
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Nutrients

                           

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa37940

_____________________________________________________________

 
Paper:

Stratton, G. (2018).  Higher protein intake is not associated with decreased kidney function in pre-diabetic older adults

following a one-year intervention. Nutrients

http://dx.doi.org/10.3390/nu10010054

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

http://cronfa.swan.ac.uk/Record/cronfa37940
http://dx.doi.org/10.3390/nu10010054
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

nutrients

Article
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Abstract: Concerns about detrimental renal effects of a high-protein intake have been raised due to
an induced glomerular hyperfiltration, since this may accelerate the progression of kidney disease.
The aim of this sub-study was to assess the effect of a higher intake of protein on kidney function in
pre-diabetic men and women, aged 55 years and older. Analyses were based on baseline and one-year
data in a sub-group of 310 participants included in the PREVIEW project (PREVention of diabetes
through lifestyle Intervention and population studies in Europe and around the World). Protein
intake was estimated from four-day dietary records and 24-hour urinary urea excretion. We used
linear regression to assess the association between protein intake after one year of intervention and
kidney function markers: creatinine clearance, estimated glomerular filtration rate (eGFR), urinary
albumin/creatinine ratio (ACR), urinary urea/creatinine ratio (UCR), serum creatinine, and serum
urea before and after adjustments for potential confounders. A higher protein intake was associated
with a significant increase in UCR (p = 0.03) and serum urea (p = 0.05) after one year. There were
no associations between increased protein intake and creatinine clearance, eGFR, ACR, or serum
creatinine. We found no indication of impaired kidney function after one year with a higher protein
intake in pre-diabetic older adults.

Keywords: pre-diabetes; dietary protein; creatinine clearance; glomerular filtration rate; albumin; urea
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1. Introduction

Prevalence of type 2 diabetes (T2D) is increasing worldwide, imposing a growing burden on
individuals, society, and health-care costs [1]. Risk of T2D is determined by an interplay of genetic
and metabolic disorders, but overweight and obesity are the predominant risk factors [2]. Results
from the US Diabetes Prevention Program, the Finnish Diabetes Prevention Study, and the Chinese
Da Qing Study demonstrate that a modest weight loss induced by change of diet and increased
physical activity can delay or even prevent the onset of T2D [3–5]. Indeed, a weight loss of just 5–10%
of body weight leads to positive health benefits [6]. Protein is highly satiating and a high-protein
diet has been recommended for the treatment of obesity [7]. Results from both intervention and
epidemiological studies have shown that diets rich in protein can result in greater weight loss [8–11].
However, untoward effects of a high protein intake on kidney function have also been suggested.
Evidence of adverse effects of a high-protein diet is inconclusive [12–16].

Concerns regarding adverse renal effects of a high-protein diet (i.e., a protein content of more than
25% of energy consumed (E%) or more than 2 g protein/kg body weight) are related to glomerular
hyperfiltration and hypertensive effects [17]. Individuals with obesity-related conditions, such as the
metabolic syndrome, pre-diabetes, and T2D, are potentially more susceptible to hypertension than
their healthy counterparts [18]. In addition, cross-sectional and longitudinal studies have shown that
glomerular filtration rate (GFR) declines with age (decline of approximately 10 mL/min/1.73 m2 per
decade after the age of 30), making the older population more susceptible to hypertension [19]. The risk
of hypertension is exacerbated by a variety of other factors, such as an increase in dietary sodium
from a greater intake of animal protein in processed foods. Sodium is used to enhance taste and
preserve processed meats, and this can be associated with an increased risk of nephrolithiasis (kidney
stones) [7,17,20]. There is also some concern that these changes in protein consumption could lead to
an increase in the incidence rate of chronic kidney disease in the general population [17]. Nephropathy
is a well-known complication of T2D, and it is relevant to consider this in a vulnerable population.

To the best of our knowledge, no studies have previously investigated the effect of a higher protein
intake on the change in kidney function in pre-diabetic overweight or obese individuals who have
undergone a period of weight loss and subsequent weight maintenance. The aim of this sub-study of
the PREVIEW diabetes prevention study was to investigate whether a higher protein intake during
weight loss had an effect on kidney function in a subgroup of older overweight or obese pre-diabetic
adults [21]. We hypothesized that a higher protein intake may be associated with a decrease in kidney
function, measured by a change in creatinine clearance, after one year of the intervention.

2. Materials and Methods

2.1. Study Design and Population

This sub-study is part of a 3-year large multi-center randomized controlled trial “PREVIEW”
(PREVention of diabetes through lifestyle intervention and population studies in Europe and around
the World). The main aim of PREVIEW is to investigate the effects of a high-protein, low-glycemic
index (GI) diet versus a moderate protein, medium-GI diet and high versus low intensity physical
activity programs (4 intervention arms) in overweight and obese pre-diabetic adults and children
in order to find the most efficient lifestyle program in the prevention of T2D. The methodology of
PREVIEW has been described elsewhere [21]. In brief, the 3-year intervention consists of two phases:
a two-month period of rapid weight reduction achieved using a commercial low-energy diet (LED,
about 3.4 MJ/daily), followed by a 34-month randomized lifestyle intervention phase for weight loss
maintenance. Clinical investigation days (CIDs) were carried out throughout the intervention, from
CID1 (baseline) to CID7 (end of trial). As the PREVIEW intervention study is ongoing and has not
been unblinded, the present sub-study treated data as a single cohort. Data from baseline (CID1) and
after one year of intervention (CID4) were included in the present sub-study.
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Participants aged 55 years or older were included. Selection of participants was performed to
get a representative sample from the four intervention arms. We selected the first 110 participants
from the subject-ID list from the University of Copenhagen (UCPH, Copenhagen, Denmark) and the
first 50 participants from each of the subject-ID lists from the University of Helsinki (HEL, Helsinki,
Finland), the University of Auckland (UOA, Auckland, New Zealand), the University of Navarra
(UNAV, Pamplona, Spain), and the University of Nottingham (UNOTT, Nottingham, UK). The total
number of participants was 310.

2.2. Outcome Measures

Kidney function was measured by 24 h creatinine clearance, where creatinine clearance
(mL min−1) = urinary creatinine concentration × 24 h volume/plasma creatinine concentration
× 1440. The estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney
Disease Epidemiology Collaboration creatinine formula (CKD-EPICrea formula) [22]. In addition, the
urinary albumin/creatinine ratio (ACR), the urinary urea/creatinine ratio (UCR), and the serum urea
were measured.

2.3. Diet

The two-month weight reduction period included a commercial LED (Cambridge Weight Plan®

Ltd., Corby, UK), with a requirement to lose ≥8% of initial body weight in order to continue to
the weight maintenance phase. The LED consisted of meal replacements with an energy content of
3.4 MJ/day (810 kcal/day), and a macronutrient composition of 45–50 E% from carbohydrate, 35–40 E%
from protein, and 15–20 E% from fat. In addition, an intake of 200 g of tomatoes, 125 g of cucumber,
and 100 g of lettuce per day as well as sugar-free beverages providing 0–25 kJ/day were allowed as
part of the diet.

Participants who achieved ≥8% body weight loss during the LED period were allocated using
block randomization to one of the four study arms for the 34-month weight maintenance phase with
the aim of preventing the development of T2D. The intervention had a 2 × 2 factorial design and
consisted of two different diets and two different physical activity programs: The two diets were as
follows: a Moderate Protein (MP) diet—15 E% protein, 55 E% carbohydrates, and a moderate dietary
glycemic index (GI) (≥56)—and a High Protein (HP) diet—25 E% protein, 45 E% carbohydrates, and a
lower GI (≤50). Both diets provided a moderate fat intake of 30 E%. The two physical activity groups
were defined as follows: one group engaged in high-intensity physical activity for 75 min/week and
the other engaged in moderate-intensity physical activity for 150 min/week. Both regimens aimed at
an exercise energy expenditure of >4200 kJ/week.

Dietary intake was assessed from an average of four-day food records at CID1 and after one
year (CID4). The dietary data were entered and analyzed for energy and protein content using a
computerized version of national food composition tables; UCPH, Dankost version 3000 (Dankost,
Copenhagen, DK), HEL, AivoDiet (Aivo Finland Oy, Turku, Finland), UNOTT, Nutritics edition v4.2
(Nutritics, Dublin, Ireland) UNAV, Dial (Alceingieria, Madrid, Spain), UOA, Foodworks 8 (Xyris,
Brisbane, Australia). Individuals who had an implausibly high (>16,800 kJ) or low (<4200 kJ) daily
energy intake were excluded from the study.

Twenty-four-hour urinary urea excretion was used as a biomarker of protein intake and calculated
using the formula 24 h urinary urea (mmol/day) × 0.22 + 12.5 g protein/day [23]. In the analyses,
protein intake was calculated as g protein/kg body weight/day.

2.4. Blood Pressure

Blood pressure was measured at CID1 and CID4 with a calibrated electronic sphygmomanometer.
Blood pressure was measured as follows: UCPH, A&D Medical UA-787 Plus (A&D Medical, Tokyo,
Japan), HEL, OMRON M2 HEM-7119-E (OMRON Healthcare Co Ltd., Kyoto, Japan), UNAV, Omron
M6-Comfort (Omron Healthcare Europe BV, Barcelona, Spain), UNOTT, GE Medical Dash 3000 (GE
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Healthcare, Freiburg, Germany), UOA, GE (Dynamap V100 (GE Healthcare, Auckland, New Zealand)).
Participants were sitting, and measures were taken in the right arm after 5–10 min of rest. Blood
pressure was measured three consecutive times with 1 min of rest between each measurement.
The average of the three measurements was registered.

2.5. Body Composition

Measurements of body composition were performed at CID1 and CID4 by different methods at the
intervention sites: UCPH, iDXA, software v.15, (GE-Lunar, Madison, WI, USA), HEL, InBody720 Body
Composition Analyzer by Biospace Co., Ltd, manufacturing year 2004; UNAV, TANITA BC-420MA,
TANITA corp, UNOTT, GE-Lunar prodigy with eCORE 2005 software v. 9.30.044), UOA, iDXA,
software v.15, GE-Lunar.

2.6. Physical Activity

Accelerometer-derived data were used to adjust for the possible effect of physical activity on
renal perfusion. Participants wore an ActiSleep+ (ActiGraph LLC, Pensacola, FL, USA) accelerometer
attached to an elastic waist belt worn over the right mid-axillary line 24 h/day for seven consecutive
days, at CID1 and CID4, removing it only for water-based activities. The primary output from
the ActiSleep+ is an activity count, which represents raw accelerations that have been rescaled
and filtered. Activity counts were collected at 100 Hz and aggregated to 60 epochs. After the
removal of nocturnal sleep episodes, participants were included in the analyses if they wore the
monitor for ≥10 h on ≥4 days including at least one weekend day. Mean activity counts during
valid wear time (counts·min−1; CPM) have been shown to correlate well with total activity energy
expenditure measured with the doubly labeled water technique and were used as an indicator of
total PA volume. Troiano cut points [24] were used to determine time (min·day−1) spent at different
intensity categories (sedentary: <100 counts per minute (CPM); moderate: 100–2020 CPM; vigorous:
2020–5999 CPM). The duration for moderate-to-vigorous intensity activities were summed to obtain
moderate-to-vigorous physical activity (MVPA).

2.7. Laboratory Analysis

To decrease inter-laboratory variation in calibration and analysis of the kidney markers, all serum
and urine samples were analyzed in the central laboratory of University of Copenhagen.

Venous blood samples were drawn from the antecubital vein at CID1 and CID4 after an overnight
fast. Serum was separated from blood cells by 1500 G centrifugation for 10 min, after the sample had
been allowed to clot for 15 min and then stored at −80 ◦C. Urinary concentration of urea, creatinine,
and albumin was measured in 24 h-urine collections at CID1 and after one year (CID4). Urine collection
was initiated after the first voiding on the collection day at 8:00 a.m. and terminated after the following
day’s first voiding at 8:00 a.m. After a weighing and assessment of density, urine was stored at −80 ◦C
prior to further analysis. All serum and urine samples were determined with a HORIBA ABX Pentra
400 analyzer (HORIBA, Montpellier, France).

A standard oral glucose tolerance test (75 g of glucose, dissolved in 300 mL of water) was
completed to assess glycemic status. Fasting (0 h) and 2 h blood samples were collected. The blood
samples were drawn from the antecubital vein. Serum and whole blood samples were initially stored
at −80 ◦C at the individual intervention sites, after which they were transported to a laboratory
in Finland for central batch analyses (National Institute for Health and Welfare, Helsinki, Finland).
Laboratory analyses of glucose were performed on an Architect ci8200 integrated system (Abbott
Laboratories, Abbott Park, IL, USA).

2.8. Statistical Analysis

All of the statistical analyses were performed using R (v.3.3.0, R Core Team, Vienna, Austria) [25].
Only CID1 and CID4 data were included in the complete-case analyses.
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Analysis of covariance was used to investigate the association between changes in protein intake
(estimated from 24 h urinary urea excretion and four-day dietary records) and changes in each of
the kidney health risk markers. Unadjusted analyses as well as analyses adjusted for potential
confounders, including age, gender, MVPA, and study center, the latter of which was adjusted as a
linear mixed model, since study center was included as a random effect, were conducted. In addition,
urea excretion was analyzed by comparing changes among participants in tertiles of protein intake,
estimated from 24 h urinary urea excretion. As weight loss and improvement of glycemic control could
in themselves be responsible for changes in kidney function, additional analyses including adjustment
for change in body weight after one year and subgroup analyses excluding participants achieving
improved glycemic control were also carried out (Supplemental Material). These associations were
also investigated cross-sectionally for each visit separately (Supplemental Material).

Model checking of assumptions of variance homogeneity and normality were carried out by
means of residual and normal probability plots. Self-reported protein intake was correlated to
24 h urinary urea excretion using the Pearson correlation test. A p-value < 0.05 was considered
statistically significant.

2.9. Research Ethics

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Municipality Region in Denmark 07-03-2013 (H-1-2013-052) and
the local ethical committees in the respective countries.

3. Results

One participant was excluded due to missing data. Thus, a total of 309 overweight or obese
pre-diabetic individuals were included in the complete-case analyses. Descriptive statistics for
participants at baseline and after one year are shown in Table 1. There was a significant improvement
in all measures, including body weight, fasting plasma glucose (FPG), 2 h plasma glucose, body mass
index (BMI), body composition (fat free mass, FFM and fat mass, FM), blood pressure, and activity level
parameters after one year (all p-values < 0.05). Protein intake in g/day decreased, but protein intake in
g/kg body weight/day and estimated protein intake in g/kg body weight/day from urea excretion
increased after one year. On average, for all participants kidney function had slightly decreased by
CID4 (Table 1).

Table 1. Characteristics of the pre-diabetic participants at baseline and after one year of intervention
(n = 309).

Variables Baseline 1 Year p-Value

Age (years) 61.4 ± 4.5 - -
Males % (No.) 57.9 (179) - -

Weight (kg) 94.6 ± 16.9 85.4 ± 15.9 <0.001
Energy intake (kJ/day) a 8616 ± 2169 7154 ± 1994 <0.0001
Protein intake (g/day) a 90.6 ± 22.9 85.3 ± 27.9 0.005

Protein intake (g/kg body weight/day) a 0.98 ± 0.3 1.03 ± 0.4 0.04
Protein intake (E%) 18.3 ± 3.4 20.7 ± 4.3 <0.0001

Calculated protein intake (g/day (urea excretion) 105.8 ± 35.7 109.6 ± 40.0 0.114
Calculated protein intake (g/kg body weight/day (urea excretion) 1.1 ± 0.4 1.3 ± 0.5 <0.0001

FPG mmol/L b 6.2 ± 0.58 6.0 ± 0.54 <0.0001
2h-glucose mmol/L c 8.2 ± 2.25 6.8 ± 1.76 <0.0001

Body-mass index (kg/m2) 33.2 ± 4.6 30.0 ± 4.5 <0.001
Fat Free Mass (kg) d 54.6 ± 11.5 53.8 ± 11.1 <0.001

Fat Mass (kg) d 38.8 ± 11.4 31.8 ± 11.7 <0.001
Moderate and vigorous physical activity (CPM) e 23.8 (38.2, 12.3) 28.1 (46.8, 15.5) <0.001

Systolic blood pressure (mmHg) 134.1 ± 15.8 129.8 ± 14.9 <0.001
Diastolic blood pressure (mmHg) 78.2 ± 11.7 75.9 ± 10.3 <0.001
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Table 1. Cont.

Variables Baseline 1 Year p-Value

Renal characteristics
Total urine volume (mL) f 1972 ± 737.8 2233 ± 804.2 <0.001

U-Urea excretion (mmol/day) 424.1 ± 162.4 441.4 ± 183.6 0.114
Creatinine clearance (mL/min) 114.1 ± 38.4 108.7 ± 49.9 0.034

eGFR (mL/min/1.73 m2) 76.3 ± 13.5 77.1 ± 13.3 0.258
U-Creatinine excretion (mmol/day) 13.2 ± 5.3 12.3 ± 5.7 0.009

Urea/Creatinine Ratio (UCR) 0.69 ± 1.43 0.74 ± 1.43 <0.0001
S-Creatinine (µmol/L) 82.8 ± 16.5 81.7 ± 15.6 0.09

S-Urea (mmol/L) 5.6 ± 1.4 5.9 ± 1.4 <0.001
U-Albumin (mg/day) g 12.5 (21.4, 8.4) 9.5 (18.1, 7.7) 0.469

Albumin/Creatinine Ratio (ACR) 0.8 (1.1, 0.5) 0.9 (1.3, 0.7) 0.339

Characteristics are shown as mean ± standard deviation or median and interquartile range in brackets.
Abbreviations: CPM: counts per minute; eGFR: estimated glomerular filtration rate; FPG: fasting plasma glucose;
2h-glucose: 2 h plasma glucose; IQR: interquartile range; S-Creatinine: serum creatinine; S-Urea: serum urea;
U-Albumin: urine albumin; U-Creatinine excretion: urinary creatinine excretion; U-Urea excretion: urinary urea
excretion. a: n = 242; b: 1 year (n = 246); c: baseline (n = 306); 1 year (n = 242); d: n = 298; e: n = 257; f: n = 300; g: 16%
have a value >1 (baseline); 13% have a value >1 (1-year).

Change in creatinine clearance, UCR, and serum urea was positively associated with change in
estimated protein intake calculated from the urea excretion (p < 0.0001, Table 2), both with and without
adjustments. There was also a positive association between change in eGFR and change in estimated
protein intake calculated from urea excretion (p < 0.05, Table 2), but only after adjustments. Change in
serum creatinine was inversely associated with change in estimated protein intake calculated from
the urea excretion (p < 0.05, Table 2), but only after adjustments. No associations were found between
change in ACR and change in estimated protein intake calculated from the urea excretion. In addition,
change in UCR and serum-urea was positively associated with both change in self-reported protein
intake (p < 0.05, Table S1) and change in urea excretion (p < 0.0001, Table S2), both with and without
adjustments. In addition, change in creatinine clearance was positively associated with change in urea
excretion (p < 0.0001, Table S2). No associations were found between change in self-reported protein
and creatinine clearance, eGFR, ACR, or serum creatinine (Table S1) or between change in urea excretion
and change in eGFR, ACR, or serum creatinine, respectively (Table S2). Tables S3 and S4 provide data
adjusted for body weight, but this standardization did not change the results. In Tables S5 and S6,
individuals who improved their glycemic control were excluded from the analyses, but again this did
not change the results. Baseline urea excretion (mmol/day) in urine and self-reported total protein
intake (g/kg/day) were moderately, positively correlated (r = 0.37, p < 0.0001).

Table 2. Associations between change in estimated protein intake calculated from the urea excretion
and change in kidney function from baseline to 1 year.

∆ Estimated Protein Intake (g/kg/Day) Calculated from the Urea Excretion

Variable n Unadjusted
(β ± SE) p-Value n Adjusted

(β ± SE) p-Value

∆ Creatinine clearance (mL/min) 294 75.86 ± 4.31 <0.0001 219 72.86 ± 4.94 <0.0001
∆ eGFR (mL/min/1.73 m2) 309 2.06 ± 1.32 0.118 230 3.42 ± 1.56 0.03

∆ U-Albumin/U-Creatinine ratio (ACR) 309 −1.12 ± 4.47 0.09 230 0.53 ± 5.24 0.920
∆ Urea/Creatinine Ratio (UCR) 309 9.64 ± 2.22 <0.0001 230 13.53 ± 2.60 <0.0001

∆ S-Creatinine (µmol/L) 309 −2.14 ± 1.31 0.104 230 −3.59 ± 1.55 0.02
∆ S-Urea (mmol/L) 309 0.62 ± 0.16 <0.001 230 0.84 ± 0.19 <0.0001

All values are beta ± SE. Statistical differences between changes is based on analysis of covariance. Beta is the slope
coefficient of outcome measures, per 1 unit change in estimated protein intake (g/kg/day) from urea excretion
Model Adjusted for age, gender, physical activity (moderate and vigorous), and study site (the University of
Copenhagen, the University of Helsinki, the University of Auckland, the University of Navarra, and the University
of Nottingham). Abbreviations: eGFR: estimated glomerular filtration rate; S-Creatinine: serum creatinine; S-Urea:
serum urea.

When protein intake was estimated from the urea excretion (based on mean values from the
tertiles), participants with the highest estimated protein intake (upper tertile) ingested 1.6 (SD 0.4)
g protein/kg body weight/day compared to 1.0 (SD 0.6) g protein/kg body weight/day among
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participants with the lowest intake (p < 0.0001). Participants in the middle tertile ingested 1.3 (SD 0.4)
g protein/kg body weight/day.

Table 3 shows that there is no indication that increasing protein intake causes detrimental effects
on the kidney function, independent of the baseline intake of protein at CID1 (low, moderate, or high
intake). There is even an indication (p = 0.056) of an improvement in kidney function with increasing
protein intake in individuals already ingesting a large amount of protein. Within each tertile, changes
in UCR and serum urea do not show a systematic association, as those with a moderate protein intake
seem to have the highest increase after further increasing their protein intake. For the remaining
markers of kidney function, there were no differences in rates of change across the three tertiles (all
p > 0.05).

Table 3. Slope of change in protein intake and change in kidney function (from baseline to 1 year),
within each tertile of low, medium, and high protein intake at baseline (CID1). Protein intake was
estimated from urinary urea excretion (n = 309).

Slope of ∆ Protein Intake (g/kg/Day)

Low
(n = 103)

Moderate
(n = 103)

High
(n = 103) p-Value

∆ Creatinine clearance (mL/min)/g protein /kg/day 59.45 ± 10.23 62.64 ± 8.19 87.59 ± 5.91 0.056
∆eGFR (mL/min/1.73 m2/g protein/kg/day) 2.56 ± 2.48 5.09 ± 2.64 −0.12 ± 1.99 0.626

∆ Albumin/Creatinine ratio (ACR) −5.74 ± 8.40 0.13 ± 8.94 −1.37 ± 6.75 0.434
∆ Urea/Creatinine Ratio (UCR) 1.80 ± 4.12 20.16 ± 4.38 7.45 ± 3.31 0.02

∆S-Creatinine (µmol/L/g protein/kg/day) −2.46 ± 2.48 −4.45 ± 2.63 −0.38 ± 1.99 0.773
∆S-Urea (mmol/L/g protein/kg/day) −0.02 ± 0.29 1.41 ± 0.31 0.48 ± 0.24 0.006

All values are given as slope coefficient ± SE. p-value from F-test for the null hypothesis of no difference across
tertiles. The slope coefficient corresponds to the decrease or increase in the change in the marker of kidney function
per 1 g/kg/day increase in the protein intake calculated from urea excretion. Abbreviations: eGFR: estimated
glomerular filtration rate; S-Creatinine: serum creatinine; S-Urea: serum urea.

In detail, this means that, for each 1 g/kg/day increase in protein intake, ∆UCR increased
significantly more in the moderate intake group than in the low and high intake groups (a difference in
slope of −18.35 ± 6.01 g/kg/day, p < 0.01, and −12.70 ± 5.49 g/kg/day, respectively, p < 0.05, Table 3).
Likewise, for each 1 g/kg/day increase in protein intake, ∆S-Urea was higher in the moderate intake
group than in the low and high intake groups (a difference in slope of −1.43 ± 0.42 mmol/L/g/kg/day,
p < 0.001, and −0.93 ± 0.39 mmol/L/g/kg/day, p < 0.05).

Tables S3 and S4 provide data adjusted for body weight, but this standardization did not change
the results. In Tables S5 and S6, individuals who improved their glycemic control were excluded from
the analyses, but again this did not change the results. Tables S7–S10 show the cross-sectional analyses
at inclusion and after one year, and this did not change outcomes either.

4. Discussion

The main finding of the present study was that a higher protein intake (>1.6 g/kg/day) was
not associated with a decreased kidney function after one year of intervention of a weight-loss,
weight-maintenance program in pre-diabetic older adults. As expected though, individuals with a
high self-reported protein intake had a significantly increased urea-to-creatinine ratio as well as an
increased concentration of urea in urine and serum. When we divided the participants into tertile
groups, we could not explain why an increase in UCR and serum-urea was only present in the group
with a moderate protein intake, unchanged values probably represent adaption.

High-protein diets have long been recognized as a potential modulator of kidney function due
to an acute increase in renal plasma flow and GFR [17]. This has raised concerns that ingestion
of high-protein diets may increase glomerular pressure and hyperfiltration, which may lead to a
progressive loss of kidney function over the long term [17,26]. In contrast, Bankir et al. [27] has stated
that an increase in GFR is likely to be a normal adaptation of the kidney to an increased protein intake,
with the consequence being a higher urinary urea concentration. The most plausible cause for this
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may be that urea induces osmotic diuresis [28]. However, evidence to support the hypothesis that
prolonged glomerular hyperfiltration leads to kidney damage remains equivocal [29], especially in
high risk groups like patients with T2D or insulin resistance.

In healthy individuals, an increase in protein intake up to a maximum of 30 E% has not been
shown to adversely affect kidney function [30,31]. The present study in pre-diabetic older adults
resulted in the same finding, which also agreed well with findings from a randomized controlled
trial among 68 individuals with abdominal obesity [26]. In that investigation, they compared high
protein (24 E%)/low carbohydrate (4 E%) and high protein (30 E%)/very low carbohydrate (61 E%)
diets for one year and showed that, regardless of diet, there was no change in serum creatinine levels,
eGFR, or urinary albumin excretion [26]. In the National Health and Nutrition Examination Survey
(NHANES) conducted in 2007–2010 with 11,111 healthy adults, Berryman et al. [12] also found no
significant associations between total protein intake and estimated GFR. Similarly, intervention studies
with a duration up to one year by Li et al. [32] and Skov et al. [7] showed that protein-enriched
meal replacements or high-protein diets did not have adverse effects on kidney function among
obese individuals. In a two-year study by Friedman et al. [29] involving 307 obese individuals,
a low-carbohydrate, high-protein diet aiming at weight loss, compared with a standard low-fat
weight-loss diet, was also not associated with any increase in creatinine clearance, urinary albumin
excretion, urinary volume, or serum urea. It is also noteworthy that weight loss and improvement in
glycemic control did not affect the kidney function in the present study (Supplemental Material).

In contrast, a recent systematic review and meta-analysis, including a total of 30 randomized
controlled trials with varying definitions of high and low protein diets found that higher protein
diets were associated with increased GFR and serum urea among healthy individuals or individuals
with T2D, but there was no indication of disease or functional problems—only an adaptation [33].
Likewise, in a sub-study of the OmniHeart Trial, in a randomized 3-period, 6-week crossover study,
a protein-rich diet increased GFR compared to diets rich in carbohydrate and unsaturated fat [15].
Similar to these findings, Frank et al. [16] showed an increase in GFR with a high-protein diet among
24 healthy young men in a randomized, crossover study including a two-diet protocol of 7 days each.
The results from these two short-term studies [15,16] mainly reflect physiological and adaptive changes
in kidney function to a high protein load. This supports the findings of our current study that increased
urea production may lead to osmotic diuresis, but not to kidney damage. Indeed, in accordance with
this hypothesis, the diuresis increased significantly in our present study.

In more susceptible groups, such as individuals with T2D without diabetic kidney disease, there
was no indication that a high protein intake would lead to kidney damage [34]. For example, a two-year
randomized controlled trial, comparing a low-fat, high-protein diet to a low-fat, high-carbohydrate
diet in 419 individuals with T2D, showed no differences in kidney function [35]. Other shorter
randomized controlled trials (<12 months) in participants with T2D also failed to detect adverse effects
of a high-protein diet on kidney function [36–39].

According to the NHANES survey conducted in 1999–2006 [40] the incidence rate of chronic
kidney disease is >40% among adults with a diagnosis of diabetes and 17.7% among adults with
pre-diabetes, respectively. Thus, longer-term follow-up studies are required to determine if long-term
adherence to a higher-protein diet eventually results in development and progression of kidney disease.
In the present analyses, we found no such indication of kidney damage after one year of intervention.

The strength of the present sub-study is the use of both a subjective and objective method to
assess protein intake and, and this may have improved the validity of the results [41]. In addition, the
inclusion of a large sample size (from five different countries), a longer-term follow-up, and the use of
a variety of markers to examine kidney function are positive aspects of this work. Furthermore, we
have controlled for possible confounding factors using an objective assessment of physical activity.
Nonetheless, several limitations should be noted, including the fact that GFR was estimated, rather
than measured by inulin or radio-isotope-labeled filtration markers, which are considered the “gold
standard” for measuring GFR [42]. Whilst serum creatinine is more practical to measure clinically, it can
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be less accurate and may be more difficult to interpret due to day-to-day variations, especially when
concentrations are in the normal range in certain subgroups, including obese patients. Additionally,
though measured creatinine clearance requires 24 h urine collection and this was undertaken in the
present study, the completeness of the urine collection was not assessed.

5. Conclusions

In conclusion, in this study of overweight pre-diabetic older adults from five countries, we found
no evidence that a higher protein intake was associated with a decrease in kidney function after
one year of intervention. Moreover, we found no indication that increasing protein intake caused
differential effects on kidney function among adults with the lowest versus the highest baseline
protein intake.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/10/1/54/s1,
Table S1: Associations between change in self-reported protein intake and change in kidney function from
baseline to 1 year. Table S2: Associations between change in urea excretion and change in kidney function from
baseline to 1 year. Table S3: Associations between change in self-reported protein intake and change in kidney
function from baseline to 1 year. Additionally, adjusted for change in body weight. Table S4: Associations between
change in urea excretion and change in kidney function from baseline to 1 year. Additionally, adjusted for change
in body weight. Table S5: Associations between change in self-reported protein intake and change in kidney
function from baseline to 1 year. Individuals who improved their glycemic control are excluded from the statistical
analysis. Table S6: Associations between change in urea excretion and change in kidney function from baseline
to 1 year. Individuals who improved their glycemic control are excluded from the statistical analysis. Table S7:
Associations between baseline self-reported protein intake and baseline markers of the kidney function (CID1).
Table S8: Associations between self-reported protein intake and markers of the kidney function after 1 year
(CID4). Table S9: Associations between baseline urea excretion and baseline markers of the kidney function
(CID1). Table S10: Associations between urea excretion and markers of the kidney function after 1 year (CID4).
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