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Abstract  1 

The appropriate determination of performance outcome is critical when appraising a 2 

performer’s technique. Previous studies of rugby place kicking technique have 3 

typically assessed performance based on ball velocity, but this is not the sole 4 

requirement. Therefore, a mathematical model of rugby place kick ball flight was 5 

developed to yield a single measure more representative of true performance. The 6 

model, which requires only initial ball flight kinematics, was calibrated and validated 7 

using empirical place kick data, and found to predict ball position with a mean error 8 

of 4.0% after 22 m of ball flight. The model was then applied to the performances of 9 

33 place kickers. The predicted maximum distance, a single performance measure 10 

which accounted for initial ball velocity magnitude and direction, and spin, was 11 

determined using the model and was compared against ball velocity magnitude. A 12 

moderate association in the rank-order of the kicks between these two measures (ρ 13 

= 0.52) revealed that the relative success of the kicks would be assessed differently 14 

with each measure. The developed model provides a representative measure of 15 

place kick performance that is understandable for coaches, and can be used to 16 

predict changes in performance outcome under different ball launch or 17 

environmental conditions. 18 
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Introduction 22 

Place kicks contributed 45% of the points scored in a large sample of international 23 

Rugby Union matches from 2002-2011 (Quarrie & Hopkins, 2015) and this 24 

contribution may increase in games between more closely-matched teams or games 25 

of high importance (e.g. 70% of total points in Rugby World Cup finals from 1987-26 

2015 came from place kicks). The average place kicking success percentage in the 27 

582 matches analysed by Quarrie and Hopkins (2015) was 72% (4874/6769 kicks), 28 

and if the success percentage of the competing teams’ kicks had been reversed in 29 

these matches, 14% of the results would have reversed (Quarrie & Hopkins, 2015). 30 

Although other factors must be considered, place kick performance is clearly 31 

important in determining match outcome and therefore improving place kicking 32 

performance provides an important means for enhancing team success. 33 

Given the crucial role of place kicking, it is important for sport biomechanists to 34 

understand how successful kicks are achieved. Previous biomechanical studies have 35 

analysed kicking leg kinematics during the downswing (Sinclair et al., 2014; Sinclair 36 

et al., 2017; Zhang, Liu & Xie, 2012), variability in kicking foot movement at ball 37 

contact (Ford & Sayers, 2015), approach to the ball and support foot placement 38 

(Baktash, Hy, Muir, Walton & Zhang, 2009; Ball, Talbert & Taylor, 2013; Green, Kerr, 39 

Olivier, Dafkin & McKinon, 2016; Cockcroft & van den Heever, 2015), whole-body 40 

orientation at ball contact (Ball et al., 2013; Green, Kerr, Olivier, Dafkin & McKinon, 41 

2016) or motion of the non-kicking-side arm (Bezodis, Trewartha, Wilson & Irwin, 42 

2007), and have often attempted to relate these aspects of technique to performance 43 

outcome. The majority of these studies were laboratory-based, meaning the full flight 44 

path of the ball could not be tracked. Instead, performance was quantified as the 45 

initial ball velocity magnitude. However, a sufficiently high ball velocity magnitude is 46 



not the complete performance requirement as the ball must pass between two posts 47 

(5.6 m apart) and above a crossbar (3.0 m above the ground). Whilst the lateral 48 

position of the ball relative to the target line has also been used as an additional 49 

performance measure (Bezodis et al., 2007; Green et al., 2016), a single value 50 

incorporating the distance and accuracy requirements in to a representative measure 51 

of how far any given kick could be taken from and be successful is needed if place 52 

kicking performance is to be appropriately assessed in laboratory studies. 53 

Importantly, this could lead to a different interpretation of place kick performance 54 

outcomes, and thus of the techniques associated with high levels of performance, 55 

compared with when the more traditional measure of ball velocity magnitude is used. 56 

Predicting the flight path of the ball from the initial flight kinematics would enable a 57 

more complete and meaningful measure to be determined for use in applied 58 

research (e.g. how far from the posts any given kick would be successful). The flight 59 

path is directly determined by the magnitude and direction of the ball's linear and 60 

angular velocities at the instant it leaves the kicker’s boot, and the gravitational and 61 

aerodynamic forces which act on the ball during flight. Although the aerodynamic 62 

forces cannot be directly measured in flight, wind-tunnel experiments have been 63 

conducted to determine the drag, lift, and side forces in simulated rugby ball flight 64 

(e.g. Seo, Kobayashi & Murakami, 2006; Seo, Kobayashi & Murakami, 2007). These 65 

experiments were conducted with the ball rotating about different principal axes and 66 

yielded aerodynamic force coefficients as functions of wind-speed and ball 67 

orientation. Whilst these published coefficients can be applied to simulate ball flight, 68 

there has been no experimental validation of their accuracy. Furthermore, as there 69 

are different functions available, a systematic assessment is required to determine 70 

the most appropriate combination of coefficients which best predict the outcome of a 71 



kick, and to quantify the accuracy of this prediction. The model can then be applied 72 

with confidence to assess performance outcome and also used to provide valuable 73 

insight regarding place kick performance, as kicks can be unsuccessful for different 74 

reasons. For example, an investigation into how the magnitude and direction of the 75 

linear and angular ball velocities differ between sub-groups of kicks which result in 76 

different outcomes (e.g. long ‘successful’ kicks versus those which are less 77 

successful because they miss short, left, or right) will provide an understanding of 78 

the aspects of ball launch which future technical investigations should endeavour to 79 

address. 80 

Our primary aim was therefore to develop and validate a model of ball flight to 81 

assess rugby place kick performance using a single measure. This measure should 82 

be fully representative of field-based performance and easily understandable for 83 

coaches and players. In order to demonstrate the applicability of this measure, we 84 

secondly aimed to categorise the performance outcomes of a group of kicks and 85 

investigate differences in initial ball flight kinematics between sub-groups. We 86 

hypothesised that (1) assessing performance using a single measure based on the 87 

modelled flight path would provide a different interpretation of performance levels 88 

compared with initial linear ball velocity magnitude, and that (2) both linear and 89 

angular (i.e. spin) initial ball flight kinematics would differ between sub-groups of 90 

place kicks which result in different outcomes. 91 

Methods 92 

Overview of methodological approach 93 

A mathematical model that simulated the entire flight path of a rugby ball from initial 94 

flight kinematics was developed. The combination of aerodynamic force and moment 95 



coefficients included in the equations of motion were then selected based on 96 

comparison against empirical data from four kickers. The accuracy of the model 97 

output was validated against additional empirical data from these kickers. Finally, the 98 

validated model was applied to the place kicks of 33 experienced kickers to 99 

demonstrate its application and to address our hypotheses. All procedures were 100 

approved by the St Mary’s University Ethics Committee, and all kickers were free 101 

from injury, volunteered, and provided written informed consent. 102 

Model development 103 

A six degree-of-freedom ball flight model was developed in Matlab (v.7.12.0, The 104 

MathWorks Ltd., USA). The global coordinate system was aligned such that the y-105 

axis represented the horizontal direction from the kicking tee to the centre of the 106 

target, the z-axis was vertical, and the x-axis was the cross-product of the two. The 107 

required model inputs were empirically measured initial three-dimensional linear 108 

velocity of the ball centre of mass (CM), pitch angle, yaw angle, and the pitch, yaw, 109 

and roll velocities of the ball at the onset of flight. The initial roll angle was excluded 110 

as it has a negligible effect on the forces subsequently acting (Seo et al., 2004). The 111 

ball CM position at the onset of flight relative to its original position on the tee was 112 

also input. In order to ultimately determine ball position in all subsequent time 113 

iterations (i, 0.0001 s), the side (Fx), drag (Fy) and lift (Fz) forces were first calculated 114 

using the following equations (Seo et al., 2006, 2007): 115 
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where V = ball volume (0.0048 m3; Seo et al., 2006),   = air density (1.225 kg/m3 116 

based on the assumption of standard atmospheric conditions at the testing location: 117 

15°C, and 9 m above sea level), and v   = resultant ball velocity. The three 118 

aerodynamic force coefficients (Cx, Cy, Cz) were functions of instantaneous pitch 119 

angle (θx), yaw angle (θy), roll velocity (ωz ) and a spin coefficient (see Model 120 

calibration and validation section). For some model implementations, the pitch (Mx) 121 

and yaw (My) moments were required, and were calculated using the following 122 

equations (Seo et al., 2006, 2007): 123 
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The pitch and yaw moment coefficients (Cmx and Cmy, respectively) were 124 

represented as functions of instantaneous pitch angle, yaw angle and a spin 125 

coefficient. The force and moment coefficients were obtained from previous wind-126 

tunnel experiments (Seo et al., 2006, 2007), and the optimum combination of these 127 

coefficients was determined (see Model calibration and validation section).  128 

The ball CM linear accelerations (ax, ay, az) were determined based on the ball’s 129 

mass (m; 0.435 kg) and gravity (g; 9.81 m/s2). In versions of the model where 130 

moments were included, the angular accelerations (αx, αy) were also determined at 131 

each time interval accounting for the ball's moment of inertia about the transverse 132 

axis (0.0033 kg.m2; Seo et al., 2006). All accelerations were numerically integrated 133 

(trapezium rule) to update the linear (vx, vy, vz  and angular (ωx, ωy) velocities of the 134 

ball, which in turn were numerically integrated to update its position (dx, dy, dz) and 135 

orientation (θx, θy). The model was terminated when one of the following conditions 136 

was met: 137 



a) dx reached ± 2.65 m (the maximum medio-lateral displacement of the ball before it 138 

would hit one of the goalposts, assuming it was kicked from directly in front of the 139 

posts, accounting for ball size (i.e. 0.30 m long axis) in a horizontal orientation) 140 

b) dz dropped back below 3.15 m (the height of the crossbar accounting for ball size 141 

in a vertical orientation) 142 

The primary output of the model was dy in the penultimate simulation frame. 143 

Assuming that the kick was taken from directly in front of the posts, this value 144 

quantified the maximum anterior displacement immediately before the ball would 145 

have struck either post or the crossbar. This predicted maximum distance measure 146 

provided a single objective performance measure of kick length that fully accounted 147 

for the initial 3D linear and angular velocities imparted on the ball and the forces 148 

experienced during flight. Importantly, this measure is meaningful for coaches and 149 

players who commonly refer to kick distances and are fully cognisant of their 150 

maximum range. The reason for kick failure (i.e. missing left, missing right or 151 

dropping short) was also identified from the model output. 152 

Model calibration and validation 153 

Thirty-eight place kicks were performed by four proficient rugby place kickers 154 

(mean ± SD age: 28 ± 4 years, mass: 79.3 ± 6.5 kg, height: 1.81 ± 0.09 m) in an 155 

indoor sports hall. All kicks were from a tee positioned 22.00 m from a vertical wall 156 

on which a 9.06 × 4.61 m calibrated area was measured. Two synchronised high-157 

speed cameras (Phantom V5.2, Vision Research Inc., USA; 240 Hz, shutter = 158 

1/1000 s) recorded the initial 2.5 m of ball flight. The raw video files were imported 159 

into Vicon Motus (v.9, Vicon Motion Systems, UK) and the top and bottom of the ball, 160 

the centre of the visible panels (marked on the ball) or the middle of a seam 161 



connecting the panels (also marked) were manually digitised at full resolution 162 

(1280 × 800 pixels) from 10 frames before initial ball contact until four frames after 163 

the ball had visibly left the boot. Due to the potential effects of error in the initial ball 164 

flight kinematics on the predicted final ball location, each video clip was digitised 17 165 

times to provide stable values within a bandwidth of ± 0.25 standard deviations either 166 

side of the mean, which were considered to be an accurate representation of the true 167 

value (Taylor, Lee, Landeo, O’Meara & Millett,      . 168 

The 3D trajectories were reconstructed using direct linear transformation (DLT; 169 

Abdel-Aziz & Karara, 1971) and exported to Visual3D (v.5, C-Motion, Ltd., USA) to 170 

reconstruct the 3D kinematics of the ball. Initial ball flight was identified as the first 171 

frame where the raw antero-posterior ball CM velocity first decreased after ball 172 

contact (Shinkai et al., 2009). The initial linear ball CM velocity was calculated from 173 

polynomial functions fitted to the first four frames of the raw displacement data 174 

following initial ball flight (first order for both horizontal directions, second order for 175 

vertical). Three-dimensional ball orientations relative to the global coordinate system 176 

were calculated using an XYZ Cardan rotation sequence. The initial ball angular 177 

velocities were calculated based on the change in ball orientation between the first 178 

and fourth frames of flight. 179 

The true ball position after 22.00 m of anterior displacement was measured using 180 

two additional synchronised high-speed cameras (Sony FX1000, UK; 200 Hz, shutter 181 

= 1/1000 s). One camera was placed close to the target wall to identify the frame in 182 

which the ball contacted the wall. The corresponding frame from the other camera 183 

(12.00 m in front of the centre of the target wall) was identified and the vertical and 184 

medio-lateral positions of the ball were determined from this image using 2D DLT 185 

with lens correction. 186 



For this model calibration and validation, the model terminated automatically after 187 

22.00 m of anterior displacement. Using the experimentally-measured initial ball 188 

flight kinematics as model inputs, the model output (i.e. position where the ball first 189 

made contact with the wall) was compared with the experimentally-measured ball 190 

positions for each kick and the root mean square difference was calculated. Half of 191 

the trials (i.e. 19) were randomly selected for use in the calibration process to identify 192 

the optimal combination of aerodynamic force and moment coefficients from 193 

previous wind tunnel experiments of a ball spinning about either the longitudinal (Seo 194 

et al., 2006) or transverse axis (Seo et al., 2007). Although the ball primarily spins 195 

about the transverse axis during a place kick, when longitudinal spin is imparted to 196 

the ball, a lateral deviation in the flight path is observed due to the greater side force 197 

(Seo et al., 2006). As no data is available for a ball spinning about multiple axes, the 198 

calibration process assessed the accuracy of the model predictions using each of 199 

eight different sets of coefficients (Table 1), obtained from both Seo et al. (2006) and 200 

Seo et al. (2007). The remaining 19 trials were then used for an independent 201 

validation of the model accuracy using the identified optimal coefficient set. 202 

 203 

****Table 1 near here**** 204 

 205 

Model application 206 

In a separate empirical data collection, ball flight data were obtained from 33 207 

competitive rugby kickers (ranging from amateur to senior international, mean ± SD 208 

age: 22 ± 4 years, mass: 86.2 ± 8.8 kg, height: 1.82 ± 0.06 m). Each kicker wore 209 



moulded boots and performed rugby place kicks in an indoor laboratory with rubber 210 

flooring. A 1.2 m wide by 2.3 m high net (The Net Return LLC, USA) was centred 211 

2.00 m in front of the kicking tee. A 0.05 m wide by 1.20 m high target was hung from 212 

the top centre of the net to represent the line of the centre of the posts. Six circles of 213 

reflective tape (25 mm in diameter) were attached to a size 5 Gilbert Virtuo 214 

Matchball, one in the centre of each of the panels of the ball and two at known 215 

locations at the top of opposing panels to enable 3D tracking. All trials were recorded 216 

at 240 Hz using a 10-camera motion capture system (MX-3, Vicon, UK) with the 217 

global coordinate system defined as stated previously. Following a self-directed 218 

warm-up and familiarisation kicks the kickers were asked to kick towards the target, 219 

as if from their maximum range, for a minimum of seven kicks.  220 

Marker trajectories were reconstructed and labelled using Vicon Nexus (v. 1.8.3). 221 

Five kicks for each kicker were selected based on marker visibility and the subjective 222 

rating of kick quality (provided by the kicker immediately after the kick on a scale of 223 

1-10, with 10 perceived to be perfect), and exported to Visual 3D. The initial linear 224 

and angular ball kinematics were calculated as outlined previously, and were input to 225 

the validated ball flight model.  The predicted maximum distance for each of the five 226 

place kicks taken by each kicker was output, and the kick with the greatest predicted 227 

maximum distance for each kicker was used for all subsequent analysis. 228 

To address the first hypothesis, a Spearman's rank-order correlation coefficient (ρ  229 

was calculated between the predicted maximum distance and the magnitude of the 230 

resultant initial ball velocity (the measure typically used in previous studies) for the 231 

33 kicks. To address the second hypothesis, the kicks were grouped based on their 232 

performance outcome. Initially, those kicks with a predicted maximum distance 233 

greater than 32 m (the average place kick distance in international matches; Quarrie 234 



& Hopkins, 2015) were identified and termed 'long' kicks. The remaining less 235 

successful kicks were sub-divided based on the reason for failure: kicks which 236 

dropped below crossbar height (short kicks), kicks which hit the left-hand goalpost 237 

(wide-left kicks) or which hit the right-hand goalpost (wide-right kicks). Means and 238 

standard deviations were calculated for each sub-group’s initial ball flight kinematics. 239 

The initial directions of ball flight (in the x-y plane and y-z plane, termed 'lateral 240 

direction' and 'launch angle’, respectively) were determined from the initial ball 241 

velocities. Effect sizes were calculated (Cohen, 1988) to assess the magnitude of the 242 

difference between the subgroups for each variable. The effect sizes were 243 

interpreted as: <0.2, trivial; 0.2 to 0.6, small; 0.6 to 1.2, large and >2.0, very large 244 

(Hopkins, Marshall, Batterham & Hanin, 2009). Following this, 90% confidence 245 

intervals were calculated and magnitude-based inferences were derived (Hopkins, 246 

2007). A threshold of 0.2 was considered to be a practically important effect 247 

(Hopkins et al., 2009; Winter, Abt & Nevill, 2014). The likelihood of the true value 248 

falling within each classification of positive, trivial and negative was calculated. 249 



Results 250 

Model calibration and validation 251 

The model containing coefficient set 8 (Table 1) provided the closest match with 252 

experimental data (Table 2). This combination of coefficients included drag and lift 253 

coefficients for a ball spinning predominantly about the transverse axis (Seo et al., 254 

2007) and a side force coefficient for a ball spinning about the longitudinal axis at a 255 

velocity greater than 360°/s (Seo et al., 2006) but no moment coefficients. When the 256 

model contained coefficient set 8, its outputs matched the experimental data with a 257 

mean resultant difference of displacement in the plane of the posts of 0.87 ± 0.42 m 258 

(Table 2). When validated against a further 19 independent kicks, the mean resultant 259 

difference was 0.88 ± 0.40 m – this error in displacement in the plane of the posts 260 

equated to 4.0% of the total anterior displacement (i.e. 22.0 m) during flight. 261 

 262 

****Table 2 near here**** 263 

 264 

Model application 265 

Using the model containing coefficient set 8, a moderate, positive relationship was 266 

observed between the rank orders of the 33 place kicks based on the predicted 267 

maximum distance and the magnitude of the resultant initial ball velocity (ρ    .  , 268 

90% CI = 0.27 to 0.71; Figure 1). The 33 kicks were then categorised into distinct 269 

groups based on their outcomes. As two of the kicks were within 4.0% (the accuracy 270 

of the model as determined during the validation) of the 32 m predicted maximum 271 

distance threshold, they could not be confidently categorised and were excluded 272 



from all further analysis. Eighteen kicks achieved a predicted maximum distance > 273 

32 m and were classified in the long group. Thirteen kicks achieved a predicted 274 

maximum distance < 32 m. These kicks were then sub-divided based on their reason 275 

for failure, with four classified in the short group, eight in the wide-left group and one 276 

in the wide-right group. As only one kick was classified in the wide-right group, this 277 

group was removed. Thirty kicks, classified into three distinct groups, were therefore 278 

included in all subsequent analyses.  279 

 280 

****Figure 1 near here**** 281 

 282 

The predicted maximum distance of the long kicks was substantially longer than that 283 

of both the wide-left (Figure 2a) and short kicks (Figure 2b) but there was no clear 284 

difference between the two less successful groups (Figure 2c). Both the long and 285 

wide-left kicks had a substantially faster resultant ball velocity compared with the 286 

short kicks (Figure 2b and 2c) but there was no clear difference in ball velocity 287 

magnitude between the long and wide-left kicks (Figure 2a). The lateral direction of 288 

the ball velocity vector was substantially different between all three groups (Figure 289 

2a-c) with the long and short kicks initially directed towards the right-hand-side and 290 

the wide-left kicks towards the left-hand-side. The launch angle of the ball velocity 291 

vector was substantially greater for the long kicks than the wide-left kicks (Figure 292 

2a), whilst the short kicks had a substantially greater launch angle than both of the 293 

other two groups (Figure 2b and 2c). There was no clear difference in pitch velocity 294 

between the three groups (Figure 2a-c) but the long and short kicks possessed 295 



substantially less roll velocity (longitudinal spin) than the wide-left kicks (Figure 2a 296 

and 2c). The mean ± SD values for these variables are in Table S1 (Appendix 1). 297 

 298 

****Figure 2 near here**** 299 

 300 

Discussion and Implications 301 

We developed and validated a model of rugby ball flight which can be applied to 302 

assess place kick performance outcome using a single, representative measure. We 303 

also demonstrated the applicability of this model by addressing two specific 304 

hypotheses using the model-determined place kick performance measures. The 305 

model validation revealed it could accurately predict ball location when in the plane 306 

of the posts to within 4.0% of the anterior displacement covered during flight. The 307 

model was then applied to obtain a measure of predicted maximum distance that 308 

quantified the maximum distance from which any given kick could be taken (from 309 

directly in front of the posts) and remain successful. Comparison of the performance-310 

based ranking of 33 kicks using this predicted maximum distance measure against 311 

the traditionally adopted linear velocity magnitude measure (Figure 1) supported our 312 

first hypothesis as the rank orders of the 33 kicks were only moderately related (ρ = 313 

0.52). When the kicks were then categorised in to sub-groups based on their 314 

performance outcomes, our second hypothesis was also supported as clear 315 

differences in both linear and angular initial ball flight kinematics were evident 316 

between the sub-groups (Figure 2). 317 



When developing any movement simulation, Hicks et al. (2015) proposed that the 318 

model should be calibrated to identify appropriate constants that produce an output 319 

closest to empirical data. Previous wind-tunnel experiments (Seo et al., 2006; 2007) 320 

have rotated a rugby ball about different axes and in different wind speeds to 321 

determine the aerodynamic force and moment coefficients, but no published 322 

scientific studies have singularly represented the complete characteristics observed 323 

during rugby place kick ball flight. The current model calibration therefore enabled 324 

the determination of the set of these coefficients which yielded the most accurate 325 

prediction of place kick performance – coefficient set 8 (Table 1) yielded an error in 326 

predicted ball displacement in the plane of the posts of 0.87 ± 0.42 m after 22 m of 327 

anterior flight (Table 2). The inclusion of moment coefficients increased the ball 328 

angular velocities to unrealistic values when visually compared with the empirical 329 

trials and observation of place kicking in match scenarios (coefficient set 6; Tables 1 330 

and 2), whilst including side force coefficients for ball flights with low roll velocities 331 

resulted in excessive lateral ball displacement (coefficient set 7; Tables 1 and 2). 332 

Having identified set 8 as comprising the coefficients which yielded the most 333 

accurate prediction of place kick performance, the model incorporating this 334 

coefficient set was then validated against additional independent data. The error 335 

(0.88 ± 0.40 m) was consistent with that observed during the calibration process – 336 

the model was therefore capable of predicting place kick performance with a mean 337 

error of 4.0%. This mean error is considerably smaller than that recorded by Tanino 338 

and Suito (2009) who simulated rugby kicks (out of hand) with a mean error of 25.8% 339 

of the measured anterior displacement of the ball. The greater accuracy in the 340 

current study may be due to Tanino and Suito (2009) only considering the spin of the 341 

ball about one axis for each kick type (the longitudinal axis for a screw kick, the 342 



transverse axis for a high punt kick). As is evident from the current results, and from 343 

the sequence of still images presented by Tanino and Suito (2009), the ball typically 344 

rotates about multiple axes; inclusion of these degrees of freedom in the initial flight 345 

parameters is therefore necessary. The model estimates demonstrated comparable 346 

errors in both the lateral and vertical displacements of the ball (mean absolute errors 347 

of 0.59 ± 0.47 m and 0.51 ± 0.35 m, respectively; Table 2). This suggests that there 348 

was not a specific model input or parameter that was causing greater error in a 349 

particular direction. The 4.0% error in the current model is most likely due to the 350 

aerodynamic force values being estimates of the true forces experienced in flight, 351 

given the accuracy of the input data obtained through repeated digitisations and the 352 

ball location when it hit the wall. Whilst the low magnitude of error in the current 353 

model supports the overall accuracy of the utilised values from wind-tunnel 354 

experiments (Seo et al., 2006; 2007), future experiments could look to apply 355 

constrained optimised functions to fit the aerodynamic forces, using information from 356 

empirical ball flights, such as those in the current study. 357 

The calibrated and validated model was then applied to predict the maximum 358 

distance that the kicks of 33 rugby place kicks could successfully be taken from. 359 

Previous research has typically determined the success of a place kick based solely 360 

on the ball velocity magnitude (e.g. Baktash et al., 2009; Sinclair et al., 2014; Zhang 361 

et al., 2012). Ball velocity magnitude does not account for the accuracy of a kick, and 362 

our results demonstrate that  the rank order of kicks based on their velocity is only 363 

moderately associated with the rank order based on the predicted maximum 364 

distance (ρ = 0.52; Figure 1) - the different performance measures give a different 365 

interpretation of the relative success of a kick. This is an important consideration for 366 

researchers and practitioners as it highlights the importance associated with the 367 



choice of measure used to assess performance levels, similar to previous findings in 368 

other sporting actions such as the sprint start (Bezodis, Trewartha & Salo, 2010). 369 

Whilst a high ball velocity can result in a greater predicted maximum distance, the 370 

ball velocity magnitude only explains 27% of the variance between the two rank 371 

orders, supporting our first hypothesis. Other factors such as the direction of the ball 372 

velocity vector and the ball spin must account for the remaining variance. This is 373 

further illustrated when performance differences between the sub-groups of kicks are 374 

considered. Despite no clear difference in ball velocity magnitude between the long 375 

and wide-left kicks, the predicted maximum distance of the long kicks was 376 

substantially greater; this critical real-world difference in performance outcome would 377 

be overlooked if solely assessing performance based on ball velocity magnitude. 378 

Additionally, there was no clear difference in predicted maximum distance between 379 

the short and wide-left kicks, but if performance had been determined simply based 380 

on ball velocity magnitude, the wide-left kicks would have been considered to be 381 

more successful. These findings provide clear examples supporting the need to use 382 

a performance measure that represents overall place kick performance, such as the 383 

predicted maximum distance value developed in this study. The current findings also 384 

illustrate the role of factors in addition to the initial ball velocity magnitude; the initial 385 

linear velocity direction and the spin imparted on the ball are also important 386 

performance-related factors to consider. 387 

Our second hypothesis was also supported as although there was no clear 388 

difference in resultant ball velocity magnitude between the long and wide-left kicks, 389 

there were differences in other linear and angular initial ball kinematics (Figure 2). 390 

The wide-left kicks demonstrated substantially greater roll velocity which, combined 391 

with an initial ball velocity vector directed towards the left-hand-side, caused the ball 392 



to pass outside the left-hand goalpost from a distance of less than 32 m. These 393 

results provide some support to the assertion from coaching literature that a curved 394 

ball trajectory may not be desirable (Bezodis & Winter, 2014; Greenwood, 2003; 395 

Wilkinson, 2005) and highlights potential limitations of studies that have not 396 

considered this ball flight characteristic. In addition to their previously described 397 

lower resultant ball velocity, the short kicks also possessed a substantially higher ball 398 

launch angle compared with the long kicks. The short kicks’ launch angle is higher 399 

than the optimum launch angle identified for place kicks (32.3°) by Linthorne and 400 

Stokes (2014), suggesting that changes in ball launch angle could be a simple 401 

performance factor for coaches to first manipulate with kickers who lack distance. 402 

The current model could be used to inform this – for example, if the maximum initial 403 

ball velocity of a kicker is known, the model inputs could be systematically adjusted 404 

to identify the optimum launch angle for a given kicker. Furthermore, the model could 405 

also be used to inform coaches of the effect of specific environments that may be 406 

experienced during matches. For example, the model indicates that a kick which was 407 

just successful from 22 m at -5°C at sea level, would be successful from 2.96 m 408 

further away if the same kick was taken at 20°C at 1810 m (the altitude of Ellis Park 409 

in Johannesburg) based on alterations to the air density constant.   410 



Conclusion 411 

A ball flight model was developed which was capable of predicting the maximum 412 

distance any given place kick could be successful from given its initial flight 413 

kinematics. The model was able to locate position in the plane of the posts to within 414 

4.0% of the anterior displacement during flight. Differences were found in the rank 415 

orders of kicks based on their resultant ball velocity magnitude or the newly 416 

proposed predicted maximum distance measure, because the ball velocity measure 417 

does not account for the accuracy requirement of the task which are clearly an 418 

important consideration. When the full flight path of the ball cannot be assessed (e.g. 419 

in an indoor/laboratory environment), using the current model to predict the 420 

maximum distance provides an ecologically valid assessment of true place kick 421 

performance, and one which is readily understandable for players and coaches. The 422 

model can also be used by players and applied practitioners to predict the effect of 423 

changes to the initial ball flight kinematics on performance outcome, as well as to 424 

understand how their performance levels vary in the different environmental 425 

conditions that they may encounter.  426 
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Appendix 1511 

Table S1. Initial ball flight kinematics of the three groups (mean ± SD). 

 Long Kicks Wide-left Kicks Short Kicks 

Predicted maximum distance (m) 39.30 ± 4.92 25.88 ± 3.24 27.25 ± 3.80 

Resultant velocity (m/s) 27.6 ± 1.7 26.9 ± 1.6 20.8 ± 2.2 

Lateral direction (°) 1 ± 3 -1 ± 2* 2 ± 3 

Launch angle (°)† 31 ± 3 28 ± 7 35 ± 3 

Pitch velocity (°/s) 2263 ± 877 2307 ± 663 2070 ± 1377 

Roll velocity (°/s) 288 ± 206 746 ± 466 473 ± 394 

* A negative lateral direction indicates that the ball was initially travelling towards the left-hand-side of the 
goalposts, with a positive value directed towards the right-hand-side. 

†
 The launch angle represents the 

direction of the ball flight in the y-z plane. 



List of tables 512 

 513 

Table 2. Absolute differences between the predicted and true ball 
positions for each coefficient set included in the ball flight model 
calibration (all data presented as mean ± SD). 

Coefficient 
set 

Difference in resultant 
displacement in the 

plane of the posts (m) 

Difference in lateral 
position in the plane 

of the posts (m) 

Difference in vertical 
position in the plane of the 

posts (m) 

1 1.59 ± 0.54 0.95 ± 0.84 1.06 ± 0.35 

2 1.18 ± 0.68 0.93 ± 0.75 0.53 ± 0.36 

3 1.72 ± 1.06 1.56 ± 1.08 0.58 ± 0.40 

4 1.39 ± 0.69 1.15 ± 0.71 0.60 ± 0.40 

5 1.06 ± 0.60 0.84 ± 0.58 0.60 ± 0.40 

6 0.99 ± 0.50 0.76 ± 0.54 0.53 ± 0.37 

7 1.47 ± 1.07 1.29 ± 1.10 0.59 ± 0.39 

8* 0.87 ± 0.42 0.59 ± 0.47 0.51 ± 0.35 

* Model version 8 was identified as providing the most accurate representation of ball flight and 
therefore, used for all subsequent analyses. 

Table 1. The sets of aerodynamic coefficients included within the model for the 
calibration process. 

Coefficient 

set 

Side force  

coefficient  

(Seo et al., 2007)* 

Side force  

coefficient  

(Seo et al., 2006)* 

Drag 

force 

coefficient 

Lift force 

coefficient 

Pitching 

moment 

coefficient 

Yaw 

moment 

coefficient 

1 - - - - - - 

2 - -   - - 

3  -   - - 

4  -   -  

5     -  

6       

7     - - 

8 -    - - 

* When both side force coefficients were included in a model version, the coefficient presented by Seo et al. (2007) was 

applied to those trials where the roll velocity of the ball was less than or equal to 360°/s, whilst the coefficient presented by 

Seo et al. (2006) was applied to those trials where the roll velocity of the ball was greater than 360°/s. 



Figure captions 514 

Figure 1. The performance rankings of the best kicks of 33 kickers based on their 515 

predicted maximum distance and the magnitude of their resultant initial ball velocity. 516 

A ranking of 1 represents the best performance and 33 the worst. The grey dotted 517 

line represents a perfect rank order correlation; those kicks below the line were 518 

ranked higher based on their resultant velocity and those above the line were ranked 519 

higher on their predicted maximum distance.  520 

 

 521 

 522 



Figure 2. Effect sizes (± 90% CI) between initial ball flight kinematics of a) the long 523 

and wide-left kicks, b) the long and short kicks and c) the wide-left and short kicks. 524 

The dashed vertical lines represent a trivial effect (0.0 ± 0.2). Percentages for each 525 

comparison represent the likelihood that the effect is negative│trivial│positive. *A 526 

negative effect represents a lateral ball velocity vector directed more towards the left-527 

hand-side of the goal whilst a positive effect was more towards the right-hand-side of 528 

the goal.  529 
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