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Many studies have shown that variation in transcription is associated with changes in behavioral 

state, or with variation within a state, but little has been done to address if the same genes are 

involved in both. Here we investigate the transcriptional basis of variation in parental provisioning 

using two species of burying beetle, Nicrophorus orbicollis and Nicrophorus vespilloides. We used 
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RNA-seq to compare transcription in parents that provided high amounts of provisioning behavior 

versus low amounts in males and females of each species.  We found no overarching transcriptional 

patterns distinguishing high from low caring parents, and no informative transcripts that displayed 

particularly large expression differences in either sex.  However, we did find subtler gene expression 

differences between high and low provisioning parents that are consistent across both sexes and 

species.  Furthermore, we show that transcripts previously implicated in transitioning into parental 

care in N. vespilloides had high variance in the levels of transcription and were unusually likely to 

display differential expression between high and low provisioning parents.  Thus, quantitative 

behavioral variation appears to reflect many transcriptional differences of small effect.  

Furthermore, the same transcripts required for the transition between behavioral states are also 

related to variation within a behavioral state. 

 

Intermediate between a variant allele and the quantitative effect it produces is some variable 

mechanistic process (Maynard Smith et al. 1985). One such mechanism is variation in gene 

expression (Albert and Kruglyak 2015), the study of which has been enhanced by the development of 

transcriptomic methods (Todd et al. 2016) leading to a plethora of evolutionary studies using this 

technique. However, most evolutionary transcriptomic studies examine the changes in transcription 

associated with transitions in phenotypic state: transitions from one state to another. In evolution, 

however, it is variation within a phenotypic state – typically quantitative variation (Lynch and Walsh 

1998) – that is exposed to selection and evolves. If variation in transcription is in fact a mediator of 

phenotypic effects, then two things must be true: allelic variation must influence transcriptional 

variation, and transcriptional variation must influence phenotypic variation.  Through research 

mapping QTLs for gene expression phenotypes (eQTL), evidence for the first of these is rapidly 
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mounting (Albert and Kruglyak 2015).  However, empirical work addressing the latter is less 

common.  Research searching for quantitative trait transcripts (QTT; Passador-Gurgel et al. 2007) in 

Drosophila (Passador-Gurgel et al. 2007, Ayroles et al. 2009), human disease (Petretto et al. 2008, 

Lodder et al. 2012), and crops (Yang et al. 2012) has suggested that many genes are transcriptionally 

linked to phenotype (Mackay et al. 2009). Furthermore, work in Drosophila has suggested that 

predicting candidate transcripts with phenotypic associations may be relatively difficult (Nuzhdin et 

al. 2009).  However, to date, QTT-like studies have only been performed in a handful of organisms, 

and none in natural populations, limiting the evolutionary conclusions that can be drawn.  Here we 

begin to address this void by examining how transcriptional variation is related to behavioral variation 

in a complex quantitative behavior, parental provisioning of food by regurgitation to begging 

offspring. 

Behavioral phenotypes can be among the most complex traits found in animals.  Behavior is 

typically highly quantitative in nature, and is produced variably but reliably in response to 

environmental conditions (Székely et al. 2010).  As such, behaviors are expected to be underpinned 

by an especially complicated set of genetic influences (Boake et al. 2002).  Furthermore, the genetic 

basis of behavior can be logically split into two processes: first, a process that produces a qualitative 

change in behavioral state; and second, a process that produces a specific quantitative value of the 

new behavior.  Many studies of transcription and behavior have focused on how transcription changes 

with changes in behavioral state (reviewed in Harris and Hofmann 2014). For example, in honeybees, 

differential expression is associated with the transition between nursing behavior and foraging 

behavior (Ben-Shahar et al. 2002, Whitfield et al. 2003, Grozinger et al. 2007, Ament et al. 2008).  

Other studies investigate how transcription relates to quantitative variation in behavior (QTT) or 

behavioral type in Drosophila (Dierick and Greenspan 2006, Edwards et al. 2006), fish (Cummings et 

al. 2008, Sanogo et al. 2012, Rey et al. 2013, Fraser et al. 2014 Wong et al. 2015, Bell et al. 2016) and 
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honey bees (Alaux et al. 2009), and have ascribed a strong and multigenic transcriptional basis to 

behavioral variation.   

Information linking transcriptional associations with behavioral transitions to transcriptional 

associations with within-behavior variation is lacking.  This requires data on levels of transcription in 

the same behavior using both types of comparisons.  If there is overlap between these two 

transcriptional mechanisms, it suggests that the production of specific behavioral phenotypes is a 

single process; transcripts are adjusted to produce behavioral change and the specific level of that 

adjustment determines the quantitative phenotype.  In this scenario, the transcriptional changes 

required to produce behavioral transitions are loose, only needing to follow a broad pattern.  If, on the 

other hand, there is little or no overlap between these mechanisms, it instead suggests that two distinct 

processes are needed to produce a specific behavioral phenotype; one tightly controlled process to 

produce a transition, and a separately regulated process producing the quantitative phenotype.  It has 

been predicted that regulatory mechanisms for different types of behavioral change will be different 

(Cardoso et al. 2015), though one study has found transcriptional overlap between behavioral 

transitions and behavioral variation in sticklebacks (Bell et al. 2016).  

 In this study, we examine how variation in transcription is associated with variation in 

parental provisioning behavior in burying beetles (Nicrophorus spp.), an insect taxon with unusually 

well-developed and well-described parenting behavior (Eggert and Müller 1997, Eggert et al. 1998, 

Scott 1998).  Recent studies in N. vespilloides investigated the transcriptional underpinnings of 

transitions between behavioral states, from solitary to parenting and back to a solitary state, using 

transcriptomics (Parker et al. 2015, Palmer et al. 2016), candidate gene studies (Cunningham et al 

2014, 2016, Roy-Zokan et al. 2015) and proteomics (Cunningham et al. 2017).  Parenting and 

specifically the act of provisioning food by regurgitation to begging offspring is an ideal phenotype 

for contrasting the mechanisms causing behavioral transitions versus within-state variation because it 
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is quantifiable, predictable, shows continuous variation, and is heritable (Walling et al. 2008, 

Benowitz et al. 2016).   

To examine the prediction that quantitative gene expression is related to the quantitative 

expression of provisioning behavior in Nicrophorus, we performed RNA-seq comparing gene 

expression of 20 individuals a priori classified as having high or low levels of provisioning behavior 

based on extensive behavioral observation (Benowitz et al. 2016).  Furthermore, we repeated this in 

both sexes as both males and females are competent parents, performing separate RNA-seq 

experiments in males and females of two species, N. vespilloides and N. orbicollis.  We broadly 

expected to find many transcripts associated with variation in provisioning behavior in each of the 

four samples.  Given the strong behavioral (Benowitz et al. 2016) but imperfect genetic (Parker et al. 

2015) similarity between sexes, we expected moderate but not complete overlap in the transcripts 

underlying variation in provisioning between males and females.  We predicted we would find even 

less overlap between species, given the nuanced behavioral differences between them (Benowitz et al. 

2016, Benowitz and Moore 2016).  Additionally, following Cardoso et al. (2015), we predicted that 

the transcripts related to quantitative expression within parenting behavior should be different than 

those related to transitions between parental and non-parental states in N. vespilloides (Parker et al. 

2015).  Moreover, given the trait is quantitative and heritable (Walling et al. 2008), we predicted that 

more moderate differential expression is involved, as there may be many genes of small effect. Our 

results show that very nuanced changes in gene expression are associated with provisioning behavior 

and are shared to a degree across sexes and species.  Contrary to our predictions, however, we found 

that the transcripts related to changes between behavioral states are more likely than random to be 

also related to within-state variation in provisioning behavior. 
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Materials and Methods 

PHENOTYPING PARENTING 

We collected Nicrophorus vespilloides and Nicrophorus orbicollis from Cornwall, UK and Georgia, 

USA, respectively, and maintained outbred laboratory colonies for multiple generations as described 

in Benowitz et al. (2015).  Detailed methods of behavioral experimentation are described in Benowitz 

et al. (2016).  All observations were of uniparental adults that were reared and observed in common 

and controlled laboratory conditions. Briefly, we made concurrent observations of female N. 

vespilloides (n = 57) and N. orbicollis (n = 61) during the hours of peak parental care, approximately 

one day after larval hatching.  We scan-sampled each family 80 times over an eight-hour period, 

recording each time the adult was observed having mouth-to-mouth contact with larvae.  We then 

repeated the experiment at a later date under the same conditions for males of N. vespilloides (n = 79) 

and N. orbicollis (n = 78).  After we finished observations of each parent, we removed their heads, 

flash-froze the heads in liquid nitrogen, and stored them at -80°C for later transcriptome sequencing. 

 

SAMPLE COLLECTION, PREPARATION, AND RNA SEQUENCING 

After we completed all behavioral observations, we collected (flash freezing) the heads of the 10 

highest and 10 lowest caring parents from each species and sex for our RNA-seq experiment.  

Sampling from the extremes of the phenotypic distribution in this way increases the power to detect 

associations with quantitative traits (Van Gestel et al. 2000).  We collected only heads to limit our 

tissue types to brain and head fat body, the latter being an endocrine organ in insects. We extracted 

RNA from these 80 heads by first homogenizing them in liquid nitrogen and Qiazol (Qiagen, Venlo, 

Netherlands), then adding chloroform (Roy-Zokan et al. 2015).  After this step, extractions followed 
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standard protocols from a Qiagen RNeasy Lipid kit.  RNA libraries were then prepared using a 

TruSeq Stranded RNA LT Kit (Illumina, San Diego, CA) with one-third of the normal reaction 

volume (Reynolds et al. 2015).  Samples were then sequenced on an Illumina NextSeq Mid Output 

Flow Cell at the Georgia Genomics Facility (GGF), generating paired-end 75 base pair reads.  We 

first sequenced females of each species together, then both species of males together at a later date. 

 

NICROPHORUS ORBICOLLIS GENOME SEQUENCING AND ASSEMBLY 

We assembled the N. orbicollis genome de novo from Illumina sequencing to produce comparable 

mapping resources for transcriptome analysis. The N. vespilloides genome was recently sequenced, 

assembled, and annotated (Cunningham et al. 2015). For genome sequencing, we chose a single larva 

that was the product of two generations of inbreeding.  We extracted its DNA using a sodium dodecyl 

sulfate (SDS) lysis buffer (Chen et al. 2010) and a phenol chloroform extraction.  Two libraries, one 

350 bp PCR-free library and one 6.5kb mate-pair library were made using Illumina manufacturer’s 

instructions, and sequenced on an Illumina NextSeq Mid Output Flow Cell at GGF generating paired-

end 75 base pair reads.  We next trimmed reads for quality using Trimmomatic 0.32 (Bolger et al. 

2014), removing 4bp windows with average quality less than 15 and removing reads under 25bp. We 

assembled the trimmed reads with Platanus (Kajitani et al. 2014) under the same parameters as for N. 

vespilloides (Cunningham et al. 2015).  We then used DeconSeq (Schmieder and Edwards 2011) to 

remove any possible contaminants from the genome assembly.  Genome assembly was 193 mb, with a 

scaffold N50 of 178.7 kb.  BUSCO analysis (Simão et al. 2015) showed the assembly had complete 

sequence for 82.9% of conserved insect orthologs, and partial sequence for 88.6%. 
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TRANSCRIPTOME ASSEMBLY AND DIFFERENTIAL EXPRESSION ANALYSIS 

We trimmed all RNA reads for quality using Trimmomatic 0.32 as above (Bolger et al. 2014) and 

mapped them to their respective reference genome using Tophat 2 (Kim et al. 2013).  We then 

assembled reads for each species into transcripts using Cufflinks (Roberts et al. 2011), taking the 

longest isoform provided.  We then remapped reads to the assembled and reduced transcriptome and 

generated gene level counts using RSEM (Li and Dewey 2011).  Descriptive statistics for each 

assembled transcriptome are provided in Table S1. We then used edgeR (Robinson et al. 2010) to 

filter transcripts by abundance and perform normalization.  We used normalized counts to perform 

hierarchical clustering analysis using the R package heatmap under default parameters.  We then 

performed differential expression (DE) analysis in edgeR between high and low caring parents.  We 

analyzed each species and sex separately, thus creating four separate DE analyses, assessing 

significance after multiple testing using FDR (Benjamini and Hochberg 1995) with a cutoff of 0.05 to 

match a closely related RNA-seq study (Parker et al. 2015).  Our DE analysis in N. orbicollis females 

uncovered three samples with relatively high expression values for some transcripts (see Table S2). 

We therefore checked to determine if they were outliers by comparing these genes to overall 

expression profiles. Only the single gene was unusually highly expressed in each sample, and so these 

individuals were retained in the analysis because their overall expression profiles were not unusual 

(Fig. S1). 

 

GENE SET ENRICHMENT ANALYSIS 

We used Gene Set Enrichment Analysis (GSEA) to examine the similarity between DE transcripts in 

our four independent datasets.  GSEA has the ability to test a predicted set of transcripts across the 
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entire transcriptome, as opposed to similar methods such as hypergeometric statistics that compare the 

overlap between specified subsets of the transcriptome.  Following Subramanian et al. (2005), we 

selected the top 100 differentially expressed transcripts from one dataset (N. vespilloides females) to 

serve as a predictive set of transcripts.  These 100 transcripts intentionally included both significantly 

and not significantly DE transcripts, as a major part of the rationale behind our GSEA was to assess 

the biological significance of genes with low-fold changes (and thus not called significant in edgeR).  

To examine this set of genes in another dataset, we calculated a running-sum statistic going down the 

entire list of genes (ordered from most DE to least DE).  This statistic increases each time a gene in 

the set is encountered (weighted by the amount of DE) and decreases by a constant amount each time 

a gene outside of the set is encountered.  The test statistic, or E-score, is the global maximum of this 

running sum statistic.  The significance of the E-score was calculated by comparing it against 10,000 

E-scores generated from gene lists with randomized phenotypic permutations.  Therefore, this 

analysis asks whether the predictive gene set displays more DE using the real phenotypic information 

than random phenotypic information, a conservative GSEA methodology (Subramanian et al. 2005, 

Ackermann and Strimmer 2009).  Directionality of DE was not considered to preserve consistency 

between real and permuted datasets (which do not contain directionality due to the lack of phenotypic 

information).  For the set of 100 genes taken from N. vespilloides females, we performed this analysis 

in N. vespilloides males, N. orbicollis females, and N. orbicollis males.  We also repeated the same 

analysis using the top 100 differentially expressed genes from N. orbicollis females.  This predictive 

gene set was analyzed in N. orbicollis males, N. vespilloides females, and N. vespilloides males.  We 

performed all GSEA analysis in R using homemade scripts.   
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MAPPING AND DIFFERENTIAL EXPRESSION USING PREVIOUSLY PUBLISHED 

TRANSCRIPTOME 

Previous research on N. vespilloides compared gene expression profiles of individuals before they 

were parents, to individuals that were actively parenting (regurgitating food to begging offspring), to 

individuals who were no longer parenting (Parker et al. 2015).  In order to compare our results 

directly to those of Parker et al. (2015) we mapped our N. vespilloides RNA-seq reads directly to their 

published transcriptome using Tophat2 (Kim et al. 2013) and generated read counts using RSEM (Li 

and Dewey 2011).  Gene level counts were then filtered and normalized in edgeR as above.  We then 

specifically examined the 867 (752 after abundance filtering) genes differentially expressed during 

parenting in N. vespilloides (Parker et al. 2015).  First, we examined whether these transcripts 

displayed greater variability among parenting than non-caring transcripts by comparing the average 

squared coefficient of variance (CV2) to that of two random transcript sets of equal size and average 

abundance using analysis of variance.  We then performed GSEA using the same methodology as 

above to examine whether these genes displayed unusual patterns of differential expression between 

parents with high versus low provisioning phenotypes.   

 

Results and Discussion 

BEHAVIORAL PHENOTYPE 

The complete description of behavioral variation in both species and both sexes is given in Benowitz 

et al. (2016). For N. orbicollis, the top 10 females caring for offspring selected for further analysis 

provided (mean ± SD) 39.8 ± 5.7 bouts of care during the observation period. The lowest 10 N. 
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orbicollis females provided 11.7 ± 4.5, bouts of care during the observation period. For N. 

vespilloides, the top 10 females caring for offspring provided 72.5 ± 2.5 bouts of care during the 

observation period. The lowest 10 N. vespilloides females provided 13.6 ± 9.7 bouts of care during the 

observation period. In males, in N. orbicollis, the top 10 parents provided 33.9 ± 4.4 bouts of care 

while the lowest 10 provided 11.8 ± 1.3 bouts of care. For N. vespilloides males the top 10 provided 

72.9 ± 3.1 bouts of care while the lowest 10 provided 12.6 ± 8.6 bouts of care. These individuals 

provided the samples for analysis of transcriptional variation.  

 

TRANSCRIPTOME-WIDE ANALYSIS OF PARENTAL VARIATION 

We first examined whether an individual’s overall transcriptomic profile predicted its parental 

provisioning phenotype.  Therefore, we used hierarchical clustering to group all 20 samples in each of 

the four RNA-seq experiments per the similarity of their genome-wide expression profile.  In none of 

our four experiments did samples of similar phenotype group together (Fig. S1-S4), thus, there is no 

obvious overall transcriptional signature of being a high or low provisioning parent.  We next 

examined two possibilities: that variation in provisioning behavior is either associated with a few 

genes of large effect or with many genes of small effect. 

 To test the first of these possibilities, that variation in provisioning is associated with a few 

large effect transcripts, we performed standard analysis for differential expression (DE) in edgeR.  DE 

analysis turned up a small number of significantly DE transcripts in three of our four RNA-seq 

experiments but with no obvious patterns (Table S2).  Consistent with Parker et al. (2015), more 

variation in transcription was associated with females but there was no overlap between the species.  

In males, there was only one transcript that was significantly differentially expressed between high 

and low provisioning parents N. orbicollis and none in N. vespilloides.  Because uniparental 
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provisioning behavior is remarkably similar between sexes at both the phenotypic (Benowitz et al. 

2016) and molecular (Parker et al. 2015) levels, we expected the DE transcripts found in males and 

females of a species to at least partially replicate each other.  Thus, there is no suggestion that these 

transcripts are evolutionarily associated with variation in provisioning behavior. 

 Standard analyses of differential expression, as performed above, often do a poor job of 

finding transcripts with small expression differences between treatments because of multiple testing 

across the entire transcriptome (Bullard et al. 2010).  Therefore, to test whether such subtle 

differences might be associated with behavioral phenotype, we asked whether broader patterns of 

differential expression were similar across the four experiments.  To answer this question, we used 

Gene Set Enrichment Analysis (GSEA; Subramanian et al. 2005) to assess whether the top DE genes 

from the standard analysis above displayed unusual patterns of DE in the other three RNA-seq 

datasets.  This should only be the case if two things are true: that there are real transcriptional effects 

associated with provisioning behavior, and that those effects were at least partially shared across sexes 

and/or species.  Therefore, the GSEA tested our hypothesis that even transcripts not considered 

statistically significant by edgeR might still be biologically related to parenting.  Because females 

have more robust gene expression changes during parenting (Parker et al. 2015) we used the most DE 

transcripts from females of each species as a set of “predictor” transcripts, and following Subramanian 

et al. (2005) we a priori restricted the analysis to the top 100 DE transcripts.  The top 100 DE 

transcripts from N. vespilloides females showed a high degree of DE in N. vespilloides males (E = 

0.582, p = 0.0393; Fig. 1A), no unusual DE in N. orbicollis females (E = 0.506, p = 0.2944; Fig. 1B), 

and a moderate degree of DE in N. orbicollis males (E = 0.578, p = 0.0605; Fig. 1C).  The top 100 DE 

transcripts from N. orbicollis females showed a moderate degree of DE in N. orbicollis males (E = 

0.625, p = 0.0775; Fig. 2A), significant DE in N. vespilloides females (E = 0.628, p = 0.0112; Fig. 

2B), and no unusual DE in N. vespilloides males (E = 0.444, p = 0.4294; Fig. 2C).  N. vespilloides 
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males and females display much greater behavioral variation than N. orbicollis parents (Benowitz et 

al. 2016), which may account for the greater transcriptional similarity we observed within a species. 

 Our data largely recapitulate the results of other QTT-like studies, which typically 

demonstrate hundreds of transcripts with significant associations with phenotype (Mackay et al. 

2009).  It is unclear why we saw weak statistical associations between phenotype and individual 

transcripts, though that may simply be a consequence of the messiness of parental care as a phenotype 

with low but non-zero heritability (Walling et al. 2008), moderate repeatability (Benowitz et al. 2016), 

the inability of RNA-seq to measure potentially important classes of transcripts such as neuropeptides 

(Valcu and Kempenaers 2014), or the possibility that large and causal transcriptional differences 

might have occurred prior to our sampling time.  Despite this, we suggest that the transcriptomic basis 

of variation in Nicrophorus provisioning behavior is multifaceted yet extremely subtle, with many 

transcripts showing slight associations with phenotype.   

 The differential expression of any transcript related to parenting may reflect either 

environmental plasticity or genetic variation.  Our dataset likely includes transcripts of both types, and 

cannot distinguish between them. However, given that beetles were reared in common and controlled 

environments, we suggest that plasticity is at most playing a minor role in generating phenotypic and 

associated transcriptional differences between individuals.  Instead, we argue that it is more likely that 

many of the transcriptional associations we find reflect genetic differences between individuals.  Such 

genetic differences may be causing variation in behavior or may simply be correlated with it, perhaps 

reflecting variation in energy demands.  Again, it is probable that our results capture transcripts of 

both types.  However, either way, our data reflect the idea that even large differences in behavioral 

phenotype are associated with modest differences in the mechanisms related to that behavior.   

These results have implications for the longstanding question of whether phenotypic variation 

is underpinned by a few genes of large effect or many genes of small effect (Rockman 2012).  Though 
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our RNA-seq approach cannot directly answer the question of how many loci are responsible for 

producing phenotypic variation, it is suggestive of how many variables might be involved.  eQTL 

studies suggest two broad possible explanations for our data.  One is that the many expression 

differences we see could be caused by an eQTL hotspot, a single locus with causal effects on 

hundreds of transcriptional phenotypes (Schadt et al. 2003, Mehrabian et al. 2005, West et al. 2007).  

However, hotspots are not a ubiquitous feature of eQTL studies (Monks et al. 2004, Morley et al. 

2004, Smith and Kruglyak 2008, Rockman et al. 2010), which are more likely to uncover cis-acting 

variants affecting individual genes (Gilad et al. 2008).  Therefore, we suggest that a more likely 

possibility is that the transcriptional phenotypes in our study themselves display polygenic inheritance 

(Petretto et al. 2006).   

Furthermore, we find no evidence of any genes whose transcription has major effects on phenotype.  

Thus, we argue that our results support an infinitesimal model of quantitative inheritance (Fisher 

1918, Bulmer 1972), with many genes contributing an individually undetectable effect on phenotypic 

expression. 

 

DIRECT COMPARISON OF TRANSCRIPTIONAL VARIATION WITHIN AND 

BETWEEN BEHAVIORS 

We next asked whether the transcripts involved in transitioning into parental care behavior are also 

likely to be involved in generating quantitative variance in provisioning behavior.  Parker et al. (2015) 

identified a set of 867 transcripts that were significantly differentially expressed in N. vespilloides 

between parents and non-parents.  Using the published transcriptome from Parker et al. (2015), we 

asked whether this transcript set displayed unusual patterns of differential expression between high 
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and low provisioning N. vespilloides.  First, we examined the variability of these transcripts by 

comparing the average squared coefficient of variance of transcripts in this set from that of two 

random transcript sets of equal abundance.  We found that, for males (F2,2250 = 31.595, p < 0.0001) as 

well as females (F2,2250 = 22.337, p < 0.0001), the caring transcript set displays higher variability 

between samples than random genes (Fig. 3).  Next, to see if this high level of variation was related to 

parental behavior, we used the same GSEA methodology as above.  We found that these caring 

transcripts were significantly DE in males (E = 0.569, p = 0.0263; Fig. 4A) and moderately DE in 

females (E = 0.570, p = 0.0898; Fig. 4B).    

Thus, it appears that a subset of the transcripts required to turn on parenting behavior are also 

modified further in association with quantitative expression of that same behavior.  This suggests that 

parenting fits a model wherein specific behavioral phenotypes are obtained by simply modulating the 

extent of the initial response creating the behavior.  In turn, this supports the idea that transitions 

between behaviors do not rely on specific transcriptional changes.  Instead, it appears that only broad 

expression changes are required, and that these genes retain a high degree of potential variability after 

initiation of behavior.  This may be further related to the relatively high flexibility of behavior; if the 

genes involved in producing behaviors are relatively unconstrained, they may be able to produce a 

broad range of phenotypes in response to environmental variation. 

  

  

CONCLUSIONS 

We present three fundamental insights into the transcriptional architecture of variation in behavior, 

using parental care in Nicrophorus beetles as our model.  First, many transcripts appear to be related 
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to variation in parenting behavior, each with subtle effects.  Second, the mechanisms governing 

variation in parenting share some commonality across both sexes and species, as expected.  Third, the 

transcripts related to transitions into and out of parenting behavior are likely to be related to producing 

variation within parenting behavior.  Together, these results not only provide basic mechanistic 

information on the construction of specific behavioral phenotypes, but may also lead to insight as to 

why behavior is uniquely flexible and evolvable. 
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Figure 1. Gene set enrichment analysis of transcripts predicted from N. vespilloides females. The top 

100 differentially expressed transcripts from N. vespilloides females are (A) significantly DE in N. 

vespilloides males, (B) not DE in N. orbicollis females, and (C) moderately DE in N. orbicollis males. 

 

Figure 2. Gene set enrichment analysis of transcripts predicted from N. orbicollis females.  The top 

100 differentially expressed transcripts from N. orbicollis females are (A) moderately DE in N. 

orbicollis males, (B) significantly DE in N. vespilloides females, and (C) not DE in N. vespilloides males. 
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Figure 3. The variance of transcripts implicated in caring versus random genes.  Transcripts 

differentially expressed between caring and non-caring N. vespilloides (Parker et al. 2015) show 

higher expression variance among caring parents than random transcripts in both (A) N. vespilloides 

females and (B) N. vespilloides males. 
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Figure 4. Gene set enrichment analysis of transcripts previously implicated in caring.  The 752 

transcripts found in our data set that were differentially expressed between caring and non-caring N. 

vespilloides from Parker et al. (2015) are (A) moderately DE in N. vespilloides females, and (B) 

significantly DE in N. vespilloides males.  
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