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Abstract

In this paper the torsional vibration of size-dependent viscoelastic nanorods embedded in an
elastic medium with di�erent boundary conditions is investigated. The novelty of this study
consists of combining the nonlocal theory with the strain and velocity gradient theory to cap-
ture both softening and sti�ening size-dependent behavior of the nanorods. The viscoelastic
behavior is modelled using the so-called Kelvin�Voigt viscoelastic damping model.Three
length-scale parameters are incorporated in this newly combined theory, namely, a nonlo-
cal, a strain gradient, and a velocity gradient parameter. The governing equation of motion
and its boundary conditions for the vibration analysis of nanorods are derived by employing
Hamilton's principle. It is shown that the expressions of the classical stress and the stress
gradient resultants are only de�ned for di�erent values of the nonlocal and strain gradi-
ent parameters. The case where these are equal may seem to result in an inconsistency to
the general equation of motion and the related non-classical boundary conditions. A rigor-
ous investigation is conducted to prove that that the proposed solution is consistent with
physics. Damped eigenvalue solutions are obtained both analytically and numerically using
a Locally adaptive Di�erential Quadrature Method (LaDQM). Analytical results of linear
free vibration response are obtained for various length-scales and compared with LaDQM
numerical results.

Keywords: Torsional nanorod; nonlocal strain and velocity gradient theory; viscoelasticity;
Kelvin�Voigt model; torsional vibration.

1 Introduction

Over the past few decades the demand of nanomaterials has been increasing enormously
in various applications like actuators, sensors, microscopes, micro/nano electro mechanical
systems (MEMS)/(NEMS). This is due to their superior properties such as high mechanical

1Corresponding author. Tel.: +974 4423 0674, e-mail: sami.el_borgi@qatar.tamu.edu (Sami El-Borgi).
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strength and modulus, electrical conductivity, thermal conductivity etc. Micro/Nano-scaled
structures are made of structural elements whose characteristic size (thickness, diameter,
etc.) is in the order of micro/nanometers. These elements can be in the form of bars, rods,
beams, plates or shell structures.

Two di�erent modeling strategies have been adopted for modeling nano-structures, namely
molecular dynamics (MD) simulation and continuum mechanics. The MD approach requires
intense computational labor with a huge number of atoms. The continuum mechanics ap-
proach can also be used as an alternative, but it is incapable of predicting the size-dependent
static and dynamic behavior of micro/nano-scaled structures. Recently, several non-classical
continuum theories that incorporate the e�ect of material length scales have been proposed
in the literature to predict the behavior of nanostructures. These include nonlocal, gradient
elasticity and couple stress theories or a combination of these theories.

Unlike classical continuum mechanics, nonlocal theories assume that the stress at a point
is not a function of the strain at that point but is a function of the strain in the entire domain
containing the points [1]�[3]. These theories consider the body to be made of collection of
particles modeled as mass points, take into account the inter-atomic long-range force and
similar to classical elasticity do not consider the microstructure deformation mechanism.
Nonlocal elastic models can only model nanostructures exhibiting softening behavior which
indicates that "smaller is more compliant" [4]. Nonlocal theories have been used extensively
in several studies including bending, buckling, vibrations, and wave propagation of nanoscale
beams [5]�[7] and a review of these investigations can be found in [8].

On the other hand, the gradient elasticity theory stipulates that nanostructures should
be modeled as atoms with higher-order deformation mechanism rather than collections of
points, and the total stress should account for some additional strain gradient terms [9]�[11].
However, this theory does not consider the inter-atomic long-range force. Furthermore, gra-
dient elasticity theory can only model nanostructures exhibiting hardening behavior which
indicates that "smaller is sti�er" [4]. Therefore, it can be concluded that the nonlocal
elasticity and gradient elasticity theories describe two completely di�erent size-dependent
nano/micro-mechanical properties of materials. Stated di�erently, combining both theories
allows the modeling of nanostructures exhibiting at the same time hardening and softening
behavior.

Experimental measurements on certain nanostructures revealed that the sti�ness en-
hancement and softening e�ects may both be observed [12]. This indicates the need for a
unique theory capable of capturing both size-dependent sti�ness-softening and hardening
phenomena. Recently, Lim et al. [13] introduced a nonlocal strain gradient theory which
stipulates that the stress tensor should account for the e�ects of both nonlocal stress tensor
and strain gradient stress tensor, thereby combining nonlocal and strain gradient theories
into a unique theory. It was shown that the nonlocal strain gradient (NSG) theory ex-
hibits a sti�ness-softening and a sti�ness-hardening e�ect when the nonlocal parameter is,
respectively, larger and smaller than the material length scale parameter. Very recently,
some researchers have exploited NSG theory to investigate the size-dependent mechanical
behavior of nanorods [4, 14], nanobeams [18]�[24] and nanoplates [25]�[27].

Micro/nano rods subjected to torsional loads have been widely used in various types of
MEMS/NEMS applications including torsional springs in NEMS oscillators [28], torsional
micromirrors [29]�[30] and torsional microscanners [31]. Therefore, the accurate modeling
of the static and dynamic torsional behavior of micro/nano bars seems to be essential in
order to understand the mechanical behavior of these micro/nano systems. There have been
few studies related to the size-dependent torsional vibration of nanotubes/nanorods. Most
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of these studies utilized the di�erential nonlocal model and the following is a brief review.
Lim et al. [32] obtained analytical solutions for the free torsional vibration of nanorods
and concluded that the nonlocal parameter induces higher torsional sti�ness which in turn
increases the vibration frequency. In another study, Lim et al. [33] utilized the �nite element
method and the integral form of the nonlocal theory to study the torsional static and dynamic
response of circular nanostructures. Demir and Civalek [34] developed a �nite element model
to investigate the torsional and axial vibration response of a microtube. Arda and Aydogdu
[35] investigated analytically the static and free vibration response of a carbon nanotube
(CNT) embedded in an elastic medium. Islam et al. [36] obtained analytical solutions for
the wave propagation problem of an in�nitely long torsional CNT rod. Li [37] developed
two di�erent nonlocal elasticity models to study the torsional vibration response of CNTs.
Li and Hu [38] examined the free torsional vibration behavior of nanotubes made of a bi-
directional functionally graded (FG) material. On the other hand, Kahrobaiyan et al. [39]
used strain gradient theory to obtain closed-form analytical solutions for the static and free
torsional vibration of a microbar.

Damping plays a vital role in the dynamic analysis of structures. Damping mechanisms
are often complex and damping is considered either proportional external damping or in-
ternal damping based on viscoelastic models which include Kelvin�Voigt model and the
Generalized Wiechert model [40]�[41] . Despite the tremendous interest in studying the
dynamic behavior of nanosystems using size-dependent theories, there are, however, a lim-
ited number of investigations which accounted for damping. Lei et al. [42] investigated the
dynamic behavior of nonlocal viscoelastic damped Timoshenko nanobeams using the Kelvin�
Voigt viscoelastic model and velocity-dependent external damping. It was concluded that
the external damping has an important e�ect on the natural frequencies. Karlicic et al. [43]
studied the free longitudinal vibration of a nonlocal viscoelastic double-nanorod system.
Polyzos et al. [44] used strain gradient theory of elasticity to study the torsional vibration
of a nano-column assuming a viscoleastic material. Li et al. [21] investigated on the basis of
NSGT and Kelvin�Voigt viscoelastic model the wave propagation problem of �uid-conveying
viscoelastic single-walled carbon nanotubes (SWCNTs). Ebrahimi and Barati [45] studied
the damped vibration characteristics of hygro-thermally a�ected FG viscoelastic nanobeams
based on NSGT.

To improve material sti�ness and fracture toughness, composite structures use nano-
materials reinforcement such as polymer/CNT nanocomposites (PCNTs) [46]. Thanks to
their excellent properties, nanomaterials have been used along with matrices of many poly-
mer resins for CNT-nanocomposites, such as CNT/Polypropylene [47], CNT/Nylon [48] and
CNT/Polycarbonate [49]. This type of composite structures and especially the interaction
of the nanomaterial with the surrounding elastic medium has attracted the interest of re-
searchers. Three types of interaction models have been mainly utilized, including Winkler
type [17, 35, 50], Pasternak type [51] and a combination of Winkler and Pasternak types
[45].

From the above literature review, it can be concluded that the works related to torsional
vibration of nanorods/nanotubes were either based on non-local elasticity theory or strain
gradient theory and did not account for viscoelastic e�ects. To �ll these gaps in the literature,
the novelty of this paper consists of combining the nonlocal theory with the strain and
velocity gradient theory to capture softening and sti�ening size-dependent behavior to study,
analytically and numerically, the torsional vibration of a viscoelastic nanorod embedded in
an elastic medium. This theory involves three length-scale parameters, namely, a nonlocal,
a strain gradient and a velocity gradient parameter denoted, respectively, µ0, ls and lk. It
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will be shown that the expressions of the classical stress and the stress gradient resultants
are only de�ned when µ0 6= ls. The case µ0 = ls may seem to result in an inconsistency to
the general equation of motion and the related non-classical boundary conditions. In fact,
the expression of the stress gradient resultant may suggest an in�nite value when µ0 = ls
[52]. However, as an additional novelty of this work, it will be shown that calculating the
limit of the stress gradient resultant is �nite and, therefore, the proposed solution will not
show any inconsistency.

The paper is arranged as follows. Section 2 describes the nonlocal strain gradient vis-
coelastic theory. The equation of motion of size-dependent torsional rods is derived in
Section 3. The analytical solution of the vibration problem is established in Section 4. The
formulation and solution for the particular case where µ̂0 = l̂s is outlined in Section 5. The
numerical formulation using a Locally adaptive Di�erential Quadrature Method (LaDQM)
is summarized in Section 6. Analytical and numerical results are presented and discussed in
Section 7. Finally, concluding remarks are provided in Section 8.

2 Nonlocal strain gradient viscoelastic theory

The nonlocal strain gradient theory proposed by [13, 14] stipulates that the total stress
tensor t accounts for both the nonlocal stress tensor σ and the higher-order strain gradient
nonlocal stress tensor ∇σ(1), in which σ(1) is the higher-order nonlocal stress tensor. Stated
di�erently, the total stress at a reference point x depends not only on the strain ε and its
gradient at that location but on the strains and their gradients at all other points within
the domain V . This can be written mathematically as

t = σ −∇σ(1) (1)

where ∇ is the gradient operator and σ and σ(1) are given by

σ =

∫
V
α0

(∣∣x− x′
∣∣ , e0a

)
C : ε

(
x′
)
dV (2a)

σ(1) = l2s

∫
V
α1

(∣∣x− x′
∣∣ , e1a

)
C : ∇ε

(
x′
)
dV (2b)

in which ε (x′) and ∇ε (x′) are, respectively, the classical strain tensor and its gradient
at point x′, C is the fourth-order elasticity tensor, ls is the strain gradient length-scale
parameter, e0a and e1a are nonlocal parameters representing the signi�cance of the inter-
atomic long-range force, and α0 and α1 are kernel functions.

In view of the di�culty in using the integral constitutive relations (1), (2a) and (2b),
Eringen [2] proposed an equivalent di�erential model. Thus, assuming e0a = e1a = ea = µ0

and for a suitable choice of the kernel functions α0 and α1, Eqs. (2a) and (2b) become(
1− µ2

0∇2
)
σ = C : ε (3a)(

1− µ2
0∇2

)
σ(1) = l2sC : ∇ε (3b)

where ∇2 is the Laplacian operator. Substituting (3a) and (3b) into (1) yields(
1− µ2

0∇2
)
t =

(
1− l2s∇2

)
C : ε (4)

Furthermore, for a torsional rod-type structure de�ned in a cylindrical coordinate system
(r, θ, x) where r is the radial axis, θ is the angular axis and x is the longitudinal axis, we
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assume the size-dependency is only accounted for in the longitudinal direction and neglected
in the other directions. Therefore, Eq. (4) can be reduced to the following:(

1− µ2
0

∂2

∂x2

)
trθ =

(
1− l2s

∂2

∂x2

)
Gεrθ (5)

where ∇2 was replaced by ∂2/∂x2, trθ is the total shear stress, εrθ is the shear strain and G is
the rod's modulus of rigidity. This model combines Eringen's nonlocal elasticity theory and
strain gradient theory to obtain the Nonlocal Strain Gradient (NSG) theory. The following
limiting cases correspond to existing theories:

• Setting ls = 0, Eq. (5) reduces to
(

1− µ2
0
∂2

∂x2

)
trθ = Gεrθ which corresponds to

Eringen's nonlocal theory.

• Setting µ0 = 0, Eq. (5) simpli�es to trθ =
(

1− l2s ∂2

∂x2

)
Gεrθ which is the strain gradient

theory.

Viscoelastic damping may be added to the constitutive relation (5) by incorporating the
Kelvin�Voigt viscoelastic model [53] which then becomes(

1− µ2
0

∂2

∂x2

)
trθ =

(
1− l2s

∂2

∂x2

)
G (εrθ + gε̇rθ) =

(
1 + g

∂

∂t

)(
1− l2s

∂2

∂x2

)
Gεrθ (6)

where g is the damping coe�cient and ε̇rθ = ∂εrθ/∂t is the rate of shear strain with respect
to the time variable t. For subsequent derivations, it will be useful to rewrite Eqs. (1), (3a)
and (3b) for the case of torsional rods with viscoelastic damping as

trθ = σrθ −
∂σ

(1)
rθ

∂x
(7)(

1− µ2
0

∂2

∂x2

)
σrθ =

(
1 + g

∂

∂t

)
Gεrθ (8)(

1− µ2
0

∂2

∂x2

)
σ

(1)
rθx = l2s

(
1 + g

∂

∂t

)
G
∂εrθ
∂x

(9)

Here σrθ is the nonlocal shear stress and σ
(1)
rθx is the higher-order nonlocal shear stress.

3 Equations of motion of size-dependent rods

The displacement �eld in a rod of volume V , length L and cross-sectional area A takes the
following form:

θ1 = θ (x, t) , θ2 = 0, θ3 = 0 (10)

Here θ1, θ2 and θ3 denote the time dependent rotations about the x, y and z directions,
respectively. The shear strain of a torsional rod can be written as

εrθ = r
∂θ

∂x
(11)

and its gradient with respect to x is

εrθ,x = r
∂2θ

∂x2
(12)
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The strain energy, U , after integrating by parts and using Eq. (11) and (12), is then

U =

∫
V

(
σrθεrθ + σ

(1)
rθxεrθ,x

)
dV

=

∫
V

(
σrθεrθ −∇σ

(1)
rθxεrθ

)
dV +

[∫
A
σ

(1)
rθxεrθdA

]L
0

=

∫ L

0

∫
A
trθεrθdAdx+

[∫
A
σ

(1)
rθxεrθdA

]L
0

=

∫ L

0
T
∂θ

∂x
dx+

[
T (1) ∂θ

∂x

]L
0

(13)

where T and T (1) are the stress resultants of, respectively, the total stress and the higher-
order stress which are given by

T =

∫
A
rtrθdA (14a)

T (1) =

∫
A
rσ

(1)
rθxdA (14b)

and the stress resultant of the classical stress T (0) can be de�ned as

T (0) =

∫
A
rσrθdA (15)

The stress resultants T , T (0) and T (1) can be related by multiplying both sides of Eq.
(7) by r and integrating over the cross-sectional area of the rod, to give

T = T (0) − ∂T (1)

∂x
(16)

T (0) and T (1) are, respectively, solutions of the following ordinary di�erential equations
which are obtained by multiplying both sides of Eqs. (8) and (9) by r, integrating over the
cross sectional area of the rod and substituting Eq. (11) into the resulting equations:

T (0) − µ2
0

∂2T (0)

∂x2
=

(
1 + g

∂

∂t

)
GJ

∂θ

∂x
(17)

T (1) − µ2
0

∂2T (1)

∂x2
=

(
1 + g

∂

∂t

)
l2sGJ

∂2θ

∂x2
(18)

By observing the above equations, it can be concluded that T (0) and T (1) are related as
follows:

T (1) = l2s
∂T (0)

∂x
(19)

Substituting Eq. (19) into Eq. (16) gives an expression of T in terms of T (0) as

T = T (0) − l2s
∂2T (0)

∂x2
(20)
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Solving the above equation for ∂2T (0)

∂x2
and substituting the above expression in Eq. (17)

yields the following expression for T (0) in terms of T :

T (0) =

(
µ2

0

µ2
0 − l2s

)
T −

(
l2s

µ2
0 − l2s

)(
1 + g

∂

∂t

)
GJ

∂θ

∂x
(21)

Considering the torsional motion of the rod and its velocity gradient, the kinetic energy,
K, can be written as

K =
1

2
ρJ

∫ L

0

(
∂θ

∂t

)2

dx+
1

2
ρJl2k

∫ L

0

(
∂2θ

∂x∂t

)2

dx (22)

where ρ is the density of the rod and lk is the kinetic material length-scale parameter
associated with the velocity gradient.

The surrounding medium is assumed to be a Winkler type model [50], where kEM is the
linear torsional sti�ness. Then, the external work done by the surrounding medium is

W = −
∫ L

0
kEMθ

2dθ (23)

The equations of motion are obtained by applying Hamilton's Principle and the funda-
mental lemma of calculus variations. After integration by parts with respect to t as well as
x, and setting the initial conditions to zero, the following equation of motion can be derived:

−ρJ ∂
2θ

∂t2
+ ρJl2k

∂4θ

∂x2∂t2
+
∂T

∂x
− kEMθ = 0 (24)

Substituting Eqs. (17) and (18) into Eq. (16) yields

T = µ2
0

∂2T

∂x2
+

(
1 + g

∂

∂t

)(
1− l2s

∂2

∂x2

)
GJ

∂θ

∂x
(25)

Di�erentiating the equation of motion, Eq. (24), with respect to x and substituting ∂2T
∂x2

into Eq. (25) gives the expression of T in terms of the rotation as

T = GJ

(
∂θ

∂x
+ g

∂2θ

∂x∂t

)
−GJl2s

(
∂3θ

∂x3
+ g

∂4θ

∂x3∂t

)
+

µ2
0ρJ

(
∂3θ

∂x∂t2
− l2k

∂5θ

∂x3∂t2

)
+ µ2

0kEM
∂θ

∂x

(26)

Furthermore, di�erentiating this expression for T with respect to x and substituting into
Eq. (24) gives the equation of motion in terms of the rotation as

ρJ

[
−∂

2θ

∂t2
+ l2k

∂4θ

∂x2∂t2
+ µ2

0

(
∂4θ

∂x2∂t2
− l2k

∂6θ

∂x4∂t2

)]
+

GJ

[
∂2θ

∂x2
+ g

∂3θ

∂x2∂t
− l2s

(
∂4θ

∂x4
+ g

∂5θ

∂x4∂t

)]
− kEM

(
θ − µ2

0

∂2θ

∂x2

)
= 0

(27)

This governing equation of motion for θ is subjected to the following classical and non-
classical boundary conditions speci�ed at each of the ends x = 0 and x = L:

T = 0 or θ = 0 (28)
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T (1) = 0 or
∂θ

∂x
= 0 (29)

The stress resultants T , is given by Eq. (26), however, an expression for the higher order
stress T (1) needs to be obtained.

Substituting the expression of T from Eq. (26) into Eq. (21) gives the stress resultant
of the classical stress T (0), de�ned in Eq. (15), in terms of the rotation as

T (0) =
µ4

0

µ2
0 − l2s

[
kEM

∂θ

∂x
+ ρJ

(
∂3θ

∂x∂t2
− l2k

∂5θ

∂x3∂t2

)]
−

GJ
µ2

0l
2
s

µ2
0 − l2s

(
∂3θ

∂x3
+ g

∂4θ

∂x3∂t

)
+GJ

(
∂θ

∂x
+ g

∂2θ

∂x∂t

) (30)

Likewise, substituting this expression for T (0) into Eq. (19) gives the resultant of the stress
gradient T (1), de�ned in (14b), in terms of the rotation as

T (1) =
µ4

0l
2
s

µ2
0 − l2s

[
kEM

∂2θ

∂x2
+ ρJ

(
∂4θ

∂x2∂t2
− l2k

∂6θ

∂x4∂t2

)]
−

GJ
µ2

0l
4
s

µ2
0 − l2s

(
∂4θ

∂x4
+ g

∂5θ

∂x4∂t

)
+GJl2s

(
∂2θ

∂x2
+ g

∂3θ

∂x2∂t

) (31)

Using the following non-dimensional parameters:

ξ =
x

L
, τ =

t

L

√
G

ρ
, θ(x, t) = θ(ξ, τ)

µ̂0 =
µ0

L
, ĝ =

g

L

√
G

ρ
, l̂s =

ls
L
, l̂k =

lk
L
, k̂EM =

kEML
2

GJ
, (32)

the governing equations, Eq. (27), along with the associated boundary conditions, Eqs. (28)
and (29), can be written in non-dimensional form as

−∂
2θ

∂τ2
+ l̂2k

∂4θ

∂ξ2∂τ2
+ µ̂2

0

(
∂4θ

∂ξ2∂τ2
− l̂2k

∂6θ

∂ξ4∂τ2

)
+

∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ
− l̂2s

(
∂4θ

∂ξ4
+ ĝ

∂5θ

∂ξ4∂τ

)
− k̂EM

(
θ − µ̂2

0

∂2θ

∂ξ2

)
= 0

(33)

subject to the boundary conditions speci�ed at each of the ends ξ = 0 and ξ = 1

T̂ = 0 or θ = 0 (34a)

T̂ (1) = 0 or
∂θ

∂ξ
= 0 (34b)

The non-dimensional expressions of the stress resultants T , T (0) and T (1) can be written as

T̂ = µ̂2
0kEM

∂θ

∂ξ
+ µ̂2

0

(
∂3θ

∂ξ∂τ2
− l̂2k

∂5θ

∂ξ3∂τ2

)
−

l̂2s

(
∂3θ

∂ξ3
+ ĝ

∂4θ

∂ξ3∂τ

)
+

(
∂θ

∂ξ
+ ĝ

∂2θ

∂ξ∂τ

) (35)
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T̂ (0) =
µ̂4

0

µ̂2
0 − l̂2s

[
kEM

∂θ

∂ξ
+

(
∂3θ

∂ξ∂τ2
− l̂2k

∂5θ

∂ξ3∂τ2

)]
−

µ̂2
0 l̂

2
s

µ̂2
0 − l̂2s

(
∂3θ

∂ξ3
+ ĝ

∂4θ

∂ξ3∂τ

)
+

(
∂θ

∂x
+ ĝ

∂2θ

∂ξ∂τ

) (36)

T̂ (1) =
µ̂4

0

µ̂2
0 − l̂2s

(
k̂EM

∂2θ

∂ξ2
+

∂4θ

∂ξ2∂τ2
− l̂2k

∂6θ

∂ξ4∂τ2

)
−

µ̂2
0l

2
s

µ̂2
0 − l̂2s

(
∂4θ

∂ξ4
+ ĝ

∂5θ

∂ξ4∂τ

)
+ l̂2s

(
∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ

) (37)

4 Analytical solution of the vibration problem

The solution of the non-dimensional PDE in Eq. (33) proceeds in the usual way by assuming
a separable solution of the form θ(ξ, τ) = φ(ξ)est. The resulting ODE for φ(ξ) is then(
s2 l̂2kµ̂

2
0 + ĝsl̂2s + l̂2s

) d4φ

dξ4
−
(
s2 l̂2k + s2µ̂2

0 + k̂EM µ̂
2
0 + ĝs+ 1

) d2φ

dξ2
+
(
s2 + k̂EM

)
φ (ξ) = 0

(38)
or equivalently

α(s)
d4φ

dξ4
+ β(s)

d2φ

dξ2
+ γ(s)φ = 0 (39)

where

α(s) = s2 l̂2kµ̂
2
0 + ĝsl̂2s + l̂2s

β(s) = −
(
s2 l̂2k + s2µ̂2

0 + k̂EM µ̂
2
0 + ĝs+ 1

)
γ(s) = s2 + k̂EM

(40)

Since Eq. (39) is a linear ODE for �xed s, the solution is of the form φ(ξ) = Ceλξ, which
gives a quadratic equation in λ2 as

α(s)λ4 + β(s)λ2 + γ(s) = 0 (41)

which has four solutions λi(s) for i = 1, . . . , 4. Note that we may assume that λ3 = −λ1

and λ4 = −λ2. The general solution for the mode shape is

φ(ξ) = C1e
λ1ξ + C2e

λ2ξ + C3e
λ3ξ + C4e

λ4ξ (42)

for some constants Ci. Note that Eq. (42) may also be written in terms of hyberbolic or
trignometric functions, which can make the solution easier for some boundary conditions.

The four boundary conditions required for the fourth order di�erential equation allows
the constants Ci and the eigenvalues, s, to be calculated. Note that for the free vibration
problem the amplitude of the mode shape is arbitrary, which means that there are essentially
only three independent unknown Ci constants. Each boundary condition gives a linear
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equation in the Ci constants. Thus, for example,

φ(0) = 0 implies C1 + C2 + C3 + C4 = 0

φ(1) = 0 implies C1e
λ1 + C2e

λ2 + C3e
λ3 + C4e

λ4

dφ

dξ
(0) = 0 implies λ1C1 + λ2C2 + λ3C3 + λ4C4 = 0

T̂ (0) = 0 implies C1

(
λ1 (1 + ĝs)

(
1− l̂2sλ2

1

)
+ µ̂2

0λ1s
2
(

1− l̂2kλ2
1

)
+ µ̂2

0k̂EMλ1

)
+ C2 (. . .) + C3 (. . .) + C4 (. . .) = 0

(43)

Note that the λi depend on s. For the last example boundary condition, T̂ (0) = 0, is
obtained by substituting Eq. (42) into Eq. (35). The coe�cients for C2, C3 and C4 are
similar to the coe�cient for C1 with λ1 replaced by the corresponding λi. The T̂

(1) boundary
condition may be obtained in a similar way using Eq. (37).

The four boundary conditions give four linear homogeneous equations in the Ci, and for
a non-trivial solution the determinant of the coe�cient matrix, which only depends on s,
must be zero. This gives an equation for s, although often this equation is highly nonlinear
and di�cult to solve analytically. Even obtaining all of the solutions numerically is di�cult,
and would be helped by reasonable initial estimates, perhaps from the undamped case.

Three sets of boundary conditions are now considered for the torsional rod, where the
mode shapes may be determined directly. These special cases are (a) Clamped Forcing-
Clamped Forcing (CF-CF), (b) Clamped Forcing - Free Strained (CF-FS), (c) Free Strained
- Free Strained (FS-FS). Table 1 gives the mode shapes, where Cn is an arbitrary constant,
and it is straightforward to verify that these functions satisfy the given boundary conditions
by directly substituting into the expressions for T̂ and T̂ (1) given earlier. Here we will assume
that µ̂0 6= l̂s for the CF-CF and FS-FS cases, since T̂ (1) given by Eq. (37) is not de�ned
when µ̂0 = l̂s; the solution for µ̂0 = l̂s is considered in detail in the next section. The mode
shapes in Table 1 give direct expressions for λi, which may be substituted into Eq. (41),
using the expressions for α, β and γ from Eq. (40), to give the following quadratic equation
for s:

as2 + bs+ c = 0 (44)

where the expressions of a, b and c for the three boundary conditions CF-CF, CF-FS and
FS-FS are given in Table 2. This quadratic equation is easily solved to obtain the solutions
for s, and hence the corresponding natural frequencies and damping ratios.
For each set of boundary conditions, solutions for particular cases of interest can be obtained,
namely, local undamped (µ̂0 = l̂k = l̂s = ĝ = 0), local damped (µ̂0 = l̂k = l̂s = 0) and
asymptotic cases. In the last case, the asymptotic frequencies are obtained by taking the
asymptotic expansion of Eq. (44) when n→∞ and then keeping the leading terms of order
n4 before solving for s to give the natural frequencies and damping ratios. All these solutions
are summarized in Table 3. It is worth noting that the solutions for the CF-CF and FS-FS
boundary conditions are identical because the ordinary di�erential equation (39) contains
d4φ
dξ4

and d2φ
dξ2

and the mode shapes for these boundary conditions are, respectively, given by

sin(nπξ) and cos(nπξ).
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Table 1: Boundary conditions (BC) and modeshapes for the analytical solution.

BC BC Equations Mode shape λ2
n

C
F
-C
F φ(0) = 0, T̂ (1)(0) = 0, φ(ξ) = Cn sin(nπξ) −n2π2

φ(1) = 0, T̂ (1)(1) = 0 n ≥ 1

C
F
-F
S φ(0) = 0, T̂ (1)(0) = 0, φ(ξ) = Cn sin

(
2n−1

2 πξ
)

−
(
n− 1

2

)2
π2

dφ(1)
dξ = 0, T̂ (1) = 0 n ≥ 1

F
S
-F
S dφ(0)

dξ = 0, T̂ (0) = 0, φ(ξ) = Cn cos(nπξ) −n2π2

dφ(1)
dξ = 0, T̂ (1) = 0 n ≥ 0

Table 2: Expressions of the constants of the characteristic polynomial asociated with the
analytical solution.

Case Polynomial constants

CF-CF a = n4π
4
l̂2kµ̂

2
0 + n2π2 l̂2k + n2π2µ̂2

0 + 1

& FS-FS b = ĝn4π4 l̂2s + ĝn2π2

c = n4π4 l̂2s + n2π2k̂EM µ̂
2
0 + n2π2 + k̂EM

a =
(
n− 1

2

)4
π4 l̂2kµ̂

2
0 +

(
n− 1

2

)2
π2
(
l̂2k + µ̂2

0

)
+ 1

CF-FS b = ĝ
(
n− 1

2

)4
π4 l̂2s + ĝ

(
n− 1

2

)2
π2

c =
(
n− 1

2

)4
π4 l̂2s +

(
n− 1

2

)2
π2
(
k̂EM µ̂

2
0 + 1

)
+ k̂EM

11



  

Table 3: Eigenvalues for particular cases of the analytical solution.

CF-CF and FS-FS CS-FS

Local undamped case

±i
√
n2π2 + k̂EM ±i

√
κ+ k̂EM

µ̂0 = l̂k = l̂s = ĝ = 0

Local damped case

−1
2 ĝπ

2n2 ±
√

1
4 ĝ

2π4n4 − π2n2 − k̂EM −1
2 ĝκ∓

√
1
4 ĝ

2κ2 − κ− k̂EM
µ̂0 = l̂k = l̂s = 0

Asymptotic case
1
2

l̂s

l̂2k µ̂
2
0

(
−ĝl̂s ±

√
ĝ2 l̂2s − 4 l̂2kµ̂

2
0

) Same as CF-CF case

n→∞
where i =

√
−1 and κ =

(
n− 1

2

)2
π2

5 Formulation and solution for particular case µ̂0 = l̂s

The partial di�erential equation for θ given in Eq. (33) is well de�ned for µ̂0 = l̂s, and is
given by

−∂
2θ

∂τ2
+ l̂2k

∂4θ

∂ξ2∂τ2
+
∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ
− k̂EMθ+

µ̂2
0

(
∂4θ

∂ξ2∂τ2
− l̂2k

∂6θ

∂ξ4∂τ2
− ∂4θ

∂ξ4
− ĝ ∂5θ

∂ξ4∂τ
+ k̂EM

∂2θ

∂ξ2

)
= 0

(45)

This di�erential equation can be conveniently written as(
1− µ̂2

0

∂2

∂ξ2

)
L (θ) = 0 (46)

where

L (θ) = −∂
2θ

∂τ2
+ l̂2k

∂4θ

∂ξ2∂τ2
+
∂2θ

∂ξ2
+ ĝ

∂3θ

∂ξ2∂τ
− k̂EMθ (47)

However, the expressions for the classical stress and the stress gradient resultants given
in non-dimensional form in Eqs. (36) and (37) are not de�ned when µ̂0 = l̂s. In this case,
using Eqs. (17) and (20), the total stress resultant given by Eq. (35) degenerates to

T̂ =

(
∂θ

∂ξ
+ ĝ

∂2θ

∂ξ∂τ

)
(48)

Consider now the calculation of the higher order stress T̂ (1) when µ̂0 = l̂s. This cannot
be calculated from Eq. (37), because the denominator term µ̂2

0 − l̂2s is zero. To determine
T̂ (1) we have to consider the solution for θ and integrate the non-dimensional form of Eq.
(18) directly. The solution proceeds in the usual way by assuming a separable solution of
the form θ(ξ, τ) = φ(ξ)est, which gives a linear fourth order ODE for φ(ξ). The general
solution is

φ(ξ) = C1e
λ(s)ξ + C2e

−λ(s)ξ + C3e
µ̂0ξ + C4e

−µ̂0ξ (49)

where λ is obtained from

λ2
(
l̂2ks

2 + 1 + ĝs
)
− s2 − k̂EM = 0 (50)
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Table 4: Expressions of the constants of the characteristic polynomial and the corresponding
eigenvalues for the particular case µ̂0 = l̂s.

Case Polynomial constants Eigenvalue solution

a = n2π2lk
2 + 1

CF-CF & FS-FS b = gn2π2 −b±
√
b2 − 4ac

2a
c = n2π2 + kEM

a =
(
n− 1

2

)2
π2l2k + 1

CF-FS b = g
(
n− 1

2

)2
π2 −b±

√
b2 − 4ac

2a
c =

(
n− 1

2

)2
π2 + kEM

The key issue in integrating Eq. (18) is now apparent in the treatment of the e±µ̂0ξ terms.
However the integration is easily performed by introducing ξe±µ̂0ξ terms to give

T̂ (1)(ξ) = (1 + ĝs) µ̂2
0

(
C1e

λξ + C2e
−λξ

λ2 − µ̂2
0

− C3ξe
µ̂0ξ − C4ξe

−µ̂0ξ

2µ̂3
0

)
(51)

This gives the relationship between the Ci coe�cients to implement boundary conditions
for T̂ (1) when µ̂0 = l̂s.

For the three boundary conditions CF-CF, CF-FS and FS-FS, and using the same mode
shapes as in the general case, the eigenvalues s, are the solutions of the quadratic equation
in Eq. (44), where expressions for a, b and c are given in Table 4.

To show the consistency of the solution, Figs. 1 and 2 illustrate the variation of the �rst
three frequencies and damping ratios as a function of ∆µls = l̂s− µ̂0 for CF-CF/FS-FS and
CF-FS boundary conditions, respectively. When µ̂0 is close to l̂s, the solution is computed
based the equation of motion (33). For the particular case where µ̂0 = l̂s, the solution is
computed based on the equation of motion (46) and is shown with the symbol ◦ in Figs. 1
and 2. It is evident from these �gures that the frequency and damping ratio solutions are
continuous and do not show any sign of inconsistency.

6 Numerical solution of the vibration problem

The derivation of the equation of motion resulted in a linear PDE subjected to a combi-
nation of four types of boundary conditions with two applied at each boundary. Due to
the complexity of the problem, a solution of the equation of motion cannot be easily ob-
tained analytically for certain combinations of the boundary conditions. For these cases,
it is preferable to rely on a numerical method such as the Di�erential Quadrature Method
(DQM). To reduce the presence of spurious complex eigenvalues that generally occur in some
DQM implementations, the equation of motion is discretized based on a Locally adaptive
Di�erential Quadrature Method (LaDQM). LaDQM is based on the same DQM matrices,
but uses external additional nodes to apply multiple boundary conditions. This ensures
that all the internal nodes obey the equation of motion. This section brie�y details the
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implementation of the LaDQM based numerical method; Trabelssi et al. [54] give further
details.

LaDQM requires the discretisation of the spatial variable, and here the mesh coordinates
are given by

ξi =



ξ1 − δ (ξ1 − ξ2−i) 1− nL ≤ i < 1

ξn + δ (ξn − ξ2n−i) n+ nR ≥ i > n

1

2
+

tanh
(
ς
(
i−1
n−1 −

1
2

))
2 tanh

(
ς
2

) 1 ≤ i ≤ n

(52)

where n is the number of internal nodes and nR and nL denote, respectively, the number of
external nodes at the right and the left sides and ς represents a bias adjustment parameter.
In the DQM approach the m-th derivative at the nodes is approximated by MmY where
Y is the displacement vector with i-th element Yi = θ(ξi, t), for 1− nL ≤ i ≤ n+ nR. The
matrices, Mm, are given by [55, 56]

[Mm]i,j =



Πξi
(Πξj [∆ξ] i,j)

m = 1, i 6=j

m
{

[M1]i,j [Mm−1]i,i − [Mm−1]i,j
[∆ξ]i,j

}
m > 1, i 6=j

∑n+nR
k=1−nL,k 6=i[Mm]i,k m > 0, i = j

(53)

where [Mm]i,j is the (i, j)-th element of Mm and

[∆ξ] i,j = ξi − ξj , 0 ≤ i, j ≤ n+ 1

Πξi =

n+nR∏
k=1−nL

[∆ξ]i,k, 0 ≤ i ≤ n+ 1 (54)

In addition, M0 is de�ned as the identity matrix of the same order as the rest of the DQM
matrices. The velocity and acceleration vectors are given by Ẏ and Ÿ.

The DQM discretization of the equation of motion, Eq. (33), is given by[
M0 − l̂2kM2 − µ̂2

0

(
M2 − l̂2kM4

)]
Ÿ − ĝ

[
M2 − l̂2sM4

]
Ẏ

−
[(

M2 − l̂2sM4

)
− k̂EM

(
M0 − µ̂2

0M2

)]
Y = 0 (55)

This equation represents a system of n coupled ordinary di�erential equations, where the
basic structure of the mass, sti�ness and damping matrices are clearly de�ned. There are
a total of n + nR + nL equations, and a few of these will be replaced with the boundary
condition equations. Four boundary equations are required for the nanorod system, and
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Table 5: LaDQM mesh convergence for CF-CF case; l̂s = l̂k = 0.4, µ̂0 = 0.08, k̂EM = 1,
ĝ = 0.02.

No. Nodes 19 17 15 13 11 9

ω1 3.1098 3.1098 3.1098 3.1098 3.1098 3.1094
ω2 5.6260 5.6260 5.6260 5.6264 5.6355 5.8296
ω3 7.5298 7.5298 7.5296 7.5280 7.4958 7.7505

ς1 0.0298 0.0298 0.0298 0.0298 0.0298 0.0298
ς2 0.0560 0.0560 0.0560 0.0560 0.0561 0.0581
ς3 0.0752 0.0752 0.0752 0.0752 0.0749 0.0774

take the form

θ|ξb = 0

T̂ |ξb = 0

− − −
∂θ

∂ξ
|ξb = 0

T̂ (1)|ξb = 0 (56)

where ξb = 1 or 0. After rearrangement, the discrete expressions of the above boundary
conditions can be written as

[M0Y]nb
= 0[

µ̂2
0

(
M1 − l̂2kM3

)
Ÿ +

(
M1 − l̂2sM3

)(
Y + ĝẎ

)
+ µ̂2

0k̂EMM1Y
]
nb

= 0

− − −
[M1Y]nb

= 0[
µ̂4

0

(
M2 − l̂2kM4

)
Ÿ +

((
µ̂2

0 − l̂2s
)
M2 − µ̂2

0 l̂
2
sM4

)(
ĝẎ + Y

)
+ µ̂4

0k̂EMM2Y
]
nb

= 0

(57)

where nb = 0, 1, n or n+ 1. The boundary condition of the Dirichlet type should replace the
equation of motion at the corresponding boundary node. The remaining boundary equations
will replace the equation of motion at the external nodes. Once the boundary conditions
have been introduced into Eq. (55) the result is a standard second order di�erential equation
where the mass, damping and sti�ness matrices are clearly identi�ed. For the damped
case the equations should be written in state space form. Standard methods to estimate
the eigenvalues (natural frequency and damping ratio) and the corresponding eigenvectors
(mode shapes) may be employed.

To assess the accuracy of the LaDQM results, a mesh convergence study is conducted on
the nanorod in which high values of the length-scale parameters were employed and several
boundary conditions were tested. Results include the �rst three natural frequencies and
damping ratios. A sample of these results corresponding to CF-CF case are reported in
Table 5 where the number of nodes is varied from 9 to 19. Based on a thorough convergence
study, it is decided that a total of 15 nodes is su�cient to reach the required accuracy using
the LaDQM approach.
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7 Results and discussion

7.1 Validation study

The equation of motion (27) describes a damped free torsional vibration of a nanorod. A
similar equation of motion was obtained by Li et al. [14] for longitudinal vibration of size-
dependent rods via nonlocal strain gradient theory:(

1− µ2
0

∂2

∂x2

)
ρA

∂2u

∂t2
− EA

(
1− l2s

∂2

∂x2

)
∂2u

∂x2
= 0

which is equivalent to Eq. (27) when setting the velocity gradient length-scale parameter
lk, the damping coe�cient g and the sti�ness of the surrounding medium kEM to zero and
noting that ρA ≡ ρJ , EA ≡ GJ and u ≡ θ. Knowing that the non-dimensional natural

frequency ω̂ = ωL
√

ρ
G , performing an analogous normalization of the natural frequencies

obtained by Li et al. [14] gives

ω =
nπ

L

√
E(L2 + lsn2π2)

ρ(L2 + µ2
0n

2π2)
ω̂ = nπ

√
(1 + l̂sn2π2)

(1 + µ̂2
0n

2π2)
CF − CF

(58a)

ω =
(2n− 1)π

2L

√
E(4L2 + ls(2n− 1)2π2)

ρ(4L2 + µ2
0(2n− 1)2π2)

ω̂ =
(2n− 1)π

2

√
(1 + l̂s(

2n−1
2 )2π2)

(1 + µ̂2
0(2n−1

2 )2π2)
CF − FS

(58b)

which are the same the frequencies obtained in this study by solving (44) and using the
appropriate expressions of a, b and c provided in Table 2. This completes the validation of
the obtained results with those of Li et al. [14].

7.2 Comparison between analytical and numerical results

This section presents a comparison between analytical and numerical torsional vibrational
non-dimensional frequencies of a size-dependent viscoelastic nanorod embedded in an elastic
medium. Table 6 summarizes the considered sets of boundary conditions (CF-CF/FS-FS
and CF-FS) and the values of the input parameters for the following three special cases: (i)
NSG damped case where nonlocal and damping e�ects are accounted for; (ii) Local damped
case where nonlocal e�ects are neglected and (iii) Local undamped case where both nonlocal
and damping e�ects are neglected. It is worth noting that the results for both CF-CF and
FS-FS boundary conditions are similar due to their identical characteristic polynomial and,
therefore, the corresponding results are also similar. Non-dimensional values of the length-
scale parameters, sti�ness of elastic medium and damping coe�cient are assumed since the
literature does not provide experimental or veri�ed simulated values. The analytically and
numerically obtained eigenvalues are complex and the damping ratio and natural frequency
are extracted from these eigenvalues.

It is also worth mentioning the importance of choosing the right ranges for the length-
scale parameters. Ideally, the calibration of these parameters can be done either through
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experiments conducted at the nano-scale which is almost impossible or through Molecular
Dynamics (MD) simulations as was done by Ansari et al. [57] and this is also prohibitively
computationally expensive. In the absence of experiments and MD simulations, reasonable
ranges of these length-scale parameters were chosen, as indicated in Table 6. In selecting
the ranges of these parameters, µ̂0 and l̂s are chosen such their e�ect will not cancel out as
they have opposing e�ect and l̂s is in the same range as l̂k.

Table 7 compares the analytical and numerical non-dimensional �rst three natural fre-
quencies (ω1, ω2, ω3) in addition to the asymptotic natural frequency ω∞ where the wave
number n goes to in�nity and the corresponding damping ratios (ζ1, ζ2, ζ3, ζ∞). It is ob-
served that numerical solutions are in good agreement with analytical solutions up to the
second decimal digit for most of the cases in the CF-CF/FS-FS boundary conditions. It
is also noticed that the same trend is followed for the CF-FS boundary conditions. The
asymptotic frequency estimated using LaDQM was obtained by increasing the mesh size
until a frequency convergence is reached, that is when a number of higher modes all have
the same frequency.

Table 6: De�nition of parameters used in Table 7.

CF-CF & FS-FS

Case Description µ̂0 l̂s l̂k ĝ k̂EM
1.1 NSG Damped 0.2 0.05 0.05 0.02 1
1.2 Local Damped 0 0 0 0.02 1
1.3 Local Undamped 0 0 0 0 1

CF-FS

Case Description µ̂0 l̂s l̂k ĝ k̂EM
2.1 NSG Damped 0.2 0.05 0.05 0.02 1
2.2 Local Damped 0 0 0 0.02 1
2.3 Local Undamped 0 0 0 0 1

7.3 Parametric study

This section presents results of the non-dimensional natural frequencies and damping ratios
of the size-dependent viscoelastic torsional nanorod embedded in an elastic medium. In this
parametric study, it was veri�ed that numerical and analytical results show good agreement
for all three cases of boundary conditions and therefore analytical results will be used in all
�gures except otherwise mentioned. The primary objective of this study is to investigate
the e�ect of the length-scale parameters, namely, nonlocal, strain gradient and velocity
gradient parameters denoted, respectively, µ̂0, l̂s and l̂k. In addition, the e�ect of viscoelastic
parameters ĝ, sti�ness coe�cient of elastic medium k̂EM and di�erent boundary conditions
is also examined. After several iterations, it was decided to consider the following values of
the input parameters: µ̂0 = 0, 0.08, ĝ = 0.01, 0.015, 0.02, k̂EM = 0, 2 while l̂s and l̂k were
varied in the interval [0.1, 0.4].
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Table 7: Comparison between analytical and numerical solutions.

Analytical LaDQM

n n
Cases 1 2 3 ∞ 1 2 3 ∞
1.1 ω 2.8376 4.0270 4.5086 5.0000 2.8336 4.0148 4.4929 4.9975

ς 0.0250 0.0380 0.0433 0.0500 0.0249 0.0378 0.0430 0.0499
1.2 ω 3.2969 6.3623 9.4777 3.2968 6.3601 9.4857

ς 0.0299 0.0621 0.0937 0.0299 0.0620 0.0938
1.3 ω 3.2969 6.3623 9.4777 3.2968 6.3602 9.4857

ς 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.1 ω 1.7999 3.5648 4.3193 5.0000 1.8577 3.6432 4.3632 4.9948
ς 0.0125 0.0330 0.0412 0.0500 0.0132 0.0339 0.0417 0.0493

2.2 ω 1.8621 4.8173 7.9174 1.8690 4.8387 7.8946
ς 0.0133 0.0461 0.0779 0.0133 0.0463 0.0777

2.3 ω 1.8621 4.8173 7.9174 1.8690 4.8387 7.8946
ς 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

7.3.1 CF-CF and FS-FS Cases

The analytical results for both CF-CF and FS-FS boundary conditions are similar due to
their identical characteristic polynomial. Figure 3 shows the variation of the non-dimensional
�rst mode frequency and damping ratio for increasing values of l̂s and �xed values of µ̂0, l̂k,
k̂EM and ĝ. The upper four plots indicate an almost linearly increasing trend of the �rst
mode frequency for increasing values of l̂s. The trend for the damping ratio is also similar
and varies linearly, as evident from the lower four plots. It can also be observed that the �rst
mode frequency and damping ratio decrease as the kinetic length scale parameter l̂k increases
for �xed l̂s. In addition, increasing the viscoelastic coe�cient ĝ seems to have no e�ect on
the natural frequency but increases linearly the damping ratio. Furthermore, accounting
for the medium sti�ness k̂EM increases slightly the frequency however slightly decreases the
damping ratio. Moreover, increasing µ̂0 has a tendency to decrease the frequency and to
a lesser extent the damping ratio. The opposite e�ect is observed when increasing l̂s as
mentioned above.

Figures 4 and 5 illustrate, respectively, the e�ect of the variation of the non-dimensional
second and third mode frequencies and damping ratios for increasing values of l̂s and �xed
values of µ̂0, l̂k, k̂EM and ĝ. Similar observations can be made as the �rst mode of vibration.
However, the frequencies and damping ratios curves shift to higher values for the second and
third modes.

7.3.2 CF-FS Case

The analytical results of the torsional vibrational size-dependent viscoelastic nanorod for
CF-FS boundary conditions are presented now. Figures 6, 7 and 8 illustrate, respectively,
the e�ect of the variation of the non-dimensional �rst, second and third mode frequencies
and damping ratios for increasing values of l̂s and �xed values of µ̂0, l̂k, k̂EM and ĝ. The
same remarks made about the CF-CF boundary condition are also valid in this case apart
from a few exceptions. From Figure 6, it can be observed that the variation of frequencies
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and damping ratios curves seem to be small and of about the same amount as compared
to the CF-CF boundary condition. The e�ect of damping ratios curves decrease as the
l̂k value increases and the remaining predictions are the same as the �rst mode with the
CF-CF boundary condition. Moreover, the �rst mode frequency increases signi�cantly and
decreases the damping ratio drastically when accounting for the sti�ness medium k̂EM .

Figure 7 and 8 show similar trends as the second and third modes with the CF-CF
boundary condition. It is also clear that the variation of the frequency curves appears to
be large for increasing values of l̂k whereas the variation of the damping ratio curves seems
to be substantial and decreases as the l̂k value increases for the second and third modes of
vibration.

7.3.3 CS-CS Case

The Clamped Strained-Clamped Strained (CS-CS) con�guration is one of the cases where
an analytical expression of the mode shapes is di�cult to obtain. Thus the results were com-
puted numerically using LaDQM. Based on Eqs. (34a) and (34b), the boundary conditions
for this case are θ = 0 and ∂θ

∂ξ = 0 speci�ed at each of the ends ξ = 0 and ξ = 1.
The results are plotted in Figures 9, 10 and 11 and are similar to the previous cases.

Compared to the CF-CF case the CS-CS case plots show similar trends for both frequencies
and damping ratios especially the hardening and softening e�ect associated with the di�erent
material length scales. However, compared to the CF-CF case, the results show a rise in all
natural frequencies and damping ratios. It is also observed that the impact of foundation
sti�ness is severely reduced even for the �rst mode. Compared to the CF-CF case, the �rst
mode frequency displays a linear like dependency on l̂s and a higher non-linear dependency
on l̂k. Such behavior was observed for higher modes in the CF-CF case.

A shift to higher mode behavior is also observed in the damping ratios plots. The �rst
mode damping ratios show a severe dependence on l̂k and l̂s. However, unlike k̂EM , the
in�uence of the damping coe�cient ĝ is still visible in the �rst three modes.

8 Conclusion

A combined nonlocal strain and velocity gradient theory was used to study the size-dependent
torsional vibration of a viscoelastic nanorod embedded in an elastic medium. Three material
length-scale parameters were incorporated in the model namely nonlocal, strain gradient and
velocity gradient parameters with the capability of modeling both softening and hardening
behavior. The Kelvin�Voigt viscoelastic damping was integrated to account for the vis-
coelastic behavior which added a damping term to the constitutive equation. The equation
of motion and the related boundary conditions were derived using the Hamiltonian principle.
The linear free vibration of the nanorod embedded in an elastic medium was investigated
with a combination of clamped forcing and free strained boundary conditions. Frequencies
and damping ratios were obtained both analytically and numerically using a Locally adap-
tive Di�erential Quadrature Method (LaDQM). Analytical results were obtained for various
length-scales and compared with LaDQM numerical results.

The parametric study investigated the e�ect of the length-scale and viscoelastic param-
eters, medium's sti�ness and di�erent boundary conditions. The main conclusions can be
summarized as follows: (a) the strain gradient and nonlocal parameters ls and µ0 seem to
have opposite e�ects resulting, respectively, in a hardening and softening behavior; (b) the
e�ect of the medium's sti�ness kEM is small and limited mainly to the �rst mode but its

19



  

e�ect might increase if a larger value was used; (c) the e�ect of the damping coe�cient g
is limited to the damping ratios and signi�cantly a�ected by lk and µ0 especially for high
modes and (d) the e�ect of the velocity gradient parameter lk resulted in a space dependent
and thus a mode dependent e�ective mass, thereby, causing a decrease of the frequencies
particularly for high modes.

The case where the strain gradient and nonlocal parameters are equal (ls = µ0) may
seem to result in an inconsistency to the general equation of motion and the related non-
classical boundary conditions. A study of this case was treated thoroughly in this paper
demonstrating that the proposed solution would not show any inconsistency.
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lk=0.02 lk=0.04 lk=0.06

μ0=0.05 μ0=0.1 μ0=0.2

Fig. 1: Variation of the �rst three frequencies and damping ratios as a function of ∆µls =
l̂s−µ̂0 for CF-CF / FS-FS boundary conditions (ie, when µ̂0 is equal or close to l̂s); k̂EM = 1;
Symbol ◦ in the plot is obtained from solution of particular case µ̂0 = l̂s given in Table 2.

lk=0.02 lk=0.04 lk=0.06

μ0=0.05 μ0=0.1 μ0=0.2

Fig. 2: Variation of the �rst three frequencies and damping ratios as a function of ∆µls =
l̂s− µ̂0 for CF-FS boundary conditions (ie, when µ̂0 is equal or close to l̂s); k̂EM = 1; Symbol
◦ in the plot is obtained from solution of particular case µ̂0 = l̂s given in Table 2.
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Fig. 3: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the �rst mode frequency and damping ratio for CF-CF and FS-FS boundary
conditions.
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Fig. 4: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the second mode frequency and damping ratio for CF-CF and FS-FS boundary
conditions.
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Fig. 5: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the third mode frequency and damping ratio for CF-CF and FS-FS boundary
conditions.
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Fig. 6: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the �rst mode frequency and damping ratio for CF-FS boundary conditions.
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Fig. 7: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the second mode frequency and damping ratio for CF-FS boundary conditions.
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Fig. 8: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the third mode frequency and damping ratio for CF-FS boundary conditions.
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Fig. 9: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the �rst mode frequency and damping ratio for CS-CS boundary conditions.
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Fig. 10: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the second mode frequency and damping ratio for CS-CS boundary conditions.
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Fig. 11: E�ect of length-scale parameters, sti�ness of surrounding medium, and damping
coe�cient on the third mode frequency and damping ratio for CS-CS boundary conditions.
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