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Abstract The NURBS-enhanced finite element method (NEFEM) combined with a
hybridisable discontinuous Galerkin (HDG) approach is presented for the first time. The
proposed technique completely eliminates the uncertainty induced by a polynomial approxi-
mation of curved boundaries that is commonwithin an isoparametric approach and, compared
to other DG methods, provides a significant reduction in number of degrees of freedom. In
addition, by exploiting the ability of HDG to compute a postprocessed solution and by using
a local a priori error estimate valid for elliptic problems, an inexpensive, reliable and com-
putable error estimator is devised. The proposed methodology is used to solve Stokes flow
problems using automatic degree adaptation. Particular attention is paid to the importance of
an accurate boundary representation when changing the degree of approximation in curved
elements. Several strategies are compared and the superiority and reliability ofHDG-NEFEM
with degree adaptation is illustrated.
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1 Introduction

Early work on mesh and degree adaptivity schemes for the finite element method [30,44,65]
already showed the advantages of adaptive schemes to achieve a required accuracy in an
economic manner. The use of mesh adaptive methods is substantially more extended due
to the popularity of low-order methods in the computational mechanics community. This
is largely due, as discussed later, to the fact that mesh adaptation is easier to implement,
compared to degree adaptivity, in standard finite element codes. But, with recent needs
on high fidelity simulations for fluids and wave propagation phenomena [14,25,63], the
interest in degree adaptive (or the combination of mesh and degree adaptivity) processes has
increased [4,23,24,31].

One of the main reasons for the increasing popularity of degree adaptive schemes in the
last years is the rise of discontinuous Galerkin (DG) methods as a viable alternative for con-
vection dominated flow and wave propagation problems [13,15,21,26,43,58]. In a standard
continuous Galerkin framework, the implementation of variable degree of approximation is
cumbersome, whereas its application in a DG context is straightforward due to the weak
imposition of the continuity of the solution by means of numerical fluxes. Despite tradi-
tional DG methods have not been able to consistently prove its superiority against low-order
techniques traditionally employed in industry (e.g. finite volume methods), the recently pro-
posed hybridisable DG (HDG) [11] has shown its superiority compared to traditional DG
methods [9,27,33]. The ability to substantially reduce the number of degrees of freedom
combined with the possibility to obtain a post-processed solution that converges at a faster
rate to the exact solution are the two main properties of HDG methods behind its superiority
compared to other DG methods [10,12,38,56]. Moreover, this is achieved while preserving
the well-known advantages of DG for stabilising convection and circumventing the so-called
Ladyzhenskaya-Babuška-Brezzi (LBB) condition in the incompressible limit.

A key aspect in any adaptive scheme is the ability to devise cheap and reliable error mea-
sures for a given numerical solution in order to decide the regions where a more accurate
solution is required [1]. Error indicators and error estimators are typically employed to asses
the error of a simulation with an adaptive framework [29]. Error indicators are computation-
ally inexpensive but they are problem dependent whereas error estimators are considerably
more expensive but more general [19,46,47]. A cheap, general and reliable error estima-
tor was proposed in [23,24] by exploiting the ability of the HDG method to construct a
post-processed solution, more accurate than the HDG solution.

One of the aspects that is normally ignored when devising degree adaptive schemes is the
geometric representation of domains with curved boundaries. Despite it is now well known
that a poor representation of the geometry can have an important effect on the results of a
finite element simulation [2,7,54,60], the most extended practice consists on maintaining the
shape of the elements during the degree adaptive process [23,24,31]. In the majority of cases,
a polynomial representation of the boundary is selected whereas the polynomial degree of
the functional approximation changes at each iteration of the degree adaptive scheme.

This work analyses and discusses three approaches to perform a degree adaptive process
in domains with curved boundaries. The first one corresponds to the approach typically
employed in practice, consisting of fixing the shape of the curved elements and changing the
degree of the functional approximation as dictated by the degree adaptivity procedure. The
second approach proposed in this work is to employ the so-called NURBS-enhanced finite
elementmethod (NEFEM) that enables to exactly represent the geometry of the computational
domain, given by a CAD model, irrespectively of the degree of the polynomials used to
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approximate the solution. The third approach, despite not considered useful from a practical
point of view, consists of changing the geometry representation of the computational domain
to represent with the same degree of polynomials both the geometry and the solution at each
iteration of the degree adaptive process. This approach is not considered of interest from
a practical point of view because it requires communication with the CAD model at each
iteration and re-generation of nodal distributions for curved elements.

The second approach proposed here considers, for the first time, the combination of the
so-called NURBS-enhanced finite element method (NEFEM) and the HDG rationale. The
resulting method combines all the advantages of both methods, that is the efficiency of HDG
and the ability of NEFEM to decouple the functional approximation from the geometric
representation, usually tied in traditional isoparametric implementations.

A number of numerical examples is considered in order to compare the different degree
adaptivity approaches. Furthermore, this work presents a simple idea to verify computational
methods that are able to use different degrees of approximation for the solution in different
elements. The idea is based on an existing local a priori error estimator developed in [18] for
elliptic problems.

The remainder of the paper is organised as follows. Section 2 briefly presents the model
problem considered (i.e. Stokes flows) and the HDG formulation. The spatial discretisation
of the HDG weak formulation is presented in Sect. 3 for both isoparametric and NEFEM,
with particular emphasis on the differences between both formulations. The details about the
proposed error estimator and degree adaptivity process proposed are presented in Sect. 4,
including a discussion of the three approaches considered to perform a degree adaptive
process. In Sect. 5 a simple technique to verify the implementation of a solver with variable
degree of approximation is presented and used to test the implementation of theHDGcode for
Stokes flowswith isoparametric andNEFEM. Section 6 presents a comparison of the different
degree adaptive approaches and a number of numerical examples are used in section to show
the potential of the proposed approach. Finally, Sect. 8 summarises the main conclusions of
the work that has been presented.

2 Hybridisable Discontinuous Galerkin for Stokes Flow

2.1 Problem statement

Let us consider an open bounded domainΩ ∈ R
nsd with boundary ∂Ω , where nsd the num-

ber of spatial dimensions. The strong form of the stationary Stokes problem is obtained by
neglecting the transient and convective effects in the full incompressible Navier–Stokes equa-
tions [20]. The so-called velocity-pressure formulation is obtained by invoking the Stoke’s
law and results in

⎧
⎪⎪⎨

⎪⎪⎩

− ∇·(ν∇u − p I) = s inΩ,

∇ · u = 0 inΩ,

u = uD onΓD,

n · (ν∇u − p I) = t onΓN ,

(1)

where u is the velocity vector, ν is the kinematic viscosity, p denotes the dynamic pressure, s
is a body force, uD is the imposed velocity on theDirichlet boundaryΓD , n is the outward unit
normal vector to ∂Ω and t is the pseudo-traction vector imposed on the Neumann boundary
ΓN . The disjoint boundaries ΓD and ΓN satisfy ∂Ω = Γ D ∪ Γ N .
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In what follow,
(·, ·)D denotes the L2 scalar product in a generic subdomain D ⊂ Ω , that

is

(
u, v

)

D =
∫

D
uvdΩ

(
u, v

)

D =
∫

D
u · vdΩ and

(
U, V

)

D =
∫

D
U : VdΩ,

for scalars, vectors and second order tensors respectively. Analogously,
〈·, ·〉S denotes the L2

scalar product in any domain S ⊂ Γ ∪ ∂Ω .
The free divergence condition in Eq. (1) induces the compatibility condition

〈
uD · n, 1

〉

ΓD
+ 〈

u · n, 1
〉

ΓN
= 0. (2)

It is worth noting that, if only Dirichlet boundary conditions are considered (i.e. ΓN = ∅),
an additional constraint on the pressure must be imposed to avoid its indeterminacy. It is
common [10,12,38] to impose the mean pressure on the element boundary, namely

〈
p, 1

〉

∂Ω
= 0. (3)

2.2 HDG Weak Formulation

The domain Ω is assumed partitioned in nel disjoint subdomains Ωe with boundaries ∂Ωe,
which define an internal interface Γ

Γ :=
[
nel⋃

e=1

∂Ωe

]

\ ∂Ω. (4)

The corresponding strong form of the Stokes system given in Eq. (1) can be written in
mixed form and in the broken computational domain as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L + ∇u = 0 in Ωe,

∇ · (νL + p I) = s in Ωe,

∇ · u = 0 in Ωe,

u = uD on ∂Ωe ∩ ΓD,

u = û on ∂Ωe \ ΓD,

n · (νL + p I) = −t on ∂Ωe ∩ ΓN ,

�u ⊗ n� = 0 on Γ,

�n · (νL + p I)� = 0 on Γ,

(5)

for e = 1, . . . ,nel, where I is the identity tensor of dimension nsd, L = −∇u is a new
variable (the second order velocity gradient tensor) which is introduced after splitting the
second order momentum conservation equation in two first order equations and û is an
independent variable representing the trace of the solution in ∂Ωe \ ΓD .

The free divergence condition in Eq. (5) induces the compatibility condition
〈
uD · n, 1

〉

∂Ωe∩ΓD
+ 〈

û · n, 1
〉

∂Ωe\ΓD
= 0. (6)

The last two equations in (5) impose the continuity of velocity and continuity of the
normal component of the pseudo-stress across the interior faces respectively, where the jump
�·� operator has been introduced following the definition in [37], such that, along each portion
of the interface Γ it sums the values from the element on the left and right of say, Ωe and
Ωl , namely

��� = �e + �l .
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The HDG method solves problem (5) in two stages, see for instance [8,11,40–42]. First,
an element-by-element problem is defined with (L, u, p) as unknowns. This is the so-called
local problem and is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L + ∇u = 0 in Ωe,

∇ · (νL + p I) = s in Ωe,

∇ · u = 0 in Ωe,

u = uD on ∂Ωe ∩ ΓD,

u = û on ∂Ωe \ ΓD,〈
p, 1

〉

∂Ωe
= ρe,

(7)

for e = 1, . . . ,nel, where the last equation in (7) has been introduced to remove the indeter-
minacy of the pressure and ρe denotes the mean pressure on the boundary of elementΩe. The
local problem is used to obtain the solution in each element, L, u and p, for e = 1, . . . ,nel,
in terms of û and ρ along the interface Γ ∪ ΓN .

Second, a global problem is defined to determine the traces of the velocity and the mean
pressure, denoted by û and ρ, on the element boundaries. This is given by

⎧
⎨

⎩

�u ⊗ n� = 0 on Γ,

�n · (νL + p I)� = 0 on Γ,

n · (νL + p I) = −t on ΓN

(8)

where the first equation is automatically satisfied due to the unique definition of the hybrid
variable û on each face of the mesh skeleton and the condition u = û on Γ , as imposed in
the local problem.

The weak formulation for each element equivalent to (7) is as follows: for e = 1, . . . ,nel,
given uD on ΓD and û on Γ ∪ ΓN , find (L, u, p) ∈ [H1(Ωe)

]nsd×nsd × [H1(Ωe)
]nsd ×

L2(Ωe) that satisfies

− (
G, L

)

Ωe
+ (∇·G, u

)

Ωe
= 〈

n · G, uD
〉

∂Ωe∩ΓD
+ 〈

n · G, û
〉

∂Ωe\ΓD
(9a)

− (∇v, νL
)

Ωe
− (∇·v, p

)

Ωe
+ 〈

v, n · ̂(νL + p I)
〉

∂Ωe
= (

v, s
)

Ωe
(9b)

(∇w, u
)

Ωe
= 〈

w, uD · n〉
∂Ωe∩ΓD

+ 〈
w, û · n〉

∂Ωe\ΓD
(9c)

〈
p, 1

〉

∂Ωe
= ρe (9d)

for all (G, v, w) ∈ [H1(Ωe)
]nsd×nsd × [H1(Ωe)

]nsd × L2(Ωe), where the numerical trace
of the normal flux is defined as

n · ̂(νL + p I) :=
{
n · (νL + p I) + τ(u − uD) on ∂Ωe ∩ ΓD

n · (νL + p I) + τ(u − û) elsewhere,
(10)

with τ being a stabilisation parameter, whose selection has an important effect on the stability,
accuracy and convergence properties of the resulting HDG method. The influence of the
stabilisation parameter has been studied extensively by Cockburn and co-workers, see for
instance [8,11,39–42].

Introducing the definition of the numerical trace of the normal flux in Eq. 9 leads to the
weak form of the local problem: for e = 1, . . . ,nel, find (L, u, p) ∈ [H1(Ωe)

]nsd×nsd ×
[H1(Ωe)

]nsd × L2(Ωe) such that
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−(
G, L

)

Ωe
+ (∇·G, u

)

Ωe
= 〈

n · G, uD
〉

∂Ωe∩ΓD
+ 〈

n · G, û
〉

∂Ωe\ΓD
, (11a)

− (∇v, νL
)

Ωe
+ 〈

v, n · νL
〉

∂Ωe
+ 〈

v, τu
〉

∂Ωe

− (∇·v, p
)

Ωe
+ 〈

v, pn
〉

∂Ωe

= (
v, s

)

Ωe
+ 〈

v, τuD
〉

∂Ωe∩ΓD
+ 〈

v, τ û
〉

∂Ωe\ΓD
, (11b)

(∇w, u
)

Ωe
= 〈

w, uD · n〉
∂Ωe∩ΓD

+ 〈
w, û · n〉

∂Ωe\ΓD
(11c)

〈
p, 1

〉

∂Ωe
= ρ (11d)

for all (G, v, w) ∈ [H1(Ωe)
]nsd×nsd × [H1(Ωe)

]nsd × L2(Ωe).
For the global problem, theweak formulation equivalent to (8) is: find û∈ [L2(Γ ∪ ΓN )]nsd

and ρ ∈ R
nel that satisfies

nel∑

e=1

{〈
μ, n · ̂(νL + p I)

〉

∂Ωe\∂Ω
+ 〈

μ, n · ̂(νL + p I) + t
〉

∂Ωe∩ΓN

}
= 0 (12a)

〈
û · n, 1

〉

∂Ωe\ΓD
= −〈

uD · n, 1
〉

∂Ωe∩ΓD
for e = 1, . . . ,nel, (12b)

for all μ ∈ [L2(Γ ∪ ΓN )]nsd .
Introducing the definition of the numerical trace of the normal flux in Eq. 12 leads to the

weak form of the global problem: find û ∈ [L2(Γ ∪ ΓN )]nsd and ρ ∈ R
nel such that, for all

μ ∈ [L2(Γ ∪ ΓN )]nsd ,

nel∑

e=1

{〈
μ, n · νL

〉

∂Ωe\ΓD
+ 〈

μ, τu
〉

∂Ωe\(ΓD∪ΓS)
+ 〈

μ, pn
〉

∂Ωe\ΓD)

− 〈
μ, τ û

〉

∂Ωe\ΓD

}
= −

nel∑

e=1

{〈
μ, t

〉

∂Ωe∩ΓN

}
, (13a)

〈
û · n, 1

〉

∂Ωe\ΓD
= −〈

uD · n, 1
〉

∂Ωe∩ΓD
. (13b)

3 Spatial Discretisation

This section presents the discretisation of the HDG weak forms derived in the previous sec-
tion. Both the standard isoparametric and the so-called NEFEM formulations are presented.
Special attention is paid to the differences between both formulations as this represents the
first time NEFEM is considered in an HDG framework.

3.1 Isoparametric Elements

Standard isoparametric formulationsmap each elementΩe and faceΓe in the physical domain
into a reference element, Ω̃ , and a reference face, Γ̃ , where polynomial functional approxi-

mations characterize the discrete finite dimensional spaces. Namely, Pk(Ω̃) and P k̂(Γ̃ ) are
the spaces of polynomial functions of degree at most k ≥ 1 and k̂ ≥ 1 in the reference
element and the reference face respectively. Finally, the approximations for each variable are
defined as

u(ξ) 
 uh(ξ) =
nen∑

j=1

u j N j (ξ) ∈ [{v ∈ L2(Ω); v|Ωe ∈ Pk(Ω̃)}]nsd , (14)
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p(ξ) 
 ph(ξ) =
nen∑

j=1

p j N j (ξ) ∈ {q ∈ L2(Ω); q|Ωe ∈ Pk(Ω̃)}, (15)

L(ξ) 
 Lh(ξ) =
nen∑

j=1

L j N j (ξ) ∈ [{v ∈ L2(Ω); v|Ωe ∈ Pk(Ω̃)}]nsd×nsd , (16)

û(η) 
 ûh(η) =
nfn∑

j=1

û j N̂ j (η) ∈ [{v ∈ L2(Γ ); v|Γe ∈ P k̂(Γ̃ )}]nsd , (17)

where u j , p j , L j and û j are nodal values, N j are polynomial shape functions of order k

in the reference element, nen is the number of nodes per element, N̂ j are polynomial shape
functions of order k̂ in the reference face and nfn is the corresponding number of nodes per
face. Note that equal interpolation is used for all element variables (i.e. velocity, pressure
and gradient of velocity). Recall that HDG allows for equal interpolation because of the
numerical fluxes and the stabilisation parameter τ . They ensure solvability and stability, see
[8], without the need of an enriched space for the gradient variable, or a reduced space for
the trace variable.

An isoparametric mapping is used to link the reference element Ω̂ and the computational
element Ωh

e

ϕ : Ω̃ ⊂ R
nsd −→ Ωh

e ⊂ R
nsd

ξ �−→ ϕ(ξ) :=
nen∑

j=1

x j N j (ξ), (18)

where x j are the nodal coordinates of the computational element Ωh
e .

It isworth noting that in general, when the physical elementΩe is curved, the isoparametric
mapping is non-linear and the approximation defined in the reference element do not induce
a polynomial interpolation in the physical space. In addition, the computational element Ωh

e
is just an approximation of Ωe, see [53] for a detailed discussion.

Similarly, an isoparametric mapping is used to link the reference face Γ̂ and the compu-
tational face Γ h

e

ψ : Γ̃ ⊂ R
nsd−1 −→ Γ h

e ⊂ R
nsd

η �−→ ψ(η) :=
nfn∑

j=1

x j N̂ j (η), (19)

where x j denote the face nodal coordinates.
Using the mappings in Eqs. (18) and (19), the integrals appearing in the weak form of the

local problems are transformed to the reference element and reference face/edge respectively.
Then, the nodal interpolations given by Eqs. (14)–(17) are introduced, leading to a system
of equations for each element with the following structure

⎡

⎢
⎢
⎣

ALL ALu 0 0
AuL Auu Aup 0
0 Apu 0 aTρp
0 0 aρp 0

⎤

⎥
⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

L
u
p
ζ

⎫
⎪⎪⎬

⎪⎪⎭

=

⎧
⎪⎪⎨

⎪⎪⎩

fL
fu
fp
0

⎫
⎪⎪⎬

⎪⎪⎭

+

⎡

⎢
⎢
⎣

ALû
Auû
Apû
0

⎤

⎥
⎥
⎦ û +

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
1

⎫
⎪⎪⎬

⎪⎪⎭

ρ, (20)

where ζ is the Lagrange multiplier corresponding to the constraint of Eq. (11d).
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Analogously, using the isoparametric mappings, the nodal interpolations of the corre-
sponding variables and introducing the expression of L, u and p from Eq. (20) in the global
problem of Eq. (13), a global system of equations is obtained

K̂Û = f̂, (21)

where the vector of unknowns Û contains the nodal values of the trace of the velocity on the
elementa faces and the mean pressure within each element.

3.2 NEFEM Elements

InNEFEM, the boundary of the computational domain ∂Ω is exactly represented byNURBS.
In what follows, in order to simplify the presentation and without loss of generality, the
NURBS are restricted to two dimensional problems, see [52] for a detailed description of
the three dimensional case. An edge is given by Γe := C([λea, λeb]), where C is the NURBS
boundary parametrisation and λa and λb are the parametric coordinates (in the parametric
space of the NURBS) of the end points of Γe.

The discrete approximations are defined now as:

u(x) 
 uh(x) =
nen∑

j=1

u j N j (x) ∈ [{v ∈ L2(Ω); v|Ωe ∈ Pk(Ωe)}
]nsd , (22)

p(x) 
 ph(x) =
nen∑

j=1

p j N j (x) ∈ {q ∈ L2(Ω); q|Ωe ∈ Pk(Ωe)}, (23)

L(x) 
 Lh(x) =
nen∑

j=1

L j N j (x) ∈ [{v ∈ L2(Ω); v|Ωe ∈ Pk(Ωe)}
]nsd×nsd , (24)

û(λ) 
 ûh(λ) =
nfn∑

j=1

û j N̂ j (λ) ∈ [{v ∈ L2(Γ ); v|[λea ,λeb] ∈ P k̂([λea, λeb])}
]nsd , (25)

where u j , p j , L j and û j are nodal values, N j are polynomial shape functions of order k

in the physical element, nen is the number of nodes per element, N̂ j are polynomial shape
functions of order k̂ in [λea, λeb] and nfn is the corresponding number of nodes per face.

The main differences of NEFEM with respect to the isoparametric formulation are:

– The exact description of the computational domain is considered bymeans of its NURBS
boundary representation.

– The approximation of the elemental variables directly in the physical space, with Carte-
sian coordinates.

– The approximation of the trace of the velocity is defined in the parametric space of
the NURBS. It is worth noting that other options could be considered such as defining
the approximation directly in the physical space. The main advantage of defining the
approximation in the parametric space of the NURBS is that the number of unknowns
remains the same as in the isoparametric formulation. In contrast, if the approximation
of this variable is selected in the physical space it would require further degrees of
freedom [53,54].

In addition, from the computational point of view, NEFEM uses specifically designed
numerical quadratures that provide amore efficient alternative to standard quadratures defined
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in a reference triangle [51,52]. For instance, in two dimensions, the following mapping is
introduced between a reference rectangle and the physical element

ψ : R ⊂ R
nsd −→ Ωe ⊂ R

nsd

λ �−→ ψ(λ) := (1 − ϑ)C(λ1) + λ2x I , (26)

where R = [λea, λeb] × [0, 1] and x I is the internal vertex of Ωe.
Using the mapping in Eq. (26) and the NURBS boundary representation given by C, the

integrals appearing in the weak form of the local problems are transformed to the reference
rectangle and the parametric space of the NURBS respectively. Then, the nodal interpolations
given by Eqs. (22), (23), (24) and (25) are introduced, leading to a system of equations
similar to Eq. (20). Analogously, the global problem with NEFEM leads to a global system
of equations similar to Eq. (21).

4 Error Estimation and Adaptivity

In HDG, the possibility to obtain a postprocessed solution [11] that converges at a higher
rate (i.e. k + 2) than the HDG solution, not only provides a higher accurate solution to the
problem at hand but it can also be used to build an inexpensive, reliable and computable
error estimator [23,24]. In this section, particular attention is paid to the fact that, when the
degree of approximation is changed in a curved element, a choice must be made regarding
the geometric definition of the element.

An element by element measure of the error is defined by employing the HDG solution
and the postprocessed solution as proposed in [24]

Ee =
[

1

|Ωe|
∫

Ωe

(
u� − u

) · (u� − u
)
dΩ

]1/2

, (27)

where the normalisation becomes critical when meshes with different element sizes are
considered [18].

For elliptic problems, and by using that the influence of pollution errors becomes negligible
if the mesh is sufficiently refined in the area where the pollution error is generated [28], the
following a priori error estimate was derived in [18]

εe = ‖u − uh‖Ωe ≤ Chke+1+nsd/2
e , (28)

for e = 1, . . . ,nel, whereC is a constant, he the characteristic element size ofΩe and ke the
degree of approximation used in Ωe. It is worth noting that the error estimate of Eq. (28) was
initially derived for the standard finite element method but its extension to the HDG method
is straightforward.

By applying a standard Richardson extrapolation, it is possible to predict the required
change in the degree of approximation in order to ensure that the error in each element is
lower than a desired accuracy ε, namely

Δke =
⌈
log(ε/Ee)

log(he)

⌉

(29)

for e = 1, . . . ,nel, where �·� denotes the ceiling function.
The adaptive procedure consist on solving the Stokes problem using the HDG formulation

as described in Sect. 3 and estimating the required degree of approximation in each element
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Fig. 1 Illustration of a degree adaptation in an element with linear (top) and quadratic (bottom) approximation
of the geometry

according to Eq. (29). The process is repeated until convergence is achieved, meaning that
the error in each element εe is lower than the desired error ε.

4.1 Geometry Update

The technique described to drive a degree adaptive process only focuses on the degree of
approximation used for the functional approximation, but in the presence of curved bound-
aries it is known that high-order approximations of both the solution and the geometry are
required to exploit the full potential of a high-order method [2,17,34,55]. This aspect is
usually ignored as degree adaptive procedures are applied to problems involving polygonal
boundaries, see for instance [16,22,45,61]. Here three options are discussed and assessed
and compared later using numerical examples.

The first, and the one typically considered in a degree adaptive process, technique consists
of defining a polynomial representation of the curved boundaries that is maintained during
the adaptive process, irrespectively of the degree of approximation used for the solution [23,
24,35]. This option is attractive because when the degree of approximation is changed in
an element, there is no need to communicate with a CAD library to re-generate the nodal
distributions in curved elements at each iteration of the degree adaptive process. The strategy
is illustrated in Fig. 1. The first row of plots show triangular elements where the geometric
approximation is linear (q = 1) and the polynomial degree of approximation of the solution
increases from k = 1 to k = 3. The second row shows a similar situation where the boundary
of the computational domain is described using quadratic polynomials (q = 2) and the degree
of approximation of the solution is increased from k = 2 to k = 4. The boundary of the
computational domain is denoted by ∂Ωh whereas the exact boundary is denoted by ∂Ω .

The second alternative, proposed in this work, consists of using NEFEM, where the exact
boundary representation of the computational domain is considered irrespectively of the
degree of approximation considered for the solution. As NEFEM encapsulates the necessary
information to define the approximation and perform the numerical integration in curved
elements in contact with a NURBS boundary, communication with a CAD library is avoided.
The strategy is illustrated in Fig. 2, showing a NEFEM element where the exact boundary
representation is considered and a degree of approximation for the solution being increased
from k = 1 to k = 3.
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Fig. 2 Illustration of a degree adaptation in a NEFEM element
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Fig. 3 Illustration of a degree adaptation in an element where the same degree of approximation is used for
both the solution and the geometry

A third alternative, not considered in practice, consists of communicating with the CAD
model after each iteration of the degree adaptive process in order to re-generate the nodal
distribution of curved elements by placing the nodes over the true boundary. The strategy is
illustrated in Fig. 3, showing a triangular element where both the degree of the functional
approximation and the degree of the polynomials used to approximate the solution are updated
at each iteration. This strategy has not been considered in practical applications due to the
cost associated to communicating with the CAD model at each iteration.

Remark 1 It is important to note that the first strategy, where the geometry remains
unchanged, does not guarantee the convergence of the numerical solution to the physical
solution in domains with curved boundaries because the distance between the computational
domain and the physical domain does not converge to zero with as the degree of approx-
imation is increased, see [6,49] for more details. For the second strategy, proposed here,
convergence to the physical solution is guaranteed because no geometrical error is intro-
duced [54]. Finally, for the third approach, convergence is also guaranteed if the distance
between the computational boundary and the physical boundary tends to zero as the order
of the approximation is increased and the derivatives of the isoparametric mapping up to
order k + 1 are bounded by hs , for s = 2, . . . , k + 1 [6,49], where h denotes the char-
acteristic element size. It is worth noting that a specifically designed nodal distribution for
curved elements is required in the third approach to guarantee that the second hypothesis is
fulfilled [6].

5 Validation of the HDG Formulation with Variable Degree of
Approximation

The first example provides a novel and simple technique to fully validate a solver that employs
variable different degree of approximation in different elements for the solution of elliptic
problems. The idea consists of utilising the local a priori error estimate of Eq. (28) that states
how the error, measured in an element, decreases when the mesh is refined.

To illustrate the proposed technique and validate the HDG isoparametric and NEFEM
implementations with variable degree of approximation, the Stokes equations are solved in
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Fig. 4 First three NEFEM meshes where the colour indicates the degree of approximation used in each
element and the highlighted element represents the region where the error is measured for each degree of
approximation. a Mesh 1. b Mesh 2. cMesh 3
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Fig. 5 Error of the solution u and the postprocessed solution u� in the L2(Ωe) norm for different degrees of
approximation in each element. a HDG Isoparametric. b HDG NEFEM

a circle of radius 0.5 centred at (0.5, 0.5) with Dirichlet boundary conditions. The viscosity
is considered as ν = 1 and source and boundary conditions are taken such that the analytical
solution is given by

u =
(

x2(1 − x)2(2y − 6y2 + 4y3)

−y2(1 − y)2(2x − 6x2 + 4x3)

)

p = x(1 − x). (30)

Six triangular meshes of the domain are generated using nested refinement. The first
three meshes are shown in Fig. 4, where the colour of each element represents the degree of
approximation used, ranging from k = 1 to k = 6. In each mesh, there is one element per
degree of approximation highlighted with a thicker line and darker colour, representing the
regionwhere the error ismeasured to test the local a priori error estimate. It isworth noting that
themeshes shown inFig. 4 areNEFEMmeshes, as the exact boundary representation is always
employed, even for k = 1, whereas for the computations both NEFEM and isoparametric
meshes are employed.

The results of the h-convergence study are presented in Figs. 5 and 6. Figure 5 shows the
error of the solution u and the postprocessed solution u� in theL2(Ωe) norm for isoparametric
and NEFEM elements for k = 1, . . . , 5. The optimal rate of convergence is obtained in all
cases for both the solution u (rate k + 2) and the postprocessed solution u� (rate k + 3).
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Fig. 6 Error of the dual variable L and the pressure p in the L2(Ωe) norm for different degrees of approxi-
mation in each element. a HDG Isoparametric. b HDG NEFEM

Fig. 7 Computational domain
for the test problem used to
compare the different geometry
update options in a degree
adaptive process

In Fig. 6 a similar analysis is conducted, but now the error is measured for the dual variable
L and the pressure p, also in the L2(Ωe) norm and for isoparametric and NEFEM elements.

Again, the optimal rate of convergence is obtained in all cases for both L and p (rate
k + 2).

6 Comparison of Degree Adaptivity Strategies

The same model problem employed in the previous example is utilised to compare the
strategies described in Sect. 4.1 to update the geometry during a degree adaptive process.
The computational domain selected, shown in Fig. 7, features an oscillatory boundary
and represents a common problem encountered in biological transport applications, see
for instance [50]. More precisely, the curved part of the boundary is given by the curve
f (x) = (1 + cos(5πx))/10.
Dirichlet boundary conditions are imposed on the polygonal part of the boundary whereas

a Neumann boundary condition, corresponding to the exact traction derived from the solution
in Eq. (30) is imposed on the oscillatory part of the boundary.
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Fig. 8 First iteration of the degree adaptivity procedure with HDG isoparametric elements. a Degree.
b Estimated error. c Exact error

Fig. 9 Sixth iteration of the degree adaptivity procedure with no geometric update using HDG isoparametric
elements and q = 1. a Degree. b Estimated error. c Exact error

6.1 No Geometric Update

First, the degree adaptive process with no communication with the CADmodel is studied, as
illustrated inFig. 1. Theprocess startswith a degree of approximation k = 1 in all elements.At
each iteration the degree of the functional approximation is adapted according to the strategy
presented in Sect. 4 whereas a linear approximation of the geometry is kept irrespectively of
the degree of the functional approximation. Figure 8 shows the original mesh, the estimated
error and the exact error, computed by using the known analytical solution. The L2 norm
of the error is represented as a constant value in each element, showing a good agreement
between the estimated and the exact error.

After six iterations of the adaptivity process, the degree of approximation is adapted in
each element as shown in Fig. 9a but a linear geometric approximation of the curved boundary
is still considered. The estimated error in each element, shown in Fig. 9b, is below the desired
error which is 0.5 × 10−2 in this example but the computation of the exact error, shown in
Fig. 9c, reveals a significant disparity when compared to the estimated error.

To better analyse the results, Fig. 10 shows the evolution of the maximum estimated error
in each element and the maximum exact in each element for different geometric approxi-
mations of the curved boundary. Figure 10a corresponds to the case illustrated in Figs. 8
and 9, where a linear approximation of the geometry is considered (q = 1). It can be
clearly observed that, as the degree adaptive process evolves, the difference between esti-
mated and exact error becomes more and more sizeable. In the sixth iteration, the adaptive
process shows convergence, with an estimated error less than the desired error 0.5 × 10−2

but this is two orders of magnitude lower than the exact error, clearly indicating that the
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Fig. 10 Evolution of the estimated and exact errors during a degree adaptivity process for different degrees
of the polynomials used to approximate the geometry (q). a q = 1. b q = 2. c q = 3. d q = 4

error estimator is not reliable because the estimator assumes that the geometry is exactly
represented.

As a linear approximation of the geometry is well known to be not suitable when high
order functional approximations are considered [2,7,54,60], the same experiment is repeated
by using a more accurate boundary representation. The plots in Fig. 10b–d show the evo-
lution of the maximum estimated error in each element and the maximum exact in each
element for quadratic, cubic and quartic approximation of the geometry. In all cases it is
clearly observed that the error estimator is not reliable because the adaptive process con-
verges but the exact error is more than one order of magnitude higher than the desired
error.

The degree of approximation, estimated error and exact error obtained in the last iteration
of the adaptive process for q = 4 is represented in Fig. 11. The results show that even
with a more accurate geometric approximation, the exact error in the elements close to the
curved boundary is much higher than the estimated error. There is clear evidence that, if no
communication with a CAD model is undertaken during the degree adaptive process, the
original mesh must be pre-adapted manually in order to ensure that the geometric error is
small enough in order to ensure that the error estimator is reliable, clearly compromising the
robustness of the whole adaptivity process.
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Fig. 11 Sixth iteration of the degree adaptivity procedure with no geometric update using HDG isoparametric
elements and q = 4. a Degree. b Estimated error. c Exact error

Fig. 12 First iteration of the degree adaptivity procedurewith geometric update usingHDGNEFEMelements.
a Degree. b Estimated error. c Exact error

6.2 NEFEM HDG

The strategy proposed in this work consists of utilising NEFEM, where the geometry is
always given by its CAD boundary representation, irrespective of the degree of the functional
approximation. In the context of a degree adaptive process, this means that no communication
the CAD model is required as the exact boundary representation is already used by the
NEFEM solver.

The process starts with a degree of approximation k = 1 in all elements. At each iteration
the degree of the functional approximation is adapted according to the strategy presented in
Sect. 4 and a new nodal distribution is generated for each curved element.

Figure 12 shows the original mesh, the estimated error and the exact error, computed
by using the known analytical solution. It is worth emphasising that, even when the degree
of the functional approximation used is linear (k = 1) the exact boundary representation
is considered, as shown in Fig. 12a. The results show a very similar distribution for the
estimated and exact errors.

In this case, after only three iterations of the degree adaptive process convergence is
achieved. The degree of approximation used in each element, the estimated and the exact
errors in each element are represented in Fig. 13.

Remark 2 As discussed in Sect. 4.1, an alternative, not employed in practice due to the
high cost induced by the re-generation of the mesh at each iteration of the adaptive process,
consists of changing both the degree of approximation for the solution and for the geometry
during the adaptivity process, as illustrated in Fig. 3.
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Fig. 13 Third iteration of the degree adaptivity procedure with geometric update using HDG NEFEM ele-
ments. a Degree. b Estimated error. c Exact error
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Fig. 14 Estimated and exact errors for isoparametric and NEFEM. a Desired error 0.5 × 10−2. b Desired
error 0.5 × 10−3

To illustrate the superiority of NEFEM, Fig. 14 shows the evolution of the maximum esti-
mated error in each element and the maximum exact error in each element for isoparametric
and NEFEM approaches and for two magnitudes of the desired error. Figure 10a corresponds
to the case previously illustrated, where the desired error is 0.5 × 10−2, whereas Fig. 10b
shows the same study but with a desired error of 0.5× 10−3. In both cases the superiority of
NEFEM is clear as the desired error is achieved by substantially reducing the computational
cost (i.e. the number of iterations of the degree adaptive process and the number of degrees
of freedom required to achieve the required accuracy).

In addition, it is worth emphasising that the isoparametric approach requires communica-
tion with the CAD model in each iteration to re-generated the high-order nodal distribution.
These nodal distributions in curved elements must be specifically designed to ensure optimal
convergence of the isoparametric approach [3,5], while for NEFEM the Cartesian approxi-
mation of the solution ensures that the accuracy of the approximation is much less sensitive
to the quality of the nodal distribution.

7 Numerical Examples

This section presents four numerical examples to illustrate the potential of NEFEM when
combined with HDG to perform a degree adaptive process. The examples involve geometries
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Fig. 15 Computational domain and boundary conditions for the problem involving a flow in a channel with
randomly distributed ellipses

with curved boundaries and where coarse meshes are considered to show the robustness of
the proposed methodology. In all the examples the high-order isoparametric and NEFEM
meshes are generated using the techniques described in [48,64] and [57] respectively.

7.1 Flow in a Channel with Randomly Distributed Ellipses

The first example, similar to a test case presented in [36], considers the flow around a set
of randomly distributed set of 25 ellipses in a channel. Dirichlet boundary conditions are
considered in the whole domain corresponding to a parabolic velocity profile on the left
(inflow) and right (outflow) boundaries and zero (no-slip) Dirichlet boundary condition on
the top and bottom walls and on the boundary of the ellipses, as illustrated in Fig. 15.

A coarse mesh with 2,443 triangular elements is first considered. As no analytical solution
is available, a reference solution is computed in a much finer mesh with 28,150 elements and
by employing a degree of approximation k = 4. This reference solution is used to measure
the accuracy of the adaptive computations performed in much coarse meshes.

An adaptive process is performed using a quadratic approximation of the curved bound-
aries and standard isoparametric elements with a desired error of 0.5 × 10−3. Figure 16a
shows the computational mesh and degree of approximation after five iterations. In the vicin-
ity of the ellipses the majority of elements have a cubic degree of approximation where the
elements in contact with the ellipses need a higher order of approximation to capture all the
flow features. The highest order of approximation is k = 6, used, as expected, with the regions
with higher curvature of the boundary. Figure 16b, c show the estimated and the reference
errors after the adaptive process converged. The discrepancy between the estimated and the
reference errors is clearly observed. Despite the adaptive process converges, meaning that
all elements have an estimated error below the desired error, a total of 408 elements have a
reference error above the desired tolerance.

When the same computation is performed by considering a cubic approximation of the
geometry (not reported for brevity), the adaptive process converges again in five iterations.
he highest order of approximation used in a few elements is now k = 7, indicating that a
different geometric representation leads to a different degree of approximation required to
achieve convergence. In addition, the error estimator is again not reliable as there are 15
elements where the reference error is above the desired error.

It is apparent that an adaptive computation with isoparametric elements requires an initial
pre-adaptation of themesh and the degree of approximation used to approximate the geometry
in order to obtain a reliable error estimator.Next, the finermeshwith 4,048 triangular elements
depicted in Fig. 17a is considered. When a quadratic approximation of the geometry is
considered, the adaptive process converges in four iterations but the results are still not
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Fig. 16 Final degree distribution, estimated and reference errors for an adaptive computation with isopara-
metric HDG and quadratic approximation of the curved boundaries in a coarse mesh with 2443 elements.
a Degree. b Estimated error. c Exact error

satisfactory as there are 155 elements where the estimated error, shown in Fig. 17b, is above
the desired error, represented in Fig. 17c.

Finally, if a cubic approximation of the geometry is employed the adaptive process con-
verges in only three iterations with one element still showing an error above the desired
tolerance. The results clearly indicate that in the presence of curved boundaries the level of
pre-adaptation required negates all the advantages of an an automatic adaptive process as the
initial mesh has to be designed in such a way so that the error in the first computation is near
the desired error.

To show the potential of NEFEM in this scenario, an adaptive process is performed
employing the coarse mesh with 2,443 triangular elements and starting with a degree of
approximation k = 1. The adaptive process converges in four iterations. The final degree of
approximation used in each element is shown in Fig. 18a, with two elements having the max-
imum degree of approximation, k = 6, required to achieve the desired error. The estimated
and reference errors, depicted in Fig. 18b, c, respectively, shows a consistent behaviour that
illustrates the reliability of the proposed strategy to estimate the error due to the use of the
exact boundary representation. It is worth noting that in the majority of the elements sur-
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Fig. 17 Final degree distribution, estimated and reference errors for an adaptive computation with isopara-
metric HDG and quadratic approximation of the curved boundaries in a finer mesh with 4048 elements. a
Degree. b Estimated error. c Exact error

rounding the ellipses a degree of approximation k = 3 is enough to obtain the required error,
illustrating why cubic isoparametric elements outperformed the use of quadratic elements in
the previous computations.

The velocity field computed with NEFEM on the mesh shown in Fig. 18a is depicted in
Fig. 19.

To better analyse the effect of an accurate boundary representation in a degree adaptive
procedure, Fig. 20 shows the evolution of the estimated and exact errors as a function of the
number of iterations of the adaptive process by using the coarsemeshwith 2,443 elements. For
a desired error of 0.5×10−3 a quadratic approximation of the geometry prevents convergence
of the exact error whereas better results are obtained with a cubic representation of the
geometry. It is worth noting that in both cases the exact error stagnates, indicating that the
geometric error dominates over the interpolation error. Even when a cubic representation of
the geometry is considered, the exact error is not decreasing after the third iteration.

To further illustrate the limitations of an isoparametric formulation during a degree adap-
tivity procedure, the same analysis is repeated with a lower desired error, namely 0.5×10−4.
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Fig. 18 Final degree distribution, estimated and reference errors for an adaptive computation with HDG-
NEFEM in a coarse mesh with 2443 elements. a Degree. b Estimated error. c Exact error

Fig. 19 Magnitude of velocity and isolines computed with HDG-NEFEM on the mesh shown in Fig. 18a
after four iterations of the degree adaptive process

Figure 21 shows the evolution of the estimated and exact errors as a function of the number
of iterations of the adaptive process by using the coarse mesh with 2,443 elements.

The results show that a cubic approximation of the geometry is not enough because the
difference between the estimated and exact error in the final computation with cubic elements
is almost an order of magnitude. This suggests, once more that the initial mesh has to be
pre-adapted to achieve a reliable degree adaptive process.
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Fig. 20 Evolution of the estimated and exact errors during the degree adaptivity process for q = 2 and q = 3
with isoparametric HDG in the coarse mesh with 2443 elements and a desired error of 0.5 × 10−3. a q = 2.
b q = 3
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Fig. 21 Evolution of the estimated and exact errors during the degree adaptivity process for q = 2 and q = 3
with isoparametric HDG in the coarse mesh with 2443 elements and a desired error of 0.5 × 10−4. a q = 2.
b q = 3

Finally, Fig. 22 shows the results obtained with NEFEM using the coarse mesh with
2,443 elements and starting with a linear approximation of the solution k = 1. The robust-
ness of the proposed approach is clearly illustrated as convergence of both the estimated
and exact errors is achieved in the coarse mesh even for a desired error of 0.5 × 10−4.
It is worth emphasising that with NEFEM the adaptive process provides a reliable error
estimator even when the desired error is several orders of magnitude lower than the error
of the computation in the first mesh. The results clearly indicate that no pre-adaptation of
the mesh is required with NEFEM as the geometry is exactly represented irrespectively of
the spatial discretisation. Therefore, the adaptive process is purely driven by the functional
approximation and not by the geometric error as it happens with an isoparametric formula-
tion.

Further numerical experiments, not reported here, indicate that NEFEM is also superior
to an isoparametric approach where the mesh is re-generated at each iteration of the adaptive
procedure by using the same degree of the approximation for both the geometry and the
solution. In all cases, not only the time required by NEFEM is lower (due to the extra
time required to communicate with the CAD model and the mesh generator) but also due
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Fig. 22 Evolution of the estimated and exact errors during the degree adaptivity process for NEFEM HDG
in the coarse mesh with 2443 elements. a Desired error 0.5 × 10−3. b Desired error 0.5 × 10−4

Fig. 23 Mesh and degree of approximation of the converged degree adaptive procedure with HDG-NEFEM
for the computation of the flow in a channel with oscillations of the top and bottom boundaries. a On phase
oscillations. b Out of phase oscillations

to the fact that more iterations of the adaptive process are required with an isoparametric
formulation.

7.2 Flow in a Channel with Wavy Boundaries

The next example considers the flow in a channel with oscillatory boundaries. This problem,
of interest to the micro and nano-fluidics community, is often considered to study the flow
structure induced by the different phase of the oscillations of the top and bottom bound-
aries [32,62]. The two extreme cases are considered here, where the oscillations are exactly
on phase and completely out of phase. Figure 23a shows the coarse computational mesh
employed with HDG-NEFEM and the final degree of approximation obtained after ten iter-
ations of the degree adaptive process for the case where the boundary oscillations are on
phase. Similarly, Fig. 23b shows the mesh and degree of approximation obtained after eight
iterations of the degree adaptive process for the case where the boundary oscillations are
completely out of phase.

The velocity fields obtained for both cases are represented in Fig. 24 showing the ability
of the proposed approach to capture the different flow structure induced by the oscillatory
boundaries.
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Fig. 24 Magnitude of velocity computed with HDG-NEFEM after convergence of the degree adaptive pro-
cedure on the meshes shown in Fig. 23. a On phase oscillations. b Out of phase oscillations

Fig. 25 Mesh and degree of approximation of the converged degree adaptive procedure with HDG-NEFEM
and velocity field. a Degree. b Velocity

7.3 Flow in a Porous Media

The next example, taken from [59], considers the flow in the interstices of a porous media.
The geometry consists of the surroundings of a large number of particles in the porous media.
Figure 25 shows the mesh and degree of approximation after eight iterations of the degree
adaptivity procedure.

It is worth noting that a linear degree of approximation is used in many elements in contact
with curved boundaries. This shows that the proposed adaptivity strategy is completely driven
by the complexity of the solution and not by the complexity of the geometry.

7.4 Flow in a Channel with Thin Obstacles

The last example shows a further benefit of using NEFEMby demonstrating its unique ability
to obtain accurate solutions with ultra-coarse meshes even when geometric features, smaller
than the element size, are present in the boundary representation of the computational domain.

The flow in a channel with a number of thin obstacles is considered. The thickness of
the obstacles is approximately 0.08 whereas the minimum element size of the mesh that
has been generated, using the technique proposed in [57], is 0.32. The degree adaptive
process is started, as in previous examples, with a linear approximation of the solution and
convergence is achieved in four iterations. The final degree of approximation in each element
is represented in Fig. 26a. Figure 26 shows a detailed view of a region in the channel showing
the elements near the end of some of the obstacles. This plot shows not only that the element
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Fig. 26 Mesh and degree of approximation of the converged degree adaptive procedure with HDG-NEFEM
for the computation of the flow in a channel with high curvature. a Whole domain. b Zoom

Fig. 27 Velocity computed with HDG-NEFEM after convergence of the degree adaptive procedure in the
mesh of Fig. 26

size is independent on the geometric complexity but it also demonstrates the robustness of
the proposed degree adaptive technique. The adaptivity process is clearly driven only by the
complexity of the solution as a different degree of approximation is employed in elements
with almost identical geometric complexity due to the different complexity of the solution.

The velocity field, obtained on the mesh shown in Fig. 26, is represented in Fig. 27.

8 Concluding Remarks

A new degree adaptive methodology that combines the advantages of the HDG formulation
and NEFEM has been presented. The proposed method results in a cheap and reliable error
estimator due to the cheap computation of a post-processed solution provided by HDG and
the ability to exactly represent curved boundaries irrespectively of the polynomial degree
used for the functional approximation that is characteristic of NEFEM.

The proposed approach is compared against two alternative options to perform degree
adaptivity. The first approach, broadly used in practice, consists of keeping the shape of the
curved elements during the degree adaptivity process. It is found that this approach leads to
an unreliable error estimator. The numerical examples show that even when the estimated
error is below the required tolerance, the exact error can be orders of magnitude higher.
The second approach, not used in practice, consists of changing the shape of the curved
elements during the adaptive process. The main drawback is its high cost due to the need
to constantly communicate with the CAD model and re-generate the nodal distributions for
curved elements.
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The proposed approach considers, for the first time, the implementation of the NEFEM
rationale in an HDG framework. A number of numerical examples have been presented to
compare the performance of the proposed methodology and to shows its superiority on a
number of problems involving domains with curved boundaries.
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