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Recently, a duality web for three dimensional theories with Chern–Simons terms was proposed. This can 
be derived from a single bosonization type duality, for which various supporting arguments (but not a 
proof) were given. Here we explicitly derive this bosonization, in the Abelian case and for a particular 
regime of parameters. To do this, we use the particle-vortex duality in combination with a Buscher-
like duality (both considered in the regime of low energies). As a corollary, Son’s conjectured duality is 
derived in a somewhat singular limit of vanishing mass.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Duality symmetries are powerful tools that serve to constrain 
and understand non-perturbative physics. In (2 + 1)-dimensions, 
within the context of condensed matter systems, dualities have re-
ceived less attention in comparison to their (3 + 1)-dimensional 
counterparts, that naturally appear in particle physics. Recently 
however, partly motivated by the desire to understand Son’s con-
jecture [1] a web of dualities was proposed [2–4].

In fact, D.T. Son has proposed a relation between a massless 
Dirac ‘fundamental’ fermion and a ‘composite’ Dirac fermion cou-
pled to a gauge field with BF-dynamics [1]. The ‘fundamental’ 
fermion is to be understood as a boundary mode in a topologi-
cal insulator, while the ‘composite’ one should be thought of as an 
effective description for a half-filled lowest Landau level of a Fermi 
liquid [1], [5]. The whole idea is driven by the field theoretical de-
scriptions of a (time reversal invariant) topological insulator and a 
topological superconductor.

The web of dualities mentioned above relates various bosonic 
theories (for scalars and gauge fields) with fermionic theories (cou-
pled to a vector field), both with Chern–Simons terms. All fields 
transform under a U (1) gauge symmetry. Extensions, including to 
non-Abelian cases have been considered in [6–10].

The web of dualities can be derived by assuming the validity of 
a basic correspondence between a bosonic theory and a fermionic 
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one, which in the rest of this paper will be referred to as three-
dimensional bosonization. These ideas were considered and ex-
tended to the context of supersymmetric theories by Aharony [11].

On the other hand, an explicit mapping between a bosonic 
and a fermionic theory was presented around twenty years ago 
in [12], [13,14]. It is based on the realisation that two-dimensional 
bosonization can be viewed as a Buscher-like duality and the ex-
tension of such procedure to three dimensions. We will refer to it 
as the Burgess–Quevedo map (or BQ-map). See the paper [15] for a 
careful account of the idea and technical details of the BQ-map.

Postulating the validity of the three-dimensional bosonization 
duality, one can derive the (bosonic) particle-vortex duality, or the 
fermionic duality conjectured by Son. Repeated application leads 
to a full duality web. While this basic three-dimensional bosoniza-
tion was not proven, evidence indicative of its correctness was 
presented in [3,4] and subsequent papers, e.g. [16].

In this note, we will derive this basic three-dimensional 
bosonization conjecture as presented in [4,7]. To do this, we will 
assume the validity of the particle-vortex duality and combine it 
with the Buscher-like BQ-map [12], [13], [14]. In fact, a regime of 
sufficiently low energies, with special field configurations in the 
particle-vortex equivalence, together with a BQ-map improved by 
the presence of point like vortices in the system, are instrumental 
to our derivation.

Our approach will be phrased in the framework of the path in-
tegral formalism, as defined, for example, in [17], which is itself 
based on the earlier work [18] (see also [19,20] for an alternative 
viewpoint and [21] for the usual condensed matter formulation). 
The particle-vortex duality was discussed in works on supercon-
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ductivity [22], [23,24], and also in the contexts of anyon supercon-
ductivity and the fractional quantum Hall effect [25].

This work is organized as follows. In Section 2, we summarize 
and streamline the background material needed for our purposes: 
the three-dimensional bosonization proposal, time reversal, Son’s 
duality and the particle vortex duality. In Section 3 we derive the 
conjectured three dimensional bosonization, assuming the validity 
of the particle-vortex duality and the BQ-map. Section 4 closes the 
paper with final conclusions.

2. Three-dimensional bosonization and the duality web

As a warm-up, in this section we will review how (part of) the 
Abelian duality web is derived. We will also discuss the action of 
time reversal on the different dualities and go over the derivation 
in [3,4] of Son’s conjectured relation [1]. Finally, the particle-vortex 
duality will be shown to arise from alternate integrations on a 
‘master’ partition function that depends on both ‘particle’ and ‘vor-
tex’ fields.

A main basic ingredient in this work is the three dimensional 
bosonization that we now review, adopting the notation in [4]. The 
partition functions for a complex scalar φ = φ0eiθ coupled to a 
vector Aμ (adding ‘flux’), and that for a Dirac fermion ψ (both in 
the presence of a vectorial external source Sμ) are

Z̃scalar+flux[S] ≡
∫

DφDφ∗DAμeiSscalar[φ,A]+i SCS[A]+i SBF[A,S]

=
∫

Dφ0DθDAμ

eiSscalar[θ,A;φ0]− 1
2

∫
d3x(∂μφ0)2+i SCS[A]+i SBF[A,S]

Z fermion[S;m] ≡
∫

DψDψ̄ei
∫

ψ̄(/∂+m+S)ψ . (2.1)

We have denoted,

SCS[A] ≡ 1

4π

∫
d3xεμνρ Aμ∂ν Aρ,

SBF[A, S] ≡ 1

2π

∫
d3xεμνρ Aμ∂ν Sρ. (2.2)

The action for the complex scalar φ is defined and can be rewritten 
according to,

Sscalar[φ, A] ≡ −1

2

∫
d3x|(∂μ − i Aμ)φ|2 → Sscalar[θ, A;φ0]

≡ −1

2

∫
d3xφ2

0(∂μθ + Aμ)2. (2.3)

Note that the scalar action Sscalar[θ, A; φ0] in the last expression 
of eq. (2.3) appears for the case in which the modulus φ0 is con-
strained to be constant. Such an action is obtained from that of a 
complex scalar φ with a symmetry breaking Higgs-like potential,

Sscalar[θ, A;φ0] = lim
α→∞ Sscalar[θ, A;φ0]

−
∫

d3x

[
1

2
(∂μφ0)

2 + α

2
(φ2

0 − m)2
]

= lim
α→∞ Sscalar[φ, A] −

∫
d3x

α

2
(φ2

0 − m)2 , (2.4)

with the coupling α taken to be very large, α → ∞. Equivalently, 
for low energies E � α, the quantity φ0 takes a constant value. 
In most of the analysis below we will consider φ0 to be fixed, 
φ0 = √

m, and we will drop 
∫
Dφ0 from the path integral.

Then, the basic three-dimensional bosonization duality, relates 
a fermion coupled to a background vectorial current with a com-
plex scalar plus flux, considered in general with a fluctuating φ0

(hence the tilde on Zscalar+flux). More explicitly,

Z fermion[S;m = 0]e− i
2 SCS[S] = Z̃scalar+flux[S] . (2.5)

In the paper [7], the authors proposed a more general duality for 
the bosonization of a massive fermion (of mass m). This extended 
relation that leads to a more general web of dualities reads

Z fermion[S;m]e− i
2 SCS[S] = Zscalar+flux[S]. (2.6)

Zscalar+flux[S] = lim
α→∞,E�α

∫
DAμDφ0DθDσ

e
iSscalar(θ,A;φ0)+i SCS[A]+iSBF[A,S]−i

∫
d3x

[
1
2 (∂μφ0)2+σ (φ2

0−m)+ σ2
2α

]
.

In the case of vanishing mass (m = 0), integrating out the non-
dynamical field σ we generate a potential V = φ4

0/2α, which leads 
to the Wilson–Fisher fixed point at low energies. If m > 0, in-
tegrating out σ we get the Higgs-like potential in eq. (2.4). At 
small enough energies E � m = φ2

0 , E � α, the dynamical field 
φ0 freezes-out, leaving us simply with Zscalar+flux[S] on the right 
hand side (notice that the integration in φ0 is trivial, hence the 
absence of tilde in Zscalar+flux[S]). More explicitly, at low energies 
and after the constraint is imposed, we have

Zscalar+flux[S] =
∫

DAμDθeiSscalar(θ,A;φ0)+i SCS[A]+i SBF[A,S]. (2.7)

In the following we will consider the situation in which the con-
straint φ2

0 = m is enforced by the integration over the field σ , in 
the limit of low energies. More precisely, we will probe the dy-
namics with energies that are very small compared to those set by 
the two relevant scales, m and α.

2.1. Time-reversed relation

Another ingredient needed to prove different entries of the du-
ality web comes from considering the effect of time reversal on the 
system. Time reversal invariance leads to relations, which change 
the sign of the Chern–Simons and BF terms. Indeed, we also have 
the duality,

Z fermion[S]e+ i
2 SCS[S] = ¯̃Zscalar+flux[S]

≡
∫

DφDφ∗DAμeiSscalar[φ,A]−i SCS[A]−i SBF[A,S].

(2.8)

The bosonic and fermionic particle-vortex dualities are obtained 
by applying and manipulating the three-dimensional bosonization 
relation in eq. (2.5), and using then the time-reversed bosonization 
relation above.

2.2. Son’s duality from bosonization

As an example, we derive Son’s conjectured duality between 
a massless Dirac fermion ψ coupled to an external field Sμ and 
a composite Dirac fermion χ , coupled to a dynamical field Aμ , 
which itself couples to the external Sμ through a BF coupling, de-
noted BF-QED. In what follows, we summarise a derivation in [3], 
[4]. Indeed, the dynamics of the composite fermion χ and the vec-
tor Aμ is described by

ZBF−QED[S;m] =
∫

DAμDχDχ̄ei
∫

χ̄ (/∂+m+/A)χ+ i
2 SBF[A,S] . (2.9)
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Son conjectured a duality between the composite, low energy, 
massless BF-QED theory (set m = 0 in the above ZBF−QED) and 
a massless Dirac fermion theory, both coupled to an external 
source Sμ ,

ZBF−QED[S] = Z fermion[S] . (2.10)

To derive eq. (2.10), one starts from eq. (2.5), changing the notation 
as Sμ → Āμ , adds a BF term i

2 SBF[ Ā, S] (where now Sμ is a new 
external field) on both sides. Takes the e− i

2 SCS[S] to the other side, 
and then integrates over Āμ (formerly, the external field). Then the 
left hand side becomes ZBF−QED[S], while the right hand side turns 
into

Z̃scalar+fluxes[S] =
∫

DφDφ∗DAμD Āμ

eiSscalar[φ,A]+i SCS[A]+i SBF[A, Ā]+ i
2 SBF[ Ā,S]+ i

2 SCS[ Ā].

(2.11)

Performing the integration over Āμ (which appears algebraically), 
we find the equation of motion dĀ = −(dS + 2dA). Finally replac-
ing Āμ = −(Sμ + 2Aμ) back in the scalar partition function of 
eq. (2.11), we find

ZBF−QED[S] =
∫

DφDφ∗DAμ

eiSscalar[φ,A]−i SCS[A]−i SBF[A,S]− i
2 SCS[S] , (2.12)

which because of eq. (2.8) (the time-reversed form of the basic 
bosonization duality) equals Z fermion[S]. The final result is Son’s 
relation in eq. (2.10).

A new result can be obtained if we start from the three-
dimensional bosonization proposal in eq. (2.6), follow exactly the 
same procedure described above and derive a Son-like relation be-
tween a fundamental and a composite Dirac fermions, both with 
the same mass m,

ZBF−QED[S;m] = Z fermion[S;m]. (2.13)

In Section 3, we will put this last correspondence on a firmer basis, 
by proving the equivalence in eqs. (2.6)–(2.7). Let us now revisit 
another important duality.

2.3. Review of the particle-vortex duality

Another ingredient needed in our derivation of Section 3, is 
a specific form of a particle-vortex duality. In the paper [17], a 
transformation was proposed that realizes a particle-vortex duality 
as an equivalence of partition functions. Getting rid of some un-
necessary (for our purposes) extra ingredients, the two partition 
functions that are shown to be equivalent are

Zparticle =
∫

DθeiS

≡
∫

Dθ exp

[
−i

∫
d3x

1

2

[
(∂μφ0)

2 + φ2
0(∂μθsmooth

+ ∂μθvortex + Aμ)2]] , (2.14)

and

Zvortex =
∫

DλμeiSdual =
∫

Dλμ exp

[
−i

∫
d3x

[
1

2
(∂μφ0)

2

+ 1

4(2πφ0)2
f (λ)
μν f (λ)μν + 1

2π
εμνρλμ∂ν Aρ

+ jμvortexλμ

]]
. (2.15)

Let us clarify the different terms in these expressions. The expres-
sion in eq. (2.14) is written in terms of a dynamical field θ and 
two external ones Aμ and φ0. We shall separate θ into a dynami-
cal smooth part θsmooth and a nondynamical vortex part θvortex that 
contains singularities (at r = rv ), i.e. 

∫ 2π
0 dα∂αθvortex = 2π N , where 

α is the polar angle in 2 spatial dimensions, measured with respect 
to the positions r = rv of vortices. Thus the integral Dθ splits into ∫
Dθsmooth times a sum over the nontrivial vortex numbers 

∑
N for 

the various θvortex sectors. More explicitly 
∫
Dθ = ∑

N

∫
Dθsmooth.

On the other hand, the partition function in eq. (2.15) is writ-
ten in terms of a dynamical vector λμ , with external sources Aμ

and φ0. We have defined f (λ)
μν ≡ ∂μλν − ∂νλμ and the vortex cur-

rent,

jμvortex ≡ 1

2π
εμνρ∂ντρ,vortex = 1

2π
εμνρ∂ν∂ρθvortex. (2.16)

Let us now show the equivalence,

Zparticle = Zvortex.

In order to do this, we use the usual trick of constructing a mas-
ter partition function (dependent on two variables), that reduces 
either to Zparticle, or the dual vortex one Zvortex, upon alternate 
integration-out of one or the other variable.

To construct such master path integral, first replace ∂μθ =
∂μθsmooth +∂μθvortex with an independent variable τμ = τμ,smooth +
τμ,vortex, and then impose the flatness of the smooth part’s curva-
ture by εμνρ∂ντρ,smooth = 0, with Lagrange multiplier λμ . We then 
obtain the master partition function,

Zmaster =
∫

DτμDλμeiSmaster

≡
∫

DτμDλμ exp

[
i

∫
d3x

{
−1

2
(∂μφ0)

2

−1

2
φ2

0(τμ,smooth + τμ,vortex + Aμ)2

+ 1

2π
εμνρλμ∂ντρ,smooth

}]
, (2.17)

where again 
∫
Dτ is understood as 

∑
N

∫
Dτμ,smooth.

If we solve for the Lagrange multiplier λμ (and integrate it 
out), we obtain τμ,smooth = ∂μθsmooth. Substituting it back into 
eq. (2.17), we get back to the original particle path integral Zparticle

in eq. (2.14). On the other hand, if we integrate out the field τμ , 
we find the equation of motion,

(τμ + Aμ)φ2
0 = 1

2π
εμνρ∂νλρ . (2.18)

By replacing this in eq. (2.17), we obtain the dual path integral, for 
the Lagrange multipliers λμ , as in eq. (2.15).

We have then proven, at the level of partition functions, 
the particle-vortex duality or equivalence between eqs. (2.14)
and (2.15). We will now use the results summarized in this section 
to prove the three-dimensional bosonization in eqs. (2.5)–(2.7).
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3. Proof of the three-dimensional bosonization duality

In this section we provide a proof of the basic three-dimensi-
onal bosonization duality, in its mass deformed version, as written 
in eqs. (2.6)–(2.7).

We first discuss the Burgess–Quevedo map (BQ-map). This 
should be thought of as a bosonization relation that can be de-
rived in a self-consistent manner [12–14], see [15] for a careful 
account of the BQ-map. We are interested in the formulation pre-
sented in the paper [13], that proceeds by explicitly integrating out 
massive fermions at low energies (the energies are E much smaller 
than the mass m) in the presence of a vector field background. In 
fact, we approximate the fermionic determinant by calculating a 
fermion-loop with only two external vector insertions. On top of 
this, we approximate this result for the case of large masses (see 
the paper [26] for details). Both approximations are well-justified 
in a k

m -expansion. After various algebraic manipulations described 
in [15], one obtains the approximate relation,

Z fermion[S;m] = Zgauge[S]
=

∫
Dλμe

−i
[

1
2k3

εμνρλμ∂νλρ+εμνρλμ∂ν Sρ

]
, (3.1)

where k3 = sign(m)/(4π).1 Defining λ̃μ = 2πλμ , for m > 0, this 
becomes2

Z fermion[S;m] = Zgauge[S] =
∫

Dλ̃μe−2i SCS[λ̃]−i SBF[λ̃,S] . (3.2)

It is nice to notice that we can supplement the BQ-map in eq. (3.2), 
extending it to the situation in which the system is in the presence 
of topological objects, like the singular vortices of the previous sec-
tion. Indeed, representing these vortices by a multiple-valued angle 
θvortex, the associated current jμvortex as defined in eq. (2.16), and 
replacing Sμ → Sμ + ∂μθvortex in the BQ-map of eq. (3.2), we find

Z fermion+vortex[S;m] =
∫

DψDψ̄ei
∫

ψ̄(/∂+m+S+/∂θvortex)ψ ,

Zgauge+vortex[S] =
∫

Dλ̃μe−2i SCS[λ̃]−i SBF[λ̃,S]−i
∫

d3xjμvortexλ̃μ ,

Z fermion+vortex[S;m] = Zgauge+vortex[S]. (3.3)

The last equality in eq. (3.3) is valid, as discussed above, in the 
regime of low energies (or large mass, in a k

m -expansion).
We will now use the BQ-map in the versions discussed above, 

together with the particle-vortex duality derived in the previous 
section, to prove the three dimensional bosonization duality in 
eqs. (2.5)–(2.7).

We proceed as follows: first we set φ0 = constant on both sides 
of particle-vortex duality, eqs. (2.14)–(2.15). This implies that the 
corresponding vortices are point-like and singular. Then, we con-
sider the situation in which we probe the system with very small 
energies, specifically E � φ2

0 , so that we can neglect the Maxwell 
kinetic term in comparison with the BF kinetic term in eq. (2.15). 
In this situation, the dynamics consists of point-like vortices cou-
pled to a Chern–Simons gauge field.

1 Note that [13] has a different coefficient, but the original article [27]
quoted there implies this value. Indeed, integrating over λμ we get Seff =
k3
2

∫
d3xεμνρ Sμ∂ν Sρ , and eq. (4.26) of the paper [27] gives the coefficient as 

k3/2 = sign(m)e2/(8π). In this sense, the parameter m is also present in Zgauge[S].
2 Note that in the work [26] a generic expression for the fermionic determinant 

and the BQ-map was obtained. The limit m → ∞ of their expression, gives the same 
path integral quoted in eq. (3.2), after a suitable rescaling in eq. (22) of [26].

Now, we add SCS[A] + SBF[A; S] to the actions in both path in-
tegrals (which adds ‘flux’ to both sides) and integrate over Aμ as 
well. We obtain the equality of the modified particle path integrals 
for the two systems, one with particles and flux and the other with 
vortices and flux. On the particle with flux side we have (note that 
we change λμ → −λμ in the path integral),

Z ′
particle+flux[S] =

∫
DAμDθe[i Sscalar[θ,A;φ0]+i SCS[A]+i SBF[A;S]]

= Zscalar+flux[S] , (3.4)

which as we can see is equal to the scalar+flux path integral in 
the bosonization relation of eqs. (2.5)–(2.7). Notice that although 
φ0 appears here, it is not a true parameter. Indeed, by rescaling 
the dimensionless θ by φ0 we simply construct a scalar with the 
canonical dimension. In other words, φ0 simply defines units.

On the other hand, on the vortex side of the duality, we are left 
with a modified vortex path integral,

Z ′
vortex+flux[S] =

∫
DAμDλμ

eiSBF[λ;A]+i SBF[A;S]+i SCS[A]+i
∫

d3xjμvortexλμ. (3.5)

Evaluating the integral over Aμ , we obtain the equation of motion,

dA = −dS − dλ , (3.6)

which when substituted back into the path integral of eq. (3.5)
gives,

Z ′
vortex+flux[S] =

∫
Dλμe−i SCS[S]−i SCS[λ]−i SBF[S,λ]+i

∫
d3xjμvortexλμ.

(3.7)

Now, we redefine the path integral variable (with trivial Jacobian) 
by

λμ = √
2λ̃μ + Sμ

(
−1 + 1√

2

)
, (3.8)

to finally obtain

Z ′
vortex+flux[S] = Z ′

gauge+vortex[S]e− i
2 SCS[S]−i

∫
d3xjμvortex Sμ

(
−1+ 1√

2

)
.

(3.9)

Two comments are in order. First, we have identified the gauge 
path integral from the BQ-map [13] in the presence of non-trivial 
topology, with the explicit insertion of the vortex current, as in 
eq. (3.3). Note however that, since the vortex current multiplies 
λμ , and not λ̃μ , we obtain an extra term coupling it to Sμ , and 
also we get a 

√
2 factor in the jv

μλ̃μ term of eq. (3.3), which is 
why we have put a prime on Zgauge+vortex. This will translate into 
the same factors on the fermion-vortex side. Second, related to 
eq. (3.8), we see that if the field λμ has quantized flux across a 
two sphere, the flux of λ̃μ will not be quantized. This is a short-
coming of the change in eq. (3.8).

Then combining the various expressions in eqs. (3.3), (3.4)
and (3.9), we obtain a chain of equalities,

Zscalar+flux[S] = Z ′
particle+flux[S] = Z ′

vortex+flux[S]

= Z ′
gauge+vortex[S]e− i

2 SCS[S]−i
∫

d3xjμvortex Sμ

(
−1+ 1√

2

)

= Z ′
fermion+vortex[S]e− i

2 SCS[S]−i
∫

d3xjμvortex Sμ

(
−1+ 1√

2

)
.

(3.10)
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Focusing our attention on the first and last terms of the chain of 
equalities in eq. (3.10), we find that this is the three-dimensional 
bosonization duality (2.6)–(2.7) that we wanted to prove (in the 
presence of non-trivial topology).

Our derivation needs the addition of the vortex coupling 
−√

2ψ̄γ μψ∂μθvortex on the fermionic side—the term /∂θvortex

eq. (3.3), multiplied by 
√

2. On the scalar side, we have an in-
tegration over the full θ variable, which can be split into an 
integral over θsmooth and a sum over θvortex sectors. Hence the 
presence of topology (nontrivial θvortex). Both the fermionic and 
bosonic sides of the three-dimensional bosonization duality are 
more general than initially assumed and were both supplemented 
by the presence of non-trivial topology. One may consider (after 
the derivation is complete) the limit θvortex = 0, to get back to the 
situation with no topology in eqs. (2.6)–(2.7). This completes our 
derivation. Once again, we emphasize that the result has only been 
obtained for small energies E � m = φ2

0 , E � α.

4. Discussion and conclusions

We set out to prove the basic three-dimensional bosoniza-
tion relation in eq. (2.5), or its generalization by a mass in 
eqs. (2.6)–(2.7), which are at the basis of the derivation of the 
original web of dualities. Indeed, once the validity of eq. (2.5) is 
assumed, it can be used to prove Son’s conjecture [1]. We have ex-
tended Son’s relation to the case in which both fundamental and 
composite fermions are massive (with the same mass). This ver-
sion of the conjecture has been put on a firmer basis in our work.

We used a combination of the Burgess–Quevedo map, which is 
a Buscher-like correspondence between bosonic and fermionic the-
ories [13] and assumed the validity of the particle-vortex duality 
as defined in [17]. With this, we have shown that eqs. (2.5)–(2.7)
hold at low energies E � m = φ2

0 , E � α, with the addition of a 
vortex current term.

The vortex current term would not be relevant for dualities be-
tween two bosonic theories, or between two fermionic ones, for 
these would need to apply twice (in opposite directions) the basic 
bosonization duality of eq. (2.5). But it would influence other Bose 
to Fermi dualities, for which we would apply it an odd number of 
times.

It is significant the fact that the derivation was only valid for 
energies E � m = φ2

0 , E � α. It was already understood that the 
existence of dual pairs were valid for the low energy theories. Fol-
lowing our procedure, we can only obtain eq. (2.5) for energies 
below m, which makes the m → 0 limit singular. That means that 
results like the original Son’s conjecture [1], are harder to under-
stand, and would need extra arguments, to ensure their validity for 
the m → 0 limit.
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