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Abstract. We investigate choice principles in the Weihrauch lattice for
finite sets on the one hand, and convex sets on the other hand. Increas-
ing cardinality and increasing dimension both correspond to increasing
Weihrauch degrees. Moreover, we demonstrate that the dimension of con-
vex sets can be characterized by the cardinality of finite sets encodable
into them. Precisely, choice from an n+ 1 point set is reducible to choice
from a convex set of dimension n, but not reducible to choice from a
convex set of dimension n− 1.

1 Introduction

In the investigation of the computational content of mathematical theorems in
the Weihrauch lattice, variations of closed choice principles have emerged as
useful canonic characterizations [1,3,6]. Closed choice principles are multivalued
functions taking as input a non-empty closed subset of some fixed space, and
have to provide some element of the closed set as output. In [1,3] the influence of
the space on the computational difficulty of (full) closed choice was investigated,
whereas in [6] it turned out that the restriction of choice to connected closed
subsets of the unit hypercube is equivalent to Brouwer’s Fixed Point theorem
for the same space.

Here the restrictions of closed choice to convex subsets (of the unit hyper-
cube of dimension n), and to finite subsets (of a compact metric space) are
the foci of our investigations. Via the connection between closed choice and
non-deterministic computation [1, 7, 20, 25], in particular the latter problem is
prototypic for those problems having only finitely many correct solutions where
wrong solutions are identifiable. As such, some parts may be reminiscent of some
ideas from [8,15].

One of our main results shows that choice for finite sets of cardinality n+ 1
can be reduced to choice for convex sets of dimension n, but not to convex choice
of dimension n− 1. This demonstrates a computational aspect in which convex
sets get more complicated with increasing dimension. As such, our work also
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continues the study of the structural complexity of various classes of subsets of
the unit hypercubes done in [12,14].

Some of the techniques used to establish our main results are promising with
regards to further applicability to other classes of choice principles, or to even
more general Weihrauch degrees. These techniques are presented in Section 2.

Due to lack of space, some of the proofs had to be omitted. A version including
proofs and additional results is as available as [13].

1.1 Weihrauch reducibility

We briefly recall some basic results and definitions regarding the Weihrauch
lattice. The original definition of Weihrauch reducibility is due to Weihrauch and
has been studied for many years (see [10, 16, 17, 21–23]). Rather recently it has
been noticed that a certain variant of this reducibility yields a lattice that is very
suitable for the classification of mathematical theorems (see [1,3–5,9,11,18,19]).
A basic reference for notions from computable analysis is [24]. The Weihrauch
lattice is a lattice of multi-valued functions on represented spaces. A represented
space is a pair (X, δX) where δX :⊆ NN → X is a partial surjection, called
representation. In general we use the symbol “⊆” in order to indicate that a
function is potentially partial. Using represented spaces we can define the concept
of a realizer. We denote the composition of two (multi-valued) functions f and
g either by f ◦ g or by fg.

Definition 1 (Realizer). Let f :⊆ (X, δX) ⇒ (Y, δY ) be a multi-valued func-
tion on represented spaces. A function F :⊆ NN → NN is called a realizer of f ,
in symbols F ` f , if δY F (p) ∈ fδX(p) for all p ∈ dom(fδX).

Realizers allow us to transfer the notions of computability and continuity
and other notions available for Baire space to any represented space; a function
between represented spaces will be called computable, if it has a computable
realizer, etc. Now we can define Weihrauch reducibility.

Definition 2 (Weihrauch reducibility). Let f, g be multi-valued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ NN → NN such that
K〈id, GH〉 ` f for all G ` g. Moreover, f is said to be strongly Weihrauch
reducible to g, in symbols f ≤sW g, if there are computable functions K,H such
that KGH ` f for all G ` g.

Here 〈, 〉 denotes some standard pairing on Baire space.
There are two operations defined on Weihrauch degrees that are used in

the present paper, product × and composition ?. The former operation was
originally introduced in [4], the latter in [5]. Informally, the product allows using
both involved operations independently, whereas for the composition the call to
the first operation may depend on the answer received from the second.

Definition 3. Given f :⊆ X ⇒ Y, g :⊆ U ⇒ V, define f × g :⊆ (X ×U) ⇒
(Y ×V) via (y, v) ∈ (f × g)(x, u) iff y ∈ f(x) and v ∈ g(u).



Definition 4. Given f :⊆ X ⇒ Y, g :⊆ U ⇒ V, let

f ? g := sup
≤W

{f ′ ◦ g′ | f ′ ≤W f ∧ g′ ≤W g}

where f ′, g′ are understood to range over all those multivalued functions where
the composition is defined.

Both × and ? are associative, but only × is commutative. We point out that
while it is not obvious that the supremum in the definition of ? always exists,
this is indeed the case, hence ? is actually a total operation.

1.2 Closed Choice and variations thereof

The space of continuous functions from a represented space X to Y has a natural
representation itself, as a consequence of the UTM-theorem. This represented
space is denoted by C(X,Y). A special represented space of utmost importance
is Sierpiński space S containing two elements {>,⊥} represented by δS : NN → S
where δS(0N) = ⊥ and δS(p) = >, iff p 6= 0N. The space A(X) of closed subsets
of X is obtained from C(X,S) by identifying a set A ⊆ X with the characteristic
function χX\A : X→ S of its complement.

For a computable metric space X, an equivalent representation ψ− : NN →
A(X), can be defined by ψ−(p) := X \

⋃∞
i=0Bp(i), where Bn is some standard

enumeration of the open balls of X with center in the dense subset and rational
radius (possibly 0). The computable points in A(X) are called co-c.e. closed
sets. We are primarily interested in closed choice on computable metric spaces;
additionally, most of our considerations pertain to compact spaces.

Definition 5 (Closed Choice, [3]). Let X be a represented space. Then the
closed choice operation of this space is defined by CX :⊆ A(X) ⇒ X, A 7→ A
with dom(CX) := {A ∈ A(X) : A 6= ∅}.

Intuitively, CX takes as input a non-empty closed set and it produces an
arbitrary point of this set as output. Hence, A 7→ A means that the multi-valued
map CX maps the input set A ∈ A(X) to the points in A ⊆ X as possible
outputs.

Definition 6. For a represented space X and 1 ≤ n ∈ N,
let CX,]=n := CX|{A∈A(X)||A|=n} and CX,]≤n := CX|{A∈A(X)|1≤|A|≤n}.

More generally, for any choice principle the subscript ] = n denotes the restric-
tion to sets of cardinality n, and the subscript ] ≤ n to sets of cardinality less
or equal than n. In the same spirit, the subscript λ > ε denotes the restriction
to sets of outer diameter greater than ε, and µ > ε the restriction to those sets
where some value µ is greater than ε.

Definition 7. Let XCn := C[0,1]n |{A∈A([0,1]n)|A is convex }.



The proof of the following proposition has been inspired by the proof of [15,
Theorem 3.1] by Longpré et al. , which the proposition generalizes in some
sort. In fact, the study of C[0,1],]=m is quite closely related to the theme of [15].

Proposition 1. Let X be a computably compact computable metric space. Then
CX,]=n ≤sW C{0,1}N,]=n and CX,]≤n ≤sW C{0,1}N,]≤n.

Proof. We associate a labeled finitely-branching infinite tree (with given bounds)
with the space X, where each vertex is labeled by an open subset of X. The
root is labeled by X. Then we find a finite open cover of X by open balls
B(x1, 2

−1), . . . , B(xn, 2
−1) using the computable dense sequence and the com-

putable compactness provided by X. The B(xi, 2
−1) form the second layer of the

tree. For the third layer, each B(xi, 2
−1) (whose closure is computably compact)

is covered by finitely many B(xi,j , 2
−2) , and we then use B(xi, 2

−1)∩B(xi,j , 2
−2)

as labels. This process is iterated indefinitely, yielding finer and finer coverings
of the space at each layer.

Any closed subset of a computably compact space is compact (in a uniform
way), so we can assume the input to CX,]=n (CX,]≤n) to be a compact set A
of cardinality n (less-or-equal n). On any layer of the tree, there are n vertices
such that the union of their labels covers A. It is recognizable when an open set
includes a compact set, so we will find suitable n vertices eventually. Also, we
can require that the vertices chosen on one level are actually below those chosen
on the previous level.

Any finitely-branching tree with at most n nodes per layer can be encoded
in a binary tree with at most n nodes per layer, and this just represents a closed
subset of Cantor space with cardinality less-or-equal n. If the initial set A has
exactly n elements, at some finite stage in the process any of the n open sets used
to cover it will actually contain a point of A. Hence, from that stage onwards no
path through the finitely-branching tree dies out, which translates to no path
through the binary tree dying out. But then, the closed subset of Cantor space
has cardinality exactly n.

Any point from the subset of Cantor space is an infinite path through the
two trees constructed, hence, gives us a sequence of rational balls with diameter
shrinking to 0 and non-empty intersection. This provides us with a name of a
point in the original set, completing the reduction.

It is rather obvious that if X is a co-c.e. closed subspace of Y, then CX,]=n ≤sW
CY,]=n and CX,]≤n ≤sW CY,]≤n (compare [1, Section 4]). We recall that a com-
putable metric space X is called rich, if it has Cantor space as computably
isomorphic to a subspace (then this subspace automatically is co-c.e. closed). [2,
Proposition 6.2] states that any non-empty computable metric space without
isolated points is rich.

Corollary 1. Let X be a rich computably compact computable metric space.
Then CX,]=n ≡sW C{0,1}N,]=n and CX,]≤n ≡sW C{0,1}N,]≤n.

By inspection of the proof of Proposition 1, we notice that the names pro-
duced there as inputs to C{0,1}N,]=n or C{0,1}N,]≤n have a specific form: If we



consider the closed subsets of Cantor space to be represented as the sets of paths
of infinite binary trees, the trees involved will have exactly n vertices on all lay-
ers admitting at least n vertices in a complete binary tree. The names used for
C{0,1}N,]=n moreover have the property that from some finite depths onwards,
all vertices have exactly one child. The restrictions of C{0,1}N,]=n and C{0,1}N,]≤n
to inputs of the described type shall be denoted by C]=n and C]≤n. We directly
conclude C]=n ≡sW C{0,1}N,]=n ≡sW C[0,1],]=n and C]≤n ≡sW C{0,1}N,]≤n ≡sW
C[0,1]k,]≤n.

2 Relative separation techniques

The relative separation techniques to be developed in this section do not en-
able us to prove separation results just on their own; instead they constitute
statements that some reduction f ≤W g implies some reduction f ′ ≤W g′, so
by contraposition f ′ �W g′ (which may be easier to prove) implies f �W g. A
particular form of these implications are absorption theorems. These show that
for special degrees h, whenever f has a certain property, then f ≤W g ? h (or
f ≤W h ? g) implies f ≤W g. A known result of this form is the following:

Theorem 1 (Brattka, de Brecht & Pauly [1, Theorem 5.1]3). Let f :
X → Y be single-valued and Y admissible. Then f ≤W C{0,1}N ? g implies
f ≤W g.

We call a Weihrauch-degree a fractal, if each of its parts is again the whole.
The concept was introduced by Brattka, de Brecht and Pauly in [1] as
a criterion for a degree to be join-irreducible (all fractals are join-irreducible,
cf. Lemma 1). The formalization uses the operation f 7→ fA introduced next.

For some represented space X = (X, δX) and A ⊆ NN, we use the notation
XA for the represented space (δX [A], (δX)|A). This is a proper generalization
of the notion of a subspace. Given f :⊆ X ⇒ Y and A ⊆ NN, then fA is the
induced map fA :⊆ XA ⇒ Y.

Definition 8. We call f a fractal iff there is some g : U ⇒ V, U 6= ∅ such that
for any clopen A ⊆ NN, either gA ≡W f or gA ≡W 0. If we can choose U to be
represented by a total representation δU : NN → U, we call f a closed fractal.

We will prove two absorption theorems, one for fractals and one for closed
fractals. These essentially state that certain Weihrauch degrees are useless in
solving a (closed) fractal.

Theorem 2 (Fractal absorption). For fractal f , f ≤W g ? C{1,...,n} implies
f ≤W g.

3 The precise statement of [1, Theorem 5.1] is weaker than the one given here, but a
small modification of the proof suffices to obtain the present form.



2.1 Baire Category Theorem as separation technique

The absorption theorem for closed fractals is a consequence of the Baire Category
Theorem, and was first employed as a special case in [3, Proposition 4.9] by
Brattka and Gherardi.

Theorem 3 (Closed fractal absorption). For a closed fractal f , f ≤W g?CN
implies f ≤W g.

Proof. The closed sets An = {p | n ∈ ψN
−(p)} cover dom(CN ◦ψN

−) ⊆ NN, and the
corresponding restrictions (CN)An

is computable for each n ∈ N. Let δ be the
representation used on the domain of g ?CN, and Bn ⊆ dom ((g ? CN) ◦ δ) ⊆ NN

be the closed set of those names of inputs to g ? CN such that the call to CN
involved is an element of An. The sets (Bn)n∈N cover dom ((g ? CN) ◦ δ), and we
find (g ? CN)Bn

≤W g.
W.l.o.g. assume that f witnesses its own fractality. Now let f ≤W g ?CN be

witnessed by computable K,H, and let ρ be the representation on the domain
of f . Then the closed sets H−1(Bn) cover dom(f ◦ ρ) = NN. We can apply the
Baire Category Theorem, and find that there exists some n0 such that H−1(Bn0)
contains some non-empty clopen ball. As f is a fractal, we know:

f ≤W fH−1(Bn0 )
≤W (g ? CN)Bn0

≤W g

The preceding result occasionally is more useful in a variant adapted directly
to choice principles in the rôle of g. For this, we recall the represented space
R>, in which decreasing sequences of rational numbers are used to represent
their limits as real numbers. Note that id : R → R> is computable but lacks
a computable inverse. A generalized measure on some space X is a continuous
function µ : A(X)→ R> taking only non-negative values. The two variants are
connected by the following result:

Proposition 2. Define Lb : {x ∈ R> | x > 0} → N via Lb(x) = min{n ∈ N |
n−1 ≤ x}. Then Lb ≡sW CN.

The preceding result indirectly shows how a closed choice principle for some
class A ⊆ A(X) of closed sets with positive generalized measure µ can be de-
composed into the slices with fixed lower bounds µ > n−1. For this, we recall
the infinitary coproduct (i.e. disjoint union)

∐
n∈N defined both for represented

spaces and multivalued functions between them via
(∐

n∈N fn
)

(i, x) = (i, fi(x)).

Corollary 2. CX|A,µ>0 ≤W
(∐

n∈N CX|A,µ>n−1

)
? CN

Lemma 1 (σ-join irreducibility of fractals [1, Lemma 5.5]). Let f be
a fractal and satisfy f ≤W

∐
n∈N gn. Then there is some n0 ∈ N such that

f ≤W gn0
.

Theorem 4. Let f be a closed fractal such that f ≤W CX|A,µ>0. Then there is
some n ∈ N such that f ≤W CX|A,µ>n−1 .

Proof. By Corollary 2 we find f ≤W
(∐

n∈N CX|A,µ>n−1

)
? CN. Then Theorem

3 implies f ≤W
(∐

n∈N CX|A,µ>n−1

)
. By Lemma 1 there has to be some n0 with

f ≤W CX|A,µ>n−1
0

.



2.2 Large diameter technique

Whereas Theorem 4 allows us to bound any positive generalized measure on
the closed sets used to compute a function f away from 0, provided f is a
closed fractal, the separation technique to be developed next bounds away only
a specific generalized measure - the outer diameter - yet needs neither positivity
nor the closed fractal property.

For ε > 0 and some class A ⊆ A(X), we introduce:

Xε(A) = ψ−1− ({A ∈ A | ∀x ∈ X∃B ∈ A B ⊆ A \B(x, ε)}) ⊆ NN

This means that the names in Xε(A) are for sets large enough such that arbi-
trarily late an arbitrary ball of radius ε can be removed from them, and still a
closed set in the class A remains as a subset.

We proceed to show that a reduction between choice principles has to map
sets large in this sense to sets with large outer diameter (denoted by λ).

Lemma 2 (Large Diameter Principle). Let H and K witness a reduction
CX|A ≤W CY|B, where Y is compact and A ⊆ A(X), B ⊆ A(Y). Then

∀p ∈ dom(CX|Aψ) ∀ε > 0 ∃n ∈ N ∃δ > 0, q ∈ Xε(A)∩B(p, 2−n)⇒ λψK(q) > δ

Proof. Assume the claim were false, and let p ∈ dom(CX|Aψ) and ε > 0 be wit-
ness for the negation. There has to be a sequence (pn)n∈N such that pn ∈ Xε(A),
d(p, pn) < 2−n and λψH(pn) < 2−n. As the pn converge to p and H is contin-
uous, we find that limn→∞H(pn) = H(p). For the closed sets represented by

these sequences, this implies
(⋂

n∈N
⋃
i≥n ψH(pi)

)
⊆ ψH(p). As Y is compact,

the left hand side contains some point x.
As x ∈ ψH(p), for any q ∈ δ−1Y ({x}) we find 〈p, q〉 ∈ dom(K). We fix such a

q and y = δX(K(〈p, q〉)). By continuity, there is some N ∈ N such that for any
〈p′, q′〉 ∈ (B(p, 2−N )×B(q, 2−N )) ∩ dom(δXK) we find δXK(〈p′, q′〉) ∈ B(y, ε).

By choice of x, for any i ∈ N there is some ki ≥ i such that d(x, ψH(pki)) <
2−i. By choice of the pn, this in turn implies ψH(pki) ⊆ B(x, 2−i + 2−ki).
Let I ∈ N be large enough, such that for any x′ ∈ B(x, 2−I + 2−kI ) we find
δ−1Y (x′)∩B(q, 2−N ) 6= ∅. The inclusion ψH(pkI ) ⊆ B(x, 2−I+2−kI ) of a compact
set in an open set implies that there is some L > kI such that for all p′ ∈
B(pkI , 2

−L) ∩ dom(CX|Aψ) we find ψHp′ ⊆ B(x, 2−I + 2−kI ).
The choice of pkI , L and the point y ∈ X ensures that our reduction may

answer any valid input to CX|A sharing a prefix of length L with pkI with a
name of some point y′ ∈ B(y, ε). However, as we have pkI ∈ Xε(A), we can
extend any long prefix of pkI to a name of a set not intersecting the ball B(y, ε)
– this means, our reduction would answer wrong, and we have found the desired
contradiction.

Corollary 3 (Large Diameter Principle for fractals). Let CX|A be a frac-
tal, Y be compact and CX|A ≤W CY|B. Then for any ε > 0 there is a δ > 0
such that

(CX)Xε(A) ≤W CY|B,λ>δ



3 Separation results for finite and convex choice

XC1 XC2 XCn C[0,1]

C]≤2 C]≤3 C]≤n+1

C]=2 C]=3 C]=n+1 CN

1 ≡W C{0} C{0,1} C{0,1,2} C{0,...,n} XC1

Fig. 1. The reducibilities

We now have the tools available to completely characterize the valid reduc-
tions between C{0,...,n}, XCm, C]≤i and C]=j . Figure 1 provides an overview –
the absence of an arrow (up to transitivity) indicates a proof of irreducibility.
Besides an application of the general techniques of the preceding section, more
specialized proof methods are employed, some with a rather combinatorial char-
acter, others based on the properties of simplices. We also exhibit a technique
suitable to transfer results from the compact case to the locally compact case.

Observation 5 C]=n is a fractal. XCn and C]≤n are even closed fractals.

Corollary 4. C]=n �W C{0,...,m} for all n > 1,m ∈ N.

Proof. Assume the reduction would hold for some n,m ∈ N. Observation 5 allows
us to use Theorem 2 to conclude C]=n to be computable - a contradiction for
n > 1.

Proposition 3. C]=n ≤W CN

Corollary 5. C]≤2 �W C]=n

Proof. Assume C]≤2 ≤W C]=n for some n ∈ N. By Proposition 3, this implies
C]≤2 ≤W CN. Observation 5 together with Theorem 3 would show C]≤2 to be
computable, contradiction.



3.1 Combinatorial arguments

Proposition 4. C{0,...,n} <sW C]=n+1.

Proposition 5 (Pigeonhole principle). C{0,...,n} �W C]≤n

Proposition 6. C]=n+1 ≤W Cn]=2 and C]≤n+1 ≤W Cn]≤2

Proof (Sketch). When trying to find a path through an infinite tree with exactly
n+ 1 vertices per level, there are at any moment n vertices where both the left
and the right successor could potentially lead to an infinite path. The difficulty
solely lies in picking a suitable successor at each of these vertices in each stage. It
is possible to disentangle these decisions, yielding n trees with just two vertices
per level such that any problematic vertex in the original tree is mapped to a
problematic vertex in one of the new trees in a way that preserves correct choices
of successors.

As a consequence from the independent choice theorem in [1] together with
Proposition 1 we obtain the following, showing ultimately that picking an ele-
ment from a finite number of 2-element sets in parallel is just as hard as picking
finitely many times from finite sets, with the later questions depending on the
answers given so far:

Observation 6 C]=n × C]=m ≤W C]=n ? C]=m ≤W C]=(nm) and C]≤n ×
C]≤m ≤W C]≤n ? C]≤m ≤W C]≤(nm)

Corollary 6. C∗]=2 ≡W
(∐

n∈N C]=n
)
≡W

(∐
n,k∈N C

(k)
]=n

)
Corollary 7. C∗]≤2 ≡W

(∐
n∈N C]≤n

)
≡W

(∐
n,k∈N C

(k)
]≤n

)
Whether this property (that sequential uses of some closed choice principle

are equivalent to parallel uses) also applies to convex choice XC1 remains open at

this stage. As we do have XCk1 ≤W XCk ≤W XC
(k)
1 , a positive answer would also

imply that increasing the dimension for convex choice means climbing the same
hierarchy, again. We point out that the question is related to the open question
in [6] whether connected choice in two dimensions is equivalent to connected
choice in three dimensions.

Question 1. Is there some k ∈ N such that XC1 ?XC1 ≤W XCk1?

3.2 Simplex choice

Proposition 7. Given a closed set A ⊆ [0, 1] with |A| ≤ n, we can compute a

closed set B ⊆ [0, 1]
n−1

with |A| = |B|, π1(B) = A, and such that the points in
B are affinely independent.

Proposition 8. Given a closed set A ⊆ [0, 1]
n

with |A| = n + 1 such that the
points in A are affinely independent, we can compute a set A ∪ {c}, where c is
a point in the interior of the convex hull of A.



Proposition 9. Given a finite closed set A ⊆ [0, 1]
n

, such that the points in A
are affinely independent, as well as a point x in the convex hull of A, we can
compute a point in A.

Proof (Sketch). We can obtain positive information about A by noticing that
removing some area from A makes x fall out of the convex hull of the remaining
set. But then this area must actually contain a point. Iteratively refining this
information yields some point in A.

Corollary 8. C]≤n ≤W XCn−1

Theorem 7. C]=n <W C]=n+1

Proof. By Corollary 1, we can freely change the space we are working in among
any rich computably compact computable metric space. We start with an n-
point subset of [0, 1] and apply Proposition 7 to obtain n affinely independent
points. Then we use Proposition 8 to obtain a set of cardinality n+ 1 containing
the n previous points and some additional point in the interior of their convex
hull. This is a valid input to C]=n+1 (using Corollary 1 again), and we obtain one
of the points, which certainly is contained in the convex hull. Hence, Proposition
9 allows us to find one of the vertices, which by Proposition 7 is sufficient to
compute one of the points in the original set.

That the reduction is strict follows from Propositions 4 and 5.

Note that while C]≤n ≤W C]≤n+1 is trivially true, the positive part of the
preceding result is not obvious.

3.3 Application of the large diameter technique

The usefulness of the large diameter technique for disproving reducibility to
convex choice lies in the observation that convex sets with large outer diameter
are simpler, as we can then cut by a hyperplane and obtain another convex set
of smaller dimension:

Proposition 10 (Cutting). XCn,λ>m−1 ≤W XCn−1 ? C{1,...,(m−1)n}

Proof (Sketch). Because the input set has a large outer diameter, we can find
(m − 1)n hyperplanes such that at least one of them intersects the input set.
Picking a suitable hyperplane is done with C{1,...,(m−1)n}, and the intersection
then is a convex set of lower dimension, hence a valid input for XCn−1.

Corollary 9. Let CX|A and (CX)Xε(A) be fractals and CX|A ≤W XCn+1. Then
we find (CX)Xε(A) ≤W XCn.

Proof. Corollary 3 gives us (CX)Xε(A) ≤W XCn+1,λ>m−1 for some m ∈ N, then
Proposition 10 implies (CX)Xε(A) ≤W XCn ?C{1,...,(m−1)(n+1)} and finally The-
orem 2 fills the gap to (CX)Xε(A) ≤W XCn.



For n ≥ k ≥ 1 let C]=nBk := C[0,1]|{A∈A([0,1])||A|=n∧|{i<n|[ 2i
2n ,

2i+1
2n ]∩A 6=∅}|≥k}.

So C]=nBk is choice for n element sets, where we know that our set intersects at
least k of a collection of fixed distinct regions. We shall need three properties of
these choice principles:

Proposition 11. 1. C]=nB(k+1) ≤W (C[0,1])X(5n)−1 (dom(C]=nBk)).

2. C]=n+1Bn is not computable.
3. Any C]=nBk is a fractal.

Corollary 10. C]=nBk ≤W XCm+1 implies C]=nB(k+1) ≤W XCm.

Theorem 8. C]n+2 �W XCn.

Proof. Assume C]=n+2 = C]=(n+2)B1 ≤W XCn. Iterated use of Corollary 10 al-
lows us to conclude that C]=(n+2)B(n+1) is computable, which contradicts Propo-
sition 11 (2).
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