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Abstract

We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we 
derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromody-
namics. Interestingly, in the naive continuum limit the expression coincides with an independently known 
result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming 
confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed 
by Veneziano several decades ago. This motivates us to also use holography in order to argue that the con-
tinuum expression for the scattering amplitude is related to the result obtained from flat space string theory. 
Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can 
be related to a flat space string theory.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Studying the strong coupling regime of QCD is a hard, long-standing problem for which we 
are keenly awaiting a solution. There are several approaches to tackle this problem, among them 
the lattice strong coupling expansion and string theory.

The lattice strong coupling expansion, formally analogous to a high temperature expansion in 
statistical mechanics, is a technique that allows us to explore the non-perturbative regime of a 
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lattice field theory with an expansion in powers of the inverse coupling. In this framework, it is 
possible to show that strongly coupled lattice regularized YM theories exhibit both a mass gap 
and a nonvanishing string tension. Despite the impossibility of relating the latter to a continuum 
theory, they are inspiring and qualitatively very important. The gauge/gravity correspondence, 
another important approach, suffers from various problems too: it is difficult to extend its results 
beyond large-Nc and strong coupling. More importantly, it is not known what the gravity dual 
of QCD is, if any. However, the two approaches show some superficial similarity, and it is an 
intriguing prospect to investigate just how closely the two methods actually are.

In this manuscript we will argue that in the large-Nc limit and at strong coupling, certain 
scattering problems in lattice field theory and string theory share strikingly similar methods of 
computation, and subsequently the same result, in this corner of parameter space. More precisely, 
we consider SU(Nc) scalar Chromodynamics with Nf scalars transforming in the fundamental 
representation in the ’t Hooft limit. We argue that the n-point function of meson operators of the 
form

〈φ†
a1

φa1
(x1)φ

†
a2

φa2
(x2)...φ

†
an

φan
(xn)〉 (1)

yield in the naive continuum limit of the lattice the same result as flat space string theory. In 
momentum space the 4-point function is given by the celebrated Veneziano amplitude.

Our main result is that the above n-point function (1) is given on lattice by

∑
l

κl

l

∑
x1...xn∈Cl

exp(−σA) , (2)

and becomes in the continuum

∞̂

0

dT

T

x1...xn∈Cˆ

x(0)=x(T )

[Dx] exp

(
−
ˆ

dt
ẋ2

4

)
exp(−σA) , (3)

where the sum is over all closed contours x(t) of length T that include the points x1, ..., xn and A
represents the minimal area enclosed by the contour C. In addition, noting that the strong coupling 
regime induces a large value for the string tension, we will show that the same expression is 
computed by flat space string theory

ˆ

x1...xn∈∂X

DX exp

(
−σ

ˆ
d2σ ∂αXμ∂αXμ

)
, (4)

where Xμ are string worldsheets with the topology of a disk. The points x1, x2, ..., xn lie on the 
boundary of the disk. All of these expressions are then expected to produce the famous Veneziano 
amplitude as the end point of their computation, as a result.

Our key observation is closely related to a statement by Makeenko and Olesen [1] that if in 
a gauge theory all Wilson loops (however small) admit an area law, scaling with a large string 
tension, then the meson scattering amplitude is given by the Veneziano amplitude. Since at strong 
coupling the lattice yields an area law for all Wilson loops, we anticipate a close relation with 
flat space string theory.

The paper is organised as follows: in section 2 we derive the expression for meson scattering 
on the lattice and discuss its continuum limit. In section 3 we re-derive the obtained expression 
in the continuum. Furthermore, we argue, relying on the result by Makeenko and Olesen [1] and 
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purely within field theory, that meson scattering for a theory with area behaved Wilson loops is 
given by the Veneziano amplitude. In section 4 we use the gauge gravity correspondence to relate 
the continuum limit expression for meson scattering to flat space string theory. In section 5 we 
discuss our results. Finally, we have included two appendices to discuss some finer points not 
previously explained, on reparametrisation invariance and on fixed boundaries in string theory.

2. On the lattice: the hopping expansion

2.1. Setting up the hopping expansion

In 4 Euclidean space–time dimensions, the continuum Lagrangian density of a complex scalar 
field coupled to a SU(Nc) Yang–Mills field Aμ is

SE[φ†, φ,Aμ] = Sφ + SYM

=
ˆ

d4x

[
(Dμφ)†(Dμφ) + m2

2
φ†φ + 1

4g2 Tr(FμνF
μν)

]
(5)

where μ = 0, · · · , 3 labels the direction in space–time, φ lies in the fundamental representation 
of SU(Nc), and m is its bare mass. The covariant derivative Dμ = ∂μ + ıAμ implements the 
minimal coupling between φ and the gauge field Aμ. The dynamics of the latter is dictated by 
the last term where Fμν is the field strength tensor, g the gauge field coupling constant and the 
trace is over colour space. Since the following discussion can be generalized to the case of Nf

flavours, we limit to Nf = 1 for simplicity.
We now discretise the action on a hypercubic space–time lattice � = ad

Z with sites n, links 
(n, μ̂) and plaquettes (n, μ̂, ν̂). For the gauge part, we adopt the Wilson action

SYM = β
∑
n∈Z4

∑
μ>ν

[
1 − 1

Nc

ReTr Uμν(n)

]
(6)

where β = 2Nc/g
2 and

Uμν(n) = Uμ(n)Uν(n + μ̂)U†
μ(n + μ̂ + ν̂)U†

ν (n + ν̂) (7)

is the oriented product of lattice parallel transporters Uμ(n) along links around an elementary 
plaquette.

For Sφ , with a naive discretisation for the derivative

∂μφ → φ(n + μ̂a) − φ(n)

a
(8)

and using the freedom to redefine the field as follows φ → φ
√

κ/a, one obtains

Sφ =
∑

n,l∈Z4

Nc∑
b,c=1

φ
†
n,b Knb,lc [U ] φl,c (9)

where

κ = 1

(2d + m̂2)

is the hopping parameter and m̂ = ma. The hopping matrix
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Kbn,cl [U ] = δb,cδn,l − κ
∑
μ̂

Uμ(n)bcδl,n+aμ̂ = (1 − κM[U ])bn,cl , (10)

has indices in colour space and space–time and only depends on the discretised gauge field U . 
Note that, from its definition, the hopping matrix has nonvanishing elements only for lattice 
neighbours.

The classes of possible gauge invariant objects present in this theory are traced ordered prod-
ucts of link variables,

W(C) = Tr

(∏
l∈C

Ul

)
(11)

also known as Wilson loops, correlators of parallel transported fields φ(n1)
†U · · ·Uφ(n2), and 

local invariant products of φ fields like φ†φ(n). Contact with alternative definitions of Wilson 
loop, namely that with a factor of 1/Nc in the front of the trace, can be made by rescaling the 
scalar field with 

√
Nc. All the non-gauge invariant correlation functions can be shown to vanish 

on average. In this computation we are interested in connected correlators of φ†φ(n) that we 
interpret as mesons built out of scalar quarks. For the usual reasons of factorisation processes in 
amplitudes, we believe that this is enough to capture broad features of the processes, and that it 
could be generalised to more realistic, spinor quarks with some effort.

As usual in QFT and Statistical Mechanics, we can express connected correlation function of 
local operators as functional derivatives of a generating functional Z[J, J †] with respect to the 
sources J † and J that lie in the fundamental representation of SU(Nc) at each space–time lattice 
node. Straightforward algebraic manipulations show that

Z[J,J †] =
ˆ

DU e−SYM detK−1 exp

( ∑
n1,n2

∑
a1,a2

J †
n1,a1

K[U ]−1
n1a1,n2a2

Jn2,a2

)
. (12)

Connected correlation functions of the local operator φ†φ are obtained from the following 
general expression

〈φ†φ(n1) · · ·φ†φ(nk)〉c = δ2k

δJ
†
n1δJn1 · · · δJ †

nk
δJnk

lnZ[J,J †]
∣∣∣∣∣
Jn=J

†
n =0

(13)

where the colour indices that have been omitted on the currents in the functional derivative oper-
ators are actually summed over at each separate lattice site.

Then the 4-point function is obtained as

〈φ†φ(n1) · · ·φ†φ(n4)〉c
= 1

Z[0,0]
ˆ

DUe−SYM detK−1
(

Tr K−1
n1,n2

K
−1
n2,n3

K
−1
n3,n4

K
−1
n4,n1

+ perms.
)

(14)

where the simple result

δ

δJn1,a1

δ

δJ
†
n2,a2

exp(J †
K

−1J )

∣∣∣∣∣
J †=J=0

= K
−1
n1a1,n2a2

[U ] (15)

has been used and the trace is over colour indices. The other terms, denoted collectively by 
“perms.”, are all other ways to Wick contract the fields in the amplitude. Each of these addends 
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can be put in one-to-one correspondence with the permutations of (n1, . . . , n4), we now focus on 
just one of these contributions, and later show how the remaining ones will be taken into account

From the definition in eq. (10) the operator K−1[U ] can be expanded in a geometric series for 
||κM|| < 1, condition that can be shown to be equivalent to m̂ > 0, and we obtain

K
−1
n1a1,n2a2

= (1 − κM[U ])−1
n1a1,n2a2

=
∑
Cn1,n2

κl(M[U ]l )n1a1,n2a2 (16)

As noted before, the hopping matrix only connects neighbouring sites, and the sum over Cn1,n2

means a sum over all paths that connect n1 and n2, with l their length. For clarity, we can 
explicitly write down the first few terms,

K
−1
n1a1,n2a2

= κ M[U ]n1a1,n2a2δn1,n2+aμ̂+
+ κ2

∑
m1,m2

δm1,n1+aν̂δm2,n2+aμ̂δm1,m2

(
M[U ]n1m1M[U ]m2n2

)
a1a2

+ O(κ3) (17)

The spatial δ-function in the second term above means that there is a O(κ2) contribution only 
if there exists a path connecting n1 and n2 whose length is equal to two elementary links. The 
intermediary colour indices were omitted in that term, but it is understood that matrix multiplica-
tion occurs in colour space also. Therefore, we have implicitly summed over intermediate colour 
indices and the product of M matrices must be understood as a matrix product in colour space 
and space–time. Generalizing the above reasoning, the propagator between n1 and n2 is thus the 
sum of the contribution of every path that connects them, each weighted by a power l of the 
hopping parameter equal to the length of the path.

The above formula tells us that to compute the latter contribution, we have to connect each 
pair of points with a path: ignoring colour indices, we have

Tr K−1
n1,n2

K
−1
n2,n3

K
−1
n3,n4

K
−1
n4,n1

=
∑

l1,l2,l3,l4

kl1+l2+l3+l4Tr M[U ]l1n1,n2
M[U ]l2n2,n3

M[U ]l3n3,n4
M[U ]l4n4,n1

(18)

where li is now the length of the path going from ni to ni+1. Now in this expression the sum is 
separately over the four pieces going from ni to ni+1. By restating this sum as a sum over all 
closed loops starting from either one of the ni and passing through the remaining three, it includes 
the permutation terms that were previously neglected. To make contact with later computations, 
we would like the sum to not involve choosing a definite starting point along the closed paths at 
hand. This is done so as to sum over distinct geometrical curves: we are currently overcounting 
each closed path on the lattice by as many times as there are ways to choose a starting point for 
it, that is, each contributes l = l1 + . . . l4 times. We divide through by this factor and re-express 
the result as the following, elegantly geometric sum, the form of which is closely related to 
expressions in the continuum:

Tr K−1
n1,n2

K
−1
n2,n3

K
−1
n3,n4

K
−1
n4,n1

=
∑

l

κl

l

∑
ni∈Cl

Tr M[U ]l (19)

From eq. (10) and our convention on implicit summation of colour indices, it is easy to show 
that for closed loops, the product of M[U ] matrices is an ordered and traced product of link 
variables, known as Wilson loop
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Tr M[U ]l = Tr

(∏
l∈C

Ul

)
=W(Cl) . (20)

Therefore

〈φ†φ(n1) · · ·φ†φ(n4)〉c =
∑

l

κl

l

∑
ni∈Cl

〈(detK−1) W(Cl)〉YM (21)

This result is exact for any value of Nc and of the coupling β . Now in the limit of large Nc

with λ = Ncg
2 constant, the simplification detK = 1 + O(1/Nc) occurs and the determinant 

disappears from the above formula, at leading order. The net effect is thus analogous to what one 
would get in the quenched approximation.

The vacuum expectation value 〈 W(Cl) 〉YM can be evaluated in the strong coupling approx-
imation [2], λ ∼ ∞ both at finite and infinite Nc. In this framework, many observables can be 
systematically obtained as (convergent) power series of the inverse coupling. To each term of 
the expansion is associated a specific lattice graph, the latter depending on the observable one 
wishes to compute. For the Wilson loop, these are the surfaces bordered by the path Cl , and 
each contribution is weighted by λ−A, where A is area of the surface. The leading order con-
tribution naturally corresponds to the minimal surface, 〈 W(CL) 〉YM ∼ λ−A, with corrections 
corresponding to fluctuations around it.

By keeping only the leading terms in the large-Nc and strong coupling approximations, we 
obtain

〈φ†φ(n1) · · ·φ†φ(n4)〉c 

∑

l

κl

l

∑
ni∈Cl

e−σA, (22)

where σ = lnλ is the string tension at the lowest order in the strong coupling approximation. 
The above formula is stated for n1, . . . , n4, but can be trivially generalized to a general number 
of operators in the correlator.

The continuum limit of this theory is obtained by sending a to 0 and, simultaneously, the 
couplings (g, κ) of the theory to their critical values (for which the system has a second order 
phase transition), keeping the physics constant in the limiting process. In our case, the critical 
values are g = gc = 0 and κ = κc = 1/8. While there is no difficulty in tuning κ to its critical 
value, for g we would have to cross the so-called roughening transition [2], that separates the 
weak and strong coupling regimes of the theory, at finite N . Furthermore, our hopes to bypass 
the roughening problem in the large N limit are hindered by the presence of a (conjectured) third 
order phase transition (the Gross–Witten–Wadia transition [3]).

However, we know that in increasing β past the roughening point, not only it is well known 
that the string tension does not vanish [2] but, as shown by Luscher [4], the system can be 
described using effective string theory. Indeed, as is shown for several SU(N) pure gauge theo-
ries [5], the system develops a finite string tension that does not vanish in the continuum limit. 
Therefore, while it is true that the strong coupling result for the string tension breaks off (i.e. 
we cannot say how the string tension depends on the coupling), it is also true that, in the latter 
regime, a string-like theory is shown to describe the system very well.

Therefore, in the following, we will perform a continuum limit with the sole request that σA
remains finite and nonvanishing in the process. This is different from the usual limit, but as shown 
by a vast amount of lattice data, this circumstance is realized in a wide range of models. Thus we 
remove any ambiguity in the behaviour of the coupling constant in this process.
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The problem of performing the above sum is then mapped onto a problem of lattice geometry, 
specifically of random closed loops. We now want to introduce physical units to all the quantities 
at hand, so we make factors of the lattice spacing a explicit where needed e.g. to measure the 
mass. We also need to introduce factors of the lattice simulation time τ , measuring the length of 
paths l, which a priori are different quantities. By noting that

κl =
(

1

2d

)l
(

1

1 + m2a2

2d

)l



(

1

2d

)l

e−l m2a2
2d (23)

for m̂ = ma � √
2d , eq. (22) can be recast as

〈φ†φ(n1) · · ·φ†φ(n4)〉c =
∞∑
l=0

τ

lτ
e− lτ

2dτ
m2a2 ∑

ni∈Cl

(
1

2d

)l

e−σA (24)

In this expression we have conspicuously written terms depending on the quantities lτ and ma. 
Expressed this way, we can now observe the continuum limit of our amplitude.

2.2. Continuum limit of theories of random paths

The study of random walks on discrete spaces is a canonical problem in probability theory, 
and their limiting behaviour to the continuum well-understood. They give rise to Brownian mo-
tion problems, typical of diffusive behaviour in physical systems. We will use ideas found in a 
review of the subject [6] to evaluate the continuum limit of the computation above. Crucially it 
is explained that, in order for the continuum limit to be non-trivial, we require the lattice spacing 
a and the simulation time-step τ to obey

τ = 1

2d
a2 (25)

and vanish simultaneously according to this relation.
Substituting this relation in the expression above, we obtain:

〈φ†φ(n1) · · ·φ†φ(n4)〉c =
∞∑
l=0

τ
1

τ l
e−τ lm2 ∑

ni∈Cl

(
1

2d

)l

e−σA (26)

The continuum limit acts on two different sums, one controlled by the lengths of the contours 
we are looking at (a very straightforward one-dimensional sum) and another over all shapes of 
contours of a given length (a bigger and more complicated space).

The first sum converts to an integral very automatically by loosely applying Riemann’s defi-
nition of the integral: for a function f which we assume well behaved enough,

∞∑
l=0

τf (lτ ) −→
τ→0

∞̂

0

dTf (T ) (27)

The second sum converts to a path integral, in a statistical sense. For any well behaved oper-
ator,

∑
ni∈Cl

(
1

2d

)l

O(Cl) −→
ˆ

xi∈CT

[Dx] exp

⎛
⎝−

T̂

0

dt
1

4

(
dx

dt

)2
⎞
⎠O(CT ) (28)
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where the path integration measure [Dx] is weighted such that we sum over all possible geo-
metrically distinct closed curves of length T , all of which pass through the marked points xi

defined by the operator insertions. The justification for this is found in the aforementioned re-
view [6].

Combining these notions we find that

〈φ†φ(x1) · · ·φ†φ(x4)〉c −→
∞̂

0

dT

T

ˆ

xi∈CT

[Dx]e− ´ T
0 dt

(
ẋ2
4 +m2

)
e−σA[CT ] (29)

The end product is an expression that does not seem to be reparametrisation invariant, but 
we have glossed over a subtlety concerning such matters, the details of which are summarised 
in Appendix A. The remarkable thing to notice here is that this expression is readily available 
to derive in the continuum from an altogether not entirely unrelated framework, the Worldline 
formalism.

3. In the continuum: worldline path integrals, area functionals

3.1. Worldline formulation of the amplitude

The worldline formalism can be thought of much in the same way as the lattice hopping 
expansion: functional integrals can be expressed as an averaging process over all configurations 
of a field, or in a more geometric way as an average over all trajectories that the particle state of 
this field can take as it moves through space. Let us see how this is done in the continuum.

We want to compute the following object〈
n∏

i=1

φ(xi)
†φ(xi)

〉

= 1

Z

ˆ
DADφDφ† e−SYM

n∏
i=1

φ(xi)
†
ai

φ(xi)ai
e− ´

ddx
(
(Dφ)†(Dφ)+m2φ†φ

)
(30)

By introducing a current in the scalar action, Jφ†φ, this expectation value can be represented 
by 〈

n∏
i=1

φ(xi)
†
ai

φ(xi)ai

〉

=
n∏

i=1

δ

δJ (xi)

∣∣∣∣
J=0

1

Z

ˆ
DADφDφ† e−SYM e− ´

ddx
(
(Dφ)†(Dφ)+(m2+J )φ†φ

)

=
n∏

i=1

δ

δJ (xi)

∣∣∣∣
J=0

1

Z

ˆ
DAdet

(
D†D + m2 + J

)−Nf

=
n∏

i=1

δ

δJ (xi)

∣∣∣∣
J=0

1

Z

ˆ
DA exp

(−Nf 
[A]) (31)
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where 
[A] is the effective action for the scalar, log det
(
D†D + m2 + J

)
. We can rewrite 
 as 

a worldline integral: by using log detA = Tr logA and using an integral representation for the 
logarithm of an operator,

− log det
(
D†D + m2 + J

)

= Tr

∞̂

0

dT

T
exp

(
−T

(
(∂ + iA)†(∂ + iA) + m2 + J

))
(32)

The advantage of the formula above is that it involves Gaussian functions of operators, which 
makes it easy to take its trace. For instance, in momentum space:

− log det
(
D†D + m2 + J

)

= Tr

∞̂

0

dT

T

ˆ
ddp

(2π)d
exp

(
−T

(
(p + A)2 + m2 + J

))
(33)

This can then be Fourier-transformed into position space. It was shown in [7] that this is 
achieved by viewing T as the proper length of a particle propagating in a closed loop. One needs 
to sum over all shapes of this loop to take the full trace of the operator, i.e. we perform a func-

tional Fourier transform with the kernel 
´

x(0)=x(T )

[Dx] exp
(
i
´ T

0 dt ẋ(t) · p
)

. The exact meaning 

of the functional integration measure [Dx], which is purported to sum over geometrically distinct 
embeddings in a reparametrisation invariant way, is a technicality we cover in Appendix A.

The result is that this transformation produces the following worldline representation of the 
determinant:

− log det
(
D†D + m2 + J

)

= Tr

∞̂

0

dT

T

ˆ

CT

[Dx] ei
¸

dx·A(x) exp

⎛
⎝−

T̂

0

dt

(
ẋ2

4
+ m2 + J (x(t))

)⎞
⎠ (34)

This expression already seems familiar – we are averaging a Wilson operator over all shapes and 
sizes of contours, weighted by a certain exponential weight.

The weight, the integral appearing in the second exponential, is known to be (at J = 0) an 
expression for the proper length of the trajectory of a massive particle. It is derived from the usual 
action by the exact same process that the Polyakov string action is derived from the Nambu–Goto 
action in string theory. Appendix A contains more information on that subject.

We have therefore expressed again our functional expressions in terms of Wilson operators. 
As before we use the hypothesis of large Nc to justify simplifying the full amplitude, here by 
taking e−Nf 
 
 1 − Nf 
 [8]. The zeroth order term does not depend on J so its contribution 
vanishes, leaving only the first term, 
, which we then average over all gauge configurations. In 
total: 〈

n∏
i=1

φ(xi)
†
ai

φ(xi)ai

〉
∝

n∏
i=1

δ

δJ (xi)

∣∣∣∣
J=0

∞̂

0

dT

T

ˆ

CT

[Dx] 〈W(C)〉 e
− ´ T

0 dt
(

ẋ2
4 +m2+J (x(t))

)

(35)
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We can now take the functional derivatives resulting from the operator insertions. Schemati-
cally:

δ

δJ (xi)

∣∣∣∣
J=0

e− ´ T
0 dt J (x(t)) =

T̂

0

dti δ(x(ti) − xi) (36)

and this expression, when inserted in the path integral 
´
CT

[Dx], forces that the closed contours 
CT , in addition to being of proper length T , should also pass through point xi for some value of 
the parameter. The operator insertions therefore act as “pins” for the contours we are summing 
over, much like on the lattice.

Finally, in order to truly find the analogue of Eq. (24), we need to introduce a similar assump-
tion to that of the strong-coupling leading order expansion on the lattice. In effect, we want to 
enforce that every Wilson loop is area-behaved when their expectation value is taken, which re-
quires computing the minimal area of a surface bound by the contours we are summing over. On 
the lattice, this is a finite problem, but in the continuum we encounter some difficulties, which we 
will come to address later. Symbolically, let us assume for now that we can perform the following 
identification: for every loop size T ,

〈
exp

⎛
⎜⎝i

˛

CT

A

⎞
⎟⎠ · dx

〉
−→ exp (−σA[CT ]) (37)

and write the final form of the worldline amplitude, with σ some effective tension parameter 
presumably controlled by the gauge coupling

〈
n∏

i=1

φ(xi)
†
ai

φ(xi)ai

〉
∝

∞̂

0

dT

T

ˆ

xi∈CT

[Dx] e− ´ T
0 dt

(
ẋ2
4 +m2

)
e−σA[CT ] (38)

This is precisely the result derived previously from the lattice, a geometrical formulation for the 
amplitude at hand.

To make this rigorous we need to explain precisely how one computes this minimal area 
expression.

3.2. Area path integrals and the worldline: the Douglas functional

Given a curve in space, we are tasked to find an analytic way of expressing the area of the 
surface, bounded by the curve, with the least area. This is called the problem of Plateau, and 
the first constructive demonstration of a solution was given by Douglas [9] with his now-famous 
variational set-up. Indeed, this striking demonstration earned him the very first Fields medal. It 
then appeared that Douglas-like functionals were a direct result of performing open string theory 
calculations with fixed boundaries, which is altogether not entirely surprising: classical string 
theory is precisely a variational problem of extremal area. Let us see this in more detail and 
observe how it applies to our computation:

Consider the following actions, dependent on a closed curve x(τ), whose worldline is mapped 
conformally to the real line. We write the variational problem with path integration, over all 
possible reparametrisations θ of this embedding:
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Z[x] =
ˆ

Dθ exp
(−SDoug.[θ, x]) (39)

=
ˆ

Dθ exp

⎛
⎝ 1

2π

∞̈

−∞
dτdτ ′ẋμ(τ ) log

(
θ(τ ) − θ(τ ′))

)
ẋμ(τ ′)

⎞
⎠ (40)

=
ˆ

Dθ exp

⎛
⎝− 1

4π

∞̈

−∞
dτdτ ′

(
xμ(θ(τ )) − xμ(θ(τ ′))

)2

(τ − τ ′)2

⎞
⎠ (41)

They are equal trivially by integration by parts and relabelling of the integration variables. 
The claim by Douglas is that, when minimised with respect to the parameter θ , an arbitrary 
reparametrisation of the boundary, the saddle point configuration will produce the minimal area 
bounded by the geometric curve defined by the mapping x. It is difficult to prove so ab initio
but some sense of the formula can be made by deriving it from string theory. The fact it can be 
derived from string theory should not be too surprising – the string action is precisely a varia-
tional problem of minimal areas, but it has a priori unfixed spacetime boundaries. Performing 
string path integration with a fixed boundary, it is known [10], produces amongst other things the 
Douglas functional. We have transcribed a derivation of this fact in Appendix B.

We use it here as an explicit, analytical formula for the sought-after area that our strong 
coupling expansion requires. In doing the following,

A[C] = SPSDoug.[x] , (42)

namely, the area is the saddle point of the Douglas action. The authors of [1] were able to perform 
further path integration and derive that the meson n-point function they were computing was 
proportional to a Koba–Nielsen integral. Let us see how this is done.

3.3. Koba–Nielsen integrands using the Douglas action

Surprisingly, the inclusion of this area action in the worldline formalism for the meson 
amplitude, produces expressions very similar to Koba–Nielsen integrals (at least for on-shell 
momenta), and so in the case of four mesons we obtain the celebrated Veneziano amplitude, 
without a priori doing any proper string theory.

First, we need to move to momentum space amplitudes, which is done in a decidedly stringy 
way. The prescription is the following:〈

n∏
i=1

φ†
ai

φ(pi)ai

〉

=
ˆ n∏

i=1

dti

∞̂

0

dT

T

ˆ

C

[Dx] ei p
μ
i xμ(ti )e

− ´ T
0 dt

(
ẋ2
4 +m2

)
Sp.

ˆ
Dθ e−σSDoug. (43)

We move to momentum space by performing functional Fourier transforms inside the path in-
tegration. The “marked points” of the position space amplitude are all associated to a Fourier 
kernel and then summed over, this is the most natural way to proceed. These Fourier kernels then 
turn out to look exactly like open string vertex operators, in a portentous fashion.

We can transform the expression for the inserted operators, much like in string theory, in 
order to proceed with the computation. Let us define a piecewise constant momentum function q , 



A. Armoni et al. / Nuclear Physics B 928 (2018) 72–92 83

defined over the contours at hand, such that

q̇(t)μ = −
n∑

i=1

p
μ
i δ(t − ti ) , p

μ
i xμ(ti) = −

ˆ
dt q̇(t) · x(t) =

ˆ
dt q(t) · ẋ(t) (44)

With some further Fourier manipulations and inserting the Douglas action, we obtain〈
n∏

i=1

φ†
ai

φ(pi)ai

〉
= (45)

ˆ n∏
i=1

dti

∞̂

0

dT

T

ˆ

C

[Dx]
ˆ

ddk

(2π)d
ei

´
dt (k+q)·ẋ(t)e− ´ T

0 dt
(
k2+m2

)
Sp.

ˆ
Dθ e−σSDoug.

To compute this we first perform the x-integral, which, with some integration by parts, is 
quadratic. We obtain the following:

ˆ n∏
i=1

dti

∞̂

0

dT

T

ˆ
ddk

(2π)d
e− ´ T

0 dt
(
k2+m2)×

Sp.
ˆ

Dθ exp

(
− 1

2πσ

¨
dτdτ ′(k̇ + q̇) log(θ(τ ) − θ(τ ′))(k̇ + q̇)

)
(46)

Given the definition of q above, the quadratic term in q is independent of parametrisation. 
After taking the massless limit, this term factors out of the Dθ path integral and produces a term 
of the form

ˆ n∏
i=1

dti exp

⎛
⎝−

∑
j<k

1

2πσ
pj · pk log

(|tj − tk|
)⎞⎠ =

ˆ n∏
i=1

dti
∏
j<k

|tj − tk|− 1
2πσ

pj ·pk (47)

which, up to a correct definition of the measure, is the Koba–Nielsen integrand required.
The above integration is not complete though, and in general still has non-trivial computations 

left to do. Makeenko and Olesen offer two ways to simplify the result, either a very large effective 
string tension (controlled by the parameter σ ) or a large number of inserted points. In either 
regime, it is the quadratic piece in p that dominates the integration, whatever remains can be 
assumed to be p-independent and so only contributes to overall normalisation. We will choose 
the former: this is physically justified, because, from the original lattice perspective, the string 
tension scales with the QCD coupling, which we assume large. The content of Eq. (47) above is 
then the main contribution, and we obtain the famous Veneziano amplitude for n = 4 (B is the 
Euler Beta function):〈

n∏
i=1

φ†
ai

φ(pi)ai

〉
∝

ˆ

t1<···<tn

n∏
i=1

dti
∏
k<l

|tk − tl | 1
2πσ

pi ·pj (48)

= B

(
− 1

2πσ
p1 · p2,− 1

2πσ
p1 · p3

)
(if n = 4) (49)

At this point we note that there is a fundamental conceptual difference between this compu-
tation and the flat-space open string amplitude it claims to reproduce. Thinking geometrically, 
Makeenko and Olesen’s derivation sums over all shapes and sizes of a certain closed curve, but 
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systematically choose a surface of minimal area whose boundary is that curve. In string theory 
the path integration is over all coordinates, in the bulk and the boundary of the worldsheet, so 
therefore necessarily over all surfaces for every contour. However, we perform this identification 
with the Veneziano amplitude only at large values of the string tension, which is precisely the 
condition to enforce in string theory in order for minimal areas to dominate in the integration.

It is not clear if the result still holds when we include non-minimal surfaces in Makeenko 
and Olesen’s path integral. Certainly, the fact we are inserting operators on the boundary of 
the worldsheet means that the bulk degrees of freedom somewhat decouple from the overall 
computation, as was stated in the derivation, but ideally one would like to extend the reach of 
this computation and try to add quantum deviations of the bulk behaviour. Doing so in the set-up 
at hand is difficult: we merely substituted an unknown, complicated function (the Wilson loop 
expectation value) for a simple geometrical ansatz. This gives us no inbuilt source of further 
terms to progressively include effects from non-minimal surfaces to the computation, in pure 
field theory. However, as was noticed recently, in string theory [11], the holographic prescription 
gives us a way of doing so neatly, which we will summarize briefly.

4. The scattering amplitude and holography

In the previous sections we have shown that, on the lattice, the four point function of scalar 
meson operators is given, in the ’t Hooft large-Nc limit, by a sum over Wilson loops that pass via 
the scattering points n1, ..., n4

〈φ(n1)
†φ(n1) · · ·φ(n4)

†φ(n4)〉c =
∑

l

κl

l

∑
Cl

〈W(Cl)〉YM . (50)

Moreover, by using a leading order strong coupling assumption, we can write that every Wilson 
loop is area-behaved:

〈φ(n1)
†φ(n1) · · ·φ(n4)

†φ(n4)〉c =
∑

l

κl

l

∑
Cl

exp(−σA) (51)

with A the minimal area of any possible surface whose boundary is Cl .
We also showed that in the naive continuum limit the above equation (51) is given by

〈φ(x1)
†φ(x1) · · ·φ(x4)

†φ(x4)〉c =
∞̂

0

dT

T

ˆ

xi∈C
[Dx] e− ´ T

0 dt
(

ẋ2
4 +m2

)
e−σA(C) , (52)

where now the scattering points are x1, ..., x4. Then, we argued (based on the results of Ma-
keenko and Olesen), that after taking the Fourier transform the scattering amplitude is given by 
the Veneziano amplitude. Thus, by using pure field theory arguments we have shown that the 
naive continuum limit of the lattice amplitude should be given by the same expression as of 
the scattering amplitude computed by flat space string theory. Given the geometric nature of the 
Makeenko–Olesen ansatz, this was perhaps not entirely surprising, as we have mentioned its re-
lation to the string action (see Appendix B for more details). But at least this may seem somewhat 
accidental. We would like to show that it is not.

In this section we wish to make the same statement about the equivalence between lattice at 
strong coupling and string theory, based on arguments from the gauge/gravity correspondence. 
For simplicity we will assume massless quarks in the application of this duality.
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Based on the prescription of calculating expectation values of Wilson loop operators [12,13], 
it was argued in [14] that the sum over Wilson loops is given by a sum over string worldsheets 
with the topology of a disk, where the boundary of the disk terminates on the boundary of the 
AdS space

∞̂

0

dT

T

ˆ

xi∈C
[Dx] e− ´ T

0 dt ẋ2
4 〈WT [A]〉

=
ˆ

[DX][Dg] exp

(
−σ

ˆ
d2τ GMN∂αXM∂βXNgαβ

)
, (53)

with GMN the 10d metric of the superstring.
We will argue that when Wilson loops admit an area law the above relation becomes

∞̂

0

dT

T

ˆ

xi∈C
[Dx] e− ´ T

0 dt ẋ2
4 exp(−σA)

=
ˆ

[DX][Dg] exp

(
−σ

ˆ
d2τ ∂αXμ∂βXμgαβ

)
(54)

with μ = 0, 1, 2, 3, namely 4d flat space coordinates.
In order to justify the conjectured relation (54), let us recall the general features of Wilson 

loop operators and minimal surfaces in string theory, for the special case of confining gauge 
theories.

We consider that the Wilson loop is drawn on the boundary of an Anti-de Sitter-like space. 
To compute its expectation value in field theory, at strong coupling, the holographic prescription 
imposes that we should integrate over all string worldsheets that hang from this shape drawn on 
the boundary, into the bulk of space. The minimal surface is viewed [15] as the saddle point of 
this integration over string worldsheets, and corresponds to the classical string theory result of 
the computation. As a strong–weak duality, we expect that the leading classical gravity solution 
computes the answer for the leading strong coupling behaviour in field theory. This result holds 
as long as the total space that we choose has certain features associated with confinement physics.

In order for a string background to exhibit confinement-like behaviours, a set of conditions 
are known, strongly constraining the shape of the space [16]. Notably, they usually admit an 
infra-red cut-off, in the form of an “end of space” or a black hole horizon. When the loop is large 
the string worldsheet accumulates on the IR cut-off and the result is an area law.

Let us consider a confining background and take a limit where the IR cut-off is taken towards 
the boundary (usually seen as the UV cut-off). In this limit, all string worldsheet, however small, 
admit an area law as a solution of their classical equations of motion, as the distance from the 
boundary to the end-of-space surface is negligible.

ˆ
[Dg] exp

⎛
⎝−σ

ˆ

S

d2τ ∂αXμ∂βXμgαβ

⎞
⎠ = exp(−σA(S)) . (55)

Now, the string tension of this purported dual model should be influenced by the value of the 
gauge coupling of the field theory we are interested in, and the strong coupling regime corre-
sponds to high string tension. This means we place ourselves in the classical regime of string 
theory, and so we do not include fluctuations around this set of minimal surfaces. This is exactly 
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the physics of the lattice strong coupling expansion at large-Nc: all Wilson loops, however small, 
contribute proportionally to the area of the minimal surface it encloses. Geometrically the two 
computations perform the same operations.

Let us demonstrate the above procedure by using a specific example: Witten’s model for 
large-Nc Yang–Mills theory. The metric is given by

ds2 = g(U)
(
dX2 + dτ 2f (U)

)
+ 1

g(U)

(
dU2

f (U)
+ U2d�2

4

)

where g(U) =
(

U

R

)3/2

, f (U) = 1 − U3
KK

U3 . (56)

Let us take the limit UKK → ∞, R → ∞ with UKK/R fixed. The dynamics in the vicinity of 
U ∼ UKK is that of flat space. The scattering amplitude of mesons is given in momentum space 
by the Veneziano amplitude. This kind of process can be performed for most dual spaces of 
relevance, this is known by the analysis performed in [16] cited previously, due to the conditions 
expressed for confining dual string backgrounds. A detailed proof of this remark was offered in 
[11].

Thus, the picture is as follows. In the lattice side the amplitude is governed by the area behaved 
Wilson loops. There is no trace of asymptotic freedom or a non-trivial RG flow between the 
Gaussian UV fixed point and confinement in the IR. The physics of the string side is the same: 
by taking the IR cut-off to the UV, we focus on physics in the vicinity of the IR. The expectation 
value of all Wilson loops, however small, can be calculated by classical flat space string theory – 
every loop contributes proportionally to the area of the minimal surface that it encloses.

The equivalence between the lattice computation and its stringy counterpart is restricted to 
large-Nc, strong coupling/high tension and massless case. It is demonstrated in coordinate space, 
though in the string side it is more natural to calculate amplitudes in momentum space.

5. Conclusions

In this paper we discussed scattering amplitudes of mesons in lattice gauge theory and in flat 
space string theory. We compared the calculation of an n-point function of meson operators and 
demonstrated that the naive continuum limit of the expression obtained from the lattice coincides 
with the expression obtained from string theory.

The calculation is restricted to the ’t Hooft/planar limit of massless scalar chromodynamics 
in the strong coupling regime. It tells us that, in this limit, confining gauge theories on the lat-
tice show string-like behaviour at a deep level. This is, by itself, not entirely surprising, since 
the physics of the lattice strong coupling limit involve sums over rigid (minimal) surfaces. We 
expect that the analysis could be extended to QCD with fermions, rather than scalars: the leading 
features of the Veneziano amplitude always appear, in string theory, whatever the spin of the 
states we choose to scatter.

It would be interesting to ask whether the coincidence of the amplitudes holds beyond the 
massless limit, beyond the ’t Hooft limit and beyond the strong coupling/high string tension limit. 
In particular a comparison of worldsheet fluctuations (the Lüscher term). Also, on the string side, 
some progress was recently made in including non-minimal areas to the computation [11].

It is also interesting to know if there is a stringy worldsheet formulation of the lattice theory. 
Such a framework can lead to a better understanding of both QCD and its string dual.

We postpone these questions for future work.
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Appendix A. Gauge fixing reparametrisation invariance

In textbook derivations e.g. in [6] it was noted that the worldline-type expressions one gets 
out of taking the continuum limit of certain distributions of random walks do not seem to be 
reparametrisation invariant. We certainly expect them to have that property: this formalism in-
troduces an arbitrary parameter, the worldline parameter, the details of which should not lead to 
any physical differences. Summing naively over all functions x(t) of an interval into spacetime 
overcounts geometrical objects, because these functions can describe the same geometrical curve 
in two different parametrisations.

These comments made about the lattice continuum limit miss an important assumption in 
their derivation: in all of the above, the parameter T is assumed to be the total proper length 
of a particle’s trajectory, and implicitly also the range of the worldline parameter t . The lattice 
continuum limit integral is therefore in a gauge-fixed form, where a specific coordinate system 
for the worldline is chosen, and it is proper-length parametrisation. Then, every factor of the 
worldline metric or einbein vanishes: by definition, the proper-length coordinate is exactly the 
one for which the metric is unity. Their appearance can be restored in the expressions above, in 
the right places, in order to satisfy reparametrisation invariance.

It is relevant here to re-derive the correct definition of these sums over all geometric paths, 
showing explicit reparametrisation invariance. This proof was provided by Polyakov [17], we 
will summarise it here.

The action of a free massive particle is the following

S = m

ˆ
dt

√
ẋ2(t) = mT (57)

where T is the proper length of the path we consider. This action, when minimized by vary-
ing xμ(t), produces the geodesic equation, as is well-known. The function xμ maps an interval, 
which can be taken a priori to be [0, 1], into a certain, potentially curved spacetime. Such func-
tions are called embeddings, and we usually specify their boundary conditions: either we fix two 
end points in spacetime that all possible embeddings have to start and end on, or we impose that 
the embedding is periodic over the interval, producing closed curves. We will focus on the latter 
case.

We are interested in using this action as the weight of a statistical ensemble, i.e. to use this 
action in a path integral, defining a partition function. It would allow us to compute sums and 
averages of quantities defined over all possible paths through space, weighted by the inverse 
exponential of their length. Because of reparametrisation invariance, however, if we want to use 
this action as a weight for path integration, we have to define the integration measure properly. 
Any change of variable t̃ = f (t) leaves the action invariant for any monotonically increasing 
function f that does not alter the endpoints.

The statistical ensemble we want to be summing over is the set of all geometrically distinct 
curves, not the set of all embeddings x(t). In other words, we should not sum over all the ways to 
reparametrise every curve that can be traced in spacetime, as this space is physically meaningless 
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and infinite in functional volume. Since the action above is invariant under reparametrisations, 
there are ways of removing this unwanted sum.

In practice, this means that the integration measure needs to be defined in the following way. 
The set of all possible embeddings x(t) can be split up into the product of the set of all geo-
metrically distinct curves, and the set of functions f that reparametrise each of these curves. 
This set of all geometrically distinct curves is then coset, or set of all equivalence classes, of 
embeddings under identification by reparametrisation. We want to compute the measure of this 
coset, Dx

Df
. Only then can we write a partition function using the action above. We can then write, 

symbolically

Z =
ˆ

Dx

Df
e−S[x] (58)

and perform the computations we desire with this object.
Dividing up the measure as done above is a well understood procedure in quantum field theory, 

much as the procedure to turn its non-quadratic form into something more prone to computations. 
Like in string theory, where the same problem exists, Polyakov proposes a solution: to make 
it quadratic by introducing an auxiliary, arbitrary metric for the curve, whose values we path 
integrate over. Its value is then forced to be the actual trajectory’s metric through its own equation 
of motion. This can be done this way

ˆ
Dx

Df
exp

(
−m

ˆ
dt

√
ẋ2(t)

)

=
ˆ

Dx

ˆ
Dh

Df
exp

(ˆ
dt

√
h(t)m2 + 1

4
√

h(t)
ẋ2(t)

)
(59)

That is, the equation of motion of h eliminates this extra variable and reproduces the previous 
result. We can reorder the above asˆ

Dx

Df
exp

(
−m

ˆ
dt

√
ẋ2(t)

)

=
ˆ

Dh

Df
exp

(ˆ
dt

√
h(t)m2

)ˆ
Dx exp

(
1

4
√

h(t)
ẋ2(t)

)
, (60)

so that we can treat Dh
Df

first and foremost.
Since any reparametrization will leave the proper length invariant, the measure Dh can be 

split up like this:

Dh = dT × Df × (a Jacobian) (61)

where T is again the proper length of the given path. We expect an integral of the form 
´∞

0 dT

to appear in our expressions.
The Jacobian introduced above is an ill-defined operator determinant, it is divergent. As we 

are not interested in performing an explicit discretisation of the measure Dx we will not do so, 
and so we can discard the contributions of this Jacobian altogether. The operators we insert are 
not affected by the functional whose determinant we are computing.

Finally the term Df is the unwanted integration measure: the one of the space of all 
reparametrisations. We want to remove it, but, since we want to focus on closed curves and peri-
odic functions, we have some additional subtleties to capture. One, affecting the integral 

´
Dx, 

is a zero mode of the action (xμ(t) = cμ is a trivial solution to the equations of motion, due 
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to translation invariance of spacetime), the other is shift symmetry of the parameter (t → t + a

leaves the action invariant).
The zero mode, related to translations of the field x, is useful, much like in string theory: 

when we insert operators of definite momentum, integration over the zero mode guarantees that 
external momentum is conserved. We will not take pains to remove it, it derives from properties 
of spacetime, which we are not addressing here. On the contrary, the shift symmetry is part of the 
group of diffeomorphisms on the worldline, and so needs to be removed along with the others. 
We plan on fixing gauge invariance by computing Dh

Df
, but we must be careful – the translation 

above does not change the metric, so the above approach will fail to capture it. Therefore, we 
remove it by hand before anything else happens, by making use of the relation

1 =
T̂

0

da

T̂

0

dt

T
δ(f (t) − a) (62)

which we insert in the path integral, and drop the integration over a. This then allows us to pick 
any value of a we want, e.g. 0. Thus, the invariance under shift symmetry is fixed by adding

1

T

T̂

0

dt δ(f (t)) (63)

to our path integration. Performing the integral symbolically removes this shift symmetry from 
the space. We are left with this factor of T −1 which effectively allows us to compensate for the 
overcounting of every curve due to the fact we are not explicitly choosing a starting point.

We can now then drop the Df integration, which allows us to pick any f we please, equiva-
lently it means we can choose a parametrisation, which we pick to be proper time for simplicity 
and elegance: this sets h to 1 and the bounds of integration of the worldline parameter to [0, T ]. 
The final result is

∞̂

0

dT

T

ˆ

x(0)=x(T )

[Dx] exp

⎛
⎝−

T̂

0

dt

(
ẋ2

4
+ m2

)⎞
⎠ (64)

This defines the statistical ensemble of random closed curves that we are integrating over (up 
to a zero mode contribution which is geometric in nature and so should remain). We use the sym-
bol [Dx] to remind ourselves that this measure has been gauge-fixed, that we have chosen proper 
length parametrisation in all the expressions we encounter, as is reflected by the appearance of 
the invariant length T in bounds of integration.

Appendix B. Free strings with fixed boundaries

The Douglas functional described in Eq. (40) is somewhat difficult to rigorously, mathemat-
ically justify, but some sense can be made of it through free string path integration. We impose 
a fixed spacetime boundary for a theory of open strings described by the Polyakov action, and 
integrate out the degrees of freedom describing the inside of the worldsheet: the result is the 
Douglas functional. The proof is roughly presented by Fradkin and Tseytlin [10], glossing over 
some finer points. Let us parametrise the worldsheet by upper half-plane variables: σ runs from 
0 to ∞ and τ runs from −∞ to +∞.
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We then split up the string embedding variable this way:

X(σ, τ) = X(0, τ )δ(σ ) + X(σ, τ)(1 − δ(σ )) (65)

≡ X̂(τ ) + X̊(σ, τ ) (66)

The variable X̂ is the embedding of the boundary of the worldsheet and X̊ embeds the interior 
of the worldsheet. We then introduce a fixed geometric curve in spacetime ζ(τ ) and propose to 
compute

ˆ
DX Dg δ(X̂ − ζ ) exp

(
−σ

ˆ
dσdτ

√
g ημνg

αβ∂αXμ∂βXν

)
(67)

To do this, we write the delta function as a functional Fourier kernel

δ(X − ζ ) =
ˆ

Dλ exp

(ˆ
dτλ(τ) (X(τ) − ζ(τ ))

)
(68)

and split the X coordinate as prescribed, leading to

ˆ
DX̊DX̂DgDλ exp

⎛
⎝−σ

ˆ

σ>0

dσdτ
√

ggαβ∂αX̊ · ∂βX̊

⎞
⎠

× exp

⎛
⎝−σ

∞̂

−∞
dτ

√
ggττ d

dτ
X̂ · d

dτ
X̂ − λ(τ) (X(τ) − ζ(τ ))

⎞
⎠ (69)

Note that there is no X̂X̊ cross-term as these variables are never non-zero simultaneously given 
their definition.

At this point we need to worry about fixing the large amount of gauge symmetry in the path 
integral. We are interested in inserting operators on the boundary of this worldsheet, so that the 
X̊ determinant just produces some functional determinants, as long as they are well defined, 
but the g integral subsists in the boundary action. We would like to simply fix a flat gauge 
everywhere, as it is often possible when doing tree-level amplitudes in string theory, but we en-
counter a difficulty: we have, by specifying ζ(τ ), given not only a geometric object but also 
a specific parametrisation of the contour as an input. The output should be parametrisation-
independent, therefore Polyakov’s approach to the problem is to gauge fix everything but the 
way we parametrise the boundary, i.e. we fix the worldsheet metric to be diagonal and

gσσ = 1 , gττ =
(

dθ

dτ

)2

(70)

for some arbitrary reparametrisation θ . This function encapsulates all of the gauge that we can-
not fix, because of the fixed boundary condition. Most of the path integration over g is now 
gauge-fixed, up to a left-over integration over θ .

As previously mentioned the X̊ integral produces a constant determinant, since the operators 
we are interested in inserting are all on the boundary, this constant drops out by normalisation, 
so we ignore it. We are left with
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ˆ
DX̂DθDλ

× exp

⎛
⎝−σ

∞̂

−∞
dτ

d

dτ
X̂(θ(τ )) · d

dτ
X̂(θ(τ )) − λ(θ(τ )) (X(θ(τ)) − ζ(θ(τ )))

⎞
⎠ (71)

We then perform the X̂ path integral, which is linear–quadratic, we get

ˆ
DθDλ exp

⎛
⎝−σ−1

∞̂

−∞
dτdτ ′λ(θ(τ ))N(τ, τ ′)λ(θ(τ ′)) + λ(θ(τ ))ζ(θ(τ ))

⎞
⎠ (72)

where N(τ, τ ′) is proportional to the string Neumann function (the Green’s function for the string 
Laplace operator), restricted to the boundary of the worldsheet. Then, integrating out again gives

ˆ
Dθ exp

⎛
⎝−σ

∞̂

−∞
dτdτ ′ζ(θ(τ ))N−1(τ, τ ′)ζ(θ(τ ′))

⎞
⎠ (73)

For our upper half plane representation of the worldsheet, we have

N(τ, τ ′) = log(|τ − τ ′|) , N−1(τ, τ ′) = 1

(τ − τ ′)2 = −N̈(τ, τ ′) (74)

where the last property follows from the definition of N as a Neumann function (the inverse 
power is meant in the functional operator sense, that is, inverse under the convolution product). 
Using it, integrating by parts and relabelling parametrisations results in the standard Douglas 
functional above in Eq. (40).
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