasonable approximation,
takes the form

m := 1

2

�
Bα

r 	 × J e
α(r 	)d r 	 +

�
Bα

Mα(r 	)d r 	, (6)

= σ∗
2

�
Bα

r 	 × Eα(r 	)d r 	 +
�

μ∗
μ0

− 1

��
Bα

Hα(r 	)d r 	.

(7)

In the context of magnetostatics, Jackson [19, p. 180] states
that such a construction for m is expected to give an accurate
representation for small distributions of current,3 which hints
that the object size needs to be small, but no further infor-
mation about how the approximation in (4) depends on the
object’s size is available.

As outlined in the introduction, it is often assumed (without
proof) that

(m) j = (M) j k(H0|Bα )k (8)

where M is the rank 2 MPT and the background magnetic
field H0|Bα is some assumed evaluation of the background
field. The MPT has been postulated to depend on the shape
and size of Bα and ω, σ∗, and μ∗/μ0, but to be independent
of the object’s position. In the case of excitation by a uniform
field, Landau and Lifshitz [20] motivate (8) by realizing that
m will be a linear function of the constant complex amplitude
H0. But, for nonuniform H0, it is not clear whether (8) still
applies or how H0|Bα should be evaluated.

In the case of a conducting permeable sphere of radius
α excited by a uniform field, an explicit analytical solu-
tion is available. For this case, it can be shown that (4)
and (8) become exact, and M is diagonal and has coefficients

2We use the notation ei to denote the i th orthonormal unit vector. Repeated
indices imply summation so that the i th coefficient of a vector a is (a)i and
a = (a)i ei ; furthermore, a rank 2 tensor, for which we use a calligraphic font,
can be written as M = (M)i j ei ⊗ e j , where (M)i j denotes its coefficients.

3With small being relative to the scale of length of interest to the observer.

Fig. 1. Illustration of the conducting object Bα showing (a) configuration of
the coordinate system and (b) representation in terms of an equivalent (eddy)
current Je

α and magnetization Mα.

(M)�i = Mδ�i where [38], [40]4

M = 2πα3 ((2μ∗ + μ0)v I−1/2 − (μ0(1 + v2) + 2μ∗)I1/2)

(μ∗ − μ0)v I−1/2 + (μ0(1 + v2) − μ∗)I1/2

(9)

where v := α(iσ∗μ∗ω)1/2, I1/2(v) = (2/πv)1/2 sinh v, and
I−1/2(v) = (2/πv)1/2 cosh v. Note that the overline indicates
the complex conjugate, which appears due to the eiωt time
variation in [38] rather than the e−iωt assumed here. When a
conducting sphere is placed in a background field generated
by a coil, the exact result for (Hα − H0)(x) is instead an
infinite series solution [42]. However, when the radius of the
coil is small compared with the distance from the sphere,
the leading order dipole term dominates and the sphere’s
characteristics are again described by the same scalar as given
in (9). Approximate analytical solutions have also been found
for spheroids [7], [8], [14] and ellipsoids [17] when placed
in a uniform field, which have been obtained by using an
impedance boundary condition.

For general objects, the coefficients of M are usually
found through fitting them to physical (or computational)
measurements of the perturbed field for an object placed in

4The definition of a0 in [40, eq. (7)] is equivalent to M|H0|/π in this
paper.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEDGER AND LIONHEART: EXPLICIT FORMULA FOR THE MPT FOR OBJECT CHARACTERIZATION 5

a series of uniform fields that are orientated in the directions
ei , i = 1, 2, 3, in turn [15], [28], [30], [33].

B. Exact Representation

Although (4) is commonly quoted in the engineering liter-
ature, it must be remembered that, apart from in exceptional
situations, this does not represent the exact (Hα − H0)(x).
The exact field perturbation for x exterior to the object is via
the representation formula [4]

(Hα − H0)(x) =
�

Bα

∇x G(x, y) × ∇y × (Hα − H0)d y

+
�

μ∗
μ0

− 1

��
Bα

D2
x G(x, y)Hαd y (10)

where y is measured from the origin (note this need not
be inside the object) and used to perform integration over
Bα. We emphasize that (10) is a coupled equation with the
magnetic interaction field Hα appearing on both sides and
requires the solution of the transmission problem described
in Section II for its exact evaluation. In the case of small
objects, care must be taken when deciding how to approximate
the integrals as both the first and second derivatives of the
Green’s function and the fields are functions of position inside
the object. For instance, consider the case of a nonconducting
object so that the problem simplifies to that of determining
(Hα − H0)(x) for a permeable object in magnetostatics. Here,
a similarity between (10) and combining (4) and (7) can be
seen, where D2

x G(x, y), which appears under the integral
sign in (10), has been approximated by its value at the object’s
center [i.e., D2

x G(x, z) in (4)], but (4) does not provide any
measure of accuracy of this approximation.

C. Asymptotic Expansion

In the applied mathematics community, the object is
described as Bα = αB + z, which means that it can be thought
of a unit-sized object B located at the origin, scaled by α and
translated by z. The asymptotic formula for x away from Bα

(Hα − H0)(x)i = �
D2

x G(x, z)
�

i j (M) j k(H0(z))k + (R(x))i

(11)

which holds as the object’s size α → 0 has been rigorously
derived from (10) for the case of ν := α2σ∗μ0ω = O(1)
in [4] and [21]. This is not as restrictive as it may appear
since ν = O(1) implies that ν ≤ C for some finite constant
C , i.e., we require that ν remains bounded as α → 0. The case
of fixed σ∗ and ω as α → 0 also satisfies this requirement.
This technical restriction is necessary so that the eddy-current
model is not invalidated when choosing σ∗ and ω for a given
α. Importantly, (11) provides not only a leading order term
that is computable but also a measure of accuracy of the
approximation, since [4] and [21] show that R(x) = O(α4).

To better understand (11), consider how, in the engineering
literature, an eddy current problem is often interpreted in terms
of primary and secondary magnetic fields. The primary field
is the background magnetic field H0 and is often viewed as
being responsible for the generation of eddy currents inside the

object. The secondary magnetic field is viewed as that which
is generated by the presence of eddy currents inside object.
In reality, such secondary magnetic fields can induce further
eddy currents inside the object, but engineers usually assume
this effect can be neglected. The quantity (Hα − H0)(x)
describes all the field perturbations due to the presence of the
object and formula (11) expresses the fact that these are due to
a contribution of what engineers call the secondary magnetic
field (the first term on the right-hand side) plus other effects.
The residual R(x) measures how well the secondary fields
approximate the true (Hα − H0)(x).

The complex symmetric rank 2 tensor M, which appears
in (11), is the MPT and we have previously shown that it
can be constructed as M := −C + N 5 for a general-shaped
object [21], [22]. The coefficients of C and N depend on ω,
σ∗, μ∗/μ0, α, and the shape of B and we will present the
explicit formula for C and N again in (23) later in this paper.
In [22], we have presented numerical results for the frequency
behavior of the coefficients of M for a range of simply and
multiply connected objects. Our previously presented results
have exhibited excellent agreement with MPTs previously
presented in the electrical engineering literature. Our results
also show how the coefficients of M tend to T (μr ) when
ω → 0 and to T (0) when σ∗ → ∞ and the object is simply
connected. Here, T is the Pólya–Szegö tensor and when
parameterized by μr and 0, it describes the response from
a magnetostatic and perfectly conducting object, respectively.

A generalization of (11) has recently been derived [23],
which extends the leading order term to a complete asymptotic
expansion of the perturbed field. The higher order terms are
expressed in terms of a new class of (higher rank) generalized
MPTs (GMPTs) and higher order derivatives of G(x, z) and
H0(z). This expansion allows the perturbed field to be rep-
resented more accurately and the GMPTs allow the object’s
shape and material characteristics and frequency behavior to
be better characterized.

IV. DERIVATION OF AN EXPLICIT FORMULA FOR M
In this section, we present a derivation for an explicit

formula for the coefficients of M, which, we will show, agrees
with our previous result. The presented derivation is intended
to be more accessible to the engineering community and will
also asses the validity of (4) and (8).

A. Validity of (4)

The accuracy of the approximation in (4) will depend on
the size of the object and on the parameter ν previously
introduced. To make this clear, we write Bα = αB + z and
rewrite (10) in the form of

(Hα − H0)(x)i

= iα3σ∗ω
�

B
(∇x G(x, αξ + z) × Aα(αξ + z))i dξ

+ α3
�

μ∗
μ0

− 1

��
B

D2
x G(x, αξ + z)i j

μ−1∗ (∇ × Aα(αξ + z)) j dξ (12)

5In this paper, we have dropped a double check on M and a single check on
C compared with the notation in [21] and [22] so as to simplify the notation.
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which is still exact and where we have introduced a vector
potential such that Eα(x) = iωAα(x) in Bα and μHα = ∇ ×
Aα in R3. The vector potential Aα satisfies the transmission
problem

∇ × μ−1∗ ∇ × Aα = iωσ∗ Aα in Bα (13a)

∇ · Aα = 0 in Bc
α (13b)

∇ × μ−1
0 ∇ × Aα = 0 in Bc

α (13c)

[n × Aα]�α
= 0 on �α := ∂ Bα (13d)

[n × μ−1∇ × Aα]�α
= 0 on �α (13e)

μ−1
0 ∇x × Aα − H0 = O(|x|−1) as |x| → ∞ (13f)

in the case of excitation by a uniform background field and

∇ × μ−1∗ ∇ × Aα = iωσ∗ Aα in Bα (14a)

∇ · Aα = 0 in Bc
α (14b)

∇ × μ−1
0 ∇ × Aα = J0 in Bc

α (14c)

[n × Aα]�α
= 0 on �α (14d)

[n × μ−1∇ × Aα]�α
= 0 on �α (14e)

Aα = O(|x|−1) as |x| → ∞ (14f)

in the case of excitation by background field produced by a
current source. Both of these problems can be easily derived
from the governing equations in Section II. Next, we introduce
the following Taylor’s series approximations for x external to
Bα, y = αξ + z in Bα , and ξ in B:

D2
x G(x, y) = D2

x G(x, z) + O(α) (15a)

∇x G(x, y) = ∇x G(x, z) − D2
x G(x, z)(αξ ) + O(α2) (15b)

as α → 0. These expansions are then substituted into (12) and
Appendix A shows for x away from Bα that

(Hα − H0)(x)i

= iα4σ∗ω
2

�
D2

x G(x, z)
�

i j

�
B
(ξ × (Aα(αξ + z))) j dξ

+ α3
�

μ∗
μ0

− 1

� �
D2

x G(x, z)
�

i j�
B

μ−1∗ (∇ × Aα(αξ + z)) j dξ + (Rd (x))i (16)

where Einstein summation convention has been applied. Not-
ing that r 	 = αξ it easily follows from (16), for the particular
case, where Bα = αB + z and m is given by (7) that:

(Hα − H0)(x)i = �
D2

x G(x, z)
�

i j�
σ∗
2

�
Bα

(r 	 × Eα(r 	)) j d r 	

+
�

μ∗
μ0

− 1

��
Bα

(Hα(r 	)) j d r 	
�

+ (Rd (x))i

= �
D2

x G(x, z)
�

i j (m) j + (Rd(x))i . (17)

We immediately see that the first term in (17) has the same
form as in (4), but, for this to be a meaningful approximation,
the residual Rd (x) needs to be small in comparison and x
needs to be away from Bα.

Before we can address the situations in which Rd (x) is
small, we notice, from (16), that the first two terms involve

different powers of α implying there must be some relationship
between σ∗, α, and ω, which is hidden when the alternative
form (17) is used. Since the object size needs to be small
for (15) to hold, we demand that the first two terms in (16)
involve the same power of α. To achieve this, we first introduce
the reduced vector potential Ar (x) := (Aα − A0)(x), with A0
being the corresponding vector potential in the absence of the
object, which satisfies the transmission problem

∇ × μ−1∗ ∇ × Ar = iωσ∗(A0 + Ar ) in Bα (18a)

∇ · Ar = 0 in Bc
α (18b)

∇ × μ−1
0 ∇ × Ar = 0 in Bc

α (18c)

[n × Ar ]�α
= 0 on �α (18d)

[n × μ−1∇ × Ar ]�α
= −[μ−1]�α n × ∇ × A0 on �α (18e)

Ar = O(|x|−1) as |x| → ∞. (18f)

Note that the introduction of Ar allows the background field
H0 in (13) and the current source J0 in (14) to be eliminated
and instead A0 appears as a source term in Bα in both the
cases. Second, we use a coordinate transformation followed by
a scaling and set A�(ξ ) := α Ar ((x − z)/α), which satisfies:

∇ξ × μ−1∗ ∇ξ × A� = iωσ∗α2 A� + iωσ∗α2α−1

A0(αξ + z) in B (19a)

∇ξ · A� = 0 in Bc (19b)

∇ξ × μ−1
0 ∇ξ × A� = 0 in Bc (19c)

[n × A�]� = 0 on � (19d)

[n × μ−1∇ξ × A�]� = −[μ−1]�n × ∇
×A0(αξ + z) on � (19e)

A� = O(|ξ |−1) as |ξ | → ∞ (19f)

where � := ∂ B and Bc := R3 \ B . Writing (16) in terms of
A� and A0 leads to the result

(Hα − H0)(x)i

= iα3ν

2μ0

�
D2

x G(x, z)
�

i j�
B
(ξ × (A�(ξ) + α−1 A0(αξ + z))) j dξ

+ α3
�

μ∗
μ0

− 1

� �
D2

x G(x, z)
�

i j�
B

μ−1∗ (∇ξ × A�(ξ ) + ∇ × A0(αξ + z)) j dξ

+ (Rd(x))i (20)

where ν := σ∗μ0ωα2 as in Section III-C. Thus, to ensure that
both terms have the same power of α, we need ν := O(1). This
restriction also appeared in the asymptotic expansion (11) and,
consequently, one might be tempted to write Rd(x) = O(α4).
However, this is incorrect since, despite the substitution of
the Taylor series expressions in (15), the integrands in Rd(x)
still depend on A�, which itself is a function of α, and
consequently, we cannot say that the remainder is of the form
|Rd | ≤ Cα4 with C independent of α. A different approach is
required to achieve this rigorously, leading to the asymptotic
expansion (11) [4], [23].
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In summary, in this section, we have shown that, in order
for (4) to be a meaningful approximation to (Hα− H0)(x), we
need x to be away from Bα , the object’s material parameters
to be such that ν = O(1) and both the object’s size α and
the residual Rd(x) need to be small. However, (4) is not,
in general, the leading term in an asymptotic expansion of
(Hα − H0)(x) as α → 0. We address when Rd (x) is small
in Section IV-B.

B. Validity of (8) and an Explicit Formula for M
We consider first the case of an object in a uniform field H0

and then second the case of an object excited by a nonuniform
field H0(x).

1) Excitation by a Uniform Field: In the case of excitation
by a uniform field H0, we construct A0(y) = 1

2μ0 H0×(y−z)
such that ∇y × A0 = μ0 H0. Then, if choose to write

A�(ξ ) =
3�

k=1

Ã�,k(ξ )

2
(B0)k = μ0

3�
k=1

Ã�,k(ξ )

2
ek · H0

where Ã�,k(ξ ) is the solution of the transmission problem

∇ξ × μ−1∗ ∇ξ × Ã�,k = iωσ∗α2 Ã�,k

+ iωσ∗α2ek × ξ in B (21a)

∇ξ · Ã�,k = 0 in Bc (21b)

∇ξ × μ−1
0 ∇ξ × Ã�,k = 0 in Bc (21c)

[n × Ã�,k]� = 0 on � (21d)

[n × μ−1∇ξ × Ã�,k]� = −2[μ−1]�n × ek on � (21e)

Ã�,k = O(|ξ |−1) as |ξ | → ∞ (21f)

we find that (20) becomes

(Hα − H0)(x)i = �
D2

x G(x, z)
�

i j (M) j k(H0)k + (Rd(x))i .

(22)

The coefficients of M agree with those derived in [21] and
the transmission problem for Ã�,k agrees that for θk derived
in [4]. Explicitly

(M) j k = −(C) j k + (N ) j k

= iα3ν

4
e j ·

�
B

ξ × ( Ã�,k + ek × ξ )dξ

+ α3
�

1 − μ0

μ∗

�
e j ·

�
B

�
1

2
∇ξ × Ã�,k + ek

�
dξ

(23)

and, by comparison with (11), we have Rd(x) = R(x) =
O(α4).

In summary, in this section, we have shown that using
the representation (8) in the dipole approximation (4) is a
meaningful approximation, which coincides with the asymp-
totic expansion for (Hα − H0)(x) as α → 0, provided that x
is away from Bα, H0 is a uniform field, the object’s material
parameters are such that ν = O(1), and α is small. In this
case, (21) and (23) provide explicit formulae for the MPT
calculation, which agree with our previous formulae [21].

2) Excitation by Nonuniform Fields: In the case of excita-
tion by a nonuniform field, a method of approximating H0(y)
with y in Bα is required. Possible choices might include

H0|Bα ≡ 1

|Bα|
�

Bα

H0(y)d y or H0|Bα ≡ H0(z) (24)

but it is unclear from the electrical engineering literature
how H0(y) should be averaged over Bα. In the applied
mathematics community, H0(y) is required to be analytic for
y in Bα and is expanded using the Taylor series expansion

(H0(y))i = (H0(αξ + z))i

= (H0(z))i + α(Dz H0(z))i j (ξ ) j + O(α2) (25)

as α → 0. It also follows from an uncurling formula [23] that
a vector field A0(y) that satisfies H0(y) = μ−1

0 ∇y × A0(y)
is:

(A0(y))i = (A0(αξ + z))i

= αμ0

2
(H0(z) × ξ )i

+ α2μ0

3
(Dz H0(z))kj (ξ ) j (ek × ξ )i

+ O(α3) (26)

as α → 0. But, even if the leading order terms in (25) and
(26) are used in (19) to produce the transmission problem for
Ã� ≈ A� as

∇ξ × μ−1∗ ∇ξ × Ã� = iωσ∗α2 Ã� + iωσ∗α2μ0

2
H0(z) × ξ in B (27a)

∇ξ · Ã� = 0 in Bc

∇ξ × μ−1
0 ∇ξ × Ã� = 0 in Bc (27b)

[n × Ã�]� = 0 on � (27c)

[n × μ−1∇ξ × Ã�]� = −μ0[μ−1]�n× H0(z) on � (27d)

Ã� = O(|ξ |−1) as |ξ | → ∞ (27e)

it is not possible to rigorously say that A� = Ã� + O(α),
and consequently, (16) still does not lead to an asymptotic
expansion as α → 0. Instead, an alternative treatment is
required to derive an asymptotic expansion for (Hα − H0)(x)
as α → 0 from (10) [4], [21]. Nonetheless, by further
writing

A� ≈ Ã� =
3�

k=1

Ã�,k

2
(B0(z))k = μ0

3�
k=1

Ã�,k

2
ek · H0(z)

and using (26) in (16), we find that Ã�,k solves the
transmission problem in (21), and (20) becomes

(Hα − H0)(x)i = �
D2

x G(x, z)
�

i j (M) j k(H0(z))k + (Rd(x))i

(28)

where again the coefficients of M are given by (23). By com-
parison with (11), we again have Rd(x) = R(x) = O(α4).

In summary, in this section, we have shown that using
the representation (8) in the dipole approximation (4) is a
meaningful approximation, which coincides with the asymp-
totic expansion for (Hα − H0)(x) as α → 0, provided
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that x is away from Bα, H0 is analytic in Bα, we choose
H0|Bα = H0(z), the object’s material parameters are such
that ν = O(1), and α is small. In this case, (21) and (23)
provide explicit formulae for the MPT calculation, which agree
with our previous formulae [21].

V. APPLICATION OF THE ASYMPTOTIC FORMULA (11)
TO REALISTIC SCENARIOS

We have shown that the dipole expansion (4) agrees with
the asymptotic expansion (11) for (Hα − H0)(x) as α → 0
for both uniform and nonuniform background fields provided
that x is away from Bα, ν = O(1), H0 is analytic in Bα,
and we choose H0|Bα = H0(z). The advantage of (11) is that
we have a measure of its accuracy and an explicit formula for
the MPT. We now show how (11) can be applied to practical
situations.

A. Illustration of an MPT Computation

A finite-element computational procedure for solving (21),
and computing the coefficients of M, has been previously
described in [21] and numerical results have been presented
for a range of simply and multiply connected objects in [22],
where excellent agreement with analytical and experimental
results has been exhibited. As a further illustration of the
validity of the approach, we consider a sphere of radius
α = 0.01 m, conductivity σ∗ = 5.96 × 107 S/m, and
permeability μ∗ = 1.5μ0 and consider frequencies ranging
from f = 0.01 Hz to f = 1×106 Hz. The agreement between
the numerical computation of the coefficients of M, obtained
by solving (21) using finite elements and applying (23) to
compute (M) j k, and the analytical solution given by (9)
is shown in Fig. 2. The converged finite-element solution
employs a discretization using order p = 5 elements and an
unstructured mesh of 2425 tetrahedra and the figure shows that
the agreement with the analytical solution is excellent for the
range of frequencies considered. Note that by restricting the
frequency range to 1 < f < 1000 Hz, the skin depth becomes
larger, and accurate solutions can already be obtained with
lower order elements. The use of higher fidelity discretizations
(higher elements and/or finer meshes close to the object’s
surface) is required for frequencies above 1000 Hz due to the
need to resolve very thin skin depths at such frequencies.

B. Object Placed in Background Field Generated by a Coil

As a first application of the asymptotic formula (11),
we consider an object placed in the background field generated
by an infinitely thin coil of radius a, with its center at position
y and carrying a uniform current I e. If the radius of the coil
is such that a � r = |z − y|, i.e., the coil’s radius is small
compared with its distance from the object’s center, then the
background field at z can be approximated as

(H0(z))i = �
D2

z G(z, y)
�

i j

�
me

0

�
j

= �
D2

yG(z, y)
�

i j

�
me

0

�
j ,

��me
0

�� = I e Ae (29)

where Ae = πa2 and the orientation of the dipole moment
me

0 is chosen to be perpendicular to the coil’s plane. If the

Fig. 2. Illustration of an MPT computation. Conducting permeable sphere
of radius α = 0.01 m with σ∗ = 5.96 × 107 S/m and μ∗ = 1.5μ0.

origin is chosen to be at the center of the coil (i.e., y = 0),
we set r̃ = −r to be the coordinate measured from the
coil’s center and choose m0 
 e3, then (29) can be shown to
reduce, in the spherical coordinates (r̃, φ̃, θ̃ ), to the familiar
expressions Hr̃0 = (2 I e Ae/r̃3) cos θ̃ , Hθ̃0 = (I e Ae/r̃3) sin θ̃ ,
and Hφ̃0 = 0 found in many textbooks [19].

We now use (11) to replicate the situation described in [41],
which consists of a sphere placed in the background field
described by (29). We choose the coil to be located at
position y = y1e1 + y2e2 + y3e3 and have a dipole moment
me

0 = I e Aee3 and the object Bα to be located at z = 0,
as shown in Fig. 3, so that

H0(0) = 3I e Ae

4π | y|5

⎛
⎝ y1y3

y2y3

y2
3

⎞
⎠ − I e Ae

4π | y|3

⎛
⎝ 0

0
1

⎞
⎠ . (30)

In the case that Bα is a sphere of radius α, then

MH0(0) = 3I e Ae M

4π | y|5

⎛
⎝ y1y3

y2 y3

y2
3

⎞
⎠ − I e Ae M

4π | y|3

⎛
⎝ 0

0
1

⎞
⎠. (31)

Wait [41] additionally chooses y2 = 0 and, for this case,
MH0(0) = (p, 0, q)T , where

p = 3I e Ae y1y3α
3 M

4π | y|3 , q = I e Ae M

4π | y|3



3y2
3

| y|2 − 1

�
(32)
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Fig. 3. Object placed in background field generated by a coil. Illustration
of a conducting object Bα and a small coil idealized as a dipole.

which agree with the results.6 It then follows from (11) that:

(Hα − H0)(x) = 1

4π |x|3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p



3x2

1

|x|2 − 1

�
+ 3x1z1q

|x|2
3x1x2 p

|x|2 + 3x2x3q

|x|2
3x1x3 p

|x|2 +q



3x2

3

|x|2 − 1

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ R(x)

(33)

where the first term matches the expression in [41].7 For other
shapes and other excitations, we can compute the coefficients
of M numerically by solving (21) and then applying (23).
Thus, we can similarly predict (Hα− H0)(x) for other objects
excited by a background field generated by a small coil.

C. Voltage Induced in a Small Coil

As a second application of asymptotic formula (11), we
consider the problem of determining the voltage induced in
a small coil due to the presence of a conducting permeable
object. To do this, we recall the Lorentz reciprocity theorem,
which states for a pair of current sources, Je

0 and Jm
0 , that�

R3
Je

0 · Eed x =
�

R3
Jm

0 · Emd x. (34)

Labeling e as the emitter and m as the receiver, this states
that the response is unchanged if the sources are interchanged.
In reality, J e

0 and Jm
0 have small support, which are only

nonzero in the coils. Assuming that the emitting and receiver
coils are centered at y and x, respectively, using a Taylor
series approximation about the center of the current sources,

6Note that in Wait’s [41] notation, b ≡ α, −x1 ≡ y1, −z1 ≡ y3, and
r1 ≡ | y|, and R1 that he defines in his (22) is equivalent to −M/(2πα3) in
this paper. His solution for p and q is out by a factor of π . To correct Wait’s
expression for p and q in his (32), they should be multiplied by π and they
then match our (32).

7Note that in Wait’s notation x0 ≡ x1, y0 ≡ x2, x3 ≡ x3, and r0 ≡ |x|, also
the expression presented by Wait [41] has an error in the third component,
which has been corrected in (33).

Fig. 4. Voltage in solenoids. (Left) Photograph showing metal detection
using the MPT for characterization [16]. (Right) Photograph showing the
experimental setup proposed in [33] for determining MPT coefficients.

for small coils, choosing Jm
0 so that it is orientated in the

direction of the measurement coil, and applying (11), we have
shown in [22] that (34) coincides with the voltage induced in
the receiver coil by the presence of Bα and simplifies to

V ind ≈ C
�
mm

0

�
i

�
D2

x G(x, z)
�

i j (M) j k
�

He
0(z)

�
k

= C Hm
0 (z) · �MHe

0(z)
�
. (35)

This expression assumes that both coils can be treated as
dipole sources with their radii being small compared with their
distance from the object, and consequently, we choose He

0(z)
to be given by (29). We also construct Hm

0 (z) in a similar way
where we assume that |mm

0 | = Am I m , where Am is the area
of the measurement coil and I m is the current that would flow,
if it was an exciter, and its orientation to be perpendicular to
the plane of the measurement coil. To ensure that V ind has
units of volts, we set C = −iωμ0/I m and then we find that

V ind = − iωμ0

I m
Hm

0 (z) · �
MHe

0(z)
�

(36)

and this is then consistent with [1], [28], and [46]. Note that
our result is the complex conjugate of theirs due to their
assumption of eiωt rather than e−iωt assumed here.

D. Voltage Induced in Solenoids

As a third application of asymptotic formula (11), we deter-
mine the voltage induced in a coil, whose dimensions are
not small compared with the size of the object when the
background field is also generated by a larger coil. In such
cases, the background magnetic field cannot be approximated
by a dipole source with constant dipole moment. Experimental
studies have shown that the induced voltage induced in larger
coils, including shorter solenoids, used in-line metal detec-
tors [44] and landmine detection [16], and solenoids whose
length is large compared with their diameter [33], as shown
in Fig. 4, takes the same form as given in (36). We now show
that this is indeed the case.

The background field H0(z) = He
0(z) generated by an

exciter for a general current distribution J e
0 can be calculated

for a general current distribution using the Biot–Savart law

He
0(z) =

�
supp

�
Je

0

� J e
0 × (z − x)

4π |z − x|3 d x. (37)
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In the case of an exciting solenoid of length Le, radius Re

with Ne turns wound anticlockwise each carrying current I e

with the origin placed at the center of solenoid, as shown
in Fig. 5(a), and it can be shown [38] for z = z3e3 that

He
0(z) = Ne I e

2Le

⎛
⎝ Le

2Re − z3
Re�

1 + � Le

2Re − z3
Re

�2

+
Le

2Re + z3
Re�

1 + � Le

2Re + z3
Re

�2

⎞
⎠ e3. (38)

If the object is positioned such that z3 � Le/2, then the
background field at this location simplifies to

He
0(z) = Ne I e

Le

⎛
⎝ Le

2Re�
1 + � Le

2Re

�2

⎞
⎠ e3 (39)

and for a long solenoid, with Le/(2Re) � 1, this simplifies
further to He

0(z) = (Ne I e/Le)e3.
The voltage induced in a single turn of a measurement

solenoid, shown in Fig. 5(b), is given by

V ind =
�

C
(Eα− E0)(x) · τd x =

�
S
∇×(Eα − E0)(x) · nd x

where the solenoid has been placed so that it is centered
about the origin, C = ∂S defines a loop of the measurement
solenoid, τ is the unit tangent to C , and S := {(ρ, φ) :
0 ≤ ρ ≤ Rm , 0 ≤ φ ≤ 2π} is the surface enclosed by C .
As mentioned above, we particularize this to the case where
the object is placed at z = z3e3, substitute the leading order
term in (11), and find that for a clockwise winding8

V ind ≈ iωμ0

�
S

n · (Hα − H0)(x)d x

≈ −iωμ0

�
S

�
D2

x G(x, z3e3)
�

3 j d x(M) j k
�

He
0(z)

�
k .

The measurement solenoid is of length Lm , and hence,
to find the total induced voltage, we find, after evaluating
(D2

x G(x, z3e3))3 j e j , that we need to compute the integral
given in (40) (see next page) where x1 = ρ cos φ and x2 =
ρ sin φ and the substitution u = x3 − z3 has been made.
By performing the integration with respect to φ, ρ, and u,
in turn, we find that

I = 1

Lm

� Lm
2 −z3

− Lm
2 −z3

� Rm

0

�
3ρu2

2(ρ2 + u2)5/2 − ρ

2(ρ2 + u2)3/2

	

dρdue3

= 1

2Lm

� Lm
2 −z3

− Lm
2 −z3



1�

(Rm)2 + u2
− u2

((Rm)2 + u2)3/2

�
due3

= 1

2Lm

⎛
⎝ Lm

2Rm − z3
Rm�

1 + � Lm

2Rm − z3
Rm

�2
+

Lm

2Rm + z3
Rm�

1 + � Lm

2Rm + z3
Rm

�2

⎞
⎠ e3

8Note the asymptotic formula is only valid for x exterior to the object but,
assuming Bα to be small, we apply it over the complete surface even though
the surface may intersect Bα if a small object is placed inside a solenoid.

which has a similar form in (38) and can be simplified for
locations z3 � Lm/2 and solenoids with Lm/(2Rm) � 1.
Thus, in general, we find that the induced voltage in a
measurement solenoid with Nm turns will have the form

V ind = − iωμ0

I m Nm
Hm

0 (z) · �
MHe

0(z)
�

(41)

where, in general, both He
0(z) and Hm

0 (z) are nonuniform.
For the situation described above where z = z3e3, the fields
satisfy He

0(z) 
 e3, Hm
0 (z) 
 e3 and become uniform provided

that z3 � Le/2, z3 � Lm/2.
If the object is rotated (as is possible using the experimental

setup described in [33]), then the components of M transform
as

(M	)i j = (R)ik (R) j�(M)k�. (42)

For example, for a rotation β about the axis associated with
e2, the orthogonal matrix R is

R = Re2(β) =
⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠.

Then, by replacing M by M	 in (41) and performing suitable
rotations (see Section V-E), the voltage V ind can be used
to deduce the components of the MPT [22], [33]. In [22],
we have shown how the coefficients of M for a Remington
rifle cartridge transform when the object is rotated about e2
and our numerical results agree well with the experimental
measurements performed for the same object shown in [33].

E. Measuring a Tensor’s Rank

We have seen how the rank 2 MPT characterizes the shape
and material properties of an object and appears as M in
the leading order term of an asymptotic expansion as the size
of the object tends to zero (11). However, M only provides
limited information about an object, and to be able to better
characterize an object’s shape and material parameters, higher
order terms should be used. Such information can be captured
by using the complete asymptotic expansion proposed in [23]
and using the higher rank GMPTs (with the rank 2 MPT being
the simplest case) for describing an object’s characteristics. In
practice, one would like to determine the maximum rank of
tensor that is required to describe the data.

To fix ideas, we consider a hypothetical measurement
system, similar to that described in [33], with fixed exciting
and measurement coils and the ability to rotate the object.
In this system, we envisage that the coils are shorter than the
long solenoids in [33] and/or that the object is placed at the
ends of the coils so that He

0(z) and Hm
0 (z) are nonuniform.

We choose to rotate the object about each of the axes
associated with e1, e2, and e3, in turn,9 and, for a rotation
θ , in the list (α, β, γ ), about the considered axis, the induced
voltage will be V ind(θ). If the induced voltage can be
described by a rank 2 tensor then (41) applies, although a

9Another possibility is to perform simultaneous rotation about e1, e2, and
e3, and in this case (R(α, β, γ ))i j = (Re1 (α))ik (Re2 (β))k�(Re3 (γ ))�j ,
where Re1 (α), Re2 (β), and Re3 (γ ) are the rotation matrices and α, β, and
γ are the the rotation angles. The described approach can be easily extended
to the case of simultaneous rotation θ = α = β = γ .
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Fig. 5. Voltage in solenoids. Diagrams illustrating the conducting object Bα and a possible position exterior to (Left) exciting solenoid and (Right) measurement
solenoid.

more precise description would relate V ind to the GMPT
coefficients. As the object is rotated, the coefficients of the
MPT transform according to (42) with similar results holding
for the transformation of the higher rank GMPTs [23]. Thus,
V ind(θ) can be expressed in terms of the coefficients of the
MPT/GMPTs (for the object’s original configuration) and
products of cosines and sines of θ . In general, the highest
powers of these trigonometric functions in a transformed rank
K tensor will be K . For example, for K = 2, V ind(θ) will be
the function of the coefficients of M	, which, in turn, can be
expressed in terms of the linear combinations of cos2 θ and
sin2 θ as well as lower order powers and products of cos θ and
sin θ . The coefficients of these linear combinations involve
the coefficients of M, which are independent of the rotation.

We recall that cosK θ can be written as a linear
combination of cosines of multiple angles cos K θ ,
cos(K − 1)θ, . . . , and cos 0, which we write as
cosK (θ) = span{cos K θ, cos(K − 1)θ, . . . cos 0}. Similarly,
sinK θ = span{sin K θ, sin(K − 1)θ, . . . sin θ} if K is odd and
sinK θ = span{cos K θ , cos(K − 1)θ, . . . cos 0} if K is even.
Using these properties, we can deduce that the Fourier series

f (θ) =
∞


n=−∞
cneinθ , cn = 1

2π

� 2π

0
f (θ)e−inθdθ (43)

applied to f (θ) = V ind(θ) reduces to the finite sum

f (θ) =
K


n=−K

cneinθ (44)

using knowledge of the integrals of products of trigonometric
functions.

To determine the rank of tensor that best fits the measured
data, we determine the maximum K needed to fit the data.
We note that the induced voltage f (θ) = V ind(θ) is a periodic
function satisfying f (θ) = f (θ + 2π) as the object is rotated;
therefore, for efficiency, we apply a discrete Fourier transform
(DFT). We choose an even integer number N , select candidate
rotations as θk = 2πk/N , k = 0, . . . , N − 1, and for each
rotation, measure the induced voltage fk = V meas

k = f (θk),
k = 0, . . . , N − 1. By setting fN := ( f0, f1, . . . , fN−1)

T ,
(W )kn := e−2π i(k−1)(n−1)/N , k, n = 1, . . . , N and applying

c̃N = 1

N
W f N (45)

we obtain c̃N := (c̃0, c̃1, . . . , c̃N−1)
T , which are the approx-

imate Fourier coefficients. Due to periodicity, we recall that
c̃k = c̃k−N and fk = fk−N . This means that the DFT provides
the trigonometric polynomial

p(θ) =
N/2−1


n=−N/2+1

c̃neinθ + c̃N/2 cos
N

2
θ (46)

which satisfies p(θk) = f (θk) = fk = V ind
k for

k = 0, . . . , N − 1, and for the case of c̃N/2 = 0, reduces
to (44) with K = N/2 − 1. To check if we have not been
lucky with the choice of θk , we use the criteria�����V meas(θ) −

K

n=−K

c̃neinθ

����� < ε (47)

where ε is the measurement noise, for some θ �=
θk, k=0, . . . , N − 1, to check if sufficient terms have been
included. But, as c̃N/2 = 0 is not guaranteed, we should only

I = 1

Lm

� Lm
2

− Lm
2

� Rm

0

� 2π

0

⎛
⎝ 3ρ

4π(ρ2 + (x3 − z3)2)5/2

⎛
⎝ ρ(x3 − z3) cos φ

ρ(x3 − z3) sin φ

(x3 − z3)
2

⎞
⎠ − ρ

4π(ρ2 + (x3 − z3)2)3/2

⎛
⎝ 0

0
1

⎞
⎠

⎞
⎠ dφdρdx3

= 1

Lm

� Lm/2−z3

−Lm/2−z3

� Rm

0

� 2π

0

⎛
⎝ 3ρ

4π(ρ2 + u2)5/2

⎛
⎝ρu cos φ

ρu sin φ

u2

⎞
⎠ − ρ

4π(ρ2 + u2)3/2

⎛
⎝ 0

0
1

⎞
⎠

⎞
⎠ dφdρdu (40)
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accept K = N/2 − 1 if both (47) and c̃N/2 = 0 are satisfied.
We summarize the steps in Algorithm 1. We repeat the process
for rotations about each axis and choose the rank of tensor to
be the maximum K found from considering the three cases.

Algorithm 1 Algorithm for Determining the Rank of Tensor
K Required to Represent a Given Set of Measured Data f (θ)
Using DFT

Set N = 2 � N must be even

while

������V
meas(θ) −

N/2−1

n=−N/2+1

c̃neinθ

������ ≮ ε or c̃N/2 �= 0 do

N = N + 2
Set θk = (2πk)/N , k = 0, · · · , N − 1
Measure fk = f (θk) and set f N = ( f0, f1, · · · , fN−1)T

Set W to be the N × N matrix with (W )kn =
e−2π i(k−1)(n−1)/N , k, n = 1, · · · , N

Compute c̃N = 1
N W f N where c̃N = (c̃0, c̃1, · · · , c̃N−1)

T

Set c̃k−N = c̃k , k = 1, · · · , N − 1
end while
K = N/2 − 1

Following the application of Algorithm 1, a data set con-
sisting of 3N voltage measurements V meas(θk) for θk = αk ,
θk = βk , and θk = γk , in turn, with k = 1, . . . , N , is available,
and potentially, this data set can also be used to determine the
coefficients of the MPT (and GMPTs if K > 2). However,
although this represents an overdetermined linear problem for
the tensor coefficients, the considered rotations may not lead to
a suitable set of directions for their computation. To illustrate
this, consider K = 2 and choose fixed background fields
orientated in the same direction, such that Hm

0 (z) = |Hm
0 (z)|u

and He
0(z) = |He

0(z)|u, then

V ind(θk) = − iωμ0

I m N M
Hm

0 (z) · �
M	 He

0(z)
�

= − iωμ0

I m N M

��Hm
0 (z)

����He
0(z)

��v[k] · (Mv[k]) (48)

where v[k] = (R(θk)
T u) = (R(θk)) j i (u) j ei and we have,

from the application of Algorithm 1, the measured data
V meas

k ≈ V ind(θk). Then, in order to determine the coefficients
of a symmetric M from the data, there need to be, among
v[k], six independent directions that correspond to points on a
projective space that do not lie on a projective conic [25].10

This is equivalent to saying that A[k] := v[k] ⊗ v[k] spans the
space of symmetric rank 2 tensors. To check if the directions
are suitable, the rank of the 3N × 6 real matrix B , whose kth
row is of the form

(B)k1:6 := ((A[k])11 (A[k])12 (A[k])13 (A[k])22

(A[k])23 (A[k])33) (49)

can be computed. If rank(B) = 6, the directions can be
used for determining M, if not, additional directions v[k]
need to chosen, and rows added to B , until its rank is 6.
Extensions are also possible for determining the suitability of

10Any five points define a projective conic; if the sixth also lies on the
conic, this choice is invalid for determining the coefficients of M.

candidate directions for computing the coefficients of higher
rank tensors.

VI. CONCLUSION

In this paper, we have emphasized the advantages provided
by the asymptotic formula in (11) over the multipole expan-
sion (4) for (Hα − H0)(x) with x away from Bα, namely, that
it provides a measure accuracy of the approximation and an
explicit formula for the MPT in the form of M, which holds
for general objects. We have shown that (4) does coincide
with (11) provided that the object is small and ν = O(1) and
the background field H0 is either uniform or, for nonuniform
excitations, that it is analytic in Bα. In both the cases, choosing
H0|Bα = H0(z), we find that (21) and (23) provide explicit
formulae for the calculation of the MPT’s coefficients, which
agree with our previous formulae [21], thus justifying the
approximation for time harmonic excitations by both uniform
and nonuniform background fields and making explicit the
situations in which it provides a good approximation. We have
also presented a series of applications of the asymptotic for-
mula (11) to realistic metal detection situations and described
a procedure for predicting the rank of tensor required for
describing a data set. Ammari et al. [3] have described how
multifrequency voltage measurements are useful for object
classification in a related electrosensing problem. Using an
analogous approach for the metal detection problem offers
considerable potential for object classification using (G)MPTs
and we intend to report on this in a forthcoming work. We
also intend, in the further forthcoming work, to justify the
existence of an equivalent transient MPT representation and
provide and explicit formulae for its calculation.

APPENDIX

PROOF OF (16)

On insertion of (15) into (12), we find that

(Hα − H0)(x)i = I1 − I2 + I3 + (Rd(x))i (50)

where, using Einstein summation convention,

I1 := iα3σ∗ω�i j p(∇x G(x, z)) j

�
B
(Aα(αξ + z))pdξ

I2 := iα4σ∗ω�i j p
�

D2
x G(x, z)

�
j k

�
B
(ξ )k(Aα(αξ + z))pdξ

I3 := α3
�

μ∗
μ0

− 1

� �
D2

x G(x, z)
�

i j�
B

μ−1∗ (∇ × Aα(αξ + z)) j dξ

where �i j k is the standard alternating tensor, which satisfies

�i j k =

⎧⎪⎨
⎪⎩

+1 Even permutation of indices 1, 2, 3

−1 Odd permutation of indices 1, 2, 3

0 Otherwise.

With the exception of I3, which is already of the correct form,
we now consider the treatment of each term separately.
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A. Consideration of I1

In light of (10), it useful to rewrite I1 in terms of an integral
over Bα and then to transform to a surface integral. Application
of transmission conditions then yields

I1 = �i j p(∇x G(x, z)) j

�
Bα

(∇y × (Hα(y) − H0(y))pd y

= �i j p(∇x G(x, z)) j

�
�α

(n− × (Hα(y) − H0(y))p

����
−

d y

= −�i j p(∇x G(x, z)) j

�
Bc

α

(∇y × (Hα(y) − H0(y))pd y

= 0 (51)

since ∇ × (Hα − H0) = 0 in Bc
α for excitation by a uniform

field and ∇ × (Hα − H0) = J0 − J0 = 0 in Bc
α otherwise.

B. Consideration of I2

We can rewrite I2 as

I2 = iωσ∗�i j p
�

D2
x G(x, z)

�
j k

�
Bα

(y − z)k(Aα(y))pd y

(52)

and to be able to take D2
x G(x, z) out of the cross product,

we need some additional information. It is instructive to
consider the integral

I4 := (Q)kp =
�

Bα

(y − z)k(Aα(y))pd y

which also represents the components of a rank 2 tensor
Q, and to express it in an alternative form by using the
transmission problem (14). It follows that:

I4 = 1

iωσ∗

�
Bα

((y − z)k ep) · ∇y × μ−1∗ ∇y × Aαd y

= 1

iωσ∗


�
�α

n− · �
μ−1∗ ∇y × Aα × ((y − z)k ep)

�����
−

d y

−
�

Bα

ek × ep · μ−1∗ ∇y × Aαd y
�

where we see that the latter term is skew symmetric with
respect to k and p. Focusing on the first term, we find,
by application of the transmission conditions in (14), that in
the case of excitation by J0�

�α

n− · �
μ−1∗ ∇y × Aα × ((y − z)k ep)

�����
−

d y

= −
�

Bc
α

∇y × μ−1
0 ∇y × Aα · ((y − z)k ep)d y

+
�

Bc
α

μ−1
0 ∇y × Aα · (ek × ep)d y

=
�

Bc
α

μ−1
0 ∇y × Aα · (ek × ep)d y−

�
Bc

α

J0 · ((y − z)k ep)d y

where the first term is skew symmetric. We can rewrite J0 =
∇ × μ−1

0 ∇ × A0 in Bc
α , and noting that A0 satisfies (14) with

α = 0, we find that�
Bc

α

J0 · ((y − z)k ep)d y

=
�

�α

n+ · �μ−1
0 ∇y × A0 × ((y − z)k ep)

�
d y

+
�

Bc
α

ek × ep · μ−1
0 ∇y × A0d y

=
�

Bα

�
μ−1

0 ∇y × A0 · ek × ep
�
d y

+
�

Bc
α

ek × ep · μ−1
0 ∇y × A0d y

which is also skew symmetric with respect to k and p.
A similar treatment can also be applied for excitation by a
uniform field, which shows that I4 is also skew symmetric
with respect to k and p in this case also. Consequently, Q is
a skew symmetric rank 2 tensor and its components satisfy

(Q)kp = −(Q)pk = −1

2
(Q)ms�kpr �smr

and so

I2 = iωσ∗�i j p
�

D2
x G(x, z)

�
j k(Q)kp

= − iωσ∗
2

�i j p�kpr
�

D2
x G(x, z)

�
j k�smr (Q)ms

= − iωσ∗
2

(δikδ j r − δirδ j k)
�

D2
x G(x, z)

�
j k�rms(Q)ms .

Using the symmetry (D2
x G(x, z))ri = (D2

x G(x, z))ir and
trace free property (D2

x G(x, z))kk = 0, we find that

I2 = − iωσ∗
2

�
D2

x G(x, z)
�

ir

�
Bα

((y − z) × Aα)r d y. (53)

Finally, using (51) and (53) in (50) gives the expression for
(Hα − H0)(x)i found in (16).
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