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We provide a simple proof of a computable analogue to the Jayne-Rogers Theorem from descriptive
set theory. The difficulty of the proof is delegated to a simulation result pertaining to non-determi-
nistic type-2 machines. Thus, we demonstrate that developments in computational models can have
applications in fields thought to be far removed from it.

1 Introduction

Non-deterministic type-2 machines (NDTMs) were suggested by Ziegler [34, 35, 33] as a model for
hypercomputation in computable analysis. As demonstrated by Brattka, de Brecht and Pauly [2, 6], the
strength of various kinds of type-2 non-deter-minism neatly classifies various important classes of non-
computable functions; and a characterization of such classes as those functions computable by certain
NDTMs opens up new, simple ways to prove closure properties for them.

A NDTM with advice space Z is a Turing machine with an input tape, an oracle tape, some work
tapes and a write-once output tape. The input is an infinite sequence written on the input tape, the oracle
tape is initialized with a guess, an infinite sequence from the set Z. The machine either halts eventually,
which is seen as a rejection of the guess, or continues to write an infinite sequence on the output tape.
For any valid input there must be an acceptable guess.

Thus, a NDTM naturally computes a multivalued function f :⊆ {0,1}N ⇒ {0,1}N. The notion of
non-deter-ministic computability is then lifted to arbitrary represented spaces: Some f : X⇒ Y is non-
deterministally computable with advice space Z, iff there is an NDTM such that any p∈ {0,1}N denoting
an element of X is accepted, and every successful computation produces a name for some y ∈ f (x).

The power of NDTMs severely depends on the advice space. The spaces {0,1}N and N yield in-
comparable computational power, N×{0,1}N is more powerful than both, and NN again significantly
more powerful than N×{0,1}N. The crucial property for us is that the additional computational power
of N×{0,1}N over N only applies to multivalued functions—any single-valued f : X→Y (with Y com-
putably admissible) non-deter-ministically computable with advice space N×{0,1}N already is non-de-
ter-ministically computable with advice space N.

We will apply the theory of non-deter-ministic computations to descriptive set theory. A subset of a
metric space is called ∆0

2, if it is both the countable union of closed sets and the countable intersection of
open sets. A function is called ∆0

2-measurable, iff the preimage of any open set is a ∆0
2-set. A function

will be called A -piecewise continuous, iff there is a countable cover of its domain by closed sets, such
that the restriction to any such closed set is continuous.

Theorem 1 (Jayne & Rogers [14]). Let X, Y be metric spaces. If X is absolute Souslin-F, then f : X→Y
is ∆0

2-measurable if and only if it is A -piecewise continuous.
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For a definition of absolute Souslin-F, see [16, Definition 25.4]. This criterion is not needed in the
computable case, hence we do not give details here.

After the original proof by Jayne and Rogers [14], simplifications were provided first by Solecki [27]
and then by Motto Ros and Semmes [18]1. While showing that piecewise continuous functions are ∆0

2-
measurable is straight-forward, the known proofs for the other direction are all somewhat complicated,
and non-constructive: The assumption that a function was both ∆0

2-measurable and not piecewise contin-
uous is taken to a contradiction; there is no construction given for the countable closed cover witnessing
the piecewise continuity of a ∆0

2-measurable function.
Working in the framework of computable analysis, we will provide a computable version of Theorem

1, that is we show how to compute information identifying a function as piecewise continuous from
information identifying it as ∆0

2-measurable. This should not be confused with giving an analogue to
Theorem 1 in effective descriptive set theory, which is investigated in Section 6.

2 Non-deterministic type-2 machines

It is well-established (Weihrauch [32]) that a good model for computation on objects from analysis is
given by Type-2 machines. These essentially are the usual (deterministic) Turing machines with new
semantics: The computation runs forever, hence every cell of the infinite tapes is actually accessible. A
designated output tape allows the head only to move to the right, so any symbol to the left of the current
head position remains unchanged. A well-behaved computation will write on the output infinitely often,
and thus produces an infinite output sequence. Type-2 machines should not be confused with the Infinite
Time Turing Machines proposed by Hamkins and Lewis [10]—both the definitions and their purpose
differ significantly.

Just as Type-2 machines are derived from deterministic Turing machines, we can derive non-deter-
ministic Type-2 machines from non-deter-ministic Turing machines. We assume that the non-deter-mi-
nism is localized, i.e., that all non-deter-ministic bits are guessed at once. As a Type-2 machine has
unlimited time available for the verification, it can utilize an infinite sequence of non-deter-ministic bits.
In addition, we provide our machines with the promise that the guess-sequence is in some fixed set
Z ⊆ {0,1}N—a property not relevant in the classical case.

A crucial difference between Type-1 and Type-2 non-deter-minism is that the latter increases the
computational power, whereas non-deter-ministic Turing machines can be simulated by deterministic
ones. A typical example of a non-computable problem solvable by a NDTM (with advice space Z =
{0,1}N) is Weak König’s Lemma, i.e., the problem to find an infinite path through an infinite binary tree.
The binary tree could be given via its characteristic function, so for any vertex we can decide whether or
not its left and/or right child are present in the tree, too.

A NDTM solving Weak König’s Lemma guesses a potential path through the tree (as an infinite
binary sequence), and proceeds to output the guessed sequence, while simultaneously checking that
every vertex used is actually present in the tree. If the path is invalid, it uses some non-existent vertex,
which will be detected and result in the rejection of the guess. As every infinite binary tree has an infinite
path, there is some valid path which will be given as output without rejection.

As long as the advice space is fixed to Z = {0,1}N, any non-computable problem solvable by a
corresponding NDTM is necessarily multi-valued. Using Z = NN allows, for example, to write the
Halting problem (in form of its characteristic sequence). One guesses, for each Turing machine-input
pair, an upper bound on the runtime for a halting computation. If each number is correct, this allows to

1See also [15].
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compute the Halting problem by simply simulating the computation for the given number of steps. On
the other hand, if the input is incorrect, there will be a computation that halts after its allotted time has
elapsed. This can be detected by continuing all simulations for ever.

Non-deterministic Type-2 machines are not proposed as a realistic model of computation, but—just
as in the classical case—as a useful conceptual tool helping to understand deterministic computations. A
novel aspect is the availability of non-trivial theorems removing non-deter-minism. Often, giving a non-
deter-ministic algorithm (with compact advice space) for a function is much easier than to directly come
up with a deterministic algorithm. A metatheorem ([4], [2]) then allows to remove the non-deter-minism
and to obtain a deterministic algorithm. Implicitly, such an approach is exhibited in [24] by Rettinger
for computability of Jordan curves, and by Galatolo, Hoyrup and Robas in [8] showing computability
results for invariant measures. The present paper constitutes another application of this type.

3 The representations

In order to imbue a computable version of Theorem 1 with meaning, we need to clarify how the various
objects are represented for the purpose of computations. The basic framework is computable analysis,
laid out by Weihrauch in [32]. In particular, we will mostly work on computable metric spaces. In order
to obtain a computable metric space from a separable metric space, one needs to fix a dense sequence,
such that the distances are computable from the indices, this induces a computability structure on it.
Every separable metric space is isomorphic to one admitting such a dense sequence, so in working on
computable metric spaces we do not suffer any additional loss in generality as compared to working on
separable metric spaces.

Representations of measurable sets and functions have been investigated by Brattka [1]. The repre-
sentations given below are straight-forward adoptions of those used by Brattka. As foundation for the
representations, we obtain from represented spaces X, Y the space C (X,Y) of continuous functions from
X to Y, the product space X×Y and the spaces of closed A (X) and open O(X) subsets of X. Regarding
these constructions, see also [22] by Pauly (based on [23, Chapter 3.2]).
Definition 2. Given a computable metric space X, we define the space ∆0

2(X) of ∆0
2 sets by identifying

(Ai,Ui)i∈N ∈ C (N,A (X)×O(X)) with the set D :=
⋃

i∈NAi =
⋂

i∈NUi. If the two sets are unequal, the
corresponding (Ai,Ui)i∈N does not represent an element of ∆0

2(X).
Definition 3. Given a computable metric space X and a represented space Y, we define the space
∆0

2(X,Y) of ∆0
2-measurable functions as the subspace of C (O(Y),∆0

2(X)) containing functions of the
form f−1 for some f : X→ Y.

This definition of the space ∆0
2(X,Y) adds a uniformity constraint: Not only do we require the preim-

age of any open set to be a ∆0
2-set, but we require the function mapping open sets to their preimages to

be continuous itself. In the case of Σ0
n-measurable functions discussed by Brattka in [1], this constraint

actually comes for free: Whenever a function g : O(Y)→ Σ0
n(X) is of the form g= f−1 for some function

f : X→Y, then g is already continuous. For ∆0
2-measurable functions, the situation is more complicated,

though (see Section 7).
Definition 4. Given represented spaces X, Y we define the space C A−pw(X,Y) of A -piecewise con-
tinuous functions by representing a function f : X→ Y with a sequence2 (Ai, fi)i∈N ∈ C (N,A (X)×
C (Ai,Y)) such that X =

⋃
i∈NAi and fi = f|Ai .

Unlike the situation for ∆0
2(X,Y), one can easily verify that for admissible Y the space C A−pw(X,Y)

contains extensionally exactly the functions classically consider piecewise continuous.
2This occurrence of a dependent type can easily seen to be unproblematic.
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4 Weihrauch reducibility and closed choice

A convenient framework to discuss hypercomputability for general spaces is found in Weihrauch re-
ducibility. Based on a related reducibility notion introduced by Weihrauch [30, 31], it was primarily
used by Brattka, Gherardi, Marcone and Pauly [9, 20, 3, 5] to pursue computable reverse mathematics.
The resulting degree structure was investigated by Brattka, Gherardi, Higuchi and Pauly [21, 4, 12]. Here
we only reference the product operation ×, without making use of any specific properties.

Definition 5. For f :⊆X⇒Y, g :⊆U⇒Y, we say that f is Weihrauch reducible to g ( f ≤W g), iff there
are computable H,K :⊆ {0,1}N→ {0,1}N, such that whenever G :⊆ {0,1}N→ {0,1}N is a realizer of
g, we find x 7→ H(〈x,GK(x)〉) to be a realizer of f .

We say that f is strongly Weihrauch reducible to g ( f ≤sW g), if there are computable H,K :⊆
{0,1}N→{0,1}N such that whenever G is a realizer of g, we find HGK to be a realizer of f .

Various important Weihrauch degrees are those of closed choice principles. For a represented space
X, we consider CX :⊆A (X)⇒ X defined via dom(CX) = A (X)\{ /0} and x ∈CX(A) iff x ∈ A. Closed
choice principles are closely linked to non-deter-ministic computation:

Theorem 6 (Brattka, de Brecht & Pauly [2, Theorem 7.2]). f :⊆ X⇒ Y is non-deter-ministically com-
putable with advice space Z if and only if f ≤W CZ.

The class of multivalued functions reducible to CN is not only also classified as those non-deter-mi-
nistically computable with advice space N, but also as those computable by a finitely revising machine
(introduced by Ziegler [34, 35]) or by a generalized Turing machine allowed to make equality tests on
{0,1}N (introduced by Tavana and Weihrauch [28]) as can be seen following [19] by Pauly. In the
present paper, we demonstrate that this class can be seen as a generalization of piecewise continuity to
multivalued functions between represented spaces.

5 The main result

Our computable version of the Jayne-Rogers Theorem is based on the fact that evaluation for ∆0
2-

measurable functions between computable metric spaces is non-deter-ministically computable with ad-
vice space N (or alternatively with a finitely revising machine).

Theorem 7. Let X, Y be computable metric spaces. The function EVAL : ∆0
2(X,Y)×X→ Y satisfies

EVAL ≤W CN.

Proof. We show that EVAL is non-deter-ministically computable with advice space N×{0,1}N. By
[2, Theorem 7.2], this implies EVAL ≤W CN×{0,1}N . By [2, Corollary 4.9] we have CN×{0,1}N ≤W CN×
C{0,1}N . As EVAL is single-valued, we can then invoke [2, Theorem 5.1] to conclude EVAL ≤W CN.

We regard Y as a subspace of the Hilbert cube H := ̂[0,1], and assume the latter to be represented by
the total representation δH : {0,1}N→ ̂[0,1] ([2, Proposition 4.1]), and the former by a suitable restriction
δY of δH. The map restrict : O(H)→ O(Y) defined via restrict(U) =U ∩Y is trivially computable.

A non-deter-ministic algorithm to compute EVAL on input f ∈ ∆0
2(X,Y) and x ∈ X guesses y ∈

{0,1}N and n ∈ N. The output in case of a successful guess is y.
As H is computably T2, one can compute {δH(y)} ∈ A (H) from y, which has the same names as

H \ {δH(y)} ∈ O(H). Hence, we can compute Y \ {δY(y)} = restrict(H \ {δH(y)}) ∈ O(Y), where we
understand {δY(y)}= /0 for y /∈ dom(δY).
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The information available on f then allows to compute f−1(Y \{δY(y)}) ∈ ∆0
2(X), in particular, we

can access f−1(Y \{δY(y)}) ∈Π0
2(X), and then also f−1({δY(y)}) ∈ Σ0

2(X).
With X being a metric space, a ∑

0
2-set is the union of countably many closed sets, so we find

f−1({δY(y)}) =
⋃

i∈NAi with Ai ∈A (X). We simultaneously test x ∈ Ai? for all i ∈ N. If ever x /∈ Ai is
confirmed for all i≤ n, the guess is rejected.

If a guess (y,n) is never rejected, then there is some i ≤ n with x ∈ Ai ⊆ (
⋃

i∈NAi) = f−1({δy}),
hence f (x) = δY(y) and the output is correct. Also, if δY(y) = f (x), then x ∈ (

⋃
i∈NAi), so there is some

N ∈ N with x ∈ AN . But then (y,N) can never be rejected.

A multivalued function f : X⇒ Y reducible to CN is clearly computable when restricted to those
inputs where any fixed n ∈ N is a valid answer to the oracle question to CN. Any such set is a closed
subset of dom(δX), however, we will need the following lemma to lift these to closed subsets of X.

Given a set A ⊆ {0,1}N and a represented space X, we can obtain the represented space XA by
restricting the representation δX to A. This can be seen as a generalization of the subspace construction:
If A = δ

−1
X δX [A], then XA = X|δX [A] actually is a subspace of X.

Lemma 8. Let X, Y be computable metric spaces, and let δX be proper.

1. The map δX [ ] : A ({0,1}N)→A (X) is well-defined and computable.3

2. Given A ∈A ({0,1}N) and f ∈ C (XA,Y) one can compute f ∈ C (X|δX [A],Y).

Proof. 1. As every computable metric space X is computably T2, we can compute the compact sin-
gleton {x} from x ∈ X. As δX is assumed proper, δ

−1
X ({x}) is compact, and moreover, can be

computed from x as a compact set. The intersection of a closed set and a compact set is uniformly
compact, so from x we compute δ

−1
X ({x})∩A as a compact set. Emptyness for compact sets is

semidecidable, and x 7→ IsEmpty(δ−1
X ({x})∩A) realizes δX[A].

2. As before, we can compute δ
−1
X ({x})∩A from x ∈ X, which just is the compact singleton {x} ∈

K (XA). Images of compact sets under continuous functions are uniformly compact, so we obtain
{ f (x)} ∈K (Y). Computable metric spaces are admissible, so from a compact singleton the value
can be obtain, which gives us f (x) ∈ Y. This treatment is uniform in f , thus yields the claim.

Theorem 9. Let X,Z be computable metric spaces, and Y a represented space. If f : X×Y→Z satisfies
f ≤W CN, then y 7→ (x 7→ f (x,y)) : Y→ C A−pw(X,Z) is computable.

Proof. Let the reduction f ≤W CN be witnessed by H, K, and let A (N) be represented by ψN. From
n ∈ N and q ∈ dom(δY ) one can compute p 7→ (n ∈ ψNK(〈p,q〉)), which realizes a closed set An,q ∈
A ({0,1}N). The map p 7→ δZH(〈〈p,q〉,n) now realizes fAn,q ∈ C (XAn,q ,Z). Using Lemma 8, both the
closed cover and the partial realizers can be lifted from {0,1}N to X.

Theorem 10. For computable metric spaces X, Y the maps id : ∆0
2(X,Y)→ C A−pw(X,Y) and id :

C A−pw(X,Y)→ ∆0
2(X,Y) are well-defined and computable.

Proof. The first part of the claim follows from combining Theorems 7, 9. For the second part, we need
to show that from an open set U ⊆ Y and a piecewise continuous function f : X→ Y we can compute
the ∆0

2-set f−1(U).

3Note that this does not follow directly from the fact that continuous images of compact sets are compact, together with
compactness of {0,1}N and the T2-property of X (cf. [22]), as δX may very well be partial.
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Let (Ai)i∈N be the closed cover of X coming with f . As any f|Ai is given as a continuous function,
we can compute all f−1

|Ai
(U) ∈ O(Ai). Invoking Lemma 8 (1), we can extend the open set f−1

|Ai
(U) to

an open set Ui ∈ O(X), such that f−1
|Ai

(U) = Ai ∩Ui. In total, we find f−1(U) =
⋃

i∈N(Ai ∩Ui). In

a computable metric space, any open set Ui can be represented as a union
⋃

j∈NU j
i , hence we obtain

f−1(U) =
⋃

i, j∈NAi∩U j
i ,

To express f−1(U) as a countable intersection of open sets, consider f−1(UC). Any f−1
|Ai

(UC) =: Bi

is closed in Ai, hence in X. We have that f−1(UC) =
⋃

i∈NBi implies f−1(U) =
⋂

i∈NBC
i =

⋂
i∈N(A

C
i ∪

f−1
|Ai

(U)), which is computable from the givens.

Corollary 11. For computable metric spaces X, Y we find that the map EVAL : C A−pw(X,Y)×X→ Y
satisfies EVAL ≤W CN.

We can call a function f : X→Y effectively ∆0
2-measurable, if it has a computable name in ∆0

2(X,Y).
This means that one can compute ∆0

2-preimages of open sets without additional information. Likewise,
a function with a computable name in C A−pw(X,Y) is called piecewise computable, this entails the
existence of a countable cover by computably closed sets such that the corresponding restrictions are
computable. As computable functions map computable elements to computable elements, we obtain the
next corollary:

Corollary 12. A function f : X→ Y between computable metric spaces is effectively ∆0
2-measurable, if

and only if it is piecewise computable, if and only if f ≤W CN.

6 Markov-effective ∆0
2-measurability

Besides the notion of effective ∆0
2-measurability used for Corollary 12, there is a second possible defi-

nition. Given computable metric spaces, we can fix effective partial enumerations (Un)n∈N of the com-
putably open subsets of Y and (Dn)n∈N of the computably ∆0

2 sets in X. Then we call f : X→Y Markov-
effectively ∆0

2-measurable, if there is a partial computable function P :⊆ N→ N, such that whenever Un

is an open subset of X, we find DP(n) to be the ∆0
2 set f−1(Un). This is the notion of effectivity that might

be chosen in recursive analysis or effective descriptive set theory to capture ∆0
2-measurability.

We shall demonstrate that Markov-effective ∆0
2-measurability can be characterized via Weihrauch

reducibility in a similar fashion to Corollary 12, however, unlike its more uniform counterpart it is not
related to piecewise computability (or finitely revising computability), but rather to low computability.

Recall from recursion theory that p ∈ {0,1}N is called low, iff the Turing jump of p is the Halting
problem, i.e., as simple as possible. In [2], Brattka, de Brecht and Pauly suggested a uniform counterpart:
We call f : X⇒ Y low computable, if from any name p for x ∈ dom( f ), we can compute a sequence
converging to the Turing jump of some name q for some y ∈ f (x).

We restrict the considerations to Cantor space for now. Here, the effective enumeration (Un)n∈N of
the computably open sets can be chosen total, and the Turing jump J : {0,1}N → {0,1}N defined via
J(p)(i) = 1 iff p ∈Ui.

Theorem 13. f :⊆ {0,1}N→ {0,1}N is Markov-effectively ∆0
2-measurable if and only if it is low com-

putable.

Proof. ⇒ Given a function f , if we have a uniform way of computing from an index n a ∆0
2-name

for f−1(Un), then we can create a limit computable function that, on input p, converges to 1 if



A. Pauly and M. de Brecht 93

f (p) ∈Un and converges to 0 if f (p) 6∈Un. So we can limit compute the n-th place of the Jump of
f (p). If we can compute this uniformly in n, then by doing it all in parallel we can low-compute
f .

⇐ On the other hand, if we can low-compute f , then we have a limit computable function that converges
to 1 if f (p) ∈Un and 0 if f (p) 6∈Un (by just looking at the n-th place of our low-computation of
f ). This implies that the preimage of Un under f is effectively Σ0

2 (i.e., the effective union of
countably many computably closed sets) and the preimage of the complement of Un under f is
also effectively Σ0

2, hence the preimage of Un is effectively ∆0
2.

Low computability was characterized in [2, Theorem 8.10] in terms of the function L :⊆C (N,NN)→
NN defined via L((pi)i∈N) = q iff limi→∞ pi = J(q). One finds that any f is low computable if and only
if f ≤sW L holds.

Corollary 14. f :⊆ {0,1}N→{0,1}N is Markov-effectively ∆0
2-measurable if and only if f ≤sW L.

Fact 15. L�W CN.

Corollary 16. Markov-effective ∆0
2-measurability does not imply effective ∆0

2-measurability.

Corollary 17. There is a Markov-effectively ∆0
2-measurable function that is not even piecewise contin-

uous.

We point out that Higuchi and Kihara [11] have independently obtained a similar result to Theorem
13 which holds for Markov-effective ∆0

n-measurability and lown-computability (although their terminol-
ogy differs from ours).

7 Computable vs. classical Jayne-Rogers theorem

As remarked after Definition 3, it is not guaranteed that the represented space ∆0
2(X,Y) actually contains

all ∆0
2-measurable functions. In principle, it is conceivable that some f−1 : O(Y)→ ∆0

2(X) is well-
defined, i.e., the inverse of a function f : X→ Y, yet lacks continuous realizers. As a consequence, the
classical Jayne-Rogers Theorem does not follow directly from its computable counterpart.

However, for spaces X,Y in its scope, the classical Jayne-Rogers Theorem states that all ∆0
2-measurable

functions are elements in the space C A−pw(X,Y)—hence, by the computable Jayne-Rogers Theorem
(Theorem 10), they are elements of ∆0

2(X,Y).
The classical Jayne-Rogers Theorem is not necessary for ∆0

2(X,Y) to contain all ∆0
2-measurable

functions, though. Consider the space ω + 1 = {A ∈ O(N) | n ∈ A∧m ≥ n⇒ m ∈ A} with the Scott
topology. Now O(ω +1) is countable, and there is a computable injection ι : O(ω +1)→ NO (NO are
the natural number with the finitely revising representation). Using a list of all preimages of open sets, we
find for any ∆0

2-measurable function f :NN→ω +1 that f−1 : O(ω +1)→ (∆0
2(NN))O is continuous. As

(∆0
2(NN))O and ∆0

2(NN) are isomorphic, ∆0
2(NN,ω + 1) encompasses all ∆0

2-measurable functions from
NN to ω +1.

Consider the function e :NN→ (ω+1) defined via e(p) = {i≥max{p( j) | j ∈N}+1} if max{p( j) |
j ∈ N} exists and is even, e(p) = {i ≥ max{p( j) | j ∈ N}− 1} if max{p( j) | j ∈ N} exists and is odd,
and e(p) = N if p is unbounded. Then e is ∆0

2-measurable, yet not piecewise continuous. Thus, the
Jayne-Rogers Theorem cannot be extended to ω +1 as codomain.

As just demonstrated, it is in principle possible to prove that the space ∆0
2(X,Y) does contain all ∆0

2-
measurable functions for certain spaces X, Y without resorting to the classical Jayne-Rogers Theorem.
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This gives hope that a more general result of this form, together with the computable Jayne-Rogers
Theorem could be used as a simple proof for a (generalization of) the classical Jayne-Rogers Theorem.

It is worthwhile pointing out the analogy to the Kreitz-Weihrauch representation theorem for admis-
sible representations proving that the space C (X,Y) contains all the (topologically) continuous functions
(see also [25] by Schröder, [22] by Pauly). In the context of Σ0

n-measurable functions, this connection
has been explored in detail by de Brecht and Yamamoto in [7].

8 Generalizing the main result

The proof of Theorem 7, the center piece of our main result, makes no use of properties exclusive
to metric spaces, and hence can be extended to more general spaces. The precise characterization of
the suitable spaces is left for future work, however, we do have some limits how far the Jayne-Rogers
Theorem can be extended.

In [13], Jayne and Rogers provide a counterexample with a metric, but non absolute Souslin-F do-
main, and a discrete uncountable metric space as codomain assuming Martin’s axiom. The latter is not
available in a computable context, in particular, the absolute Souslin-F condition is irrelevant for us.

A candidate condition is the TD separation axiom. A topological space is TD, if any singleton is the
intersection of an open and a closed set. A prototypic space failing the TD criterion is ω + 1, hence
the non-piecewise continuous function e ∈ ∆0

2(NN,ω + 1) introduced in the previous section bars an
extension of the Jayne-Rogers Theorem to non-TD spaces.

On the other hand, a computable TD property suffices instead of the computable T2 property employed
in the proof of Theorem 7. A naive definition of computably TD requiring that from any singleton
x ∈ X one can compute a pair (Ax,Ux) ∈A (X)×O(X) with Ax∩Ux = {x} turns out to be equivalent to
computably T2. However, allowing computation with finitely many mindchanges here, or, alternatively,
requiring the computability of x 7→ {x} : X→ ∆0

2(X) suffices for Theorem 7. The question which spaces
embed into a computable TD-space with a total Cantor-representation remains unresolved, though.

Another potential direction of generalization requires a better understanding of the interaction of two
computational models, namely non-deterministic and limit machines. This could lead to a classification
of the Weihrauch degree of function evaluation for functions where the preimages of open sets are ∆0

n
also for n > 2.

In a non-uniform way Higuchi and Kihara [11] made some progress in understanding the higher
levels of effective measurability. They prove that a function where the preimages of Σ0

n-sets effectively
are Σ0

n-sets will necessarily be non-uniformly computable.
In general, the results presented here could be an indication that computable descriptive set theory

could be developed relying heavily on Type-2 models of computation. That descriptive set theory has
an underlying algorithmic structure is already evident from the rôle of games in this field, exhibited,
e.g., in [29] by Wadge and [26] by Semmes, which is generalized significantly in [17] by Motto-Ros.
Computational models have some advantages over games, such as straight-forward closure properties
under composition, that might provide additional usefulness to such an approach.
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