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Abstract

In this thesis we investigate numerically SU(2) theories with Dirac—or
Majorana—{fermions in the adjoint representation. Majorana fermions have
historically proven difficult to treat numerically; here, a change of basis is
introduced that allows two Majorana fermions to be expressed in terms of
one Dirac fermion. This also provides greater insight into the analysis of the
properties of theories with Dirac fermions. Attention is focused on the SU(2)
theory with a single Dirac flavour (or equivalently two Majorana flavours).
Its lattice phase diagram, spectrum, and the anomalous dimension of the
chiral condensate are investigated. We observe a long region of constant
mass ratios and an anomalous dimension 0.9 < v, < 0.95. The behaviour
of the pion mass and the presence of a light scalar in particular point to be-
haviour that is not traditionally confining; instead the theory appears to lie
in or near the conformal window. The topological susceptibility and instan-
ton size distribution are also investigated, for the one-Dirac-flavour theory
and additionally the pure-gauge and two-Dirac-flavour (Minimal Walking
Technicolor) theories. The properties are found to not depend on number
of flavours, indicating a quenching of the fermions in the topology, also con-
sistent with (near-)conformal behaviour (as has previously been reported in
studies of other observables for Minimal Walking Technicolor). The code
used is described, and a high-performance computing benchmark developed
from it is detailed. While the benchmark was originally developed to inves-
tigate the performance of different supercomputer architectures for the class
of problems we are interested in. Due to the nature of the code on which it
is based, it has an unusual flexibility in the demands it may place on ma-
chine’s performance characteristics, which may allow it to be applicable to
problems outside of lattice physics. The benchmark is used to characterise
a number of machines’ relative performance.
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Chapter 1

Introduction

It is an exciting time to be working in particle physics. With the results from the
LHC flowing in, and revealing that nature has a scalar state with a mass of 125GeV,
there is a focus within the theoretical community to explain these results, beyond the
predictions of Higgs [11, 12]. Many tools are used for this, including analytic (but often
approximate) methods such as gauge-gravity duality, and first-principles computational
methods like the lattice approach. The work presented in this thesis looks at a family
of theories known as Technicolor, which makes use of strong dynamics to break the
electroweak symmetry, using the lattice approach. Related to this, it also looks at ways
of measuring the performance of supercomputers at performing lattice computations
for these theories; this is an important step when procuring machines to do work such
as that presented in this thesis.

In chapter 2, I will motivate and describe Technicolor as a family of theories. Then
in chapter 3, I will introduce the framework of lattice gauge theory, and the algorithms
therein that have been used, review recent results, and describe what is known of the two
theories to be studied in the following chapters. Chapter 4 describes the investigation
of a particular theory of relevance for Technicolor models, namely the SU(2) gauge
theory with one adjoint Dirac flavour (which I will refer to as SU(2)AdjNfl), the first
lattice investigation of this theory. The study is exploratory in nature, looking at the
spectroscopy of the theory as well as the static potential and string tension from Wilson
and Polyakov loops, and the anomalous dimension of the chiral condensate from the

Dirac mode number. The results tentatively point at the theory not being traditionally
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confining; instead lying within or near the conformal window. Some of the work in this
chapter was previously presented in a poster at the SEWM conference [13].

Chapter 5, meanwhile, after reviewing some aspects of instantons and topology,
looks at the topology of this theory, and that of another SU(2) gauge theory: that
with two adjoint Dirac flavours, known as Minimal Walking Technicolor. Previous
studies have looked at the spectroscopy and running of the coupling of this theory; the
topology observed is found to be consistent with that expected from previous obser-
vations (based on other observables)—in both theories it is consistent with conformal
or near-conformal behaviour—and it is also found that the instanton size distribution
may be useful as an indicator of the onset of finite-volume effects. Scaling behaviour
found for other observables in previous work is however not observed in the topological
observables considered here. Some of the work in this chapter was previously published
in [14].

Next, chapter 6, after reviewing some relevant aspects of high-performance com-
puters, briefly describes the HiRep code, which has been used extensively throughout
this work, and then details BSMBench, a supercomputing benchmark tool based on
HiRep to support the investigation of new physics by allowing an informed choice of
equipment purchase, as well as having applications beyond physics. Some of the work
in this chapter was previously presented in a poster at ISC’12 [15]. Finally, chapter
7 sums up the findings of the work presented in the preceding chapters, and gives an
outlook for potential future work in this field.

Two appendices are also included: the first includes visualisations of topological
charge distributions based on the work of chapters 4 and 5, which were submitted
for Swansea University’s Research as Art and the Royal Society’s Picturing Science
competitions. The second appendix includes the README and LICENSE text files
for the BSMBench software.



Chapter 2

The Standard Model and Novel

Strong Interactions

The Standard Model accurately describes almost all known interactions of elementary
particles (with the notable exception of gravity, treated separately) to an exquisitely
high precision—for example, the anomalous magnetic moment of the electron, (g—2)/2,
has been calculated analytically to 3-loop order [16], and numerically to ten-loop order
to have a value of 1.15965218178(77) x 10~ [17], which is in exact agreement with
the experimental value of 1.159 652 180 76(27) x 10~3 [18] (itself one of the most precise
experimental measurements ever made). Its most recent success was the prediction
of the Higgs particle; in July 2012 the ATLAS and CMS teams at the Large Hadron
Collider at CERN announced the discovery of a particle matching the description of

the Higgs—that is, a scalar boson, found to have a mass of 125GeV [19, 20].

2.1 The Standard Model

The (minimal) standard model (MSM) is formulated in the framework of Quantum
Field Theory. It has a SU(3) x SU(2) x U(1) gauge symmetry, and the following field

content:
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Field Description Gauge SU(3) . SU(2) . ul)
boson representation  representation Hypercharge

B Weak hypercharge B 1 1 0
w Weak isospin W+, WO 1 3 0
G Colour Gluons 8 1 0
QL Left-handed quark 3 2 i
UR, Left-handed up quark 3 1 %
dr Left-handed down quark 3 1 —%
Ly, Left-handed lepton 1 2 —%
Er Right-handed electron 1 1 -1
H Elementary Higgs' 1 2 %

Its Lagrangian takes the general form?
1 — _
Lot = —5trF2 + Qi+ (DH)'DH — YQH¢ — V(HTH) (2.1)
with the terms representing, in turn:

e the kinetic contribution of the spin-1 gauge fields,

e the kinetic contribution of the fermion fields, and interactions described by the
SU(3) x SU(2) x U(1) group,

e the kinetic contribution of the Higgs and its interactions with the gauge fields,
e the Yukawa interactions between the Higgs and the fermions, and

e the self-interaction of the Higgs.

2.1.1 Breaking Electroweak Symmetry with a Fundamental Scalar

Noticeable in the field composition of the MSM is the lack of a photon; this is due
to the fact that the electroweak symmetry SU(2) x U(1) is broken at low energies to
the U(1) symmetry of QED. In the MSM, this breaking takes place via the elementary

Tt is the introduction of the elementary Higgs (also known as the Standard Model Higgs) here
which takes us from the Standard Model to the Minimal Standard Model

2This is a schematic rather than quantitative representation, since for instance the left- and right-
handed fermions are treated separately, and the quark states seen by the strong interaction are different
from those acted on by the weak interaction. However, reducing to the simplest form in this way will
aid the discussion, since there will be fewer distractions from unnecessary details.



2.1 The Standard Model

Higgs, through a mechanism proposed by Weinberg and Salam [21, 22], who made use
of prior work by Glashow [23], and the Higgs mechanism, developed by various authors

[11, 12, 24, 25]. Its potential takes the form of a complex scalar ¢* interaction:
1
V(H)=—p*H'H + ZA(HTH)2 . (2.2)

This potential has the familiar “Mexican hat” shape, and thus fails to have a minimum
at H = 0; thus H obtains a non-zero vacuum expectation value (VEV). Since H
transforms under the SU(2) symmetry, this symmetry is spontaneously broken: the
breaking pattern is SU(2)z, x U(1)y — U(1)g (where subscripts have been added to
clarify that both hypercharge and weak isospin are broken, leaving electric charge).

Goldstone’s theorem [26] tells us that this breaking will reward us with three Gold-
stone bosons, which via the Higgs mechanism are consumed by the W+ and Z bosons
to become their longitudinal degrees of freedom; this then allows the gauge bosons to
become massive. Looking also at the Yukawa interactions, we can see that once the
broken symmetry has given H a non-zero VEV, then these interactions give a mass
term to the Standard Model fermion fields. A detailed treatment of why this is so is
deferred to a textbook on QFT (for example [27]).

Looking back at H, we notice that of the four degrees of freedom it had, only three
have been absorbed by W* and Z; this leaves one fundamental massive scalar waiting
to be detected. It is this prediction of an additional boson that led to the search for
one at the LHC; the discovery of a particle consistent with these properties is a strong
indication that the theory is either correct or very close to the mark. Additionally, the
work of the Particle Data group [18] collates over 27,000 independent measurements
from experiments across the planet, all of which are in agreement with the predictions

of the Standard Model, many with extremely high precision.

2.1.2 Problems with the Standard Model

If we have a theory as good as is suggested by the end of the last section, then we face
an obvious question: why would we be in need of a replacement? The most obvious
omission from the Standard Model is the lack of any treatment of gravity. Although
this is an issue for a fundamental theory of nature, in practice, this has not proved

too large a problem for understanding experimental results. All accessible physics can
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be explained by considering the SM with no gravity, and then using classical gravity
or general relativity (and macroscopic SM results) at larger scales. The problems
remaining are exotic situations which we cannot (currently) probe experimentally, and
a rather more fundamental problem known as the hierarchy problem.

Working on the assumption that there is a consistent theory explaining all funda-
mental forces (even though we don’t know it), we expect it to “switch on” at some scale.
We know that this must be at or below the Planck scale (~ 10'9 GeV), since this is
where quantum field theory in general breaks down. If we assume that no new physics
occurs between EWSB and the Planck scale, then we find ourselves with a problem:
the mass of the Higgs required to make the Standard Model consistent with observed
results (not to mention the one observed) is many orders of magnitude smaller than
the only scale we have to work with, the Planck scale. Such a problem is referred to as
a hierarchy problem. Historically, when inconsistencies in a working theory have been
found, they have been solved by conjecturing (and, in general, subsequently discover-
ing) new physics (with associated new scales), and it seems reasonable that in the many
orders of magnitude that are unexplored, some new physics lies waiting to be found.

The other remaining issue is that of the five terms in eq. (2.1), the 27,000 measure-
ments mentioned above all relate to the first two. The remaining three—all relating to
the Higgs sector, which is not represented in the two terms that have been probed—
are essentially untested. With the discovery of the Higgs at the LHC, experiment will
hopefully be able to begin putting bounds on them. To this end, it is prudent to de-
velop a variety of alternative theories (that leave the observed results unchanged, or at
least within error bars), and experimental signatures for their correctness, so that they
may be distinguished.

For these reasons it is important to look beyond the theory of the Standard Model
to explore the space of possible theories, to find models that will solve these prob-
lems. There are a number of popular candidates, which have developed over the last
few decades and inspired whole fields of research. They include supersymmetry (the
introduction of a new boson-fermion symmetry, creating “superpartners” for all SM
particles), a theory which has proven a useful tool in building toy models outside
of its potential for being found as new physics, and extra-dimensional models such as

Randall-Sundrum (where the universe as we observe it is localised on a 3+1-dimensional
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slice of a higher-dimensional space, whose dynamics account for unexplained phenom-
ena). The work presented in this thesis looks at two theories falling in a class that have
the potential to solve many of the Standard Model’s shortcomings—known in general
as Technicolor!, which is described in the remainder of this chapter—and also looks at

technology being developed for the investigation of new theories.

2.2 Technicolor

Technicolor (sometimes abbreviated to TC) is an alternative theory of EWSB proposed
independently by Weinberg [28, 29] and Susskind [30] in 1979. The central idea is that
rather than breaking via a fundamental scalar Higgs, the electroweak symmetry is
broken dynamically by the generation of a VEV for a chiral condensate (1)) through
chiral symmetry breaking.

This behaviour can be demonstrated even in QCD, as was noted in [31]. The QCD
Lagrangian takes the form

1 —  m=
Zqep = —ZFﬁyFé“’ + (13 0 - mdi;); (2.3)

where F}, are the field strengths of the gluon fields, which lie in the adjoint representa-
tion of QCD’s SU(3) gauge group, v; are quark fields, Dirac fermions in the fundamental
representation of the gauge group, ]szo is the massless Dirac operator, characterising
both the kinetic behaviour of the quarks and their interactions with the gluons, and m
is the quark mass (which is set to be equal for all flavours of quarks considered).

If we decompose the quark fields into left- and right-handed chirality components
using the projection operators Pg) = 3(1 £ 75), defining Yr) = Pra)¥, where
1 = 91, + YR, then the Lagrangian becomes

1 — me e _ _
ZLoep =~ F P+ 0L g + Oraldl Uy — m(uatbr + Pritbn) - (24)

Note that the only term that mixes left- and right-handed states is the mass; in the

limit of massless quarks then the states are independent, and the Lagrangian is invariant

)

!Strictly speaking, the name “Technicolor” applies only to the first theory described in the next
section, the related family of theories being properly called “strongly interacting BSM dynamics” or
similar; however, the name Technicolor has also stuck as a slightly unfortunate name for the family,
due to its shorter length than the alternative, and it will be used as such throughout this work.
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under U(Ny) flavour transformations applying independently to left- and right-handed

components:

YLy = YLy = UiI;(R)T/JL(R)j, UMR) e U(Ny) (2.5)

which gives an overall symmetry group U(N¢) x U(Nf). We may split out U(1) com-
ponents from the groups, and then take linear combinations V=R + L, A =R —L,
to give a total global symmetry group of SU(2);, x SU(2)g x U(1)y x U(1)4, where we
have now restricted ourselves to considering two quark flavours.

At a quantum level, the U(1), is subject to the well-known axial anomaly (see,
for example, [32, 33], or any recent QFT textbook, for instance [34]), reducing the
symmetry to SU(2);, x SU(2)gr x U(1)y. But if we then move to strong coupling,
then the vacuum will spontaneously produce quark-antiquark pairs, giving a VEV to
the fermionic condensate—which by comparison with equation (2.4) we see breaks the
chiral symmetry: only the vectorial subgroup remains, as SU(2)r, x SU(2)gr — SU(2)y.

To connect this with EWSB, we gauge the SU(2), x U(1)y subgroup of SU(2), x
SU(2)r'; now the chiral symmetry breaking pattern is SU(2), x U(l)y — U(1)g.
Since we have broken a gauge rather than a global symmetry, the Goldstone bosons
are absorbed into the gauge bosons as in the fundamental Higgs case.

In fact, QCD does couple to the electroweak sector in this manner, and its chiral
symmetry breaking gives a contribution to the masses of W* and Z; unfortunately this
contribution is decidedly small, so we must look to other theories to break EWSB and
generate the remainder of the mass.

Conspicuous by its absence here is the residual scalar state seen in the case of EWSB
by an elementary Higgs; given the recent discovery of such a state at the LHC we are
prompted to question the value of Technicolor as a theory, since it appears incompatible
with this discovery. We will see in the coming sections how this particular bullet is
dodged.

2.2.1 Beyond QCD: Phases of SU(N) Gauge Theories

Looking back at the QCD Lagrangian (equation (2.3)), we can see a number of parame-

ters that seem have been “set” to get this theory, which could be altered to give a theory

'The U(1)y is generated by the third generator of SU(2)r, to connect to the electroweak chiral
Lagrangian [1, 35, 36].
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lying “beyond” QCD; the most apparent are the gauge group (which could be altered
to another SU(NN) group, or some other group entirely), the number of fermions, and
the fermion representation (why not a “higher” representation?). It is this parameter
space that is being explored to look for potential Technicolor theories; to this end, it is
important to understand the properties of gauge theories in various areas of this space.

This phase space was explored perturbatively, at least for SU(NV) theories, by Diet-
rich and Sannino in [37], of whose results I will summarise some here. The explanation
relies upon the Renormalisation Group (RG) beta-function 3(g), and the anomalous

dimension of the chiral condensate ., which are defined as:

dg _ 0Og
Blg) = oG ~ "o (2.6)
- OIn(y), Oln(Yy), (2.7)

where p is the RG scale. At §(g) = 0, the theory has an RG fixed point.
The two-loop beta-function of a general non-Abelian gauge theory, with fermionic

matter in some representation of SU(N) labeled R takes the form [38]:

3 5
8l9) = ~Bo s — iy (2.8)
where
2Nfo = HCo(G) — 3T(R) (2.9)
(2N)?B1 = 2(C5(G))? — LC5(G)T(R) — 4C2(R)T(R) , (2.10)

where in turn, C2(R) is the quadratic Casimir operator of the representation R (with
G referring to the adjoint), and 7'(R) is the trace normalisation factor for that repre-

sentation; for N flavours,

INXEXE = Co(R) (2.11)
NiCo(R) dim(R) = T(R) dim(G) . (2.12)

X}, refers to the the generators of the group in the representation R; equation (2.12)

is derived in Jones [39], and dim(R) refers to the dimension of the representation.
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(a) Confining (b) Near-conformal

(¢) Conformal (d) Asymptotic freedom lost

Figure 2.1: Sketches of the £ function in each of the regions discussed in the text.

Thus as the number of flavours is raised, the shape of the § function changes. Above
some value of N, which Dietrich and Sannino refer to as NfI [R], the sign of Sy changes
from negative to positive, giving a theory which no longer has asymptotic freedom. By
rearranging (2.9), we see

11dim(G)Cy(G)

N{[R] = 7 dm(R)Cs(R) (2.13)

which can be immediately seen to have a fixed value of 11/4 for the adjoint representa-
tion. Meanwhile moving from the other direction, we can see that at another value of
N, which Dietrich and Sannino call NfIH [R], the By and B; terms will cancel, resulting
in a conformal fixed point first discussed by Caswell [38], and later by Banks and Zaks
[40].

However, whether this conformal fixed point can be reached depends on another

factor, pointed out by [41, 42] and discussed in the next section: the relative order of

10
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a,—the value of the coupling constant where the fixed point is encountered—and a.—
where chiral symmetry breaking occurs. Looking at the RG flow to the IR, if the fixed
point at « is reached first, then the coupling freezes, so a. will never be reached, and
chiral symmetry will not break. Meanwhile, if «. is reached first, then chiral symmetry
breaks and the fermions decouple; the lack of screening by fermions to counteract the
antiscreening of gauge bosons prevents the fixed point from being reached. The point
at which the relative order changes is referred to by Dietrich and Sannino as NfII [R].
To summarise, working from high to low N;, we have a region without asymptotic
freedom, then an IR-conformal region with a BZ fixed point, then a confining region,
which initially has a BZ fixed point that is almost reached; the closer N is to NF'[R],
the closer the theory gets to the fixed point. This is illustrated in figure 2.2. The near-
conformal region is, as it might appear, the region that is close to the conformal window
but not inside it; this will come into play in the discussion of Walking Technicolor in a

later next section.

confining conformal coulomb

\ \
t Ne
near-conformal

Figure 2.2: A cartoon showing the cases of theory one encounters as Nt is varied.

2.2.2 Ladders and Rainbows

In the previous section I discussed the need to ascertain where o, = . in order to find
NfH[R]. At two-loop order in perturbation theory, a, is trivial to find from equation

2.8 above:

a,= I
* 47

__bo

= - 2.14
B(9)=0 il (214

., meanwhile, requires a little more work. We can find it by making use of the
Schwinger-Dyson (SD) equation for the fermion propagator, which for massless QCD
has the form [42]

d* A¢

S~ (p) =Z}¢+/A 22D, (0 — ) 57,8 (0T g p) (2.15)
(27’1’)4 v 2 12 v\4 )

where A is the regularisation scale, D, (k) the dressed renormalised gluon propaga-

tor, and I'%(q;p) is the renormalised, dressed vertex term. As is always the case in

11
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fry

(a) Rainbow (b) Ladder

Figure 2.3: Examples of rainbow and ladder diagrams, which are the basis of the rain-
bow/ladder approximation. These are equivalent numerically; the two shapes give rise to
the common names given to the approximation.

perturbation theory, the propagator is dressed by loop corrections, which are them-
selves dressed, in a recursive manner. The ip contribution is from the bare fermion
propagator, and the second term adds the dressing; here we see the recursion in S.

When dressed, the fermion propagator may be written as:

S) = " (2.16)

(p)p—2(p)

where X(p) is the self-energy of the fermion, and Z(p) the wave function renormali-
sation; however, inserting this into (2.15) does not solve the recursion problem. The
dressing must be approximated to make the analysis tractable, whilst retaining the
interesting physics. This can be done by making use of by the “rainbow” or “ladder”
approximation; these refer to the same approximation, drawn in two different ways,
as shown in figure 2.3, which was first used in the context of QED in [43]. This ap-
proximation replaces the dressed gluon propagator and vertex term by their tree-level
values, which when combined with (2.16) allows coupled equations for Z(p) and X(p)
to be written. From this, [42] shows that Z(p) = 1 for all ¥; this then allows us to

write

d*k 1 (k)
2m)* (p — k)? k2 + E(k)? -

S() = 3°Ca() [ (2.17)

This is obviously still recursive, but only in 3, for which we may solve analytically.
The critical case is taken to be that where the anomalous dimension of the condensate

v« = 1; this is the case for
T

" 305(R)

e . (2.18)

12
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Now by equating equations (2.14) and (2.18) we arrive at an estimate for the lower
end of the conformal window, NI'[R]:

_ dlm(G)CQ(G) 1702(G) + 6602(R)

Ni'[R] = dim(R)Cs(R) 10C2(G) 4 30C2(R)

(2.19)

Note that this estimate has been obtained by combining two different approximations:
perturbation theory, and a truncation of the Schwinger-Dyson equation; therefore, it
should only be taken as an qualitative indication. A quantitative, precise prediction
would require a first-principles non-perturbative approach: this is one of the subjects

of current research in the field, as will be outlined below.

2.2.3 Extended and Walking Technicolor

We noticed previously that the most basic Technicolor theories fail to give a scalar state
corresponding with the Higgs boson; however, there is also another problem that needs
addressing: unlike the elementary Higgs, the techniquarks do not have any couplings
to the SM fermions, and so EWSB does not generate any masses for them. This
problem can be solved by introducing a new gauge group, with both SM fermions
and techniquarks charged under it; this is referred to as Fztended Technicolor (ETC),

proposed in [44, 45]. Looking at the resulting four-fermion vertices,

YT U7V WTUYTO YT YpTOY
Qb A2 + Bab A2 Yab A2 T (220)
ETC ETC ETC

where for the purposes of clarity in this section, ¥ represents the technifermions, and ¢
the Standard Model fermions; T'* are the generators of the flavour symmetries, and a, b
indices refer to the flavour sector, determining the precise nature of the ETC theory in
question. Looking at the second term, it evidently mixes SM and technifermions; at

Arc the technifermions will form a condensate, giving an interaction of the form:

() Yata

2
AETC

a%nt = /Ba y (221)

which provides the fermions with a mass. Now, since the S coefficient results from

two underlying vertices in the ETC theory, and that <@\I/> ~ A?’TC, the resulting SM

13
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fermion masses will be of the order

mg ~ g}%KQCABTC . (2.22)
ETC
Additionally, if we consider the possibility that rather than one ETC breaking scale,
there are instead three, then we can see a natural way in which the three generations of
the Standard Model fermions might arise—the three generations of quarks and leptons
each have successively higher masses, which are now each associated with a separate
breaking scale. This mechanism is referred to as tumbling [46].

The « terms, meanwhile, give masses to Goldstone bosons arising from the breaking
that aren’t consumed by the gauge bosons; in the absence of this term, their masses
would be sufficiently small that we would expect to have observed them [45, 47]—
which we have not [18]—and the theory would be ruled out. However, looking at the
~v term we find we have introduced almost as many problems as we’ve solved, since
we’'ve added a new set of couplings between the SM fermions, which allows for flavour-
changing neutral currents (FCNCs). FCNCs are highly constrained in observations; a
sector that provides definitive limits is that of the neutral kaons, where the K° and
KO states mix, giving mass eigenstates Kg and KY. The mass splitting is an indicator
of the degree to which FCNCs are permitted, since the mixing of states is suppressed
by a cancellation between generations of quarks. If we take ETC as the cause of any

splitting, we get a lower bound on Agrc:

Amg IR (2.23)
mg QA%TC ’ '

where fx ~ 113MeV is the kaon decay constant [18, 48]. Experimentally the splitting
is observed to be Amgk = (3.484+0.006) x 10~'2, which puts the lower bound on Agpc
at

Agrc > 10° TeV . (2.24)

The K° meson consists of strange and anti strange, so K-KO system places limits on
generation of the strange quark mass; however, the most recent experimental data also
allows a similar bound to arise for the D°-D° system. Since the DY consists of charm
and anticharm, the bound now applies to the generation of the charm mass; and as the

charm is much heavier than the strange, the problem is enhanced [49].

14
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This constrains the fermion masses to be of the order 1keV, which is far smaller than
any of the SM fermion masses save for the neutrinos. We have thus created a tension
between two different observations: that the SM fermions have masses well above 1keV,
and that FCNCs are highly constrained by, for instance, the neutral kaon system; we
would therefore like to find some way of decoupling the mechanisms controlling these
two phenomena. This mechanism turns out to be one known as walking, introduced in
[50-52], where the coupling runs very slowly in the region of a fixed point that is not
quite reached. This allows the ETC scale (and hence the suppression of FCNCs) to be

tuned independently of the SM fermion masses.

To see this, look back at equations (2.21) and (2.22). In the latter, we have calcu-
lated the chiral condensate at the TC scale; however, in fact we need to do so at the

ETC scale; this adds a multiplicative correction dependent on the anomalous dimension

Y+(9)
AgTc dp

<@‘P>ETC = <@\P>TC exp [/ATC Z’y*(g(p)) . (2.25)

Now, QCD-like theories have small ~,, since their couplings run quickly to zero in
the UV—Ileaving us with the same problems we had two paragraphs ago. However, we
mentioned in the previous section for that theories at or near the lower edge of the
conformal window, the anomalous dimension of the chiral condensate is v, ~ 1; if we
look for a theory where the coupling is roughly constant (i.e. running very slowly, or

“walking”) between Arc and Agrc, then v, will be constant over this range, and (2.25)

becomes

_ _ A Y
<‘I”I’>ETC - <‘1"I’>TC (AETTCC> ’ (2.26)

and we see that we have achieved our aim: while the FCNCs are still controlled by

AgTc, the fermion mass is controlled by /XETTCC; by choosing a large Agpc and a small

A, we may satisfy both constraints.

Walking is conjectured to occur in theories lying immediately below the lower end
of the conformal window (the same region as we expect 7, = 1), indicated by the arrow
in figure 2.2. As one can see in figure 2.1b, the infrared fixed point of the conformal

theory is approached but not quite reached, leading to the walking behaviour.
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2.2.4 Techniscalars

In contrast to the elementary Higgs theory, where EWSB leaves a single scalar state
(the Higgs) behind, we have yet to see any light scalars emerge from Technicolor. We
of course expect scalars from EWSB, however, in general there will be more than one
unbroken generator, and these resulting scalars acquire a large mass from the «a term in
equation (2.20)—which is convenient, since we don’t observe a large number of scalars
in the physical spectrum. We do, however, observe one, which has been mentioned
above and whose discovery was sought after with great enthusiasm: the boson found
at the LHC which matches the expected properties of the Higgs.

One might reasonably ask, in the light of this, what reason we have to continue
studying Technicolor; surely the discovery of a state not observed in its spectrum has
put the nails in its coffin? Of course, theories are harder to kill than that, and there are
a number of different explanations of states which could match the properties of the
observed Higgs within the Technicolor framework, of which two of the most promising
are technipions and technidilatons.

Firstly, consider a Technicolor theory where EWSB produces four scalars; there
three are Higgsed into the gauge bosons, leaving a single scalar behind. The large mass
enhancement mentioned previously is not compulsory, so the remaining technipion may
become the light scalar observed experimentally. In principle, a theory giving a larger
number of technipions could equally well have this property; however, only one such
scalar has been observed. The discovery of a second Higgs-like scalar would be a strong
indicator that the MSM was inadequate.

Secondly, consider again the Lagrangian of the MSM,
1 — _
Lan = _itrF2 + ¢ilpyp + (DH)' DH — Y¢Hy — V(H H) (2.27)
where the Higgs potential is now factorized as:
2

2
V(HTH) =X (HTH — QJ%V) . (2.28)

In the limit \' = 0, this is entirely scale-invariant; it is broken by the minimum of the

Higgs potential at a scale vyw. The breaking of this dilatation symmetry gives rise to a
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dilaton; in the case of the MSM this turns out to be the Higgs, acquiring a mass
mi = 2\ v3; . (2.29)

Most of the calculations to study such a state (provided it is, as is required, light) can
be carried out at tree level, with perturbation theory providing small corrections; thus
any theory with a similar dilaton in its spectrum will have similar properties—not only
quantum numbers, but also its couplings and phenomenology. The differences would
appear at high energy and at high precision in the sub-leading corrections. However,
since QCD does not, one might reasonably ask why we expect a Technicolor theory
to provide us with a dilaton. One possible answer comes from the walking dynamics:
we expect an IR near-fixed-point in the near-conformal theories of interest for walking
behaviour; if the IR is sufficiently “near” conformality, then we would expect a dilaton
to appear from the breaking of this symmetry. Recent work includes [53], in which the
authors find a light scalar emerging from a string dual (although the theory falls short
of being a Walking Technicolor candidate for other reasons), [54], where the authors
show another gravity theory dual to a potential walking Technicolor theory with a light
technidilaton, and [55], which again uses a gravity dual, showing that the technidilaton
it admits is consistent with a physical mass of 125GeV.

The most recent results from the LHC experiments [56] more firmly suggest that
the observed state at 125GeV is a scalar rather than a pseudoscalar; if correct, this
would eliminate technipions as a candidate explanation. Further experimental study
of the state’s properties is necessary to fully evaluate Technicolor as an explanation for

EWSB.

2.2.5 Areas of research

Current research on Technicolor spans a vast area; relevant reviews summarising their
findings, as well as going into background beyond the scope of this work, include [1, 57—
61].

As discussed in section 2.2.1, Dietrich and Sannino [37] narrowed the parameter
space of available SU(N) theories somewhat; they showed that for Ny > 1 flavours in a
representation R, there is a limited set of Ny, R which have asymptotic freedom: for the

fundamental, adjoint, and two-index symmetric and antisymmetric representations, all
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N are allowed, and for N < 9 there are a few other special cases, namely the three-index
antisymmetric representation for Ny = 2,6 < N < 9, and the four-index antisymmetric
representation for Ny = 2, N = 8. If one allows for Ny > 1 flavours, then the set of
exceptions grows, but still only the fundamental, adjoint, and two-index symmetric and
antisymmetric representations remain for N > 16.

The methods in use complement each other: field theoretical methods, such as
Seiberg duality [62] and the analyses quoted in section 2.2.2, are semi-analytic. In the
case of section 2.2.2, an uncontrolled approximation is made. It is sufficient to show
that the various regions seen exist; however, the boundaries it gives on these regions
are by no means precise. Other techniques are needed to look non-perturbatively and
in a more controlled manner; two such techniques are holography and the lattice.

The holographic method divides into bottom-up approaches, where the 4D theory
has an additional dimension added, working in the direction of finding a gravity dual
with as little intervention as possible, and top-down approaches, where one works from
full string theory to find the properties of the Technicolor theory. The latter—in the
case of Technicolor, rather than in the wider field where the opposite holds—is the more
recent, powerful, and difficult approach. Recent bottom-up results include [53, 55, 63—
74], whilst recent phenomenological findings of the top-down approach include [75-81],
and recent theoretical developments include [82-87]. Holography captures the broad
features of the theories it looks at well, but is a large-N method, meaning it becomes
less trustworthy at smaller N.

In order to verify the results from the large-N approach at small N, and to ex-
plore theories that cannot be reached holographically, we look to the best known first-
principles technique: the lattice, where the space-time is quantised to a discrete lattice.
This approach is the method used for the work in this thesis, and is described in the

next chapter, with results from the literature quoted afterwards.

2.3 Conclusions

In this chapter I have outlined in brief the important features of Technicolor, in par-
ticular those that put the rest of this project in context. Technicolor offers a neat
alternative to the elementary Higgs for EWSB, using phenomena already demonstrable

in QCD, and by extending it with an additional gauge boson and allowing it to walk
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we find that it explains problems that the Standard Model Higgs fails to explain. I
have also mentioned alternative explanations for the observation of a scalar at 125GeV
at the LHC.

Some examples have been quoted from the literature of theories that have been
studied analytically in perturbation theory using the gauge-gravity duality approach.
However, analytic technology is insufficient to probe many aspects of the theory, specif-
ically non-perturbative effects at finite number of colors. For this reason we need a fully
first-principles, non-perturbative method for studying theories; to this end in the next

chapter we introduce the lattice, to discretise the theory and analyse it numerically.
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Chapter 3

Gauge Theories on the Lattice

In this chapter, I will motivate and describe the set of techniques known as Lattice
Gauge Theory (LGT). Since a complete treatment could easily fill multiple textbooks,
the scope of this chapter will be limited to considering those techniques used in carrying
out the work described in chapters 4-6. In section 3.1 I will describe the necessity for
LGT to investigate strongly-coupled non-Abelian gauge theories, and describe its basic
principles. In section 3.2, I will describe the algorithms and specific techniques used for
the computations carried out for this project (excluding those developed specifically to
deal with the theory discussed in chapter 4, and those looking at topological observables,
which are treated separately in chapter 5). Then in sections 3.3 and 3.4, I will look at
existing lattice results in the literature, both for QCD and for candidate Technicolor

theories, and outline the two theories that will be studied in this work, respectively.

3.1 Motivation and Approach

Computations in gauge theory require calculations of functional integrals across field
space, which are analytically tractable only in special cases. Around these cases, we
may use perturbation theory when there is a suitable small parameter to expand in
(i.e. at weak coupling). Additionally, the functional integrals found in gauge theory
diverge, and must be regulated (and renormalised) for results to be meaningful.
Approaching a problem that is not analytically tractable, an instinct that has ex-
isted since the time of Newton is to discretise the problem: what was a continuum

problem then becomes a discrete problem. In the case of lattice gauge theory, the four-
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R I R A plaquettes
[ J [} [} .</ [ ) [ J
links

Figure 3.1: A three-dimensional example of a lattice setup. Lattice sites are in black; in
blue are links which connect adjacent sites; the closed green paths are plaquettes.

dimensional space-time is discretised into a lattice (a term borrowed from condensed
matter theory, since many early techniques were inspired by and borrowed from the
techniques for looking at atomic lattices).

Since high energy is equivalent to small wavelength, this has the secondary effect
of acting as a regulator: wavelengths smaller than the lattice spacing (traditionally
referred to as a) will not be represented, giving an energy cut-off A which rises as the
lattice spacing is decreased. Since the aim of any discrete calculation is to be able to
approximate to the “true” case that would be found in the absence of discretisation
(the continuum limit), we will always aim to take (or at least estimate) the limit a — 0,
i.e. A — 00, as must be done with a regulator.

The lattice is Wick-rotated to have imaginary time—that is, it is a Euclidean lattice,
with all-positive metric. The reasoning for this will become clear below. The space-time
is generally given boundary conditions that are either periodic or antiperiodic (where
fermionic variables change sign across the boundary); the calculations for the work of
this thesis use periodic boundary conditions in the spatial directions and antiperiodic
in time. (One can also use other boundary conditions such as twisted periodic; these

are outside the scope of this work and will not be discussed further.)
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A three-dimensional example of such a space-time lattice is shown in figure 3.1. As
one might expect from a discretised space-time, the lattice consists of a regular array
of points, referred to as sites, and labeled with a position vector. In principle this can
be any regular pattern, but in practise most simulations have a hypercubic lattice!
(although studies at high temperature use an “anisotropic” lattice with a different
spacing in the temporal direction). Fermion fields have values defined on each lattice
site. Running between adjacent lattice sites are links, which are labeled by the position
of the site on which they start, and an index denoting their direction. The gauge fields
live on the links, and are represented as link variables, which are exponentiations of the

components of the gauge potential at the start of the link:
U, (x) = e94u) (3.1)

Only positive directions are considered for link variables; the equivalent in the reverse
direction may be obtained by taking the hermitian conjugate of the variable on the
desired link. The smallest square that can be defined on the lattice, from four adjacent
lattice sites, is referred to as the plaquette, and the path-ordered product of link vari-
ables around the plaquette is the plaquette variable (which is also frequently referred
to as a plaquette). It shares the letter U with the link variable, but carries two indices
denoting its orientation. The plaquette variable is used to form the gauge action, being
as it is the exponentiation of the field strength tensor.

In principle the lattice can be used to perform analytical calculations and form new
perturbative approximations, and much early work was done this way; for example, the
strong coupling expansion uses the lattice formulation to give insights that could not
be previously seen. But as in the continuum if not moreso, this approach is limited to a
handful of special cases. The discrete lattice, however, like most discretised problems,
lends itself to being probed using computers. The most naive approaches to discretisa-
tion, with finite difference iteration methods, break down rapidly as the problem size
increases, making them unsuitable for even the smallest lattice problems; statistical
methods must instead be used. Even with these methods, calculations will exhaust the

highest-performance machines that can be sourced; a large zoology of algorithms has

! Hypercubic here is used in the crystallographic sense—i.e., the unit cell is a hypercube, with the
lattice sites lying on it corners. The extent of the lattice is thus a hypercuboid; as is mentioned later,
in this work the volume is L® x 2L.
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3. GAUGE THEORIES ON THE LATTICE

been developed over the years to eke the maximum performance out of the machines
that can be afforded; the ones used in this project are described in section 3.2.

Most current algorithms make use of importance sampling; this is where the Eu-
clidean lattice becomes invaluable: rather than the path integral including a factor
¢S it instead has a factor e, thus provided the action is real and positive definite
(which will be the case for this project), the path integral has a weight function allowing

importance sampling to be used.

The gauge action takes the form [88]:

Se=8%" (1 - %Re trU(p)) , (3.2)

with N that of the SU(N) gauge group, and the sum over p representing all plaquettes—
implying a sum over orientations and sites.

Much has been written in the literature about the various methods of putting
fermions on the lattice. In the most naive discretisation, the problem that is en-
countered is that for each fermion field added, an additional 15 “doublers” also appear.
Later analysis by Nielsen and Ninomiya showed that in fact the absence of doublers and
preservation of chiral symmetry in the simulation are mutually exclusive [89], given the
constraint that ultralocality is preserved (i.e. that interactions only couple neighbours
at finite distance). The formulation used in this work is the Wilson formulation [90],

whose (fermionic) action takes the form
Sp =Y (@) D(z.y)¥(y) . (3-3)
Y

where the discretised Dirac operator D(z,y) has the form

K

D(x,y) = 61:,3/ - 9

(=20 U @) Syt + L+ ) Ul = 10yas| - (34)

K here is referred to as the hopping parameter, and is related to the bare fermion mass;

B is related to the gauge coupling (and controls the lattice spacing)

1

K =
8+ 2m
2N
b=

g
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3.1 Motivation and Approach

This explicitly breaks chiral symmetry in the action, removing all doublers in the
continuum limit; chiral symmetry can also be restored (again in the continuum limit)
by tuning the fermion mass. This method was chosen due to its ease of use and its
maturity, as well as its ability to eliminate all doublers. (An alternative approach
known as staggered fermions, introduced by Kogut and Susskind in [91], keeps three
doublers, but also preserves some chiral symmetry [92, 93]. Non-ultralocal choices are
also possible, but become very difficult to simulate, due to their high computational
cost.)

A lattice computation can be broken down into three sections, each requiring dif-

ferent algorithms.

e Firstly, a statistical ensemble of gauge field configurations is generated using
an appropriate algorithm. Since anticommuting numbers cannot be stored on a
computer, fermion fields are integrated out, leaving a fermionic determinant. Cal-
culation of this is computationally expensive, especially close to the chiral limit,
and so historically this was sometimes set to 1, in what is called the quenched
approximation. The physical interpretation of this approximation is that contri-
butions from sea quarks are ignored. Advances in computing power mean that
this approximation is rarely used now without another reason. When the full
determinant is calculated, the fermions are referred to as dynamical; all of the
work in this project uses dynamical fermions. For most physics of interest, this

stage requires either a cluster or a supercomputer.

e Once an ensemble of gauge fields is prepared, observables are calculated by taking
appropriate correlation functions on the gauge field background. By analogy with
experimental physics, where the background of reality is taken and observations
are made, the calculation of observables are frequently referred to as “measure-
ments”. This stage also requires a considerable amount of computing power, but

generally less than the generation of configurations.

o With the output from calculations of correlation functions in hand, the data must
then be analysed to give meaningful results for the observables of interest. This
is the least computationally demanding aspect, and can usually be reasonably

performed on a workstation, or on the front-end node of a HPC facility.
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3. GAUGE THEORIES ON THE LATTICE

Methods used for all three aspects are described in the next section.

In QCD, research collaborations frequently specialise in either the generation of
configurations (and performing a small number of measurements to demonstrate their
utility), or in performing measurements on configurations generated by other collabora-
tions. This is due to the high demands on compute power and on algorithm development
for both sides, and also due to the large number of groups working on lattice QCD:
reusing configurations avoids reduplication of effort. Where lattice gauge theory is
used as a tool outside of QCD, for example in BSM research, collaborations more often
generate configurations and then perform measurements of interest on them (although
the configurations can obviously then be reused for other purposes). The techniques
used therefore generally lag those in lattice QCD a little: techniques are developed and
proved by specialists working on QCD, and those that prove themselves are adopted by
the wider community. However, there are also some specific techniques that are devel-
oped mainly to study the physics of theories showing (near-)conformal behaviour. The
work described in chapter 4 includes generation of gauge configurations, measurement
of observables, and analysis of the resulting data, while that in chapter 5 makes use of

configurations previously generated on another related project.

3.2 Algorithms

3.2.1 RHMC algorithm

The Rational Hybrid Monte Carlo (RHMC) algorithm (first described in 1998 by
Kennedy, Horvath, and Sint [94], and summarised nicely by Clark [95]) is an extension
of the Hybrid Monte Carlo (HMC) algorithm [96-98], allowing for a non-even num-
ber of dynamical fermions. The HMC algorithm itself is a combination of three other
algorithms: the Langevin algorithm [99-101], based on Markov chains, the Molecular
Dynamics (MD) algorithm [102, 103], which time-evolves configurations in a deter-
ministic manner (when combined, these two methods become the Hybrid Molecular
Dynamics algorithm), and the Metropolis algorithm [104], which ensures a correctly-
sampled distribution by introducing an accept-reject step.

Starting with the lattice path integral for Wilson fermions:

(0) = % / 14U e~ 5O [det . (U) N2 O(U) | (3.7)
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3.2 Algorithms

where .# = MTM, and M is the discretised Dirac operator, we then (taking Nf = 2
for simplicity) rewrite the fermionic determinant in terms of pseudofermions (bosonic

fields capturing the fermionic dynamics):
det 4 = / Dot Dpe= "4 — / D¢t Dpe™5F (3.8)
The steps the HMC algorithm takes to update a configuration are then:

1. The momentum heat bath, where random conjugate momenta for the gauge field

.
are chosen as P(m) oc e ™ /2,

2. The pseudofermion heat bath, where pseudofermion fields are randomly chosen

as ¢ o< DE; € is a random noise field, P(¢) = e €€,

3. The Molecular Dynamics trajectory, where the link variables and momenta are

evolved in an appropriate deterministic way,
4. Accept or discard the new configuration with an appropriate probability.

In the case of the RHMC algorithm, however, we keep N arbitrary, and make a

rational approximation for the negative power of the fermion matrix:
det .27 = / Dgf Dpe"# "% / D¢t Dge= ¢ (4)6 (3.9)

where r(x) = x~N/%. Step 2 then generates fields chosen as ¢ o r(.#)~'¢. Suitable
rational approximations may be generated by the Remez algorithm [105]. We then
proceed as we would with the HMC.

Since the fermionic determinant contains the square of the rational function, eval-
uating the evolution equations for the MD trajectory in step 3 would cause a dou-
ble inversion; this is avoided by using an altered rational approximation for the MD:
7~ #N/2 ~ r2. The pseudofermionic contribution then becomes a sum of HMC-like

terms:

== o (M4BT (M4BT (3.10)
=1
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3.2.2 Meson masses

Masses of states are found by calculating the correlation functions of appropriate quan-
tities. These quantities take the form Of(2)O(y), where O is an operator carrying the

quantum numbers of the state in question; in the case of mesons, this is

O(x) = Pq(x)Thy(z) | (3.11)

where a, b refer to fermion flavours, and I' is the combination of 7 matrices carrying
appropriate quantum numbers. The correlation functions are then written in the path-

integral formulation as:

) Tﬂf 675 x

where Z refers to the partition function, by analogy with statistical mechanics.

Since fermions are Grassman-valued fields, they can’t be represented directly nu-
merically, so we must integrate them out by hand. We use Wick’s theorem for this,
where each fermioln_| contraction gives a factor of the fermion propagator. If we mark
a contraction as 1,1, then we see that there is one set of contractions available for
a # b, but two for a = b. In the first case, we have

_ - _
I(w,y) = [ DUDYDY $,Tpa(x) Y, Lihn(y)e™ (3.13)

where T' = yoI'Tyy has been introduced (simplifying some other algebra that has been
done), since the propagator from a fermion of one species to one of another is zero.
This case is referred to as a flavour non-singlet (and is often called a triplet, from the
isospin triplet that appears in QCD). In the second case, the flavour singlet, however,
we instead have

_ L 4
Iay) = [ DUDGDY,Thu(o) Buulv)e ™S (314)

where the two sets of contractions are added together. The upper contraction is the
same in both the a = b and a # b cases; when the contractions are replaced with

propagators, this gives a term of the form —trI' D~!(z;y)['D~!(y; x), whose calculation
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is well-explored and is described in the next section. The lower contraction, how-
ever, which is unique to the a = b case, takes the form trI'D~!(z;2)I'D~(y;y): here,
the propagators lie on the diagonals of the inverse Dirac operator, and represent dis-
connected (or “hairpin”) terms. The calculation of disconnected diagrams is harder
than connected terms, since large cancellations mean that statistical noise in the terms
being subtracted overwhelms any signal. For this reason, lattice QCD has historically
focused on states accessible with only triplet diagrams; it is only recently that advances
in algorithms and compute power have allowed the disconnected diagrams contributing
to singlet states to be calculated, and such calculations still require more specialist
techniques and greater care than triplet calculations. Some of these techniques are

described in section 3.2.2.2.

3.2.2.1 Triplet masses—the Z2SEMWall algorithm

Whilst the previous section mentions the ease of calculation of triplet masses, this ease
is relative, and some care is still necessary to obtain results with good precision in
a practicable amount of time. The Dirac operator is too large and sparse to invert
efficiently and in reasonable time in its entirety; instead, the inverse is only calculated
in the case of its application to a small set of fields, referred to as source fields. The
result of the application is then referred to as a sink field. For a given source field 7,

the corresponding sink field ¥ may be found as

Yy, t) =Y D'y tx,7)n(x7) . (3.15)
spin
color
x,t

The simplest and most common way of implementing this is using point sources;
that is, sources which take a value of 1 at one point in parameter space and 0 everywhere
else: 771(4Baﬁ )= ABOaB0xy0rt,. Here A, a are color and spin indices, but B, 3 are labels

distinguishing between different source fields. To incorporate this into an algorithm,
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we rearrange to find an expression for D!, by substituting into (3.15):

B
¢( 7 = Z DAa ,C y’t X 7—) 77(076) (XvT) (316)
x,7,Cy
= Z DZi,ny (Y7 X, T) 6A35a55xy57't0 (317)
x,7,Cy
= Do 0 (v, %0,t0) - (3.18)

Thus any occurrence of D~! may be replaced by a combination of two sink fields,
one to and one from (xg,tp). However, this product introduces a sensitivity to local
fluctuations in the gauge field configuration, which means more configurations must be
sampled to give good statistics.

This problem may be overcome by use of stochastic sources [106-108] (also known
as the Stochastic Estimator Technique), which are defined probabilistically rather than
absolutely as was the case for the point sources. To illustrate this we look at the

example of Z2SEMWall sources.

First consider the quantity Zs (x,t) € {i\%’ }, with uniformly and independently

distributed random values on each point in the parameter space. Then
(Z2(x,A) Z3 (y, B)) = 0apoxy . (3.19)

If we now defined the Z2SEMWall source (with Z2 referring to the Zs quantity
mentioned above, SEM referring to the Spin Explicit method—i.e. one generator per
spin component—and Wall referring to the presence of the source on a single time-

slice—i.e. a 3D “wall” on the 4D lattice) as
77A05 af9ttg 42 (X7 ) ’ ( . )

where 3 is a label running from 1 to 4, and A, « are color and spin indices respectively,

then we can find the expectation value of:

Z <7]A(40)cngﬁ) > = 5A35a55xy5tt05sso . (321)
~

Incorporating the Z2SEMWall source into an algorithm requires a little more work
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than the point source. If we wish to calculate a correlation function of the form:

C = <(@1F¢Q)T (m)@1F¢2(0)> (3.22)
= —Vi Y D! (x,40,0)TD1(0,0;x,1) (3.23)
3 X

where V3 = L3 is the spatial lattice volume. Since x is a dummy variable, we can rename
it at will, and we also introduce a second summation variable y, which introduces

another factor of V3 (3,1 = V3)

1 _
C=-ts > #TD ™ (2,40,000D7'(0,0; 2, 1) (3.24)
3 zy
1 = _
:—V?ZUTD "(x—y,50,0)0TD™"(0,0;x —y, 1) , (3.25)
xy

where in the second line we have substituted z = x—y. Now, making use of the relation

D=1 = 5D~ H~s. the cyclicity of the trace operator, and the boundary conditions, this

may be reexpressed as:

1 — _
C=- 732 ZtT’YE)FD Yx,t +to;y,to) Tys Dt (y, to; x, t + to)Jr (3.26)
xy
1 T - _ *
== 7] tr (75F)a5 DAé,ny (x,t + 103y, t0) (075)5 Dogg s (% + L3 ¥ t0)
xy
(3.27)
1 = _
=2 tr (1) 45 D by (5T 4103, 1) Oy 6831 0yyr 1,14 Ottg X (3.28)
Xy
(F’Y5)7/5 DZ(%{,B/(S (X’t + t07 yla t2)* . (329)

The delta functions have been introduced so that we can now replace them with the
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stochastic sources, which have the same behaviour under the summation over y:

C=- ‘/132 St (15T) 5 Db gy (5ot + tory,to) miss) (v, 11) X (3.30)
et

My ('112) (T75)35 Dk s (%t + to; v, 1) (3.31)

= ; [ s (Xt F 103y 1) [(F%)T]W ng (y',tQ)]* X (3.32)

[(%f) Db g (5.t + toiy t) ns) (y,tl)} (3.33)

= Vs g; [ (D) (“’)F%TD—ln(W) (x,t+to) , (3.34)

where we have now removed the dummy co-ordinate fields again. Now we can substitute

the sink fields back in:

= ST 0 (s 1) 95T (3, + o) (3.35)

Xyw

where the set of sink fields is
P (1) = D@ (1), 9 (x,8) = DTN (T) @) (x,) . (3.36)

Here, 1/1%) = ¢®@_ In the case of point sources, 4dg sink fields (and therefore
inversions) were required; here, 4 Ncpannels are required, where Ncpannels i the number
of different I's that are used (which must include v5). For SU(3) and 16 channels,
32 inversions would be necessary for point sources, but 64 would be necessary for
Z2SEMWall sources. For SU(2) on the other hand, point sources would only require
12 inversions, but Z2SEMWall sources would still require 64. This ratio does not,
however, correlate directly to the required computing time for a given precision, since
point sources require more configurations to be sampled, increasing the computing time

requirement.

3.2.2.2 Singlet Hairpins

Disconnected diagrams, as was mentioned previously, are problematic due to a can-
cellation of two relatively noisy terms, where the noise is larger than the difference.

The techniques to overcome this, therefore, comprise a variety of individual methods to
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reduce noise in such calculations, described for instance in [109, 110]. In this project,

the Truncated Solver Method (TSM) [109, 111] was used, as well as stochastic sources.

Function

Limiting value - - -
Truncation

Figure 3.2: A sketch illustrating the truncation principle. The function of interest has a
long tail before it “truly” reaches its asymptote, but rapidly reaches within 5% of it (in less
than a fifth of the time); computations thus could be spared by computing to equilibrium
enough to characterise a truncation length and correction, and subsequently truncating
the measurements.

The truncated solver method is based on the knowledge that while the convergence
of an observable to its “true” value becomes slower as it becomes close, it does so in
a consistent manner (as can be seen in figure 3.2). Thus one can use a small number
of expensive “pilot” measurements, letting them fully converge, and then use their
behaviour to calculate two parameters: the optimum point at which to truncate the
observation, and the correction that must be made from the truncated value to the
estimated true value. With that in place, a larger number of truncated estimates can

be made in a much smaller time, giving rise to greatly improved statistics.

3.2.3 Glueballs

Glueballs are bound states of pure glue. Their masses are found in a similar way
to mesons; however, since they have no fermion content, there is no requirement to
integrate out the fermion fields (and no fermionic determinant to calculate), and so the
operators consist only of products of traced Wilson loops. However, since the glueball is
an extended object, individual plaquettes (and operators constructed of a small number
of them) have a very small overlap with the state of interest, and the signal becomes

drowned by noise from contamination by other states.
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This problem is overcome by smearing and blocking of the gauge links forming the
operators. The link smearing used in this work is based on the APE smearing method
[112, 113], and is described in [114, 115]; in brief, to each link, the nearest, and next-to-
nearest, parallel-transported neighbours are added, with appropriately-chosen weight
factors. A more helpful diagrammatic explanation is given in figure 3.3. The blocking
procedure, as described in [116, 117], forms a blocked link of length 2a by taking the
direct path, and adding to it the spatial “staples”—that is, routes of length 4a via the
nearest parallel transported direct paths. Another useful graphical representation is

shown in figure 3.4.

e
—I—QIC) + p

. (1) (2) (3)

Figure 3.3: Smeared links are found by adding the original link (labeled as (1)) to the
parallel transported nearest neighbours (labeled as (2)), weighted by a factor of a, and the
next-to-nearest-neighbours (labeled as (3)), weighted by a factor of £.

] — e

(1) (2)

Figure 3.4: Blocked links are found by summing spatial “staples” and adding the result
to the direct (straight line) path; this procedure is then iterated.

3.2.4 Anomalous Dimension

The anomalous dimension of a theory with a conformal fixed point, characterising as
it does the scaling behaviour of the observables in the theory, should be visible from
fitting of any of the quantities in the theory. However, there are some observables that

allow easier observation than others, and in particular a method recently described by
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Patella [118] allows a much preciser determination of -y, than was previously possible.
This method makes use of the spectrum of eigenvalues of the Dirac operator, and is the
method used to determine -, for the theory discussed in chapter 4. The basis of the
method is the observation that the spectral density p of the Dirac operator is related

to the eigenvalue w by a power law for small eigenvalues; to leading order this is

4yx 3—x

p(w) = popuTFrwt s + ... | (3.37)

where pg is a dimensionless constant, and p is the renormalisation scale. In the case of
a mass-deformed theory, this relation becomes valid only in an intermediate range of
eigenvalues.

Consider the positive definite operator defined by
M= (D +m)t(D+m)=m>— 1. (3.38)

Then define the mode number per unit volume 7(2) as the number of eigenvalues of

M below the cutoff Q2, divided by the volume

JE—m? S
7(Q :/ p(w)dw :2/ plw)dw . (3.39)
e 0

For the intermediate region of interest in a mass-deformed theory, we cut off the lower

end and get
VB2
7(Q) =vp(m) + 2/ p(w)dw , (3.40)

WIR
where Tp(m) is a constant to be determined. p(w) in the second equation can be

replaced by equation (3.37), giving

4vyx 2

1 _2
D) = Do(m) + 5 (1 + 7 )ou v (22 —m?) T (3.41)

o(m) depends on the fermion mass, but in a predictable manner: since 7(12) is

renormalisation group invariant (per [119]), and has dimensions [mass]*, then
To(m) oc mpg , (3.42)

where mpg is the mass of the pseudoscalar meson (although any other particle mass
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could be used; the PS is chosen due to its general ease of access).
To relate equation (3.41) to lattice output, it must be reexpressed in terms of bare

lattice quantities rather than continuum renormalised ones, this gives

2

o T(Q) ~ a *Tg(m) + A [(a)? — (am)?] 7 | (3.43)

where A is a dimensionless constant, and m is proportional to the PCAC mass.

For the purposes of this work, the method of projectors is used, as per [119]. A
projector P(Q) is defined over the eigenspaces of M corresponding to eigenvalues below
2. Armed with this, the mode number per unit volume becomes

PG))::JE%D%;@rFG)» . (3.44)

The projector is approximated using an appropriate rational function

202

P(Q) ~ h(X)*; K=1- Moz

(3.45)

where h(z) is a polynomial approximating 6(—z) in the range /e < |z| < 1 (and e
here characterises the precision of the approximation, and conversely the degree of the

polynomial), and €2, is a parameter of order €, defined as

O [(1-ye\: (V¢ 14z
KH_Q+ﬁ)+1ﬁmuﬂﬂwMN. (3.46)

The trace may be estimated stochastically, and the error due to making the polynomial

approximation for the projector may be estimated from the fit of the spectral density.

3.2.5 Wilson and Polyakov Loops

The static potential for a fermion and antifermion may be calculated using correlators
of either Wilson or Polyakov loops. Historically the Wilson loop method was developed
first and so is more widely used in the literature; however, the Polyakov loop method
is simpler to perform and gives improved results. The Polyakov loop method is mostly
used in this work, with the Wilson loop approach being used as a check of the consis-
tency in a selection of cases. In addition, histograms of Polyakov loops allow the status

of the centre symmetry to be checked.
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Figure 3.5: The histogram of the Polyakov loop of one of the data sets studied in chapter
4; the single peak seen shows that it is centre symmetric.

The Polyakov loop is the product of gauge links in a single direction, closed due
to the (anti)periodic boundaries of the space. In the p direction, the Polyakov loop is

given by
N,—1

Po= Y [l U@+npp), (3.47)

{z|p=0} n=0
where the sum runs over the lattice slice normal to p. SU(N) theories have a Z centre
symmetry, so in the case of SU(2) we expect a Zy symmetry, which we expect the
Polyakov loop to obey. Thus it is trivial to see whether or not the centre symmetry
is broken: if it is preserved, then the average Polyakov loop is always consistent with
zero (and the system is confined); if not, then it acquires a value of +a, where a is
some constant (and the system has become deconfined). However, since the average
Polyakov loop may be stable at +a for some number of configurations, but then switch
to —a, and back again, the average over all configurations may still be consistent with
zero. We therefore look at the histogram of the average Polyakov loop, considering each
spatial and time dimension separately. In the centre symmetric phase, we will see a
single-peaked distribution about 0; in the centre broken phase, we see a double-peaked

distribution at +a. An example of such a histogram is shown in figure 3.5.

Consider a loop in the xg direction, at a fixed x1, and define the operator Py(x1)
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to be the average in the other two directions

1 1 (N
Po(:L’l) = W Z Ntr ( H Uo((l’l’Lo,I‘)) y (3.48)
no=0

S xo,13

where r is the 3-vector (z1,x92,x3), Ns, Ny are the number of sites in the spatial and
temporal directions respectively, and N is that of SU(NV). If we then take a vacuum-

subtracted correlator, we see

<Pg(x1)TP0(x1 + X1)> — [(Po(z1))* = i en(alNy)|? e~ BnlaN)X = s 0 vn,
i (3.49)
where ¢, is the overlap ¢, = (0| Po(x1) | n), and |n) is the nth eigenstate of the Hamil-
tonian. Then for large X7, the exponential decays leaving the ground state energy of

the fundamental string Ey(aNg). In the case of a confining theory in 4D, this should
fit

CcT

Ey(aN,) = oaN, — —%
0(ay) = oaly 3aN,

(3.50)

up to subleading corrections, where o is the temporal fundamental string tension. We
can define similar operators P; wrapping the spatial directions, and by fitting their
correlators in the temporal direction obtain the spatial string tension. At zero tem-
perature in the confined phase, in which the theory has an unbroken centre symmetry,
then the spatial and temporal string tensions should be in agreement. As is the case
with glueballs, these basic Polyakov operators have a low overlap with the physics of

interest; the solution to this is again to smear the links.

The Wilson loop, meanwhile, is a product of gauge links, again around a closed
loop, but now closed within the lattice rather than winding around it. Although in
general a Wilson loop can refer to any such closed loop, in the context of this work we
restrict ourselves to rectangular Wilson loops of spatial extent R and temporal extent
T. We may interpret this as an infinitely-heavy (i.e. static) fermion-antifermion pair

being created at a distance R apart, and annihilating a time 7' later.

For convenience, we can decompose the loop into spatial and temporal components,
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as

W(T,R) = tr{Ui[t — t+T;r| U[t;r — r+R]U[t — t+T;r+R|U [t+T;r — r+R]T} .

(3.51)
Since R needn’t be on-axis (and indeed allowing it to be off-axis allows a larger range
of R values to be probed), the procedure of [120] is used. In the Hamiltonian gauge, the
expectation value (W(T,R)) becomes the time-correlator for the operator creating a
heavy fermion-antifermion pair connected by a string, M(R) = 9 (r)Us[r — r+R]y(r+
R),

(W(T,R)) = (jN i [N ARy T ()| (3.52)
- (cht) S|, R M(R) | m)[2e-aNeBne=TVA(R-Enl - (353)

where |m) are the vacuum eigenstates of energy E,,, and |n,R) are the states with
energy V,,(R) in the presence of the fermion-antifermion pair. The lowest-lying such
energy Vp(R) is the static potential.

To extract the string tension, we look in an intermediate region, since at 1" near 0
and near aNy, one of the sets of states collapses to a single state. In the intermediary
region we expect to see a good fit to a straight line, with the gradient being the string
tension, as was the case in the Polyakov loop calculation.

Once again, smearing is used to improve the statistics;! in this case, however, the full
variational procedure is not applied. Instead, the full variational procedure is applied
only to a small (but well-decorellated) sample of configurations, to find the smearing
parameters that give the optimal results for the reduced ensemble. These parameters
are then taken as the smearing values for the full ensemble. While not as effective
as the full variational method, this approximation gives a significant improvement in
computation time, allowing the analysis on more modest hardware than would other-
wise be required. While the smearing will distort the potential at small R, and add a
constant additive factor, neither of these affects our fit for o, since we are looking at

gradients in the intermediate-R region.

'For the Wilson loops, HYP smearing (introduced in [121]), a method based on and ultimately
similar to the previously-discussed APE smearing, is used.
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3.2.6 Extracting Results

For most observables, the output from the measurement code is a set of correlation
functions, one per measurement per configuration analysed (although some codes will
make multiple measurements of the same observable on the same gauge configuration,
since the gauge configuration contains more data than is used by the single “hit”).
For a state with a given set of quantum numbers, an operator carrying the same
quantum numbers is constructed; let us say that this is called O. The correlation

function that is calculated by the code then takes the form
(0'x0)0(3.1)) = [ DUDUDTO (. 0)0(y, e U, (350)

where the state has been allowed to move in space and time. We can take a time

H

evolution factor e #* out, and by inserting complete sets of states, reduce the right-

hand side to

<OT(X, O)O(y,t)> = Zane_E”t . (3.55)

Taking the long-time limit of this, we see
<0T(x, 0)0(y. t)> 2% e (3.56)

On a finite lattice, we unfortunately do not have the luxury of taking an infinite-
time limit; however, in many cases it is still possible to extract a reasonable estimate
for the mass, as the decay is rapid enough to see the ground state emerge in finite
time. To extract the mass, firstly an effective mass plot is produced from the average
correlation function. The effective mass is the mass that is found if the limiting value
of the correlation function is taken to be at the current data point. (In the case of
mesonic correlation functions, the data are first “folded over” in the temporal direction
since the correlation function is symmetric in this direction.) This plot will obviously
tend towards the limiting value of the mass in the long-time limit; thus if a stabilisation
(or plateau) is observed, then that is taken to be the limiting value. Averages are then
taken over the respective ranges identified as being part of the plateaux. An example
of an effective mass plot with plateau marked is shown in figure 3.6.

In the simplest case one can use an arithmetic mean and bootstrap sampling [122—

124]—where random samples are taken from the data and averaged (or fitted), with
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Figure 3.6: An effective mass plot for a meson mass; the plateau in this case was identified
between t =9 and t = 16.

the set of sample averages giving a new data set—to give an estimate of the statistical
error for the masses. However, there are more sophisticated techniques that can be
used to give tighter bounds. For instance, for calculating meson masses, the noise in the
correlation function tends to dominate in the centre of the lattice; thus if the bootstrap
efficiency—the proportion of the bootstrap samples taken which can be successfully
fitted—is below 100%, then the noisy middle can be slowly removed from the sample
until the efficiency reaches 100%. This avoids both the bias that would be introduced
by allowing a sub-100% efficiency, and the additional computer time that would be

necessary to improve the sample size to give 100% efficiency with all points included.

3.3 Existing Lattice Studies

To put the numerical study performed in this work into a broader context, in this
section I will briefly review the state of the art of lattice simulations, beginning with

the more familiar example of QCD.

3.3.1 QCD

Pure QCD studies are sufficiently numerous that even beginning to enumerate them
would be impracticable; fortunately there exist studies dedicated to collating results

from other studies in lattice QCD. Lattice QCD gives the correct spectrum for mesonic
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states, including many states which were predicted by the lattice results before they
were observed experimentally (at the predicted masses); results for the light mesons
from [3] are shown in figure 3.7, and of the results from [4] in figure 3.8. Similarly the
baryon spectrum, illustrated in figure 3.9 from [5], also agrees with experiment. Lattice
results have become the accepted values for some quantities, or make a significant
contribution to them. For example, the strong coupling strength ag, shown in figure
3.10 as collated in [6], has its most precise estimate from lattice results, and the estimate
is found to be in good agreement with all experimental methods. The CKM matrix
can also be calculated on the lattice (reviewed in [125]), and shows good agreement in

all but one element; work is ongoing to ascertain why that is the case.

2.0 1 1
I mass [GeV] o
1.5F | | = Q]
+ 2= 1
i T 3 ]
Lo} TE o :
L —_— —
L — q) - |
[ =+ K ‘ N 1
L P i
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| vector meson octet baryon decuplet baryon |
0.0

Figure 3.7: The light meson spectrum of lattice QCD, as of 2008, from [3].

3.3.2 Technicolor

Since Dietrich and Sannino’s perturbative exploration of where we expect to see con-
formal and near-conformal theories that was reviewed in chapter 2 [37], a number of
lattice groups have taken an interest into testing their predictions. There are two
main areas of focus: the first at theories with fundamental quarks (as in QCD), where
large Nt is needed to approach the conformal window; this is done using the staggered
fermion approach, since it lends itself naturally to large N;. The second approach
is to explore higher representations, where fewer flavours are needed to approach the

conformal window.
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Figure 3.8: The (“gold-plated”) heavy meson spectrum of lattice QCD, as of 2012, from
[4].
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Figure 3.9: The baryon spectrum from lattice QCD, as of 2009, from [5].
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Figure 3.10: Comparison of various experimental methods with the lattice result for oy,
as of 2012, from [6].

Recent results of both approaches are reviewed in [7], with a helpful diagram (re-
produced in figure 3.11) summarising the findings; the theories with the most data are
SU(3) theories with (unsurprisingly, given the limitations of the staggered approach)
multiples of 4 flavours. The 4- and 8-flavour cases are found to be confining [126-132],
and the 16-flavour case conformal [127, 133-136], while the 12-flavour case is marginal
[126, 130, 135-137], either lying just within the conformal window or just below its
lower edge. For SU(2) with fundamental flavours, the data is more sparse, but shows 8
and 10-flavour theories are conformal [138-140] the 2-flavour case is confining [141], and
the cases in between are marginal [139, 140, 142-144]. For the higher representation,
meanwhile, studies have been inconclusive for the SU(3) [145-153] and SU(4) [147, 154]
theories with symmetric fermions, while for SU(2) with adjoint fermions a number of
studies indicate that Ny = 2 is conformal. This theory will be elaborated upon more in
the next section.

Current work is looking to further pin down the lower end of the conformal window,
and also to look for walking signals in theories which are believed to be near-conformal

(for example, [155] shows signs that 8-flavour fundamental SU(3) may be walking).

3.4 Theories Under Investigation

The two theories under investigation in this work are both SU(2) theories with adjoint
fermions. The adjoint representation of SU(2) is real, leading 1/, and i to both have
left chirality, and to transform under the same representation of the gauge group. This

allows the combination of the fields into a single multiplet; if chiral symmetry breaks,
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3. GAUGE THEORIES ON THE LATTICE

this gives a breaking pattern of
SU(2N;) — SO(2Ny) , (3.57)

leading to the production of (N¢+ 1)(2Nf — 1) Goldstone bosons, of which three (if
available) are eaten by W* and Z.

From the discussion in the previous chapter (in particular equations (2.13) and
(2.19)), the analysis of Dietrich and Sannino [37] places perturbative bounds on the
conformal window. For the adjoint representation, the Casimir (2N?) and group di-
mension (N2 —1) factors cancel individually, leaving the bounds fixed for all N. As the
energy scale is lowered, the upper end is found at NfI [R] = 2%, while the lower end (after
which chiral symmetry breaks before the fixed point is reached) is at NfII R] = 25—0, and
the fixed point no is no longer found below N{'[R] = 14&.

3.4.1 Minimal Walking Technicolor

SU(2) with two adjoint Dirac flavours is referred to as Minimal Walking Technicolor
(MWT); the limits above suggest that it should be near-conformal. However, more
recent lattice results [156] suggest that it is in fact IR-conformal; this is not completely
unexpected, since the methods used in [37] were inexact, relying on the two-loop beta
function. The name MWT has stuck, however. A study of its spectrum [156] shows
scaling of its observables: mass ratios remain approximately constant through the range
studied. (This range is approximately a factor of 6 in the quark mass.) This means
that unlike in a confining theory, the pion mass cannot become parametrically small,
and the pion a Goldstone of the theory, since its mass is constant relative to other
masses in the theory.

Previous lattice studies such as [156] have looked at the spectroscopy of the theory
and the running of the coupling. In chapter 5 I will present an investigation of the
topology of this theory on the lattice, showing results that are consistent with the
existing observation of IR-conformality—specifically, the topology is found not to differ
from that of pure gauge SU(2). A fit for the anomalous dimension ~, is attempted but
is unsuccessful.

A later lattice study of the theory [157] reveals that smaller lattice volumes simu-

lated are affected by finite-size artefacts. The conformal nature of the theory makes
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such effects particularly severe, and so their identification is an important step in any
lattice computation in a conformal or near-conformal theory. In the case of [157], the
effects were revealed by checking consistency with larger lattices, and by using wall-
smeared sources, which showed that the seemingly consistent results were an artefact
of two effects cancelling each other. It is found that the instanton size distribution may

be used as an additional indicator of finite-size effects.

3.4.2 SU(2)AdjNf1

The theory that forms the main bulk of the work of this thesis is SU(2) with one
adjoint Dirac flavour, for which I will use the name SU(2)Adj Nfl. Its chiral symmetry
breaking (xSB) produces only two Goldstone bosons; this is insufficient to give mass to
the W+ and Z bosons. However, it is still worthy of study: while the 2-loop perturbative
bounds suggest that the theory should be confining, since MWT has been found to be
IR-conformal, knowing the IR behaviour of SU(2)AdjNfl will help to pin down the
lower end of the conformal window non-perturbatively. It also allows development of a
number of methods which may be applicable to other walking theories.

In chapter 4 a first look at this theory on the lattice will be presented, includ-
ing studies of the meson and glueball spectrum, the string tension from Wilson and
Polyakov loop correlators, and the anomalous dimension from the Dirac operator eigen-
value distribution. In chapter 5, the topology of the theory is considered and compared
with that of MWT and pure-gauge SU(2). Although the results of [37] show this theory
to not have an IRFP, the results found are tentatively indicative of a theory that is
IR~conformal or near-conformal; the difference in IR behaviour between the analytical
study and the lattice simulation is most likely again due to the approximate nature of

Dietrich and Sannino’s approach.
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Chapter 4

SU(2) with 1 Dirac (2 Majorana)

Flavours

In this chapter we will look at the results of an exploratory study of the SU(2) theory
with one adjoint Dirac flavour (SU(2)AdjNfl). By a change of basis, we will show
in section 4.1.1 how this can also be viewed as the same theory but with two Ma-
jorana flavours. Spectroscopic results are presented in section 4.2, while topological

observables are deferred until the next chapter.

4.1 Methodology

The spectroscopy of this theory is most readily understood in terms of Majorana flavours
(of which, from degrees of freedom arguments, there are two); however, most existing
lattice code (including HiRep, discussed in chapter 6) are designed to model Dirac
fermions. This leaves us with a choice: we may spend a lot of time adapting the code
to work with Majorana fields (along with the requisite debugging and testing), or we
may adapt our requirements so that we can find properties of Majorana fields in terms
of Dirac equivalents, so that our existing code can be used unmodified, with only the
interpretation of its output being altered. For this work it was decided that the latter
approach would be less time-consuming, and so in this section I will show the change

of basis that was found.

49



4. SU(2) WITH 1 DIRAC (2 MAJORANA) FLAVOURS

4.1.1 Majorana decomposition

Before moving on to the decomposition proper, let us first fix the notation for this

section. We choose to work in the chiral representation of the Dirac algebra, for which

(87)

where

ot =(1,0), ' =(1,—0) . (4.2)

o is the 3-vector formed from the Pauli matrices:

01 0 —2 1 0
0':(0'1,0’2,0’3); 0‘1:(1 0>’0-2:<i 0Z>7U3:<0 _1) (43)

It is convenient to now define
. 1 0
75 =i’y = ) (4.4)
0 -1
Spinors may be charge conjugated by
T "
Yo =C¢ =Coy7, (4.5)

where
. 20 109 0 ) 0 109
C=—iyy ( 0 —ioy >, Co = —iv ( oy 0 > (4.6)
Majorana spinors are the subset of spinors which are invariant under charge conju-

gation; 1.e.

Yme = Pu - (4.7)

They have half the degrees of freedom of a Dirac spinor.

Now, for the previously-promised decomposition, consider the two fermions

—T —T
Y+ C y-C
Ymy = Tw YM- = 277# ) (4.8)
i
which obviously combine to form the Dirac spinor
Y = vt + iPm-— (4.9)
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This decomposition requires that 1) and its charge-conjugate lie in the same representa-
tion of the gauge group, thus is only valid in real (or pseudoreal) representations; while
the adjoint representation of SU(N) is permitted, the fundamental is not, so QCD with
Majorana quarks could not be explored with this method. It is applicable for any IV,
and any number of Dirac flavours; it is currently unclear if or how it could extend to
odd numbers of Majorana flavours, or whether that would introduce a sign problem.

To verify that these are Majorana spinors, we can charge-conjugate them:

_ DT o
By = T S omy, = T g, (4.10)
_ To_y —

i.e. the charge conjugates of ¥+ are Yy, so Yy+ are indeed Majorana spinors.

4.1.2 Action and xSB

The fermionic action of the one-flavour theory takes the form
St = Y +mipy) . (4.12)

Armed with the reexpression from the previous section, we would like to find an

equivalent link between the Dirac and Majorana actions

SDirac A SMajorana (413)

PP + myp @MJF(‘IWMJF + m@M+¢M+ + Py Pov— + My (4.14)

Looking at the mass term first, we see

Bastbnis = 7 [0+ 000+ 50T +97 008" = 7 [0 + 47 0v + 50T

(4.15)
Byt = — [0+ 0 Op + 500" 4 00" = [ —wTow 90" |
(4.16)

since CC = —1 and Y1) = (@@Z))T = —¢T$T. Then
Pp = Py vt + Py n— (4.17)
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Similarly for the kinetic term,

Gai s = [0 + 07 CBy + 90T + 40y (4.15)

G dini = [0 — 90y~ GoCE" +uTeacy"] . @)
and so

Dy Bines + P Bon = 5 [G0 + 0" CHOT | =Tdy . (420)
since 7%,9? anticommute with C' (because C' = —iy?4Y), 41,73 commute with C' (for

the same reason), but v!,7® gain a minus sign on taking the transpose, whilst 7,2
F
do not; additionally, a partial integral has been taken to turn the @ into a 3

We now have

St = VP + mpp = Py, Poaiy + oy Ioni— + m(Oy Ot + Oy_thm—) - (4.21)

While this appears to admit an SU(2) global chiral symmetry, which would not break
with a fermion mass, this is in fact not the case, since rotating between the Majorana
flavours is not permitted. The xSB is best understood in terms of the Weyl basis,
where it becomes evident that there is indeed a global SU(2) chiral symmetry, but in

the presence of a nonzero fermionic condensate it breaks to SO(2).

4.1.3 Spectroscopy

As discussed in chapter 3, to do spectroscopy we need to form operators of the correct
quantum numbers. For a meson consisting of two Majorana fermions, one ¥p4 and

one Y\ _, an appropriate operator would take the form

04— (@) = Pay Tobui- (4.22)

where I' is a combination of ;s giving the requisite quantum numbers. We may also
consider a meson consisting of two of the same Majorana flavour, for example, ¥y .

An appropriate operator is then

Ot +(2) = Dy Tomy - (4.23)
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To find the masses of these states, as described in chapter 3, we must take correlation
functions of these operators. The correlator in question takes the form (OT(z)O(0)).
4.1.4 Reexpressing spectral quantities

As discussed in the introduction to this section, we now want to find a way of expressing

these specral quantities in terms of their Dirac equivalents.

41.41 O,_
0+ = - (9T + 4oty —grog’ - yrorcy”) (4.24)
1
=4 (D+@2)+B)+ 1) - (4.25)

We would like to reduce this to be in a more familiar form; to do so, we can find a
few useful identities. Looking first at term (2), we notice that since it is a number, we

expect it to equal its transpose. Applying this,
PTCTY = =1 (CT) Ty, (4.26)

(where the — sign on the right-hand side has come from swapping the order of the
spinors in the transpose to make the comparison clear). Comparing the two expressions,
we see that either CT' = —(CT)T, or (2) = 0. Thus we may “switch off” the term if
testing the first relation shows it is false. The same applies to term (3), with the same
condition.

Meanwhile for term (4), using the same idea as above that the transpose of the

term should equal the term itself, we see
T 7T _ 7T s
— CTCY™ =yCT " Cy = £YI'y (4.27)

(since C is self-transpose) where the sign of the + is the same as that in the relation
CTTC = 4T'. This relation will always hold, since I is a combination of ~;, which each

pick up at most a change of sign on transposing, and C' (also being composed of ~;s)
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will commute or anticommute with I'. Thus (4) = £(1); i.e.

0 if (4) = (1),

. (4.28)
2% (1) if (4) = (1).

(1) +(4) = {
Thus by testing two relations, the expression may be cut down by at least one (po-
tentially three) terms. In fact a minimum of two terms are culled, with either terms

(2) + (3) or (1) + (4) dropping out, as is shown in table 4.1.

| D' [=@+6) ] (cr'o) [ = 1)+ (@) ]

1 —(CT) v -I
Y0 +(CT) +I v
0% +(CT) +I v

Y%y | +(CT) +I v

1% | —(CT) v —I

Y | —(CT) v T

Yoy | + (CT) +I v
5 —(CT) v T

Table 4.1: The terms in equation (4.24) that do not cancel are marked with a v'.

This can be expressed more succinctly as:

—_—T
L (¥TCTY —9reB’) T =1,77,7

A } (4.29)
%3V L' = 4,77, %0757 -

JMJrFT/)Mf = {
With the simplest forms of the meson operators in hand, we now look to calculate
correlation functions of them. Let us take a detour via Dirac fermions: in the case of

two Dirac flavours, the operator takes the form O(z) = ¥, I'1)9, and the correlator:

((B1T0)" () (@1T0) (0)) = (wh(@)T 081 (2)8, (0)Tei2(0) ) (4.30)
= (Dol 1001 (2)8: (0)T(0)) (4.31)
= _
= (Do) T (@), (0)Tw2(0)) (T =0l0) , (4.32)
—
with 1,1y, indicating a Wick contraction. We have defined T = ~oI'f5o, and only one

—
possible set of contractions is available, since 10,5 is not permitted. Rearranging and
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performing the contraction,

((@10)' (@) (B100) (0)) = ~(Tha (@)t (DU (0 (@))  (4:38)
= —trITD" ! (2;0)TD~ 1 (0; ) . (4.34)

Now if we turn our attention back to the two-Majorana case, we see that one of the
cases appears to have a similar form, O(x) = %@Fw. However, since there is only one

Dirac flavour present, an additional set of contractions is available:

((@re)" (@) (@re) (0)) = (! @)T 0 (@)R(0)Tw(0) ) (4.35)
= (D@10 M0 (@) HOT(0) ) (4.36)
1
= (B(@)T(@)H(O)T(0)) (4.37)
= 1 (AT TE0) @) ) + (To@) @ 0)(0))
(4.38)

(trTD! (;2) D71 (0;0) — tr TD ™! (z;0) D~ (0;2)) .
(4.39)

The second term here looks like the familiar one above, and lends itself to analysis using
Z2SEMWall sources as described in section 3.2.2:, but the first term is more problem-
atic. The propagators represent disconnected diagrams, and they entail cancellations
which result in any signal being swamped by statistical noise. Since the techniques for
dealing with these terms (discussed in section 3.2.2.2) are more demanding both com-
putationally and analytically, the channels without such a term were considered first.
Preliminary results from the study including the disconnected channels are included
below.

Moving on to the other set of channels, the operator O(z) = (d}TCFdJ YICY )
multiplies out to four terms; however two immediately drop out since the 1 and v are

unmatched; this leaves:
_ L T _ L
<(wTCF¢ — wrowT) (x) (chrw - wrczf) (0)> (4.40)

= ((vTcry) @) (¥TCTe) () + <(1/)FC¢T)T (2) (vrce’) (0)> . (441
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Evaluating these two terms in turn; for the first term:

((wrery)’ (@) (wTery) (0) (4.42)
_ <1/JT(z)FTC’dJ*(x)wT(O)CTw(O)> (4.43)
= (F@)ltCrop @ O)CTY()) (4.44)
| 1 |

= —(¥(x)TCY " (20" (0)C :
(§@TCy” @ O)CTy(0)) (4.45)
=~ [ DDV @ T Curtp 20O CaT o 0)e (1.46)
— -5 | DEDY [t T Cunt s (030 (2) a0 (o) (4.47)
—tr Ty Coetby (00 () Cae Lyt 5 (0) o () | 75 (4.48)
- [tr Loy CoeD3h oy (02) Cacley DA 4 (0:) (4.49)
—tr fabeCDcZi,aA (0; l’) CdeFefoB,cB (0‘ x)} (4.50)

= —tTCD 5 (0;2) CTDRY (0;2) + tr (TC) " DT (0;2) CTDRL (0;2) |, (4.51)
and since (['C)T = —T'C follows from the condition defining where this case is used,

<(szCF¢)T () (¥TCTY) (0)> — 2t TCD'T (0;2) CTD 1 (0;2) . (4.52)

For the second term:

<(w ") @ )(wrcw ) (0 >> (4.53)

:< (2)OT19 ()% (0)T CET(0)> (4.54)
= (V" ocr*w/) 2)(0 >ro@T<o>> (4:55)
- (@ OTeT ) (1.56)

— 5 | DEDY busCuTiuctea(@basTacCorps(0)c (4.57)
(4.58)
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— 5 | DEDY[Culictea@)bap (O acCosbur() 5(0) (459
— Canloctbor(@)6ap (0 aeCoptica(@)¥ 1 (0) | e~ (4.60)

= [t CuToeD ) 4y (3:0) TacCos Dk 1 (40) (4.61)
— trCaplve D) aps (230) TaeCes Dy s (3 0)} (4.62)

— —tr CTD ! (2;0)TCD T (2;0) + tr (CT)" D! (2;0)TCD T (2;0)  (4.63)
= 2trCTD™! (2;0) TCD ™ (2;0) (4.64)
= —2tr CTys D' (03 2) 3T Cys D~ (03 2) 75 (4.65)
= —2tr D11 (0;2) TCD~1* (0;2) CT (4.66)
= ot (fTCDflT (0;z) CTTD! (o;x))T (4.67)
= —2tr (TCD'T (0;2) CTD ' (0;2))" (4.68)

where we have used:
e the cyclicity of the trace
o Vslys =41 & 0y = 4T
e IT=dl T = 4T
e DM (y;2) s = D7 (23y) -

Summing these contributions, the meson correlator for O(z) = ¥y, (z)IYn—(z),

I'=1,9Yu, 75 is
(0'()0()) = —é [P (0:2)+ P (0:)] . (4.69)

where

F(0;2) =trTCD™ ' (0;2) CTD 71 (05 z) . (4.70)

We may permute the C's out to give
F(0;2) =tr D (2;0)TD 1 (0;2) (4.71)

which is the same form as the two-flavour Dirac correlator of equation (4.34). Taking
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the Hermitian conjugate of this,

Fr(0;2) = tr D71 (0;2) TTD Y (2;0) T (4.72)
= tr DT (0;2) DT (2;0) (4.73)
= trCTCD ™! (2;0) CTCD ™! (0; 2) (4.74)
= trID™ ! (2;0)TD™1 (0;2) ; (4.75)
i.e. we have ended back up at the same form as F(0;z). Thus,
1 -
<oi_(x)o+_(0)> =~ TD7 (@0 D! (052) - (4.76)

We now have expressions for OL_O+_ for all possible I's:

—4trTD™ (2;0) D~ (0; ) T'= 1,777
<01_(x)0+_(0)> — {1 (e TD! (a;2) TD 1 (0;0)

—tr D! (z;0) D~ (0;2)) T = 74,707, Y0757 -
(4.77)

4.1.4.2 PCAC

Recall from chapter 3 that the Wilson fermion formulation requires tuning of the bare
fermion mass to restore chiral symmetry, which was explicitly broken. To do this we
make use of the axial anomaly, or partially conserved azial current (PCAC). This is
fully conserved in the presence of chiral symmetry, so we look for its derivative to be

zero to indicate the correct bare mass. The PCAC mass is defined as

> x (G0 Ao(z)P(0))

TPOAC = Sy (P@P()) )

where
Ao(z) = Py (2)r0759M- (2) (4.79)
P(z) = By (2) 5t (@) (4.80)

The denominator is simply the meson correlator above with I' = ~5; the numera-

tor meanwhile is in effect a “mixed” correlator and requires special attention. Going
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through the same procedure as above shows:

(Brerstn) (@) @airorsin) (0)) = 308D (2:0) 503507 (0:2) - (481)

Happily, all of the results found thus far equate (up to multiplicative constants,
which drop out when ratios are taken) to 1-flavour Dirac correlators; thus both code
for and results from simulations of 1 Dirac flavour also apply to and give results for 2

Majorana flavours.

4.1.4.3 O,y

This case has not been looked at in detail for this project; however, if one were in-

terested, the cancellations would work differently. The operator would take the form

- L2909 + ¢TCTY + YICY ) T = 1,977
Ons Domy = {4 ( ) " (4.82)
0 ' = vu,%7, %077
and then the correlator
2 [tr (TD7! (2;2)) tr (TD~1 (0;0))
(0L @)044(0)) ={ =200 (TP (:0)TD™ (032))] T = 1,577
0 ' = vu, %7, Y0757 -
(4.83)

Although the overall form is different to the one Dirac flavour case, the two terms
are both of the same form as their Dirac counterparts, thus they would be accessible

from the same code and output.
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r
0. = (vTory —yrey”)
(0} _(@)04-(0)) = % ' TD ! (2:0)TD (0: )
1,95V Vs Oy = % (wrw + TCTY + YT CY )
(01, (@)04.(0)) = i [tr CD" (2:.2)) tr (D™ (0;0))
—2tr (TD™! (2;0)I' D' (0;2))]
0+ = Ty
i I
Vi Y0V VOV5Y <O+_(x)0+7(0)> ! (tr F? (z;2) LD (0:0)
—trTD™! (2;0) D! (0; 2))
Oy = <Oi+($)0++(0)> =0

Table 4.2: A summary of the important results of section 4.1.

4.2 Results

Since the theory has not been investigated on the lattice before, we are somewhat
“shooting in the dark” with regards to the parameters to use. Based on related theo-
ries, we may make an educated guess as to where the region of interest will be, but a
preliminary study is necessary to narrow down this range to make simulation of inter-
esting physics feasible. If 3 is taken too small, i.e. large a, then all that is observed is a
theory of lattice artefacts (the “bulk”), since the lattice becomes too coarse to resolve
physics. However, the larger 3 is taken, the larger lattices must be to achieve the same
physical size, which increases simulation time and expense rapidly. Meanwhile if m is
taken too small, then we in effect have a negative fermion mass, and so end up simulat-
ing numerical artefacts; if m is very large, then the fermions become heavy and might
as well be quenched, not to mention that we will be distant from the chiral region of
interest.

To this end the pilot study sought to map the phase diagram, by looking at the
average plaquette on a 4% lattice; the plaquette is a cheap observable to calculate and
is not severely afflicted by finite-size effects. We expect to see a phase transition due
to the bulk effects, visible as a sharp jump in the average plaquette. We choose a

value of 8 lying above this, where the transition has turned into a crossover, but as
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close as possible without risking entering the bulk phase, to avoid having too small a
lattice spacing. Once the bulk transition has been avoided, any remaining changes in

the plaquette are likely to be due to a physical chiral transition.

T I}
0758 g ¢ o 4 14—
% g g H H g e o 1.5
* e 4
orlLs = » 8 5 " @m 2 © e e & & o o o] 1.6
: PP X X 408 8 g ; = = = 5 § g @ 17
+ * * B ®
;53.’ + x T i 8 8 = =8 1.§>—.—<
|l IsTerZaoe * >< *oox o ox % 1.85 e
065 %7 2=2 7« + L TV i
=2 T oW g0 A % ¢ ox ox 1.9 —e—
I* Eiii®® - . * * + + 4 4 . . 1'298 N
0.6 ES ¥, L i 0 e
. -
£ Pz " T e s . e x| 205w
5 } =y Y % 2.1 vt
El L = hd i 5 —o—i
= 055 [} ., T T e s e s s . 2.15
= § %z - ., 2.2 e
a9} 05*mm o.-mxi = - & - & -~ - . - - %ZH—‘
. l.ii@i,.' e o o =
"al®ceo ® o o 5 o o o o 4 2.5
0.45 "nam g g 2.6 —=—
. r L] [ ] [ [ ] [ [ L] [ [ Ll 2.7 —m—
2.8 e
04 i
S
x *
. R %% % % % % ox % % % %
35 L + i
0.35 ot o+ o+ s s 4 b 4 .+ e a s s
I I I I | 1 | |

-1.6 -14 -1.2 -1 -0.8 -0.6 -0.4 -0.2
m

Figure 4.1: The phase diagram of the theory, showing the average plaquette across a
range of value of 8 and m; the region of interest was identified around g = 2.05,m = —1.5.

Runs were performed between 1.4 < g < 2.8 and —1.7 < m < 0.1, with a resolution
of 0.1 in each direction; once the region of interest was narrowed down, additional runs
were taken every 0.05 in each direction for a closer look. The results of this study
are shown in figure 4.1; the bulk phase transition is visible, for example, at 5 = 1.9,

m = —1.65. The region of interest was found to lie at around g = 2.05,m = —1.5.

4.2.1 Monte Carlo

To ensure that the results are on the firmest possible footing, we chose now to narrow
our focus to a single 8, namely S = 2.05, with the intention of revisiting other values
of 8 once the theory is better-explored. At this S value, simulations were performed
at lattice sizes of 16 x 83, 24 x 123, 32 x 163, and 48 x 243! at values of the bare
fermion mass between —1.523 < m < —1.475, with m = —1.523 being the closest point
obtainable to the chiral limit; going beyond this required larger lattices than could be
reasonably simulated with available resources. The parameters used for each run are

shown in table 4.3.

! An exploratory run was perfomed at a lattice size of 64 x 32%; with the results used only for the
visualisations discussed in appendix A.
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Lattice % —amg | Neont Acceptance | Npt  tien  Nsteps | Machine
Al 16 x 8  1.475 | 2400 91.4% 1 1.0 10 SC
A2 16 x 8 1.500 | 2200 90.9% 1 1.0 10 SC, UL
A3 16 x 8 1.510 | 2400 89.8% 1 1.0 10 SC, UL
A4 16 x 8 1.510 | 4000 92.4% 2 1.0 8 SC
B1 24 x 123 1.475 | 2400 79.9% 1 1.0 10 SC, UL
B2 24 x 123 1.500 | 2300 78.7% 1 1.0 10 SC, UL
B3 24 x 122 1.510 | 4000 88.5% 2 1.0 10 SC, UL
C1 32 x 16  1.475 | 2100 90.6% 1 1.0 20 SC
C2 32 x 162 1.490 | 2300 90.0% 1 1.0 20 SC, UL
C3 32 x 163 1.510 | 2200 89.4% 1 1.0 20 UL
C4 32 x 162  1.510 | 2300 83.2% 2 40 45 BGP
C5 32 x 162  1.514 | 2300 89.8% 1 10 20 | UL, BGP
C6 32 x 162  1.519 | 2300 81.8% 1 10 20 | UL, BGP
Cc7 32 x 162  1.523 | 2200 88.0% 1 1.0 20 SC
D1 48 x 24> 1.510 | 1534 80.5% 2 4.0 65 BGP
D2 48 x 243  1.523 | 2168 91.4% 1 1.0 40 BGP

Table 4.3: Lattices considered and parameters used. In the Machine column, SC refers to
an x86-64 cluster in Swansea University, UL to the ULGQCD machine in Liverpool, and
BGP to the ‘pyxis’ Blue Gene/P machine (part of the STFC DiRAC facility) in Swansea
University.

Lattice \% —amyg | Block size aMpCAC M.,
Al 16 x 8% 1.475 30 0.1489(9) 0.9718(31)
A2 16 x 8 1.500 30 0.1101(12)  0.8408(47)
A3 16 x 83 1.510 30 0.0904(14)  0.7618(64)
A4 16 x 8  1.510 30 0.0872(22) 0.747(10)
B1 24 x 123 1.475 30 0.1493(5) 0.9728(18)
B2 24 x 122 1.500 30 0.1113(8) 0.8449(31)
B3 24 x 123 1.510 40 0.09226(92) 0.7694(40)
C1 32 x 165 1.475 30 0.1485(4) 0.9700(14)
C2 32 x 162 1.490 30 0.1279(2) 0.9039(9)
C3 32 x 162 1.510 30 0.09111(31) 0.7646(15)
C4 32 x 162 1.510 40 0.09048(52) 0.7616(25)
C5 32 x 163 1.514 30 0.08223(34) 0.7256(18)
C6 32 x16%  1.519 30 0.06587(37) 0.6468(22)
C7 32 x 165 1.523 30 0.04840(54) 0.5480(36)
D1 48 x 243 1.510 40 0.09130(27) 0.7653(14)
D2 48 x 243 1.523 30 0.04722(43)  0.5412(29)

Table 4.4: PCAC and pseudoscalar meson mass.

62



4.2 Results

Lattice v —amg | Block size a\/o amo++
Al 16 x 83 1.475 — 0.424(13)  0.8422 + 0.0968
A2 16 x 8° 1.500 — 0.335(10)  0.7320 + 0.0885
A3 16 x 8° 1.510 — 0.299(12)  0.5690 + 0.0585
A4 16 x 83 1.510 160 — 0.5873 £+ 0.0553
B1 24 x 123 1.475 — 0.378(19) 0.9582+0.1174
B2 24 x 123 1.500 60 — 0.7296 + 0.1092
B3 24 x 122 1.510 191 0.322(10)  0.5284 +0.1494
C1 32 x 165 1.475 — 0.436(60)  0.9654 + 0.1057
C2 32 x 163 1.490 — 0.379(44)  0.8265 + 0.0644
C3 32 x 163  1.510 — 0.318(11)  0.5985 + 0.0573
C4 32 x 162  1.510 103 — 0.5901 £ 0.0438
Ch 32 x 162 1.514 — 0.322(13)  0.5530 £ 0.0415
C6 32x16%  1.519 — 0.2859(75) 0.3689 £ 0.0437
Cr 32 x 163 1.523 — 0.2368(84) 0.3146 £+ 0.0278
D1 48 x 243 1.510 59 — 0.4609 + 0.0553
D2 48 x 243 1.523 — 0.2354(56) 0.3595 4 0.0219
Table 4.5: Glueball masses and string tension, as computed by Biagio Lucini and Andreas
Athenodorou.

Lattice Vv —amg mi mq My, Meysy,,
B1 24 x 123 1.475 1.707(20) — 1.1602(11) 2.303(50)
B2 24 x 123 1.500 1.579(54) 0.64(20) 1.0504(18) 2.063(40)
B3 24 x 123 1.510 | 1.3524 (81)  0.48(20) — —
C4 32 x 163  1.510 1.334(18) 0.65(21) — —
C5h 32 x 16 1.514 1.242(55)  0.403(80) 0.9426(28) 1.678(73)
C6 32 x 162 1.519 1.136(45) 0.296(96) 0.8639(41) 1.683(62)
D2 48 x 243 1.523 | 0. 900(41) 0.28(12) 0.759(24) 1.21(51)

Table 4.6: Masses of the spin—% particle and of the scalar, vector, and axial vector
mesons (including the disconnected contribution where appropriate), as computed by Georg

Bergner.

Table 4.7: Results of the fit of the static potential from Wilson loops as V(1)
with o set to the value found from Polyakov loop correlators.

Lattice %4 —amy a b
A4 16 x 8 1.510 | 0.06535(6) —0.08876(7)
B3 24 x 123 1.510 | 0.45572(2) —0.25534(3)
C4 32 x 163 1.510 | 0.07630(4) —0.08542(5)
D1 48 x 243 1.510 | 0.02322(2) —0.05136(2)
D2 48 x 243 1.523 | 0.17588(2) —0.14952(2)
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Figure 4.2: The run history for the D1 lattice; the plaquette is shifted vertically to
improve the scaling on the y-axis.

An example run history for the RHMC is shown in figure 4.2. As would be expected,
after an initial thermalisation period, the average plaquette, number of applications of
the Dirac operator required, and the lowest eigenvalue of the Dirac operator all fluctuate

around equilibrium values.

4.2.2 Spectroscopy

Spectroscopic observables measured were the masses of the pseudoscalar, scalar, vector,
and axial vector mesons', the spin—% state?, of the 071 glueball?; other mesonic states
were found to be too noisy to get results from, and were deferred to a later study. Higher
glueball states were found to have very poor statistics; this is not surprising, since
glueballs are in general noisy observables. The spectroscopic results are summarised

in figures 4.3, where they are shown in lattice units, and 4.4, where they are given as

!The vector and axial vector were measured using a code that deals directly with Majorana fermions
rather than translating from Dirac results.

2The spin-half state is a bound state of a gluon and a Majorana fermion; in supersymmetric theories
it is referred to as the gluino-glue state. It is measured with an operator of the form ZW ot [FH*Y ],
where 0, = %[fy#, ). It is also measured with the aforementioned code that works directly with Ma-
jorana fermions. [158]

3We expect that, having as they do the same quantum numbers, the 07+ glueball and the scalar
state will be the same asymptotic state; the two terms are used here to refer to the gluonic and mesonic
operators used to measure them.

64



4.2 Results

T T T T T
—— Pseudoscalar meson Vector meson —e— String tension

—*— 0** glueball Spin-4 state

1.5 | i

L]
b
-

-

L}

3 2]

I
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

ampcac

Figure 4.3: Raw spectroscopic results for the pseudoscalar and vector meson masses, the
0™t glueball, the spin—% state, and the fundamental string tension.

ratios with respect to the string tension; the raw data are shown in tables 4.4, 4.5, and
4.6. The string tension was calculated from correlators of Polyakov loops (also shown
in table 4.5). Examples of the plateaux and cuts made for these variables are shown in
figure 4.5. Topological observables were also considered; these are discussed in detail
in chapter 5.

The ratio of the pseudoscalar, vector, and axial vector meson masses to the string
tension remain constant within 20 for the entire range observed. The spin—% state
behaves similarly, albeit with a slight rise at higher fermion masses. The 07" glueball
has a mass comparable with the scalar meson near the chiral limit, while again lying
slightly higher at higher fermion masses. The scalar meson is consistent with being the
lightest state in the region in which it was calculated: the error bars are sufficiently large
that the pseudoscalar is within two standard errors (or one, at higher fermion mass),
so in principle one or two points could lie higher; however, the errors are statistical in
nature, so the likelihood of all points lying at their current locations while having a
“true” value above that of the pseudoscalar is extremely small.

To ensure that our study is not afflicted with finite-size artefacts, a set of runs were
performed at all lattice sizes used, at m = —1.51, and their properties compared. The
spectroscopy of this set of runs is shown in figure 4.6; we observe an overlap of the
results from the three largest lattices, with the smallest lying a way away, indicating

finite-size effects at this lattice size.
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Figure 4.4: Spectroscopic results, showing the pseudoscalar, scalar, vector, and axial

vector mesons, the Spin—% state, and the 07" glueball, normalised by the string tension, as

a function of the PCAC fermion mass. At each bare fermion mass, only the data from the
largest available lattice is shown (with the exception of the scalar state at m = —1.51, where
the B3 results are used over the C4 results due to significantly lower errors). Approximate
plateaux are also shown.

Since we now know where finite-volume effects begin to exhibit themselves in the
case of one m (and hence o), we may use the condition that L /o (the normalised
lattice extent) remains constant to constrain our lattice volumes at other values of m.
This constraint excludes all of the 16 x 82 lattices from consideration, since they all fall

in the region affected by finite-volume artefacts.

4.2.3 Static potential from Wilson loops

The configurations from this set of runs were also used (along with the D2 data) to
analyse the static fermion potential, via Wilson loop calculations; the set of potentials
found is shown in figure 4.7a, with an example of a fit of the data shown in figure 4.7b.
The results for the A4, C4, and D1 data overlap; the B3 data meanwhile are displaced
by ~ 0.2. Since the 16 x 8 data are believed to be afflicted by finite size artefacts,
the displaced case is an edge case so a disagreement is less worrying than it would be
in, for example, the C4 data. However, the displacement can be entirely explained by
the smearing used: since the smearing procedure was used on all links, rather than

spacelike links only as some simulations use, the value for the potential obtained is
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Figure 4.5: Plateaux of various observables on the 32 x 163 lattice.

shifted. The data take the form

Vir)=a+ g +or. (4.84)
The factors a and § are dependent on the smearing parameters chosen, causing a
vertical shift and a distortion at the smallest r values respectively; o, however, is
independent of the smearing. The A4, C4, and D1 data converged to similar values
during the tuning process for the smearing parameters; the B3 data meanwhile ended
in a different region. The output of the tuning program, and a comparison with another
run using the smearing parameters of the C4 data (in which the results are no longer
vertically displaced, and the errors are of a comparable size), suggest that there is a
wide flexibility in choosing the tuning parameters with little change in the efficiency;
this gives a solid reason for the different smearing results.
By fitting equation (4.84), the potentials may be used to extract an independent
estimate for the string tension from that obtained via Polyakov loops; these are found to

agree. This estimate is not affected by smearing artefacts, since the smearing only shifts
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Figure 4.6: Spectroscopic results, showing the pseudoscalar meson and 0%+ glueball, for
the finite-volume study.
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Figure 4.7: The static fermion potential, (a) for the four finite-size runs at m = —1.51

(A4, B3, C4, D1), and the D2 run at m = —1.523, and (b) for the D2 run only, with the
fitted curve included.

the results vertically. Note in figure 4.7 that at high r (in particular r > L/2), the data
cease to lie on the line suggested by the previous points. When fitting the effective
mass at these points the plateaux are particularly short (often with two points and
relatively large error bars), and so the result found may not be the true value. These
points are included for information, but for fitting purposes the data were truncated to
r<L/2.

Adopting the results for the string tension from Polyakov correlators, and fitting the
parameters a and b based on this value of o, allows for an additional consistency check,
and for stabilisation of the fits. The parameters obtained by fitting in this way are
shown in table 4.7, and an example is plotted in figure 4.7b. While the functional form
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is very close, the fit tends to lie below the data, reflecting a slight difference between
the Wilson and Polyakov loop data. The systematic errors on the Wilson loop fits are

yet to be fully quantified, so whether this discrepancy is within errors is unclear.

4.2.4 Anomalous dimension from the Dirac mode number
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Figure 4.8: (a) The quantity 7/V for the B1, B2, B3, C5, C6, and D2 lattices; (b) The
results for the mode number from the D2 lattice, compared with two possible fit results.

The raw data for the mode number are shown in figure 4.8a. The results are
consistent at high Q, but diverge at low €2, moving further from a straight line as the
lattice volume is reduced. Whilst the mode number is a relatively quick observable to
calculate, fitting it to obtain a value for the anomalous dimension +, is less simple.

Recall from section 3.2.4 that the mode number (in lattice units) takes the form

2

a*7(Q) ~ a*To(m) + A [(aQ)? — (am)?] (4.85)

only in an intermediary region of 2. To account for this, we must consider all possible
locations of the upper and lower end of this window when fitting the data. Addition-
ally, the function is relatively insensitive to large correlated changes in the four fitted
parameters 7y, A, m, and ~y,—although m is proportional to mpcac, it must be fitted
since we do not a priori know the constant of proportionality. This leads the fit to
have a high sensitivity on initial conditions creating a systematic uncertainty on the
fit parameters; the fitting algorithm will return a vastly underestimated value for the
error on its output.

To overcome these problems, the first attempted fitting procedure takes the fol-

lowing approach. Each window of length 6 or more points (four parameters cannot
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reasonably be fitted with fewer than four points; four and five points were found to
be sufficiently unstable that they were not considered) is considered in turn. For each
window, an initial Levenberg-Marquardt fit [159, 160] is performed across the basic
data set, with 7y = 0 set to allow convergence more easily. (Since convergence is still
difficult even with this restriction, multiple attempts are made; the window is discarded
after fifty unsuccessful attempts.)

The results of this fit are used as the basis for the initial conditions for the main
fit. Then a set of 1000 bootstrap samples is created—each sample considers a random
subset (with repetition permitted) of configurations, with the same subset considered
for each point. Each sample is fitted, again with the Levenberg-Marquardt algorithm,
with initial conditions given by an up to 10% uniform random offset from those given
by the initial fit, and vy € [0,1000) another random choice. If the fit fails to converge,
then an inefficiency counter is incremented so that the quality of the fit can be judged.
If the fit converges to an unreasonable value of m (which must lie below the lower end
of the window), the window is discarded—even if only one of the thousand samples
behaves in this way, it is still indicative of the fit driving to the wrong regime. Once all
1000 samples have been considered, then the parameters for that window are reported
as the means and standard errors of the sample fits. The inefficiency is also output as
a percentage, as is the x? deviation per point.

We now have an output file with estimates of the fit parameters for each window.
The number of possible windows is quite large, which leaves us in the unusual situation
of needing to fit our fit results. While a colour map could be used to give an overall
impression of the quality of the data an an initial impression of where the best regions
lie and what the fitted parameters will be, they are poor presentational tools due to the
difficulty that can be had in interpreting them, and they are not sufficiently quantitative
for the data we are working with here.

To obtain quantitative estimates of the parameters, we must fix the upper and lower
ends of the window in turn, and look for plateaux in their values. Plots are created for
each fitted observable (A, m?, ., and y); a set of such plots is shown in figure 4.9. In
each plot, a variety of possible lower ends of the window are considered, represented by
different colours. (The lowest-lying data have been omitted here since they add only
noise.) Then the upper end of the window is used to position the points on the z-axis,

with the observable on the y-axis.
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In the region of the physical values, we expect to see plateaux in many nearby
upper and lower ends of the window (since a slight adjustment of the window position
or length should not affect the fit), and in the same region in all observables. On the
plot, this corresponds to plateaux in nearby colours, at similar vertical positions within
the individual plots, and at the same horizontal ranges on all plots.

When this is done, plateaux are seen for upper ends between 0.3 < Q < 0.5, with
the lower end in the range 0.2 < Q < 0.25 (the blue region of the spectrum). This gives
an anomalous dimension in the range 0.9 < ~,. < 0.95. However, it is possible that
the Levenberg-Marquadt algorithm has been biased in some way due to the difficulty
of the data. To verify whether this is the case, it seems prudent to attempt a second,
independent fitting method to cross-check the consistency of the results found.

A suitable alternative, which is well-suited to situations where the system may
converge to a local minimum, is known as simulated annealing [161, 162]. This method
is functionally the same as a Monte Carlo simulation, where the action is replaced by
x? for the parameters. The use of the Metropolis algorithm allows the fit to move away
from local minima in }? to find the global minimum. The “annealing” occurs when
the temperature of the system is gradually reduced, slowly reducing the Metropolis’s
ability to move away from peaks. This forces the fit to converge on the global minimum,
rather than continuing to sample the whole distribution. As in the previous approach,
this is done for each possible window in turn. This was done by a collaborator, and

the results were found to be consistent with the results from Levenberg-Marquadt.

4.3 Conclusions

We have carried out the first look at SU(2)AdjNfl on the lattice. After an initial
exploratory study of the phase structure in the S-m plane, quantitative studies were
made at a variety of lattice sizes (with a single lattice spacing), looking at the meson and
glueball spectrum, the static potential and string tension from Wilson and Polyakov
loop correlators, and the anomalous dimension of the chiral condensate. (The topology
is also considered in the next chapter.) In the spectrum we observe that ratios of
spectral quantities are constant over a wide range of fermion mass, which is consistent
with behaviour that is not “traditionally” confining (i.e. either conformal, or confining

but near the lower edge of the confomal window)—in particular, the non-vanishing of
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the pion mass as mpcac — 0. The rise in non-mesonic state masses at higher fermion
mass may be a statistical anomaly, or a large-mass effect.

The theory also shows signs of admitting a light scalar state, supporting the finding
of non-QCD-like behaviour. While a confining scenario with adjoint matter could
account for the observation that the mesons lie above the lightest glueball state, we
would still expect the pseudoscalar to be the lightest mesonic state, in contrast to the
observation here that the scalar meson lies below the pseudoscalar. While the errors
are sufficiently large that a single data point could be conjectured to be misordered,
the presence of multiple data points two standard errors below the pseudoscalar makes
such a conclusion unsupportable.

The anomalous dimension is tentatively found to be in the region 0.9 < v, < 0.95,
which is one of the highest anomalous dimensions found in a lattice gauge theory. Were
it not for the insufficient number of Goldstone states from xSB discussed in section 3.4,
this would be an excellent candidate theory for Technicolor phenomenology; as it stands
it is still very interesting, since it implies the conformal window for SU(2) with adjoint
matter may extend lower than is expected from approximate analytic methods.

It would be interesting to extend the study to lower masses (via larger lattice sizes),
to probe the behaviour closer to the chiral limit. Probing higher mass to investigate
whether the rise in non-mesonic spectral quantities is a statistical artefact requires
smaller lattice spacing; this is also necessary to find the continuum limit of these results,
which is another important next step. This will also allow us to be 100% certain that
we are not simulating lattice artefacts—as we have simulated only a single value of 3,
although we have been careful to avoid the bulk phase, the possibility remains that
lattice artefacts remain. Finally, since Ny = 1 (two Majorana flavours) has too few
and Ny = 2 (four Majorana flavours) too many Goldstone states, and both lie within
or near the conformal window, it seems a good idea to perform a similar study of the

theory with three Majorana flavours (which lies between the two).
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Chapter 5

Topology

There exist topological objects in classical and quantum field theories called instantons.
They are non-perturbative gauge field configurations, which correspond to tunnelling
events between vacua. Their interactions with quarks have been found to result in
chiral symmetry breaking, and it has therefore been suggested that instantons play
some roéle in deconfinement.

In this chapter I will present the results of a study of the topology of two theories:
SU(2)Adj Nfl and Minimal Walking Technicolor (MWT). Both theories are outlined
in section 3.4, and more details of the study of SU(2)AdjNfl are in chapter 4. In
section 5.1 I will describe instantons and their properties, while in section 5.2 T will
outline the apparatus for observing and calculating properties of instantons on the
lattice. In section 5.3 I will present the results of studies of instantons in the two SU(2)
theories mentioned, and in the SU(2) pure gauge theory for comparison, which are then

discussed in section 5.4. Concluding remarks are given in section 5.5.

5.1 Instantons

In this section I will follow the presentation of Schéfer and Shuryak’s review [9]. We
start by looking at the classical vacua of Yang-Mills theory. The Hamiltonian under

consideration is

1
H= 292/d3x (E? + BY) , (5.1)

where the electric field E = 0y A; forms the kinetic term, and the magnetic field B gives

the potential term. The classical vacua have zero field strength, and can be obtained
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by a gauge transformation from the trivial vacuum, giving
Ai = iU(X)aZ'U(X)T . (5.2)

Enumerating the vacua involves classifying all possible gauge transformations U(x),
which in turn requires studying equivalence classes of maps from R? into SU(N). We
can limit this set of maps to those obeying U(x) — 1 as  — oo [163]. These mappings

can be classified by their winding number, an integer defined as

nw = g Bre*er[(UTo,U)(UTo,U)(UToRU)] . (5.3)

This is none other than the Chern-Simons characteristic:

iJ a a 1 abc pa c

In the case of SU(2), if we wish to find an example of a mapping with a given

winding number n, we can make use of the hedgehog ansatz, which states
U(x) =exp (if(r)r?z?) , (5.5)

where r = |x|, 2% = 2®/r. Substituting this in shows

mo = L [y SCIEDT

- >, (5.6)

If we constrain U(x) to be uniquely-defined, then f(r) must be an integer multiple
of m at r = 0, 00, so we can see trivially from equation (5.6) that nyw is then an integer.
Then any smooth f(r) with f(r — oo) = 0, f(0) = nm provides an example of a
function with winding number nw = n.

We have thus found an infinite number of classical vacua labelled by an integer n,
which are topologically distinct: we cannot go from one to another by a continuous
gauge transformation, and there is no path from one to another such that the energy
remains zero all the way along. Quantum mechanically, though, we are aware that we
may tunnel between vacua. To see this here, we look for paths with minimum Euclidean

action connecting vacua with different winding number. Starting with the action in the
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form:
1 4 a a
S = 49 d xFWFW (5.7)
1 4 a a a ra 2
= g2 | T |EFu L+ (FW TE) | (5.8)

where F;w = %GW,,UFW is the dual field strength tensor, in which the roles of electric
and magnetic field have been reversed. It is evident that S is extremised when the field

is either self-dual or anti-self-dual:
Fl‘fy = iFl‘fV . (5.9)

From this we define the topological charge

1 4 a a
Q= 39,2 /d :I:FWFW , (5.10)

which we may rewrite in the form

Q= /d%@uKu = /daﬂKH, (5.11)

where

1

b= TgaCna <A“85A“+ A“AbAC> : (5.12)

Provided that A, drops off sufficiently rapidly at spatial infinity, then

Q = /dt /d .%'K() = ncs(t ) — ncg(t = —OO) . (5.13)

Thus if @ # 0 then the field configuration connects topologically distinct vacua at
different times. Such a solution is referred to as an instanton.

The first such solution reported was found by Belavin, Polyakov, Schwartz, and
Tyupkin [164], and is hence called the BPST instanton. BPST referred to it as a
“pseudoparticle”, with the name “instanton” only being coined later. Its gauge potential

takes the form

2Nqu®
Al (z) = x;i”pz” : (5.14)
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where 7)4,,, is the 't Hooft symbol

€qpv v =1,2,3
nauu - 5GM v=4 (515)
—0qy H=4,

and p is an arbitrary parameter characterising the instanton size. This instanton carries
topological charge @ = 1. A variant with ) = —1 is found by replacing n with 77, which
swaps 0 <> —0.

The form of the instanton in equation (5.14) proves inconvenient to work with; we
may make a gauge transformation to singular gauge to give a gauge potential of the

form:

- 2
0%y MapuP

(5.16)
This is singular at the origin, but the singularity is not physical. It does however
localise the topology to the origin, which allows easier study of instanton—anti-instanton
configurations.

Instantons also play a réle in chiral symmetry breaking; they solve the U(1) problem,
by breaking the chiral U(1) symmetry, which would otherwise break spontaneously to
give additional pions not observed in nature [165]. It is possible to model the vacuum
of QCD (or another gauge theory) as a dense liquid of instantons, in what is aptly
referred to as the “instanton liquid model”. This framework allows computation of
some non-perturbative observables (within the limits placed by the oversimplifications
of the model, which neglect all other degrees of freedom) beyond perturbation theory
without the need for lattice computations; the lattice is still however necessary both to
confirm the results of at least some of these computations (to verify the method) and
to go beyond the limitations of the model. Recent examples of instanton liquid model
calculations include studies of the QCD magnetic susceptibility [166] and of the QCD

electrical conductivity [167].

5.2 Methodology

The lattice is set up as described in section 3.1. The observables studied are described

in detail in [168]; here, I will summarise the main points. In the continuum, from

78



5.2 Methodology

equation (5.10) the topological charge density can be expressed as

1
Qz) = 39,0 oot {Fuv (@) Fpo(2)} - (5.17)
The total topological charge of a configuration can then be expressed as the space-time
integral of this quantity.
The equivalent lattice topological charge density is then given by:

1

QL) = 350

€upott {U (2)Ups ()} (5.18)

For a smooth gauge field, this would appear to have fluctuations of order a? as the
lattice spacing a is sent to zero; however, realistic fields have ultraviolet fluctuations
which will completely dominate over the physics of interest in the continuum limit. To
mitigate this, a cooling process is introduced [169]. The cooling process operates by
minimising the local action for each lattice site in turn.

Successive cooling sweeps will “smooth out” the fluctuations such that the semi-
classical physics may be observed. A side effect however is that instantons may be
shrunk or may annihilate in instanton—anti-instanton pairs, thus excessive cooling is
to be avoided. The number of cooling sweeps used in a calculation is chosen as a
compromise between the need to smooth out the configurations and the requirement to
not annihilate physical instantons. There is however a wide plateau where the physics
can be observed without cooling artefacts becoming problematic, so the number of cools
need not be finely tuned.

Once the topological charge density is known, various observables may be calculated.

Q@ is the total topological charge, defined by
Qr=>_Qu(i), (5.19)
i

with ¢ running over all lattice points. Since the continuum topological charge is an
integer, the lattice Q1 is often rounded to the nearest integer. Lattice studies (e.g.
[170]) show that when working close to the continuum limit, the particular choice of
definition for Q1 does not affect the results obtained—as we would expect, since any
differences should be lattice artefacts, which will disappear in powers of the lattice

spacing. Armed with the total topological charge, we may then proceed to find the
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topological susceptibility, which is defined as

(Q1)
o

(5.20)

where V is the lattice volume. This form, however, introduces systematic errors which
may be removed by instead calculating

Q%) — (Qr)°
T= <T>V : (5.21)
since (Qr) is expected to be zero, so any difference from zero would be due to an
additive constant.

The size of a given instanton may be calculated from the local maxima and minima

of the topological charge density from the relation

(5.22)

which can be derived by substituting the gauge potential for the BPST instanton (equa-
tion (5.16)) into the definition of the topological charge density (equation (5.17)). This
is the method that was used to obtain the results presented below. It is possible to
introduce lattice corrections to this form, and to account for the effect that the overlap
between instantons will have on the peak topological charge density; these methods

have not been used for this work.

5.2.1 SU(N) results

To allow an informed comparison between the results found during this research and
prior work, some examples from the literature are quoted here. Figure 5.1 shows
the topological susceptibility for SU(NN) pure gauge theories, N = 2,3,4,5 (plotted
as X% /\/o against a?0), with straight line behaviour observed for each case as a — 0.
Figure 5.2 shows the instanton size distributions for SU(2) and SU(3), showing a single-
peaked distribution in all cases, falling to zero at p — 0 and p — co. We will look for

similar patterns in our data, and try to explain any observed differences.
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Figure 5.1: Variation of the quantity x7 /\/a with o for SU(n) theories, from [8].
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Figure 5.2: Instanton size distributions for SU(2) and SU(3), from [9].
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Figure 5.3: Variation of the quantity yi/,/c with o.

5.3 Numerical Results

Computations were carried out on an x86-64 cluster and a Mac Pro, both in Swansea
University. Two-flavour configurations prepared for ongoing work (discussed in [10],
where measurements of spectral quantities, and analysis of finite volume artefacts, may
be found) were used, at 8 = 2.25, with V = 16 x 8%, m = —0.90, —0.75, —0.50, —0.25,
0.00, 0.25, 0.50 and V = 24 x 123, m = —1.00, —0.95. The one-flavour configurations
discussed in Chapter 4 were also used; details of the combinations of parameters and
lattices used are given in that chapter.

To allow comparison with the pure Yang-Mills case, pure gauge configurations were
generated at f = 2.4,V = 12* and B = 2.55,V = 20%. Each update consisted of 1
heat bath and 4 over-relaxed steps, and measurements were taken every 10th and 50th
configuration on the smaller and larger lattice respectively. For each 3, the lattice size
was chosen such that finite size effects were negligible. 20 cooling sweeps were used for
all configurations.

The findings (shown in figure 5.3) show consistency between the three cases, and
both qualitatively and quantitatively with Lucini and Teper’s results in figure 5.1 [8].

The topological susceptibility shows no sign of finite-size effects. However, the in-
stanton size distribution shows a different picture. In the case of the pure gauge theory

at V = 12* and the 1- and 2-flavour cases at V = 24 x 123 and larger (shown in figure

82



5.3 Numerical Results

I I I I I
Pure gauge, 3=2.40, V=12" T N;=2,8=225, V=24 x 12>, m= —0.95 &
Ni=1,8=205, V=48 x 24>, m=—1.523 N;=2,8=225V=24x 12>, m=—1.00 W
Ni=1,8=205V=24x 12> m=—151 & 2

pVo

Figure 5.4: Instanton size distribution for one- and two-flavour configurations on the
24 x 123, for one-flavour configurations on the 48 x 242 lattices, and for the pure gauge
configurations. In all cases the distributions have been truncated at p = %LT to avoid
boundary effects.
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Figure 5.5: Instanton size distribution for some of the one- and two-flavour runs on the
16 x 82 lattice, exhibiting severe finite-size effects, and the 20* pure gauge data, exhibiting
cooling artefacts at small instanton size.
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Figure 5.6: Comparison between the instanton size distributions of one- and two-flavour
configurations affected and not affected by finite-size effects.

5.4), the distributions are consistent both with each other and with the distribution
found in similar pure-gauge studies [171-173] (beyond, that is, the start of the distri-
bution, which is controlled by the lattice spacing). However, looking at the 16 x 83
lattice, the two-flavour theory shows a long tail in the instanton size distribution, which
grows into a second peak in the region where finite-size effects are encountered. The
initial peak is also distorted. The distortion in the tail is best seen in the region cut off
in the previous plot (where we expect finite-size effects to be strongest); this region is
included in figures 5.5 and 5.6. In figure 5.5, some examples of finite-size-effect-afflicted
distributions are shown; in figure 5.6, some examples are compared to a non-afflicted
distribution.

All else being equal, this would cause the average instanton size to lie above the true
value; however, in figure 5.7 we see that on the smaller lattices p lies below the value on
larger lattices. This is due to the tail of the distribution being truncated. Two estimates
for the average instanton size are made: one considering only p < %L (since instantons
larger than this may be distorted by being close to the box size), and one considering
all p < L (since p > L is obviously spurious, since such an instanton could not fit on
the lattice). Since the former approximation truncates a significant amount of the tail

of the distribution in most cases, an estimate of the error this introduces is made by
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Figure 5.7: Variation of the average instanton size with o.

placing the point with sufficiently large errors that both estimates are included. In the
smallest lattices, even the latter truncation still removes much of the tail, which when
combined with the aforementioned finite-size distortions to the distribution, cause the
observed reduction of the average size. Whilst it might be possible to correct for this,
the other distortions lead it to be not worthwhile.

The topological charge distribution was also computed for a single configuration
of a 64 x 323 lattice for SU(2)AdjNfl, with 8 = 2.05,m = —1.51, and visualised in
three dimensions using the Vislt visualisation tool [174, 175]. The resulting graphics
are shown in appendix A.

For a sufficiently large lattice, we expect that the topological susceptibility and

average instanton size should scale as

X = L74F (LmY/ (7)) | (5.23)
p = LF;(Lm"(+7)y | (5.24)

where 7, is the anomalous dimension of the (chiral) condensate. Attempts were made to
fit both the SU(2)Adj Nfl and the MWT results to these relation by hand (as described
in [10]), without success. A representative sample of the plots generated for this fit are

shown in figures 5.8-5.11.
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Lattice aL amg AMPCAC aty p/a
Al 8 1475 0.1489(9)  2.321(85) x 107%  3.82(34)
A2 8 1.500 0.1101(12) 1.935(69) x 10~*  3.91(39)
A3 8 1.510 0.0904(14) 1.676(64) x 107%  3.91(42)
A4 8 1.510 0.0872(22) 1.648(37) x 10~*  3.95(43)
Bl 12 1475 0.1493(5)  1.942(74) x 107*  4.32(20)
B2 12 1.500 0.1113(8)  1.868(71) x 10~*  4.337(77)
B3 12 1.510 0.09226(92) 1.569(34) x 10~*  4.61(27)
C1 16 1475  0.1485(4)  2.651(94) x 107%  4.503(73)
C2 16 1.490  0.1279(2)  2.150(74) x 107*  4.612(88)
C3 16 1.510 0.09111(31) 1.563(65) x 107%  4.90(15)
C4 16 1.510 0.09048(52) 1.607(54) x 107*  4.90(13)
C5 16 1.514 0.08223(34) 1.442(62) x 10~*  4.98(17)
C6 16 1.519 0.06587(37) 1.274(43) x 107*  5.23(22)
C7 16 1.523 0.04840(54) 1.046(37) x 107*  5.61(33)
D1 24 1.510 0.09130(27) 1.979(73) x 10~ 5.061(17)
D2 24 1.523 0.04722(43) 1.204(43) x 107*  6.058(73)

Table 5.1: Numerical results for mpcac, x and p for Ny = 1 as a function of mpcac on
lattices of size 2L x L3. Lattice names correspond with those in chapter 4.

Lattice al —amg ampcAC aty p/a
S0 8 —0.50 1.16353(73) 2.198(36) x 10™% 3.84(34)
S1 8 —0.25 1.07205(97) 2.141(35) x 1074 3.85(34)
S2 8 0.00 0.9706(11) 2.188(37) x 10~* 3.86(35)
S3 8 025 0.8552(11) 2.059(33) x 10 3.88(37)
S4 8 050  0.7224(13) 1.764(28) x 10~*  3.96(41)
S5 8 0.75  0.5607(18) 1.365(23) x 107%  4.02(51)
S6 8 090 0.4330(18) 8.23(17) x 1075  4.12(67)
BO 12 0.95 0.39017(68) 4.772(81) x 107° 5.73(67)
Bl 12 1.00 0.33623(82) 6.502(93) x 107> 6.18(94)

Table 5.2: Numerical results for mpcac, x and p for MWT as a function of mpcac on
lattices of size 2L x L3. Lattice names correspond with those in [10].
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Figure 5.8: Fitting the topological susceptibility for SU(2)AdjNfl. The closest fit is
found at 7, ~ 5.0, which is well outside the acceptable bounds on 7., 0 < v, < 2.
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Figure 5.9: Fitting the average instanton size for SU(2)Adj Nfl.

found at . =~ 5.0.
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Figure 5.10: Fitting the topological susceptibility for MWT. No good fit is apparent.
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Figure 5.11: Fitting the average instanton size for MWT. All plots fit, since the error
bars are larger than the deviation in the data; no bounds may be placed on 7.
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5.4 Discussion

As was discussed in chapter 2, since MW'T is a conformal theory, the fermions are
expected to be dynamically quenched, leaving the topological observables unaffected;
we therefore expect the MWT and pure gauge results to be equivalent to each other.
This is indeed what is seen. Our results from chapter 4 are tentatively indicative of
conformality or near-conformality; the consistency seen between the 1-flavour results
and the MWT and pure gauge results reinforce these findings.

The distortion of the 204 pure gauge distribution is surprising; the values of 3 were
chosen to avoid finite-size effects at each lattice volume. It is possible that instantons are
more sensitive to finite-volume effects than other objects, but it is more likely that the
cooling has caused the smallest instantons to shrink (more so than in the theories with
matter) and “fall through” the lattice, distorting the distribution. The SU(2)Adj Nfl
curve at 16 x 83 is a lot closer to the large-volume curve than the MWT curve is; this
is most likely because while the MWT study pushed m as low as possible and looked
for finite-size effects later, the SU(2)AdjNfl study abandoned runs earlier when they
showed signs of finite-volume effects, meaning the remaining runs are less afflicted.

For the fits, in the case of SU(2)Adj Nf1, the fits only appear reasonable at v, ~ 5.0,
which is well outside the range of acceptable values for v, 0 < v, < 2.0. For MWT
meanwhile, in the case of x, no scaling behaviour is observable, and in the case of p,
the results are compatible, but their behaviour is such that no bounds can be placed

Oon Y.

5.5 Conclusions

In this chapter I have presented a first look at the topological susceptibility and in-
stanton size distribution for both SU(2)Adj Nfl and MWT. Both theories demonstrate
behaviour that is compatible with IR conformality in both the instanton size distribu-
tion and the topological susceptibility. Both also show finite-size effects in the instanton
size distribution at small lattice size, with MWT showing them most severely. Using
topological observables, the anomalous dimension of the chiral condensate could not
be extracted in either theory.

Extending the MW'T study to larger lattices would allow a fuller look at whether or

not scaling of topological observables with the anomalous dimension could be observed
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in that theory. It would also be of interest to apply the same method to other candidate

walking theories.
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Chapter 6

HiRep Code and BSMBench

Having discussed the physical applications of this work in some detail, I will in this
chapter present the computational side to the work I have done. First in section 6.1 I
will review some of the technical aspects of high-performance computing (HPC). Then
in section 6.2 I will outline the HiRep code, which was used to obtain most of the
results presented in the previous two chapters. In section 6.3 I will present BSMBench,

a new benchmark tool for HPC systems based on the HiRep code.

6.1 High-Performance Computing

Before diving into detailed discussions of HPC code and its performance characteristics,
it is worth overviewing some of the technical aspects of HPC systems, in order to put
the discussion in context.

All modern high-performance (and increasingly non-high-performance) computers
operate on the principle of parallelism; that is, running multiple threads of code on
distinct processing units. Historically supercomputers were vector processors; that is,
they operated on chunks of data in parallel but with scalar instructions. These machines
are now mostly confined to museums,' and instruction parallelism is the state of the art.
There are two primary methods of execution which are in use, CPUs (Central Processing
Units) and Graphics Processing Units (GPUs). CPUs are the older technology and are

easier to program for, with each unit being able to execute independently. GPUs, as

!'Note that while machines whose primary method of performance increase is increasing degrees of
vectorization are outmoded, the vector execution model is itself present in all modern processors in
some respect in the form of SIMD instructions (such as SSE and AVX in x86 processors).
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the name suggests, were initially developed to process the display of 3D graphics, but
have in the last decade been adapted to run general-purpose code. They offer higher
performance than comparably-priced CPUs, but are massively parallel with a limited
instruction set, and work in conjunction with a CPU to feed it instructions and process
non-parallel sections. Because of this, they are more difficult to program for than CPUs,
and since HiRep and BSMBench currently make no use of GPUs, will not be discussed
any further.

Worth discussing at this point is the various subdivisions of machines that may be
considered. In general large machines consist of a number of nodes (compute cards in
Blue Gene parlance), each of which is more or less equivalent to a workstation computer.
There is a soft distinction between clusters and superclusters, which use (high-end) com-
modity processors and have nodes which provide a workstation-like environment, and
“true” supercomputers (most notably IBM’s Blue Gene architecture') which use spe-
cialist CPUs and have stripped-down nodes. (Historically the word “supercomputer”
was reserved for machines with huge amounts of memory shared between a large num-
ber of execution cores and/or vector units, and even a Blue Gene-like machine would
be referred to as a supercluster; this nomenclature is now limited to a handful of tradi-
tionalists, since such machines have been largely discontinued in favour of the simpler
node-based parallelism.) For code that is not parallelised, clusters generally offer better
performance for job-level parallelism (sometimes referred to as High-Throughput Com-
puting (HTC), running multiple scalar codes simultaneously to take advantage of the
machine’s parallelism); while this is sometimes possible on Blue Gene-like machines, it
is generally less efficient than using a cluster environment.

Fach execution core is effectively a CPU in its own right, having dedicated caches,
and being able to execute instructions independently of its siblings; the cores frequently
also share access to a common cache. For the purposes of running code, the divisions
between processors are not normally considered, and the node is considered in terms

of its number of cores only. All the cores on a node share access to the same memory,

'For completeness, the Blue Gene architecture also has higher-level structure above the node level:
the compute cards are arranged into blocks of 16 called node cards, which are in turn arranged into
midplanes. Two midplanes placed one atop the other (possibly with some additional I/O hardware)
form a rack, which is the smallest unit of Blue Gene available for purchase. The machine then comprises
an appropriate number of racks.
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thus the node (as with the entire historical supercomputers discussed above) is a shared-
memory environment.

Since the memory is not shared between the nodes (rather being distributed be-
tween them), is is almost always the case that the contents of memory will need to be
transferred between nodes (since it is rare that a parallelised code will only work with
the portion of the data set that it is allocated, and not depend on any updated data
from other nodes). Because of this, it is important to have high-speed interconnects
between the nodes. Lattice codes in particular, even with ultralocal updates, need to
synchronise large amounts of data between nodes very often; it is therefore important
that the interconnects have both high speed and low latency. Speed here refers to the
amount of data transferred in a given time, while latency refers to the minimum delay
between making a request and receiving the resulting data.

To illustrate the difference, a frequently-quoted example of a high-speed, high-
latency connection is a high-speed train loaded with flash memory—the train moves
slowly compared to electrical signals, but the data density makes the overall transfer
rate better than electrical signals. (A numerical discussion of this type of scenario may
be found in, for example, [176].) Meanwhile a Morse code operator on a radio frequency
would have a lower throughput speed (limited by the human finger), but much lower
latency (the speed of light providing the lowest possible latency). A high latency would
leave a lattice code frequently waiting for a transfer to commence so it can continue,
while a slow speed would leave it waiting for the transfer to complete.

An execution core may also support multiple concurrent threads—in Intel chips this
is referred to as HyperThreading. This was originally introduced as a “poor person’s
multi-core”, since for commodity usage it provides advantages similar to a multi-core
chip on a single-core processor. The processor contains multiple sets of state regis-
ters (or caches for them); however, only one thread executes at a time. The speed
improvement comes from the vastly increased speed of context switching, for which
efficient instructions are added. This means that when a program needs to wait (for
network traffic, for example), the CPU may switch to a different process that is ready
to continue, without the “thrashing” that occurs in the absence of concurrent threads.

There are two primary methods of parallelising applications: message-passing meth-
ods such as MPI (Message Passing Interface), and thread-based shared-memory ap-

proaches such as OpenMP and Pthreads. In the case of MPI, N copies of the same
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executable are run, where N is the degree of parallelisation. It allows parallelisation
both on single nodes and across multiple nodes, since the messages can be passed lo-
cally or over a network; however, the cost incurred is duplication of data between the
processes, and some message-passing overhead when running in a shared-memory en-
vironment. Multithreaded approaches meanwhile run only one executable, spawning
threads sharing the same execution space to share the work; this avoids the overheads
associated with MPI, but are limited to running on a single node since multiple nodes
do not (in general) share memory.

It is possible to combine these approaches into “hybrid” MPI-OpenMP programs,
with multithreading on the node and message passing between the nodes; this avoids
as many message-passing overheads as possible, but two sets of parallelisation requires
twice as much debugging, and care must be taken to ensure that the two don’t interfere
with each other. Some compilers will attempt to automatically implement multithread-
ing optimisations; however, with current non-trivial code, there is not a measurable

improvement in performance from these optimisations.

6.2 HiRep

The HiRep code has been written over the last six years by a team headed by Claudio

Pica. Much work has been published incorporating results produced by HiRep and

code built upon it [10, 14, 156, 157, 177-187]. Its operation is described in detail by

Del Debbio, Patella, and Pica [178]; the algorithms used are reviewed in chapter 3.
The HiRep code comprises:

o A set of C modules containing shared functions

e A set of C and Fortran programs for specific computations, making use of the

above libraries

e C++ code to generate header files for a particular fermion representation and

gauge group at compile time
e Makefiles to link the above together

« Additional statistical analysis tools (C++ code with bash wrappers) to extract

spectroscopic quantities from the program output
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Compile-time parameters (e.g. gauge group, fermion representation, boundary con-
ditions, use of MPI) are specified in a flags file. Runtime parameters (e.g. lattice volume
and parallelisation, coupling and bare mass, directory for writing configurations, algo-
rithmic parameters) are set in an input file, which takes the form of key = value pairs,
one per line. A few parameters (e.g. run log file location) are set as command-line
arguments.

As is common for lattice codes, parallelisation occurs using MPI, with the division
splitting the lattice volume into chunks, one per process. In the absence of compiler-

specific automatic multithreading optimisations, each MPI process is single-threaded.

6.3 BSMBench

BSMBench is a HPC benchmark tool developed from the HiRep code. In this section
I will explain the need for benchmarks in HPC, outline the procedure adopted for
BSMBench, and then present some results the benchmark gives on various machines,
with accompanying discussion. An earlier version of this work was presented as a poster

[15] at the International Supercomputing Conference (ISC’12) [188] in Hamburg.

6.3.1 Why benchmark?

Every application written for a system makes different demands on its hardware. For
example, one application may deal exclusively with integers, while another makes heavy
use of floating-point numbers. So-called “big data” applications, which are becoming
of increasing importance in HPC with the rise of large datasets from social networking
applications, require vast amounts of working memory accessible to a single process;
other applications (including most lattice gauge theory computations) may be paral-
lelised such that on-node memory is not a major constraint.

This diversity of applications means that it is impossible for a supplier of a machine
to quote a single performance rating that fits all applications. This has led to the cre-
ation and standardisation of benchmarks. A benchmark is a reference program, having
the same characteristics as a production program in a particular area (ideally from the
same codebase), which behaves in a predictable way; when run on an ensemble of ma-
chines, the output may then be used to compare the machine’s suitability for that task.

Having this measure is invaluable when making procurement decisions for dedicated
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facilities: if a machine with characteristics designed to suit a graph application were
bought to run physics applications, for example, performance would be far lower than
would be had from a similarly-priced machine that was better-suited to the task.

The LINPACK benchmark [189] is the most commonly-cited benchmark for HPC,
and is the basis of the TOP500 [190] ranking; there is, however, increasing debate over
its continued relevance ([191], for instance, suggests the LINPACK benchmark as one
of a suite stressing different areas, and [192] warns of the danger in designing new large
machines to run LINPACK when they will be used for other purposes). The Graph
500 [193] list in 2010 introduced a new benchmark for Big Data-style applications;
this has illustrated the disparity in demands, with the rankings of machines shuffling
greatly compared to their TOP500 places. QCD has been used to both benchmark
supercomputers [194] and smaller machines [195]; however, these benchmarks have not
produced ranking tables in the same vein as the TOP500 and Graph 500.

The highest-performance machines available are generally the newest to market and
most bespoke, and thus do not benefit from the accumulated years of testing an older
or more commonly-used system will have. This means that when running a benchmark
on a new machine, the test should include a consistency check to verify that the code
is functioning correctly. Failing to do this could result in procuring a machine that
appears blisteringly fast compared to the competition, only to find that it fails to run
the main body of the code. BSM code in general and HiRep in particular, unlike most
code, has the flexibility to adjust its ratio of communications to compute demands,
based on the fermion representation and the gauge group. This allows a benchmark

derived from it to give results applicable to more applications than existing benchmarks.

6.3.2 Benchmark strategy

To summarise the relevant points from the previous subsection, we have two main aims

for the benchmark code [196]:
1. To give a characteristic rating of the machine’s performance, and
2. To check that the machine executes the code correctly.

The benchmark should fulfil these two tasks within certain constants:

98



6.3 BSMBench

e It should use code that is representative of the main body of the computation

being benchmarked.

e It should give output that can be read by people who are not knowledgeable in the
area of the benchmark, so that system builders can run the benchmark internally

and understand its output.

e It should be sufficiently large that the machine in question can demonstrate its
power (i.e. not so short that initialisation times dominate, or so small that only

a small portion of a machine can be used)

o It should run in reasonable time (30 minutes — 1 hour is ideal, although due
to its age and design LINPACK can take over 24 hours to run on the largest
current machines; there is active research into how to reduce this time whilst still

maintaining a comparable output)

o It should be reliable and repeatable (if one machine is rated as having better
performance than another, it should always do so for that metric, and repeated

runnings of a test should give the same score)

Performance is often measured in FLOP /s (Floating-Point OPerations per second) for
numerical applications; obviously for other applications this would be a less relevant
rating. When a benchmark is being used for a specific application rather than in an
attempt to give a general overall picture of a machine’s speed, any unit that can be
consistently compared could be used—for example, “time to complete one Monte Carlo
update”, or “number of Dirac operator applications in ten minutes” would be suitable
measures for a lattice gauge theory benchmark.

As was mentioned in the previous subsection, whilst QCD has already been used
as a benchmark for machines being considered for QCD applications, looking at BSM
theories changes the ratio of compute to communications demands—which in the case
of QCD are roughly balanced. We therefore need a benchmark to look at the classes
of BSM theories we are interested in using a machine for; a QCD benchmark would be
insufficient, since a deficiency in the area necessary for the BSM theory could be masked
by a good performance in another area. Additionally, developing such a benchmark will
allow application to areas outside of lattice physics, since the flexibility in the choice of

theory allows altering the demands of the benchmark.
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We choose therefore to make three different regimes available to benchmark:

o A communications-intensive regime, SU(2) with two adjoint flavours, referred to

as the “comms” test,

A balanced regime, SU(3) with two fundamental flavours, referred to as the “bal-

ance” test, and

o A compute-intensive regime, SU(6) with two fundamental flavours, referred to as

the “compute” test.

More tests can be easily added by anyone with access to the HiRep code.
The strategy adopted for the benchmark is adapted from that of Liischer [195]. The

program’s preparation and execution occur as follows:

e Preparation:

— The user prepares or selects a machine configuration file specifying their
C compiler and appropriate flags; some such files are included with the

distribution for machines with which BSMBench has been tested.

— (Optional) The user may set a flag to indicate that they do not require a

parallel version of the code.

— The user calls the compile script with the parallel (and optionally the non-

parallel) machine configuration file as argument(s).

— The compilation script copies the machine configuration file into the appro-

priate place and sets appropriate flags in the HiRep configuration files.

— The compilation script then calls the make command to generate the three
versions of the benchmark listed above, in parallel (unless told otherwise)

and (optionally) non-parallel versions.
o Execution:

— The user (or job control system) calls (via mpirun if appropriate) the appro-
priate benchmark executable, pointing it at one of the supplied parameter

sets

— The code reads in the parameter set, defining the geometry appropriately.
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— The code allocates a random gauge field and as many random fermion fields

as are specified in the parameter set.

— As a consistency check (item 2 above), the code inverts the Dirac operator
on the first random spinor field and ensures that the residual drops below
a given threshold. The input and output spinors are then re-randomised.
This test is only carried out if requested in the parameter set, since it would
dominate the execution time on smaller machines (e.g. workstations), where
it will generally be unnecessary. The total number of iterations and overall

time taken is recorded.

— The code calculates the square norm of each random spinor field in turn
a given number of times, repeating until a time threshold is passed. The
number of iterations starts at one, and doubles each time the process repeats,

to avoid spending excessive time checking the progress.

— The code performs the operation 19 = 19 + ci)1, where ¢ is a complex scalar
constant, on successive pairs of random spinor fields, repeating in the same

manner as above.

— The code performs a Dirac operator application ¥y = D1; on successive

pairs of random spinor fields, repeating in the same manner as above.

— The code uses its results and reference measurements from a Blue Gene/P to
calculate the FLOP /s rating, and output absolute performance information

as well as a relative comparison to a reference Blue Gene/P machine.

For the purposes of comparing machines’ performance, the Dirac operator application
test is the most revealing.

The structure of the code is as follows. In the source distribution, there is:

e A directory containing a stripped-down HiRep distribution, with the addition of

the benchmark code and comments on the licensing terms,
e A directory containing sample machine configuration files,
e A directory containing parameter sets for the default set of tests,

e An empty directory to hold output files,
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o The README and LICENSE text files (see appendix B), and
e The compilation script.

The supplied tests work with a lattice size of 64 x 323, to allow for comparison from
workstation-class machines up to small supercomputers. Comparing results of tests
at different lattice sizes is not recommended, since the associated overheads change.
Additionally, the maximum parallelisation recommended is that giving a local lattice
of 8 x 43; further parallelisation unreasonably increases the overheads. This limits the
stock tests to 4096 MPI processes; equivalent to a single Blue Gene/P rack in Virtual
Node mode. This limit could be removed by choosing a larger lattice size, as is done
later in this section for the extended tests of Blue Gene/Q; however, this would make
running the tests impractical on workstations. 4096 MPI processes is sufficient as a

proof-of-concept and a test of moderately-sized machines.

6.3.3 Tests performed

The code has been used to systematically test a number of machines:
e Two clusters run by HPC Wales, one in Cardiff and one in Swansea,
e The Bluelce2 cluster in Swansea,

o An IBM Blue Gene/P machine (which was used as the reference configuration);
runs were split between the UKQCD machine in Swansea and a machine operated

by IBM Research in Yorktown Heights, New York,
o An IBM Blue Gene/Q machine, also at IBM Research in Yorktown Heights,
e The ULGQCD cluster in Liverpool, and
e A Magc Pro in Swansea.

Relevant details of the machines are listed in table 6.1.

Most queue managers ignore any concurrent thread support of the CPUs, since MPI
rarely gains an advantage by running multiple concurrent threads; multithreaded code
must be written or compiled in to use this ability. Blue Gene/Q, however, does provide

for this, thus up to 64 MPI processes may be run on a single processor.
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6. HIREP CODE AND BSMBENCH

The primary test performed was running each of the benchmark tests on each
machine at increasing partition sizes, from the minimum on which the tests would run
(with node memory being the primary constraint) up to an upper limit determined by
the factors listed in table 6.1. All tests were run with one MPI process per processor
core—sometimes referred to as Virtual Node (VN) mode—since HiRep and BSMBench
are not currently multithreaded.

Two other tests were run: firstly, a customised set of tests with a 128 x 643 lattice on
Blue Gene/Q to allow a rack-for-rack comparison with a Blue Gene/P; this was again
run in VN mode. Finally, a set of tests were run on a single Blue Gene/Q partition,
varying the number of MPI processes per node from 1 to 64, to test the performance

of the multiple hardware threads of the Blue Gene/(Q processor.

6.3.4 Results

The plots are divided into groups by machine class to avoid overcrowding them. The
primary battery of tests, shown in figures 6.1-6.8 shows a roughly linear relationship
between FLOP/s performance and number of MPI processes (i.e. processor cores in
use) in all cases. All machines show a slow drop in performance per node as the number
of nodes is increased, associated with the increased overheads. The ULGQCD cluster
shows a rapid tail-off in performance once the parallelisation exceeds the size of one
node; for the largest size tested not only does the per-core performance drop, but the
overall performance of the partition drops.

The rack-for-rack comparison, shown in figure 6.9 shows that for larger lattices
Blue Gene/Q continues to scale as we expect. The comparison of different processor
subdivisions, shown in figure 6.10 shows linear scaling up to 1 process per core. When
further subdividing the cores, the performance plateaus, showing little to no gain to

using more than one thread per core.

6.3.5 Discussion

It is worth drawing attention to some features of the data that are particularly in-
teresting. For this discussion I will concentrate on the Dphi test, since it is most
representative of “real-world” performance.

For the Blue Gene/P, unexpected upticks in performance were seen at 512 and 4096

cores (128 and 1024 nodes, or % and 1 rack respectively) that were not seen on the Blue

104



6.3 BSMBench

Key to symbols:
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Figure 6.1: Results of the spinor field square norm test plotted for the whole ensemble.
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Figure 6.2: Results of the spinor field square norm test, plotting the average performance

per MPI process.
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Figure 6.3: Results of the spinor field multiply-add, plotted for the whole ensemble.
Symbols as on page 105.
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Figure 6.4: Results of the spinor field multiply-add, plotting the average performance
per MPI process. Symbols as on page 105.
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Figure 6.5: Results of the Dirac operator application test, plotted for the whole ensemble.

Symbols as on page 105.
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Figure 6.6: Results of the Dirac operator application test, plotting the average perfor-
mance per MPI process. Symbols as on page 105.
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Figure 6.8: Total combined results of all three tests, plotting the average performance
per MPI process. Symbols as on page 105.
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Figure 6.9: Rack-for-rack comparison between Blue Gene/P and Blue Gene/Q perfor-
mance, using a larger lattice size in the case of the Blue Gene/Q to allow use of a full rack.

Symbols as on page 105.
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Figure 6.10: Performance comparison of a single Blue Gene/Q partition at various sub-
divisions; from one process per CPU through to 64 processes per CPU (four per core).

Symbols as on page 105.
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Gene/Q. This is most likely due to the lattice geometry aligning fortuitously with the
3D torus network—it would not be seen on Blue Gene/Q due to the different network
topology and core density. No tuning of the process mapping was performed for the
tests; the default alignments were used. More careful choice of the alignments may be
able to give a similar (or better) speedup to other partition sizes, and it is likely that
a vendor looking to showcase their results with this benchmark would seek to do this.

The threading results on Blue Gene/Q are not unexpected. Since HiRep and
BSMBench are single-threaded, subdividing the processors by core is equivalent to
adding more cores to the problem. A significant speedup from multithreading is not
expected: since multithreading only allows efficient context switching between threads
rather than parallel execution (which is what multiple cores achieve), a large gain would
only be possible if the code spent much of its time idle, which is not generally the case.
A small gain can be found in a compute-intensive theory by having two processes rather
than one per core; since this gain is effectively “free” there is no reason not to use it,
unless the resulting local lattice is too small—in which case the extra overheads will
outweigh the gains—or there are no more directions available to parallelise.

The Mac Pro system at 16 and 24 processes is also multithreading; notice that the
performance at 16 processes drops to approximately that of 8 processes. This occurs for
two reasons: firstly, the threads are localised to a single core; they cannot float between
the cores and use whatever slack compute capacity there is. Secondly, the code has
relatively frequent barriers to allow communication between the processes. These two
factors have the effect of forcing the code to operate in lock-step on all cores, including
those with only one task allocated, making the program run as slowly as if all cores
had two threads running. Since the code has little idle time (even less than on the Blue
Gene, since here there are no interconnect delays at all), no performance gains over 12
processes are seen at 24 processes. To test the lock-step theory, comms and balance
tests! were performed with two 8- and 12-process runs in parallel with each other (for
a total of 16 and 24 processes), and their FLOP counts added. This showed a slight
enhancement over the single-run results, suggesting that the requirement to synchronise

between processes does indeed reduce the potential gains from multithreading.

!The compute test required more memory than was present in the Mac Pro, so the results were
not of interest.
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The HPC Wales machines, in particular the Sandy Bridge system, show an increas-
ing separation between the three tests as the number of processes is increased. This
nicely illustrates the assertion made earlier that the tests differ in their communications
versus compute demands: the splitting begins once the processes no longer fit on the
node, so must begin to use the interconnects, and increase as the interconnects are
relied upon more. The slowdown is least severe for the compute, and most severe for
the comms test, as we expect. This is not observed on the Blue Gene machines, whose
architecture is designed from the ground up to be massively parallel, hence their ad-
vanced network topology and very high-speed interconnects. In the case of ULGQCD,
the interconnects are too slow to make an informed judgement; however, the expected
drop-off in performance is seen once the node size is exceeded.

The Bluelce2 system is very similar to the HPC Wales Westmere system in its
makeup; their performance results are unsurprisingly also close to each other. The
performance of Bluelce2 in the intermediary regime (between 16 cores where the job
no longer fits on a single node, up to 256 cores) sits above the performance of the HPC
Wales machine—this appears somewhat surprising, since its processors are slightly
slower. In fact this enhancement is due to the job’s parallelisation: on Bluelce2 it was
possible to parallelise with 8 cores per node, and Nproc/8 = 2" nodes, whereas allocating
a given number of cores on HPC Wales generally returns the cores on the minimum
number of nodes. Since the lattice is parallelised in divisions of 2, keeping the powers
of 2 in the parallelisation improves the communications performance significantly; this
is notable in that the comms test is the one gaining the largest performance boost
on Bluelce2. Confirming this explanation is the downtick in performance (to slightly
below HPC Wales) at 512 cores: since Bluelce2 only has 50 nodes, the neat power-of-
two parallelisation is no longer possible at the highest number of cores, meaning the
communications speed enhancement is lost.

Potential extensions to this project would be to implement a size-independent test,
where the lattice size is chosen based on the machine size. Since the total number of
FLOPs is proportional to the lattice volume, a reference figure could be given for a
base 4 lattice, and multiplied up to the machine size. Results compared to the current
version would be approximately comparable. It would be beneficial to find a small
set of observables that would allow full characterisation of a machine’s performance,

to enable ranking of machines as in the TOP500 ranking (since comparison of graphs,
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while enlightening, is time-consuming). Finding out what classes of HPC use are char-
acterised by which test would also expand the benchmark’s utility. Finally, many
benchmarks now come with the ability to analytically estimate the performance on a
given machine from the machine’s design characteristics; such a model for BSMBench
would be a powerful tool for designing new systems, in particular once other codes’

performance can be modelled in terms of BSMBench’s tests.
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Chapter 7

Conclusions

In the work presented in this thesis, we have explored a number of aspects of strong
dynamics beyond the Standard Model. Chapter 4 presented the first lattice study of the
SU(2)Adj Nfl theory. After a description of how the theory can be viewed as a theory
of two Majorana fermions, we observed the spectroscopy of the theory (looking at the
pseudoscalar, scalar, vector, and axial vector mesons, the spin—% state, and the 0F
glueball), its string tension from both Wilson and Polyakov loops, and the anomalous
dimension of the fermionic condensate from the Dirac mode number.

The spectroscopy had interesting behaviour: when normalised by the square root of
the string tension, all spectral observables studied (including the pseudoscalar, scalar,
vector, and axial vector mesons, the spin—% state, and the 07 glueball) were approx-
imately constant in their masses throughout the observed regions, although the non-
mesonic states showed slight inconsistency with the constant value at higher fermion
mass. These results are inconsistent with traditional QCD-like confining behaviour,
indicating a theory within or close to the conformal window; a desirable property for
a candidate Walking Technicolor model. The anomalous dimension was found to be

< 0.95, another important feature of a Walking Technicolor candidate.

~

large, 0.9 < .

In chapter 5 we gave a look to the topology of two theories, SU(2)AdjNfl and
Minimal Walking Technicolor, both SU(2) theories with one and two adjoint Dirac
flavours respectively. The topological susceptibility and instanton size distribution
were calculated, and compared to those of pure gauge SU(2); the results were found to
be consistent between the three cases. This again is indicative of the fermion degrees

of freedom becoming dynamically quenched, reaffirming the conclusion of chapter 4
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(and in the case of Minimal Walking Technicolor, earlier studies) that the theory is
(near-)conformal.

In chapter 6 I presented the BSMBench benchmarking tool, developed from the
HiRep code (which was used for all the simulations described in the preceding chapters).
This tool may be used to influence machine procurement decisions for BSM physics,
and also has applications outside physics, since its unique ability to adjust the ratio of
communications to compute demands allows it flexibility to emulate the demand ratios
of other applications—something which is not possible in most benchmarks. A number
of machines’ performance were compared.

There are many exciting avenues for future work developing from this project. For
the SU(2)Adj Nfl theory, it would be beneficial to extend the study to lower fermion
mass (through larger lattices), and also to higher § (to investigate both the continuum
and chiral limits). It would also be interesting to extract the states that were ignored in
this study, and to look at the running of the coupling. At larger lattice size it may also
be possible to extract the anomalous dimension from topological observables, which
would give an independent estimate to compare with that found from the Dirac mode
number. Exploring other theories with these methods would also be interesting. For
example, since SU(2)AdjNfl has too few Goldstone states to be a viable Technicolor
candidate, but has a high anomalous dimension and is in or near the conformal window,
and Minimal Walking Technicolor has more Goldstone states than is necessary and a
lower anomalous dimension than would be desirable for a Technicolor candidate theory,
it would be exciting to look at the theory with three Majorana flavours (lying directly
between the two Majorana flavours of SU(2)AdjNfl and the four of Minimal Walking
Technicolor).

The benchmark is also ripe for improvement. It is currently limited in the maxi-
mum machine size it can test, since it uses a single lattice size. This restriction could
be lifted by instead choosing a single local lattice size—multiplying by the number
of processes to obtain the total lattice size. Developing an analytical model of the
benchmark’s performance would allow it to have influence into machine design deci-
sions rather than just purchasing ones. If it were possible to distill a single number
for a machine’s performance in a given test rather than one per partition size, com-
parison between machines would be easier and ranking (as is done in the TOP500 and

Graph500 benchmarks) would be possible. Finally, studying which other numerical
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problems have similar demands to the tests available in the benchmark would allow

easy application of the benchmark to other fields beyond lattice physics.
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Appendix A

Visualisations of Topological

Charge Distributions

A number of visualisations were carried out on the topological charge distribution of a
single 64 x 323 lattice configuration of SU(2)Adj Nfl at 8 = 2.05,m = —1.51, using the
Vislt visualisation tool [174, 175]. Positive and negative topological charge are shown
in orange and blue respectively.

In figure A.1 a single timeslice is shown both before cooling and after 20 cools. Both
cases are normalised by the maxima in the distribution; in spite of this, the gauge noise
is clearly dominating in the uncooled case. In the cooled case, the individual instantons
can be seen easily. Figure A.2 shows another timeslice, this time showing each cooling
step in addition to the uncooled case. Figure A.3 adds in the time dimension: each cube
is still a 3-dimensional time slice, and the time dimension runs around the ring. Moving
down the columns gives the successively cooled versions of the same time slice, up to
20 cools. The removal of the noise is still clearly visible, and the plateau mentioned in
chapter 5 between 10 and 20 cools that allows relative flexibility in the choice of cooling
can be observed in the lower half of the image. This image was submitted to Swansea
University’s Research as Art and the Royal Society’s Picturing Science events, and was

selected as the winner of the Postgraduate Award at the former.
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(a) Before cooling. (b) After 20 cools.

Figure A.1: The topological charge distribution of a single timeslice, before and after
cooling. Rendering was performed using a Mac Pro machine in Swansea University as
the frontend, and the Bluelce2 cluster in Swansea University as the backend, using 480
compute cores across 40 nodes.

Figure A.2: The topological charge distribution of a single timeslice. Moving anticlock-
wise around the ring takes us from the uncooled case to 10 cools. Rendering was performed
using the Mac Pro used in figure A.1 as both front and backend.
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Figure A.3: The topological charge distribution of all 64 timeslices of the configuration.
Moving around the ring takes us around the time dimension, while moving down the
columns takes us from the uncooled state to 20 cools. This gives a total of 1344 cubes.
Rendering was performed using the machine combination used for figure A.1.
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Appendix B

README and LICENSE files for
BSMBench

B.1 README

BSMBench -- A HPC Benchmark for BSM Lattice Physics

Version 1.0

Contents

1. Compiling BSMBench
1.1 Machine configuration files
1.2 Compilation script

2. Running BSMBench

3. Interpreting output

4. Version history

1. Compiling BSMBench
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1.1 Machine configuration file

This file specifies your C compiler and its flags. The syntax is

CC = [C compiler]
CFLAGS = [flags]

Some examples are given in the machine-config directory. The files BGP.cfg
and BGP-1.cfg contain the parameters used for the Blue Gene/P performance
comparison data, which have been obtained running the code with the

environment variable DCMF_INTERRUPT set to 1.

1.2 Compilation script

By default, the compilation script compiles only MPI versions of the
benchmark. In this case it takes a single parameter: the machine
configuration file. For example

./make.sh machine-config/generic.cfg
will compile a version suitable for a generic cluster.

If a second parameter is included, it is used as the machine configuration
file for a non-MPI version. In this case, two sets of executables are
generated, one ending in _lcpu. For example

./make.sh machine-config/BGP.cfg machine-config/BGP-1.cfg

will generate MPI and non-MPI files for a Blue Gene/P machine.

To avoid generating the MPI versions, set the NO_MPI environmental variable

and pass a dummy first parameter. For example

export NO_MPI=YES
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./make.sh xxxx machine-config/0SX-1.cfg
will generate non-MPI executables only for a machine running Mac 0S X.
Three files are generated in each set:

- bsmbench_comms[_1cpu]: Runs the communications test

- bsmbench_balance[_icpu]: Runs the balanced test

- bsmbench_compute[_1icpul: Runs the compute test

. Running BSMBench

Before running a test with BSMBench, you must know:
- which test you want to run (comms, balance, or compute)
- how many processes you want to use
BSMBench is single-threaded, so ideally the number of processes should
be equal to the number of cores (for example, Virtual Node mode on Blue
Gene/P), or potentially more if the machine has multithreading cores.
The general syntax for running BSMBench is then:
./bsmbench_[test]{_1cpu} -i [input_file] -o [output file]
Input files are located in the sets directory. They are named
systematically as [test]-[number-of-processes].bsmbench. The output
directory is provided for convenience as a location to put output files.
For example, to run the balance test on a single core, the syntax could be

./bsmbench_balance_1cpu -i sets/balance-1.bsmbench -o output/bal-1.out

To run the tests in parallel, mpirun must be used. For example, to run the

compute test on 64 cores, the syntax could be
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mpirun -np 64 ./bsmbench_compute -i sets/compute-64.bsmbench

-0 output/compute-64.out

mpirun can then be called by your queueing system of choice.

On Blue Gene machines please export the environmental variable:

DCMF_INTERRUPT=1

3. Interpreting output

Output files start with some general remarks about the parameters used,
marked with [MAIN], then move on to the benchmark results, marked with
[BENCH] . To pull out the relevant results, grep can be used:

grep BENCH [output-file]

First, an indication is given of whether the precision test was successful.

Then, for each performance test, the output consists of:

- the time taken

- the average FLOP/s rating for the test

- the average FLOP/s per process for the test

- (Dphi only) a relative comparison to the speed of a Blue Gene/P

machine performing the same test

Following this, an indication of success is given, followed by the average
FLOP/s and FLOP/s per process across all tests, and a relative comparison

to the speed of a Blue Gene/P machine performing the same test.

0f the tests, the Dphi is the most relevant for performing lattice
calculations, and for testing communications bandwidth, so results from
this test are compared with reference machines separately from the total

aggregate figure. It is recommended that this figure be weighted most
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strongly in any comparison.

4. Version History

Version 1.0 (2012-04-19)

— Initial release

B.2 LICENSE

Copyright (c) 2012, Claudio Pica, Agostino Patella, Antonio Rago,
Luigi Del Debbio, Biagio Lucini, Edward Bennett.

A1l rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1) Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2) Redistributions in binary form must reproduce the above copyright
notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3) Any publication in any form derived from the use of this software
or any modification of it must refer explicitly to the original BSMBench
package (including the official URL http://github.com/blucini/BSMBench)
and cite the following two publicatioms:

[1] L. Del Debbio, A. Patella, C. Pica, "Higher representations on the
lattice: Numerical simulations. SU(2) with adjoint fermions", Phys. Rev.
D81 (2010) 094503, DOI 10.1103/PhysRevD.81.094503

[2] L. Del Debbio, B. Lucini, A. Patella, C. Pica, A. Rago, "Conformal
versus confining scenario in SU(2) with adjoint fermions", Phys.Rev. D80
(2009) 074507, DOI 10.1103/PhysRevD.80.074507

4) The names of the contributors may be used to endorse or promote
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products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.
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