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Abstract

Surveillance is recognized as a social phenomenon that is commonplace, employed by govern-

ments, companies and communities for a wide variety of reasons. Surveillance is fundamental in

cybersecurity as it provides tools for prevention and detection; it is also a source of controversies

related to privacy and freedom. Building on general studies of surveillance, we identify and analyse

certain concepts that are central to surveillance. To do this we employ formal methods based on

elementary algebra. First, we show that disparate forms of surveillance have a common structure

and can be unified by abstract mathematical concepts. The model shows that (i) finding identities

and (ii) sorting identities into categories are fundamental in conceptualizing surveillance. Secondly,

we develop a formal model that theorizes identity as abstract data that we call identifiers. The

model views identity through the computational lens of the theory of abstract data types. We

examine the ways identifiers depend upon each other; and show that the provenance of identifiers

depends upon translations between systems of identifiers.

Key words: surveillance, social sorting, identity, abstract data types, formal methods

Introduction

Surveillance is an integral part of everyday life as many technologies

employed in our physical and virtual environments have long been

capable of monitoring and recording our activities cf. [1]. The ubiq-

uitous cameras that monitor our physical environment, in order to

improve the safety and security of people and property, are but the

most visible tip of the surveillance iceberg. The invisible bulk is

made of software that record data about actions and events cf. [2].

Our professional lives have long been conducted through software

systems, and recently, our personal lives have become dependent on

software systems through social media. Our home and neighbour-

hood environments are next to succumb to software, through the

internet of things, e.g. [3, 4, 5]. That our lives are being captured

and represented by digital data, collected by many independent

sources for different purposes, is an important sociological phenom-

enon. The translation of all kinds of data into digital form, and the

aggregation and unification of all kinds of data sources through

computer networks are important technological phenomena.

Surveillance is enormously controversial as it impacts on the

multitude of notions that make up privacy and freedom for individu-

als; on the conduct of economic and social life of societies; and on

the legal, political, and military foundations of the state [6, 7]. With

this broad view, David Lyon has given a general description of sur-

veillance as ‘the focused, systematic and routine attention to per-

sonal details for purposes of influence, management, protection

or detection’ [8, 14]. In establishing surveillance as a general

social issue, Lyon has proposed that surveillance has three main

purposes [8]:

i. keeping control, which is the historic purpose pursued by

employers, police, and government;

ii. social sorting, pursued by companies in marketing and manag-

ing customers; and
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iii. mutual monitoring, pursued in peer to peer in social networks,

real and virtual.

Thanks to the ubiquity of digital technologies, the aims and

methods of social sorting — the categorization of personal data — is

becoming most prominent.

In this article, we examine theoretically the general ideas of sur-

veillance and one of its component concepts that of identity. Identity

is fundamental to contemporary surveillance practices [9, 10, 11].

Surveillance technologies rely on identity management systems to

provide information, which vary in accuracy.1 For instance, for

social sorting to work, identity needs to be just precise enough to

enable categorizations to be useful in an application.

We seek completely abstract models that can be formalized and

analysed mathematically. First, we develop a general definition of

surveillance that captures the notion in diverse situations, and we

illustrate the general definition with some disparate examples. This

definition shows that the three main types of surveillance have the

same structures, and that the essence of surveillance is indeed sorting

and categorization. Our analysis applies to entities that are objects

or people, real or virtual, belonging to a specific context.

A most important component idea of our definition of surveil-

lance is that of the identity of the people or objects observed. We

introduce the general concept of identifiers, which are data designed

to recognize an entity. Here is our idea:

Informal Definition. An identifier for an entity is data that is

associated with the entity for the purposes of distinguishing it

among other entities in some context and for some purpose.

Identifiers are the main focus of our paper. As a starting point

for our conceptual analysis, we assume that:

Principle. Entities are recognised only through the data that act

as their identifiers for a context. Entities are observed only

through the data that represent their behaviour in a context.

This hypothesis is widely applicable. First, the surveillance con-

text is determined by selecting aspects of an entity’s behaviour that

can be captured in data, and by observations made by testing for

attributes of the data. Secondly, the identity of an object is reduced

to measurements, and the identity of a person is reduced to forms of

evidence that are also data, including records of personal testimony

and formal registration, as well as biometrics [15, 16, 17]. The idea

is simpler and more palatable when one considers the virtual world,

which creates hugely many more contexts that are, and can only be,

made of data. Users have many identities, some of which they create

in a state of anonymity. The Principle is perfectly at home in the vir-

tual world of cybersecurity.

Technically, the operations and tests on identifiers combine to

make systems of identifiers. Although designed for specific contexts,

they often have unforeseen applications. Since identifiers are data,

clearly the systems of identifiers are actually examples of what com-

puter scientists call abstract data types [18, 19]. The theory of

abstract data types characterizes data through its operations and

tests, which may be specified by axioms to make them close to the

application domain and independent of implementations. The

theory uses algebra to model any form of data, and tools to design

and build software. The idea of a general theory of identity based on

abstract data types is new.

Foremost among identifiers are those that are supposed to iden-

tify people. The notion of a personal identifier proves to be as infor-

mative as it is subtle. To understand identity we need to examine the

ways identifiers are issued and how they depend upon other identi-

fiers. We show that the provenance of identifiers is an essential idea.

We consider principles of how identifiers are to be compared and

when they might be deemed equivalent; this requires notions of

translations between different systems of identifiers.

All of these concepts are motivated by some informally described

examples, and then formalized mathematically using elementary

algebra. The examples of surveillance and identity we use refer to

situations both in everyday life and in cybersecurity. The everyday

examples make the point our concepts apply to traditional forms of

identity and security. The cybersecurity examples give a glimpse of

the abundance of identity issues in securing software systems.

Identity is a central concept in hashing, encryption, communication

protocols, certification, and their roles in the maintaining the trust-

worthiness of transactions, encoding of access controls, tracing

events, forensics, etc. In their mathematical form, the concepts cre-

ate precise and general definitions that cover a great range of

examples.

The article is in two parts: on surveillance and on identity. The

Section ‘What is surveillance?’ exemplifies the central ideas infor-

mally; their formalization begins in the Section ‘A formal model of

surveillance’.

But why formalize? Formalizations make notions precise. They

uncover and classify the possible structures and interpretations of

ideas. Our formalization can be likened to the way formal logic has

long been used in philosophy to clarify the nature of truth, argu-

ments and reasoning. Later, we reflect on the role of abstract con-

cepts and formal methods to give insights in sociological contexts

(the sub-Section ‘Formalizing identity and social theory’).

Our aim is to discover general concepts and principles associated

with surveillance and to analyse them, mapping their inter-

connections and implications by means of mathematical ideas and

structures. Formalization has proved to be a fundamental practical

tool in the development of software. Formal models are needed by

technologists designing surveillance systems and their safeguards, in

order to develop tools for testing and reasoning. Such formal meth-

ods play a role in software engineering where security by design is

an objective. We believe that raising the status of identity and mod-

elling identity using abstract data types will be useful in making and

maintaining cybersecurity software.

The mathematical pre-requisites are modest.2 To address a read-

ership from different disciplines and professions, we explain some

very basic mathematical ideas. While this will seem laborious and

unnecessary to those familiar with formal methods, others may ben-

efit when ideas are shown to arise naturally in thinking about iden-

tity, and appreciate more readily the benefits that formalization

delivers.

What is surveillance?

Let us begin with an abstract informal description of a large class of

surveillance systems.

Informal Definition. A surveillance system observes the behav-

iour of people and objects in a context that may be real or virtual.

1 For example, in the UK, accurate identification of an individual usually

depends on a passport [11], a driver’s licence (DVLA) and, for some, the

National Identity Register [12]. Accuracy increases if identification involves

fingerprints [13], iris scans [14] and DNA [15]; see also [16].

2 The mathematical ideas we use use to launch our models are sets, functions

and relations, which are described in any number of textbooks on discrete

mathematics, e.g. [20, 21]. The theory of abstract data types is more demand-

ing algebraically, e.g. [18].
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The surveillance system classifies behaviours by means of attributes,

and identifies people and objects with those attributes. A surveil-

lance system consists of the following components and methods:

1. Entity. Entities that possess behaviour in space and time.

2. Observable behaviour. Methods for obtaining and recording

data about behaviours.

3. Attribute. Methods for defining and recognizing attributes of

behaviour data.

4. Identity. Methods for generating data that identifies entities in

the context.

In practice, what is observable about the behaviour are the

attributes of data; these characterize the context for the surveillance.

Depending upon the context, we may expect the attributes to be

based upon laws, rules, norms, conventions, policies, practices,

expectations, etc. Indeed, when the purpose of surveillance is con-

trol, they may seek to catch deviations. The definition is neutral and

does not imply deviance. The definition does require precise formu-

lations of attributes for a process of categorization. The data that is

used to identify entities can be numbers, texts, sounds and images.

Here are three simple examples to prepare for our abstract

formalizations.

Example 1: Control Motor — Vehicles. Automatic Number

Plate Recognition (ANPR) is a technology that observes vehicles and

records registration marks. Typical applications are checking on

vehicle speed, managing car parking and collecting tolls, cf. [22].

The technology was functioning in the late 1970s. Today, ANPR is

a component of hundreds of thousands of surveillance systems

owned by both public and private organizations.

Consider some ANPR applications in terms of our abstract defi-

nition. In such surveillance systems, the entities are vehicles at a par-

ticular location and time. The vehicles may be in motion (as with

speed checks), or may be arriving or leaving a location (as with car

parking and congestion zones in cities). The vehicles are observed by

cameras that create images and the software that processes the

images varies according to the behavioural attributes under observa-

tion (e.g. breaking an average speed limit over a stretch of road, or

overstaying a parking time limit). In particular, optical character

recognition establishes the registration mark of vehicles. A registra-

tion mark is an alpha-numeric name that identifies a vehicle

uniquely in a human-centred way in a national register of vehicles.

The mark links to information about the characteristics of the

vehicle. Thus, to the surveillance system, the identity of an entity is

this registration mark. For example, a surveillance system for car

parking based on an ANPR has the form:

Entity: Cars

Observable Behaviour: The registration mark, its time of arrival

and departure at the location

Attributes: Duration of stay above a particular limit

Identity: Registration marks

Following the ANPR stages described above, the registration mark

is communicated to a database relevant to the application. For exam-

ple, the database may be used to check an attribute, such as a payment

(tax, charge or toll), having been made for that registration mark.

The surveillance system knows the identity of the car, but not

necessarily the driver.

Suppose we take the entities to be people. To find the driver, an

independent process involving only personal identities begins. The

vehicle is registered to a person called the keeper of the vehicle, who

must be located and contacted. In the UK, the operator of the

surveillance system communicates the registration mark to the

Driver and Vehicle Licensing Agency (DVLA), or to one of its

approved agents, to determine the name and address of the keeper.

The output of these actions is the identity of the keeper. Indeed, in

this necessary second stage, there is a transformation of identity

data from the registration mark to the name and address of the

keeper. Note that finding the actual driver may require further inde-

pendent action. In the case of speeding, where laws are involved, the

driver’s record will contain characteristics such as a driving penalty

history.

Example 2: Social Sorting — Customer Accounts. Consider a cli-

ent’s e-account with some provider, such as a bank or shop.

Typically, an account has the following components: an account

number that identifies the account; a user name and password as a

form of identity used to gain access to the account; a set of charac-

teristics of the account, such as personal details and the scope and

limits of services; and an account history that records past transac-

tions and allows for new transactions, queries, preferences, etc. The

account history is the behaviour of the account; it is observed to

check that terms and conditions are met by the client, or that no

unusual pattern of transactions has been carried out, or to generate

suggestions for new products and services. Observations might also

include standard monitoring data about user logins and login

attempts, duration, location, etc. For example:

Entities: Credit card accounts

Observable Behaviour: Transactions: date, payee, location, sum,

etc.

Attributes: Credit limit, minimum payments, unusual

transactions

Identity: Credit card number

Example 3: Mutual Monitoring — Social Media Accounts.

Social media connect people who have personal or professional

interests in common. Systems such as Facebook, Twitter, WeChat,

Instagram, LinkedIn, and Academia.edu attract large numbers of

users. Individuals register with a system and create an account and a

network of other users to suit their needs. Abstractly, an account

has a structure similar to that of a customer account for a bank or

shop. The behaviour of the account is a history of postings, status

updates, linkages and interactions. In social networking, individuals

voluntarily reveal very detailed information about themselves to

their networks, including their personal history, tastes, opinions and

activities; the behaviours could be termed personas. From the point

of view of surveillance, two phenomena are of interest: (i) individu-

als can and do watch over people in their networks, and (ii) the data

of the account holders belong to companies that can collect and use

the information for commercial or other purposes. Illustrating the

components:

Entities: Member accounts

Observable Behaviour: Personal declarations, posts, comments,

connections, location, etc.

Attributes: Targeted opinions in posts on specific topics, interac-

tions with other members, unusual interactions

Identity: Usernames

A formal model of surveillance

We have defined surveillance informally as a process that identifies

entities on detecting certain properties of their behaviour. We will

define this process formally.
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Context: entities and their behaviour
Let Entity be a set of entities whose behaviour is to be observed. Let

Behaviour be the set of all possible behaviours in space and time of

all the entities of Entity. The nature of behaviour and its models we

consider in stages.

Deterministic Behaviour. Suppose that each entity e 2 Entity has

one and only one behaviour in space and time, i.e. its behaviour is

deterministic. In this case, there is a single-valued mapping

[[_]]: Entity! Behaviour

such that

[[e]] ¼ the behaviour of the entity e 2 Entity.

The mapping provides a formal model or semantics for the behav-

iour of the entity. Taken together we have formalized a context for

the surveillance as an algebraic structure:

Context¼ (Entity, Behaviour j [[_]]: Entity! Behaviour).

Non-deterministic Behaviour. Suppose that each entity has more

than one possible behaviour in space and time, i.e. its behaviour is

non-deterministic. In this case, there is a relation

[[_]]: Entity � Behaviour

such that

[[e, b]] () b 2 Behaviour is a possible behaviour of the entity

e 2 Entity.

The context for the surveillance is a relational structure

Context¼ (Entity, Behaviour j [[_]]: Entity � Behaviour).

Alternately, in the non-deterministic case, if the elements of

Behaviour are sets of possible behaviours of an entity, the relation

can be replaced with a map returning sets.

We will focus on the deterministic case. The behaviours need to

be modelled formally. How might this be done? There are several

options.

Behaviour as streams of data
A way to formalize behaviours is to think of entities performing a

sequence of actions or events taking place in time.

Let Time be a set of time points generated by a clock of some

kind; for example, say Time¼ {0, 1, 2, . . ., t, . . .}. Let Action be a set

of actions or events characteristic of the entities. The behaviour of

an entity is conceived of as a stream

a(0), a(1), a(2), . . ., a(t), . . .

of actions or events in time, where a(t) 2 Action for all t 2 Time.

Such sequences will be termed traces:

Definition. A trace is an association of actions or events to time

points and is formalized by a total mapping

a: Time! Action

such that for all t 2 Time

a(t) ¼ the action or event taking place at time t 2 Time.

Let Trace be the set of all possible traces.

Now in many cases, the space Behaviour of all possible behav-

iours of the entities can be taken to be a subset of the set Trace of all

possible traces; thus,

Behaviour � Trace.

When applying the behaviour mapping [[_]] to an entity e 2
Entity we get a trace, which is a map

[[e]]: Time! Action.

Therefore, for e 2 Entity and t 2 Time, we have

[[e]](t) ¼ the action or event of entity e taking place at time

t 2 Time.

Example: Twitter. Twitter processes data called tweets. At the

heart of a tweet is a message made from at most 140 characters, but

a tweet is composed of more data. For simplicity, a tweet can be

thought of as a vector of data drawn from sets of the following kind:

Text The text that is the status update.3

Identity A string that uniquely labels the tweet.

Contributor The author(s) of the tweet.

Time The time when this Tweet was created.4

Location The geographic location (longitude, latitude) of

this Tweet as reported by the user or application.5

Retweet Status and number of retweets.

Favourite Number of favourites.

We let the set of all possible tweets be

Tweet ¼ Text � Identity � Contributor � Time � Location �
Retweet � Favourite.

Now Twitter generates and processes streams of tweets, i.e.

sequences of tweets indexed by time. Thus, the behaviour can be

modelled by traces that are streams of tweets of the form

a(0), a(1), a(2), . . ., a(t), . . . 2 Tweet,

which is represented by a map a: Time ! Tweet. Let Behaviour be

the set of all possible traces of these kinds. Typical user operations

on tweets are ‘embedding tweets’, ‘responding to tweets’, and

‘favouring’, ‘unfavouring’, and ‘deleting tweets’, which induce oper-

ations on traces.

Depending upon the circumstances, monitoring tweet feeds is

called ‘curation’, ‘filtering’, or ‘surveillance’. Monitoring Twitter

can be done in a number of ways via application programming inter-

faces (APIs), which define instructions for developers to build new

systems. Twitter’s Search API allows users to define criteria (key-

words, usernames, locations, named places, etc.) to search among

existing tweets. Twitter’s Streaming API redirects a sample of

tweets, based upon a user’s criteria, as these tweets appear. The sam-

ple is less than 1% [23]. Twitter’s Firehose API delivers 100% of all

publicly available tweets that match users’ criteria as they are made.

The Twitter Firehose is complex and requires a subscription.

Twitter’s monitoring services have tools to detect non-compliance

with Twitter policies (e.g. aggressive following and unfollowing).

Identity: identifying entities
To identify entities in a context whose behaviours have certain prop-

erties, the entities need to be labelled, marked or named in some

3 Using the UTF-8 representation for Unicode.

4 Measured by Coordinated Universal Time (UTC).

5 Using the geoJSON standard.
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way. Our notion of identifier, defined in the Introduction, is

designed to do just this. 6

Each entity e 2 Entity has an identifier that is used to denote the

entity in a context. The association of identifiers with entities can be

complicated as we will see shortly. In order to formalize surveil-

lance, we must formalize the assignment of identifiers to entities.

Definition. Let Identifier be a set of possible identifiers for the

entities of Entity. There is a relation

id � Identifier � Entity

such that

id(i, e) () the data i 2 Identifier is assigned to entity e 2 E.

If id(i, e) then we say that identifier i names entity e. Let anon be

a datum that is not in the set Identifier of identifiers for the entities;

anon indicates anonymity, i.e., an entity not named. We will need

the set Identifier [ {anon}.

We will develop the notion of identifiers in the second part of the

article (the Section ‘What is identity’? onwards). Here, let us note

that since the association of identifiers to entities is a relation, thus

many identifiers can be allocated to an entity and, conversely, many

entities can have the same identifier. Later, in the Section ‘A formal

model of identity?’, we will simplify the discussion, focussing on the

case that the association is a function id: Identifier! Entity.

Surveillance: detecting attributes
The elements of Behaviour formalize the activity of the entities

under surveillance. To formalize what it is we are to detect, we sup-

pose that Prop¼Prop1, . . ., Propk is a collection of sets of behav-

iours, i.e. for 1 � i � k,

Propi � Behaviour.

The entities of interest are those whose behaviours lie in some

Propi; in symbols,

Entity(Propi)¼ {e 2 Entity: [[e]]2 Propi}.

General Case. Entities in a context are known by their identi-

fiers. Formulations of surveillance can seek for any entity e satisfying

a Propi,

i. at least one identifier i for e;

ii. a subset of the identifiers of e; or

iii. all of the identifiers of e.

These options have the form of a selection or choice operation

selectid: Entity! P(Identifier)

where P(Identifier) is the set of all subsets of Identifier, and

selectid(e) � {i 2 Identifier j id(i, e)}.

Definition. Surveillance is formulated as follows: for 1 � i � k

define,

Surv(Propi): Entity! P(Identifier)

for e 2 Entity by

Surv(Propi)(e)¼ selectid(e) if [[e]]2 Propi

¼1 if [[e]]62 Propi.

Note that entities whose behaviours do not lie in Propi are

mapped to the empty set 1, and are ignored and not identified, i.e.

they will remain anonymous.

Definition. An entity e in a context is anonymous under surveil-

lance with attributes Surv(Prop) if Surv(Propi)(e)¼1 for 1 � i � k.

Minimal Case. Consider surveillance that seeks just one identi-

fier for any entity whose behaviour satisfies some Propi. This view

of surveillance is reformulated thus:

Definition. Surveillance is defined as follows: for 1 � i � k

define,

Surv(Propi): Entity! Identifier [ {anon}

for e 2 Entity by

Surv(Propi)(e)¼ (some i) id(i, e) if [[e]]2 Propi

¼ anon if [[e]] 62 Propi.

Thus, given the collection Prop¼Prop1, . . ., Propk of properties,

surveillance is specified by a collection of functions: for 1 � i � k,

Surv(Propi): Entity! Identifier [ {anon}.

If convenient, these may be combined as a k-tuple,

Surv(Prop): Entity! (Identifier [ {anon})k

where

Surv(Prop)(e)¼ (Surv(Prop1)(e), . . ., Surv(Propk)(e)).

Combining these ideas, we define formally a very general notion

of a surveillance system.

Definition. A surveillance system for entities in a context is a

structure of the form

SurvSys(Prop)¼ (Entity, Identifier [ {anon}, Behaviour j anon,

id, [[_]], Propi, Surv(Propi) 1 � i � k),

consisting of the non-empty sets

Entity, Identifier, Behaviour,

the constant

anon,

and the kþ1 relations

id � Identifier � Entity,

Propi,

and the kþ1 mappings

[[_]]: Entity! Behaviour

Surv(Propi): Entity! Identifier [ {anon}

for 1 � i � k.

The definition expresses a minimal general form of a surveillance

system as an algebraic structure, which is a semantic model of an

abstract data type [18]. The theory of abstract data types was cre-

ated to model the essential components of any computing system in

a precise way. Thus, designers can use algebraic methods when

thinking formally about the processes of user specification and sub-

sequent technological implementation [25]. Of course, any actual

surveillance system will involve many technologies to obtain and

6 In computing, the term ‘identifier’ is well established. It is data made of syntax

that names or labels a computational entity; commonly, it is an alphanumeric

string that defines components in a programming language, such as variables,

operators, procedures, programs etc. Our adoption of the word for data

associated with a context is essentially a large-scale generalization. The pur-

pose of the notion is close to that of the idea of a pure name in [24]. The term

is in use occasionally in some social discussions of identity.
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process data. These technologies may suggest some new abstract

components that need to be formalized and understood theoreti-

cally. Roughly speaking, system design has the following form:

Design Problem. The essence of the design problem is:

1. Specification. To define the desired surveillance system by speci-

fying an abstract data type for SurvSys(Prop).

2. Implementation. To choose technologies to generate data to

a. represent the behaviours of the entities;

b. represent the identities of the entities;

c. observe behaviours and detect those behaviours having the

attributes in Prop;

d. recognize the identity of entities having the properties in

Prop.

Surveillance and social sorting

In surveillance studies, social sorting is the categorization of people

and results in a classification used to treat people differently [26].

Although originally formulated to understand the social impact of

surveillance by companies and institutions, our formal definition

shows that sorting is essential to the abstract conception of surveil-

lance and, therefore, that sorting is inherent in the surveillance of

entities of all kinds. We will formalize the sorting of entities using

simple notions of categorization and partition; however, sorting can

be problematic because the sorting of identifiers is more complex

than the sorting of entities.

Sorting entities
In our definition of surveillance the collection Prop of properties of

entities lead to a categorization of entities that can be treated differ-

ently. What is a categorization?

Definition. Let Entity be a set of entities. A categorization of

entities is a collection of subsets

S1, S2, . . ., Sk � Entity

that include all the entities, i.e.

S1 [ S2 [ . . . [ Sk ¼ Entity.

An entity e lies in at least one of the sets and possibly several. In

this loose idea, we may have categories overlapping and having

interesting internal structure, e.g. they may be nested and form a

hierarchy under the set inclusion ordering. Commonly, and most

simply, we may want the sets not to overlap so that an entity e lies

in one, and only one, of the sets:

Definition. The categorization is a partition if for 1 �n, m� k,

we have Sn\Sm¼1.

Sorting identifiers
Surveillance observes data about behaviours of entities — not

entities — and recognizes only identifiers for entities — not the enti-

ties themselves. Thus, surveillance delivers a categorization of identi-

fiers, not a categorization of entities, which makes the notion subtle.

Definition. Let Identifier be a set of identifiers. A categorization

of identifiers is a collection of subsets

S1, S2, . . ., Sk � Identifier

that includes all the identifiers, i.e.

S1 [ S2 [ . . . [Sk ¼ Identifier.

Again, an identifier i lies in at least one of the sets and possibly

several. A categorization of identifiers is less likely to be a partition.

However, the structure must also be measured against the entities

that the identifiers name. Given an entity e there can be identifiers i

and j for e that lie in different sets. This means that the categoriza-

tion of identifiers does not lead directly to a neat categorization of

entities. Distinctions between different identifiers for the same entity

may be ambiguities that are meaningful. For example, data integra-

tion combines sets of identifiers from different contexts that share

the same entities. Categorizations of identifiers arise in many ways,

not least by the analysis of data sets using clustering and classifica-

tion techniques in machine learning [27]. Ideally, our categorization

of identifiers can be transformed into one that corresponds with the

entities:

Definition. The categorization S1, S2, . . ., Sk of identifiers is com-

plete for the entities if for all i, j 2 Identifier, and any 1 � n � k,

if i 2 Sn and i and j name the same entity then j 2 Sn

Our definition of surveillance delivers a categorisation of identifiers,

namely:

Sn ¼ image(Surv(Propn)) – {anon}.

To make a complete categorization is a process that depends

upon knowledge of the equality of identifiers for entities (see the

sub-Section ‘Generating identifiers’). We now turn to theorizing

identity.

What is identity?

Identity has become almost purely a matter of data. People and

objects are named, numbered, labelled or otherwise denoted by data

relevant to a context. People belong to many contexts: they can be

citizens, patients, drivers, voters, employees, customers, crime sus-

pects, etc., each with different identities managed by different kinds

of identity management systems. Physical or virtual, each identity

system is based on an abstract data type of some kind.

To distinguish between entities in a context, identifiers need not

reflect any aspect of the entity or have any meaning at all, however

in practice they are loaded with information. Case studies reveal

that the following processes are fundamental:

i. creation and re-creation of identifiers;

ii. comparison of identifiers;

iii. inter-dependence of identifiers;

iv. transformation of identifiers;

v. revocation of identifiers.

Identifiers are composite objects: identifiers are commonly built

from other identifiers.

Personal identifiers are those that we rely upon to distinguish

uniquely a human being. They are guarantees of peoples’ identities

in contexts that demand physical identity. In the UK, the basic, most

rigorous personal identifiers are associated with birth, marriage and

death certificates, passports, medical and dental records, driving

licenses, National Insurance (NI) records, tax records, etc. Biometric

data — such as photographs, fingerprints, iris scans, blood groups,

and DNA — are also involved. Biometric data are physical measure-

ments, but they are represented and processed digitally.

In this section, we examine informally some concepts, principles,

and examples of identity prior to providing a formal definition and

the outline of a theory in the next sections.
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Recall from the Introduction that identifiers can be ‘any data

intended to separate entities in a context’. What is this data? For

example, a name for an entity is an identifier. By a name for an

entity we commonly mean data made from symbols. In computing

systems, there are many syntactic schemes for naming hardware and

software entities using alphanumeric strings; usually, the aim is to

make a symbolic identifier unique to the entity in a context.

The relationship between entities and identifiers can be compli-

cated. Consider these four identifier-entity ratios:

1. Many–One Associations. Each identifier is assigned to one

entity, but different identifiers can be assigned to the same

entity.

2. One–One Associations. Different identifiers are assigned to dif-

ferent entities.

3. One–Many Associations. An identifier can be assigned to more

than one entity but each entity has only one identifier.

4. Many–Many Associations. An identifier is assigned to more

than one entity and, vice versa, an entity can be assigned more

than one identifier.

Surveillance returns identifiers that can narrow the search for

entities but may not pin down the particular entity of interest.

Searches take place on identifiers and, as we have noted, that an

identifier can easily point to many distinct entities. Thus, many-to-

one associations are important because:

Search Principle. If an association is many-one then to find an

entity, we can search for any one of a set of alternate identifiers

for that entity. If an association is one-one then there is one and

only one identifier for that entity.

The following point about narrowing the search for identifiers is

obvious but certainly is profoundly important practically:

Enumeration Principle. The addition of a number, reference

code, extension tag, time stamp, or hash code may turn a many-

one association into a one-one association.

The use of numbers to uniquely distinguish entities in a context

is old and universal, helping to determine uniquely all sorts of enti-

ties, such as people (by membership numbers); invoices, orders and

payments (by reference numbers); and consumer products (by serial

and barcode numbers). Reference codes do the same using alphanu-

merical strings. The use of extension tags often structures identifiers

as paths in a tree and, like time stamps, separate entities, narrow

searches, and can isolate entities uniquely. Hashing produces long

binary or hex numbers as code for an identifier.

Example 1: Cars. Recall Example 1 in the Section ‘What is sur-

veillance?’, which illustrates one-one and many-one associations. In

the UK, each car is assigned a registration mark; the current system

was introduced on 1 September 2001. In general, each registration

mark consists of seven characters with a defined format. From left

to right, the characters consist of: (i) a local memory tag or area

code, consisting of two letters that indicates the local registration

office; (ii) a two-digit age identifier, which changes twice a year, in

March and September; and (iii) a three-letter sequence which

uniquely distinguishes each of the cars displaying the same initial

four-character area and age sequence. The association of registra-

tion marks to cars is one-one at any time. However, with permission

of the DVLA, registration marks can be transferred from one vehicle

to another. Thus, the marks are unique identifiers that are time-

dependent; they are not permanent unique identifiers for the

vehicles. There are identifiers for vehicles that are permanent: in the

UK, the vehicle identification number (VIN) consists of 17 charac-

ters that identify the manufacturer (three characters), the type of

vehicle (six characters), and finally distinguishes each of the cars

with these characteristics (eight characters). The VINs obey some

international standards.

A car has one and only one registered keeper. The registered

keeper is the person who is legally responsible for the car, and need

not to be the owner of the vehicle. One purpose of the mark is to

identify the keeper: thus, the association of a registration mark to a

keeper is unique. However, a person can be a registered keeper of as

many cars as he/she wants. Thus, the association of registration

marks to keepers is many-one. The registration document (V5) for a

car identifies the car by registration mark and VIN, and its keeper.

Many people have insurance policies that enable them to drive

any car with the owner’s permission. Thus, the driver of a car on a

particular occasion may be only loosely connected to the keeper.

The association between registration marks and drivers is compli-

cated being one-many and time dependent, and incomplete in terms

of formal documentation.

Example 2: Communications. This example demonstrates both

many-one and many-many associations. When connecting a com-

puter to the Internet, a number is needed called an Internet Protocol

(IP) address that uniquely identifies the machine in the network; this

number is 32 bits under Internet Protocol Version 4.7 In some com-

puter networks, such as networks local to an organization or com-

pany, there is an IP address for the machine that does not change;

these are called static IP addresses. In this context, the association of

computers to IP addresses is one-one. More commonly, at home, IP

addresses are generated by an Internet Service Provider in response

to a customer’s need for Internet access. Thus, over time IP addresses

can change and the association of IP addresses to a particular com-

puter is many-one. Developing this example, if more than one com-

puter is accessing the Internet at the same time in a period, from the

same service, then the association between IP addresses and com-

puters is many-many. The changing status seems to be natural in

time-dependent associations of identifiers. However, each computer

does have an identifier, called its MAC address (48 bits under IEEE

802), that identifies the device uniquely throughout its life. So, the

association is one-one and time independent.

Example 3: Addresses. This example demonstrates a one-many

association. In the UK, between 1959 and 1974, a system of postal

codes was introduced to enable the automation of postal services.

Typically, each address or location is assigned at most one postcode

but a postcode can be assigned to more than one unit or building.

The association between postcodes and buildings/addresses is one-

many. Thus, postcodes are a system of identifiers that do not

uniquely determine addresses. Local authorities determine

addresses. Postcodes have found many uses and are used routinely in

commercial transactions, navigation, and, more significantly, in cal-

culating insurance, designing social policy and funding, and aca-

demic social studies — all of which are examples of social sorting.

For any system of identifiers for entities in a context, the ques-

tions arise:

Identifier Generation. How does the system create and delete

identifiers for entities?

7 In the Internet of Things, processors are embedded in products and places of

all kinds. Thus, there is a need for many more IP addresses, prompting an

upgrade of standards from Internet Protocol Version 4 to Internet Protocol

Version 6 [28].
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Identifier Authentication. Given two identifiers, how do we

decide whether or not they are associated with the same entity?

Entity Authentication. Given an entity and identifier, how do we

verify whether or not the identifier is associated with the entity?

Entity authentication is stronger than identifier authentication.

The notion is attractive but not subtle for what does it mean to be

‘given an entity’? In much theory and practice, the entity is actually

‘given’ by means of another identifier. We examine the relationship

between identifiers in the Section ‘Comparing identifiers’.

Example 4: Physical Verification of Entities. A biometric is an

identifier that is designed to be verified by means of a physical proc-

ess of identity authentication. The physical process involves instru-

ments that make measurements, which are processed by software,

and whose specifications involve probability theory. Questions arise

about accuracy, equivalence across authenticating equipment, soft-

ware portability, and, indeed, the probabilistic assumptions.

However, the intention is clear: through biometrics, physical reality

verifies personal identity.

A formal model of identity

We now consider formally the idea of a system of identifiers for the

entities under observation. There are three aspects arising from our

discussion of examples: assigning identifiers, comparing identifiers

and basic personal identifiers. We will continue to use the formal

notations introduced earlier in our formal definition of surveillance

in the sub-Section ‘Identity: identifying entities’.

Assigning identifiers
Definition. Let Identifiers be a non-empty set of identifiers and

Entity a non-empty set of entities. Suppose that identifiers have been

assigned to entities by means of a relation

id � Identifier � Entity

such that

id(i, e) () the data i 2 I, called an identifier, is assigned to

entity e 2 E.

We define the set of entities named by identifier i by

ent(i)¼ {e 2 Entity j id(i, e)}

and the set of all identifiers naming entity e by

id(e)¼ {i 2 Identifier j id(i, e)}.

These sets are projections of the relation id.

The maps ent(i) and id(e) are needed to formalize the types of

association in the Section ‘What is identity?’. This idea is our most

general definition:

Definition. A system of identifiers is a structure,

IdSys¼ (Identifier, Entity j id � Identifier � Entity).

Example 1: Post Codes and Passwords. Recall Example 3 in the

Section ‘What is identity?’: a postcode can be assigned to more than

one building so the association is a one–many relation postcode:

Postcode�Address. Similarly, accounts are assigned one password,

but passwords can be common to different accounts (e.g. proper

names, birthdays, etc.). The association is a one–many relation pass-

word: Password�Username.

Examples suggest that the following special case is most

important.

Definition. A system of identifiers IdSys is said to satisfy the

many-one property if each identifier is assigned to one and only one

entity but an entity may have more than one identifier. In this case,

the relation becomes a single-valued mapping

id: Identifier! Entity

such that

id(i) ¼ the entity e 2 Entity named by the data i 2 Identifier.

The structure becomes an algebra:

IdSys¼ (Identifier, Entity j id: Identifier! Entity).

Recalling the Search and Enumeration Principles in the Section

‘What is identity?’, we will focus on systems having this many-one

property. Since the purpose of the identifiers is to recognise the enti-

ties that we are interested in, the following equivalence relation on

Identifier is basic:

Definition. For any i1 and i2 2 Identifier, we say that they are

entity-equivalent if they are associated with the same entity: in

symbols,

i1 �en i2 if, and only if, id(i1) ¼ id(i2).

The identifier captures and narrows down detection of entities.

Thus, we can strengthen the system of identifiers if we can satisfy

this condition:

Definition. A system of identifiers IdSys is said to satisfy the one-

to-one property if the map id satisfies: for any i1 and i2 2 Identifier,

if id(i1) ¼ id(i2) then i1 ¼ i2.

The map id is one-to-one or injective, and entity-equivalence �en

is¼.

Example 2: Cars. Recalling Example 1 in the Section ‘What is

identity?’, the association of registration marks to cars is one–one.

Generating identifiers
How are identifiers generated for a set of entities in practice? First,

some input data is presented to the system that has to be examined

and approved according to some set of rules.

Definition. Let the initial data presented to a system in order to

create an identifier be called a form. Let Form be the set of all possi-

ble forms for the system. The creation of an identifier is a mapping

of the type:

generate: Form! Identifier.

A form f 2 Form is the background data needed to create the

identifier generate(f).

We can refine this idea by separating the processing of the data

from the release of the identifier. Let the processing of the form be

represented by a function

check: Forms! {0, 1}

that tests the data in a form f 2 Form for consistency against the sys-

tem’s rules. We assume that check(f)¼1 means the form is accepted

and check(f)¼0 means the form is rejected.

We represent the next stage — if and when an identifier is to be

issued — by a function

issue: Forms! Identifier

which uses some or all of the data in f 2 Form to make an identifier.

The two stages are represented by composing the functions to

make the new function
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generate: Forms! Identifier [ {reject}

where

generate(f) ¼ if check(f)¼1 then issue (f) else reject.

The idea of the form is seen in the familiar procedures of enrol-

ment and registration required when applying to join organizations,

schemes and services etc.

Personal identity

Of greatest interest is surveillance in which the entities are people.

A fundamental problem is how identifiers can actually identify a specific

individual. An individual’s identity involves many characteristics —

social, biographical, psychological and biometric — all of which can be

presented digitally. A person identifier is very special data as it is funda-

mental to theories of trust, privacy and surveillance. Consider some

examples of assigning data to individuals.

Examples
Example 1: Biometrics. Biometric identifiers are measurable qual-

ities that can be used to describe and label the physical characteris-

tics of individuals and enable the automatic recognition of people.

Physiological and behavioural characteristics are related to the

body, and there are many: some 9 leading biometrics, and a further

17 biometrics under development, are discussed in [16]. All of these

physical measurements end up in software. The association of a bio-

metric to people is expected to be highly reliable because it is

expected to be one-one. Biometric digital technologies emerged in

the 1960s with automatic fingerprint recognition [29, 30] – perhaps,

the best understood automatic process [31].

The operational tests used to measure biometrics are of course,

approximate, due to technical constraints, error margins and costs.

Thus, that biometric data manifests a one–one identity association is

a matter of probability, especially high probability. Increasingly

accurate measurements are desirable or necessary. Although identi-

cal twins share very similar DNA, they are not identical [32]. The

environment affects the genetics, possibly even in the womb. But the

complexity of testing is considerable and is a research area [33].

Recently, public attention was drawn to these points when identical

twins were identified by DNA evidence as suspects in a series of sex-

ual assaults, in Marseille, France, and soon after in Reading,

England. In the case of Marseille, after 10 months incarceration, one

of the twins confessed [34]; in the case of Reading, mobile phone

evidence revealed the offender [35]. At the time advanced DNA tests

were not applied to separate the twins.

Example 2: Citizenship. In the UK, for example, an individual

can or must register with state organizations devoted to health,

employment, citizenship, and transport, and with local government

organizations devoted to residence and elections. Everyone regis-

tered with the National Health Service has his/her unique number,

which is linked to his/her health record. Each NHS number is made

up of 10 alpha-numerics. Everyone gets a National Insurance (NI)

number just before he/she turns 16. An individual’s NI number

makes sure his/her NI contributions and taxes are only recorded

against her/her name. The format of the number is two prefix letters,

six digits, and one suffix letter. In the new style red passport, in

addition to the biometrics, there is a passport number that must be

nine characters and all characters must be numeric. Finally, each

driving licence has a number made up of 18 alpha-numerics, which

codes part or all of (i) the surname; (ii) the date of birth; (iii) the first

names; (iv) sex; (v) licence issue; and (vi) checks. In these cases of

registration, numbers are added to identifiers in order to ensure that

each of these associations is one–one. The ways in which the British

state knows its citizens is complicated; plans in 2006 for (re-)intro-

ducing a national identity register were abandoned in 2011 [36, 37].

Formal personal identifiers
We have emphasized how systems of identity are designed to sepa-

rate entities in contexts, how they are established with widely vary-

ing standards of rigour, and that they are combined and compared

in all sorts of unanticipated ways. The fundamental personal identi-

fiers mentioned in the sub-Section ‘Examples’ are much used

because they carry weight: with the authority of the state, people are

identified in basic contexts for citizenship, employment, tax and

health.

Definition. A personal identity system has the form

PIdSys¼ (Identifier, Person j pid: Identifier! Person)

and satisfies the uniqueness property, namely two different people

are assigned different data and the function pid is one–one.

In practice, the data assigned to a person invariably includes a

number or alpha-numeric code precisely in order to enforce the

uniqueness property. All systems of identity need to be analysed by

studying comparisons that involve mapping between different sys-

tems of identity, but this is especially true of personal identity

systems.

Provenance of identifiers

Generating identifiers using other identifiers
Creating identifiers is an everyday occurrence: we open accounts,

register for services, buy products, etc. For many of these actions,

we rely on a handful of pre-existing identifiers. In the UK, to open a

bank account, we give a proof of our identity and our current

address, e.g. using a passport and a recent utility bill. To order a

product or service, an address and a credit card account number are

usually sufficient for the vendor to dispatch: notice the dependency

on the bank identifier. At face value, the quality of a bank identifier

is guaranteed by the databases of the state (passport, driver’s licence)

and local organizations (utility providers, local authorities). The

passport provides a high quality identifier based on a birth certifi-

cate, a photograph and possibly other biometric data. Example after

example, illustrates the general point that:

Principle. The creation of new identifiers is dependent upon pre-

existing identifiers.

The quality of an identifier is essentially a matter of its reliability,

which in turn depends on

i. its provenance, i.e. the process involved in establishing the iden-

tifier; and

ii. scope, i.e. the context(s) in which it is accepted.

In the case of people, a passport and a driving licence are stand-

ard examples of high-quality identifiers with a rigorous provenance

and wide application [38, 39]. In the case of a bank, where it is a

now a priority to check on identity of existing customers, the process

of identification can be clumsy and discriminatory, as women can

experience when using both their maiden name (in their profession)

and married name (in their personal life), which are often not linked

rigorously in practical ways.

The dependence of one identifier upon another may be illus-

trated in an identity dependence tree.
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Example 1: Bank Account. Consider the role of identifiers in

opening a bank account (in the UK), which is depicted in Fig. 1.

Establishing the identifier ID1 of the account holder involves provid-

ing evidence using five other identifiers: the validity of ID1 depends

upon, or is reduced to, the validities of ID2–ID6. Some of these iden-

tifiers have a special status, in that they are designed to reliably

denote an individual. In the example, these personal identifiers are

guaranteed by the state (ID4) and biometric data (ID5); in the latter

case, ID6 is used to allow a passport to be issued by post, without

face-to-face interaction. ID2 is used to confirm the validity of the

account holder’s address.

The identifiers that appear in the nodes of the tree suggest that

there can be quite complicated dependencies between systems of

identifiers for the same or, more commonly, different contexts. The

identifier is made by aggregating pre-existing identifiers: the bank

identifier in Fig. 1 is the sum of the identifiers for current address,

birth and image, etc.

Since identifiers are often built from other identifiers, of central

importance is the process of comparing identifiers and relating one

type of identifier to another. Indeed, there must be translations

between distinct systems for these identifiers for such methods to

work. All of these observations and ideas can be formalized to make

a precise and general mathematical framework for analysing identi-

fiers. The identity dependence tree is a flexible notion with many

more applications than proving personal identity.

Example 2: Namespaces. Namespaces are sets of identifiers that

use symbols to label, organize and classify entities by names. The

names can have a tree structure that enables them to be reused and

to form a hierarchy. For example, the names for directories, folders,

files, and web domains, etc. are made by concatenating names and

denote paths in a tree: the web address

http://www.swansea.ac.uk/library/archive-and-research-collec

tions/hocc

for the History of Computing Collection is a node belonging to the

archives which in turn belong to the library of Swansea University.

Indeed, there is no shortage of computing contexts where identity

dependence trees are used. Domain name systems (e.g. URLs), direc-

tory services for networks (e.g. Microsoft’s Active Directory), email

addresses (e.g. X500), authentication systems (e.g. Kerberos), and

public key infrastructures (e.g. blockchains) are natural sources of

rules and structures for creating identifiers.

Example 3: Identity Fraud. The creation of new personal identi-

ties requires many identifiers to be fabricated: birth certificates, driv-

ing licences, employment histories, etc. The practicalities for the

USA are discussed extensively in Kevin Mitnick’s memoir [40].

When a fugitive, his method for creating a new identity in different

states can be depicted as an identity dependence tree. More gener-

ally, Mitnick’s success at social engineering is based on his extensive

preparation, which focussed on researching identifiers that he would

use in masquerades in the technical, commercial and government

contexts of phone system companies, computer and phone manufac-

turers, and state agencies.

The complexity of computing systems suggests that tracing the

provenance of a component may lead to circularity and so there may

be a need for graphs of identifiers with cycles.

Generating identifiers from identifiers
Now suppose that to generate an identifier for an entity the input

data involves other identifiers that must be presented to verify some

of the new data (such as personal identity). The general ideas of the

sub-Section ‘Generating identifiers’ can be reformulated with prove-

nance in mind. We revise the processing of the form with a function

with new variables:

check: Forms � Identifier1 � . . . � Identifierk! {0, 1}

that tests the data in a form f 2 Form and the information available

from identifiers i1, . . ., ik for consistency against the system’s rules.

Again, we assume that check(f, i1, . . ., ik)¼1 means that the form is

accepted and check(f, i1, . . ., ik)¼0 means that the form is rejected.

The identity of an entity with identifier i depends upon the iden-

tifiers i1, . . ., ik. This idea is formalised by re-representing the

function

generate: Forms! Identifier [ {reject}

(in section ‘Generating identifiers’) by the new function

generate: Forms � Identifier1 � . . . � Identifierk! Identifier.

There are now two ways of creating the identifiers and defining

generate, defined by two principles:

Provenance Principle: Verification. The data in f 2 Form is suffi-

cient to create an identifier i. The data in the identifiers i1, . . ., ik are

used only to confirm or validate the data in f.

Here the function has the form

generate(f, i1, . . ., ik) ¼ if check(f, i1, . . ., ik)¼1 then issue (f) else

reject

noting that issue (f) does not need to know the validation identifiers.

Secondly, we have the more demanding case:

Figure 1: Dependency tree of identifiers

10 Journal of Cybersecurity, 112017, Vol. 0, No. 0

Downloaded from https://academic.oup.com/cybersecurity/advance-article-abstract/doi/10.1093/cybsec/tyx010/4748787
by Swansea University user
on 18 January 2018



Provenance Principle: Inheritance. The data in f 2 Form to create

an identifier i is inherited from the data in the identifiers i1, . . ., ik.

In this case, the function has the form

generate(f, i1, . . ., ik) ¼ if check(f, i1, . . ., ik)¼1 then issue

(f, i1, . . ., ik) else reject.

Comparing identifiers

Access to data belonging to different contexts is desirable in surveil-

lance, intelligence analysis, and academic research; it is undesirable

in social and personal contexts as it undermines privacy and free-

dom. Access is regulated by legal instruments.

Reductions between systems of identifiers
Consider the case where a set Entity of entities has two systems of

identifiers:

IdSys1¼ (Entity, Identifier1 j id1: Identifier1!Entity),

IdSys2¼ (Entity, Identifier2 j id2: Identifier2!Entity).

How can we relate or compare these systems?

One simple case is when the identifiers in Identifier1 can be asso-

ciated or matched with one or more identifiers in Identifier2, and

vice versa. This means that given an identifier i 2 Identifier1 of an

entity e 2 Entity, we can find corresponding identifiers in Identifier2

that are also identifiers for e. This is formalized as follows:

Definition. Let IdSys1 and IdSys2 be systems of identifiers for

Entity. A matching relation

r: Identifier1 � Identifier2

for the systems of identifiers IdSys1 and IdSys2 compares identifiers

as to whether or not they are associated with the same entity in the

following sense: for every i 2 Identifier1 and j 2 Identifier2,

r(i, j) if, and only if, id1(i) ¼ id2(j).

Different conditions on a matching relation can be found in

examples, depending upon the properties of id1 and id2. An impor-

tant and common case is: given an identifier i 2 Identifier1 of an

entity e 2 Entity, we can find some corresponding identifier in

Identifier2 that is also an identifier for e. This is formalized as

follows:

Definition. Let IdSys1 and IdSys2 be systems of identifiers for

Entity. The system of identifiers IdSys1 is said to reduce to the sys-

tem of identifiers IdSys2 if there is a single-valued reduction

mapping

f: Identifier1!Identifier2

that calculates for each identifier in Identifier1 a corresponding iden-

tifier in Identifier2 for the same entity in the following sense: for

every i 2 Identifier1,

id1(i) ¼ id2(f(i)).

We write IdSys1� IdSys2 or, more simply and conveniently,

id1� id2 (see: Fig. 2).

This is but one formalization of the process of comparing the

identifiers of Identifier1 to those of Identifer2. Another option would

be to return a selection, or all, of the equivalent identifiers. Because

the notion of identifier is so abstract, the notion of reduction is very

general. Mappings between identifiers are ubiquitous in computing

systems and employ many algorithmic techniques. Reductions can

be found in situations where alternate terms like ‘translating’, ‘bind-

ing’, ‘matching’, and ‘tracing’ are used.

Example 1: Tracing. Consider the set Keep of keepers of vehicles

in the UK and two systems of identity for this set of entities.

Suppose, for simplicity, each keeper has one car and each keeper has

a unique address. Each car has a registration mark. Let the first sys-

tem be

Reg¼ (Keep, Regmk j reg: Regmk! Keep).

Every keeper has an address assigned by the postal service so let

Add¼ (Keep, Address j addr: Address! Keep).

Then the Driver and Vehicle Licensing Agency (DVLA) is

responsible for the determining the keeper’s address from the regis-

tration mark, which is defined formally by the reduction map red:

Regmk! Address such that for every registration mark r 2 Regmk,

reg(r) ¼ addr(red(r)).

We say that the system of identities Reg is reducible to Add.

Example 2: Hashing. In cybersecurity, hashing techniques provide

examples of reductions. For example, consider hashing in managing

passwords. Hashing involves a one-way function h: Password !
{0, 1}k where h(w) is a data used to separate w in some context.8

There are many hashing algorithms, such as the secure hash algo-

rithms SHA-256 and SHA-512; and there are methods to enhance

their security such as salting, where random strings are added to the

passwords to separate common passwords from each other. Thus,

hash codes are identifiers and the hash function and salting qualify as

reductions.

Example 3: Binding. Connections between computing entities

require various degrees of reliability and, in secure contexts, trust. In

computing, a binding is a mapping associating distinct entities in

hardware or software. Commonly, bindings are mappings between

syntactic spaces (e.g. namespaces) enabling binding to connect syn-

tactic and semantic entities, or to create layers in software stacks, or

create secure chains of identity in cryptography. The term binding

has general application and several common forms of binding qual-

ify as reductions between systems of identifiers in our sense.

Example 4: Certification. Certification is a security process that

seeks to increase trust in identity. It is intended to reduce risks of

man-in-the-middle vulnerabilities. In communications, such as call-

ing a webpage, certification can flag doubts about a website. In

cryptography, a public key certificate is used to confirm the owner-

ship of a public key. The certificate validates the binding of a pub-

lic–private key pair to an entity, using a digital signature generated

by a certificate authority.

Figure 2: Transformation of identifiers

8 A one-way function is easy to compute but hard to invert.
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Definition. The system of identifiers IdSys1 is said to be equiva-

lent to the system of identifiers IdSys2 if there are reduction

mappings

f: Identifier1! Identifier2 and g: Identifier2!Identifier1

that can exchange identifiers in Identifier1 and corresponding identi-

fiers in Identifier2. We write IdSys1� IdSys2 or, more simply and

conveniently, id1� id2.

Structuring the space of identifiers
Reductions are an important concept that occur widely. To con-

clude, we introduce some concepts and propositions to reveal the

richness of the reduction notion and signal the possibility of

advanced classification methods.

In the Section ‘Provenance of identifiers’, we discussed the com-

bination of identifiers. The process of creating new identifiers from

old introduces algebraic operations on spaces of identity systems.

One choice of algebraic structure, the semilattice, organizes the

space of all possible identity systems using reduction.

Lemma. Let IdSys(Entity) be the set of all identity systems for the

non-empty set Entity of entities. The reduction relation� on

IdSys(Entity) is reflexive and transitive; and� is an equivalence

relation on IdSys(Entity).

Proof. Let IdSys¼ (Entity, Identifier j id: Identifier ! Entity).

Trivially, id� id using the identity function Identifier ! Identifier

as reduction map; so reduction is reflexive.

To show transitivity, let

IdSys1¼ (Entity, Identifier1 j id1: Identifier1!Entity),

IdSys2¼ (Entity, Identifier2 j id2: Identifier2!Entity),

IdSys3¼ (Entity, Identifier3 j id3: Identifier3!Entity).

and suppose

id1 � id2 by f: Identifier1! Identifier2 and id2 � id3 by g:

Identifier2! Identifier3.

Then, for i 2 Identifier1, and j 2 Identifier2, we have

id1(i) ¼ id2(f(i)) and id2(j) ¼ id3(g(j)).

Composing, f and g we have,

id1(i) ¼ id3(g(f(i)))

and id1� id3. It is easy to show that� is symmetric.

Using the equivalence relation�on IdSys(Entity), we define the

set of equivalence classes:

IdSys(Entity) ¼ IdSys(Entity)/�.

The equivalence classes have the standard form of [id] for id 2
IdSys(Entity). The ordering relation�on IdSys(Entity) induces

ordering relation�on IdSys(Entity) by

[id1] � [id2] () id1 � id2.

It is easy to check that� is a partial ordering on IdSys(Entity).

Furthermore, the ordering�has the least upper bound property: for

any [id1], [id2] 2 IdSys(Entity), there is an element [id] such that:

i. [id] is an upper bound: [id1] � [id] and [id2] � [id];

ii. no lower element is a bound: if [id1] � [id0] � [id] then either

[id1] 5 [id0] or [id0] 5 [id].

To show this we construct an identity system as follows. Given

id1, id2 2 IdSys(Entity), take the disjoint union Identifier1 �

Identifier2 of the sets of Identifier1, and Identifier2 and define

id1 � id2: Identifier1 � Identifier2! Entity.

wherein given i 2 Identifier1 � Identifier2,

(id1 � id2)(i) ¼ id1(i) if i 2 Identifier1

(id1 � id2)(i) ¼ id2(i) if i 2 Identifier2.

It is easy to show that [id1 � id2] satisfies conditions (i) and (ii).

The construction

(Identifier1 � Identifier2 j id1 � id2)

is called a co-product of the identity systems. If the sets Identifier1

and Identifier2 are disjoint (as is often the case) then the carrier is

their union.

Example: Combining Identifiers. Integration of identity data

can be tentatively explored using coproducts. Consider making a

system of identifiers for entities that are contracts, for which per-

sonal identity and current location must be validated. A space of

identifiers may be built using the coproducts of pairs of validat-

ing systems of identifiers: passports, driver licences, identity

cards for identity, and utility bills, local tax declarations for

addresses.

A partial ordering with the least upper bound property is called

an upper semilattice [41]. Thus, gathering together these arguments

we have the theorem:

Theorem. The reduction relation� on IdSys(Entity) forms an upper

semilattice.

Corollary. The process of creating new identifiers by inheriting

existing identifiers forms an algebraic structure IdSys(Entity) that is

an upper semilattice under the reduction relation.

Equivalently, any upper semilattice can be reconstructed as an

algebraic structure with a binary operation ^ that is associative,

commutative, and idempotent [40]. In this form we would have the

structure

IdSys(Entity) ¼ (IdSys(Entity)/� j ^)

with binary operation of least upper bound defined by

[id1] ^ [id2]¼ [id1 � id2].

Further properties of the upper semilattice IdSys(Entity) can be

developed depending upon properties of the associations and

reductions.

Concluding remarks

Employing simple examples and arguments from first principles,

we have used formal methods to analyse precisely concepts

involved in surveillance and identity. The formal analysis shows

that disparate forms of surveillance can be unified by abstract

mathematical definitions, and that (i) finding identities, and (ii)

sorting identities into categories, are fundamental in conceptualiz-

ing surveillance. The formal analysis of identity shows that the

idea of identity can be considered to be exclusively a matter of

data, and its diversity can be unified by abstract mathematical def-

initions. It also shows that (i) comparing identifiers, and (ii) trans-

lating between systems of identifiers, are fundamental to

understanding identity.
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Developing a theory of identity
The theoretical analysis presented here is intended to analyse exam-

ples and formalize intuitions and ideas. This formal approach is new

and inevitably modest, but it can serve as a basis for further concep-

tual and mathematical investigations relevant to the making and reg-

ulation of surveillance systems. Two conceptual and four technical

further directions seem to us to be desirable. Conceptually, our

theory of identifiers could be used to theorize privacy, interpreted as

the control identity. (A formal notion of anonymity was included in

the sub-Section ‘Surveillance: detecting attributes’.) The second

direction is to use identifiers to explore secure access control policies

in computer systems (e.g. role-based access control).

Turning to technical directions, first the notion of context in the

sub-Section ‘Behaviour as streams of data’ can be developed with

various semantic models. Further behavioural features can be for-

malized, such as the interaction of entities. There are options for for-

malizing streams – infinite or finite, total or partial streams in

discrete or continuous time – and for behaviours modelled as non-

deterministic and concurrent processes [42]. Secondly, logics can be

used to develop specification and reasoning about attributes. There

are several candidates, such as many sorted first order logic and its

many derivatives and its extensions – equational, Horn, and tempo-

ral logic [43]; and many valued logics [44]. Logics bring with them

tools that would expand the scope of the theory and applications.

Thirdly, the idea of a system of identifiers needs to be developed

mathematically. For example, identifiers commonly reference char-

acteristics of the entities that may be essential to their deployment

and application; this information is an additional component that

would enrich the mathematical structure of contexts and their iden-

tifiers. The idea of the form does provide background initial infor-

mation, but the characteristics of an entity may need updating

because of the behaviour of the entity in time. Systems of identifiers

are instances of abstract data types [25], whose extensive general

theory based on many sorted algebras and equations [18, 19, 45,

46] can add significantly to the theory and practice of identity.

Fourthly, identifiers are assumed to be digital objects. To model

this aspect, identifiers must themselves be coded by bits, i.e. by finite

binary strings over {0, 1}. This introduces a new digital layer

beneath the identifiers in which all computation actually takes place,

simulating functions on user data by functions on binary numbers.

This digital layer is a source of constraints on the theory of identi-

fiers. The digital layer can be modelled by maps of the form

code: Numbers! Identifier.

Classical computability theory is a mathematical theory of what

can and cannot be computed on numbers [47], especially binary and

decimal, etc. It has been applied to establish the scope and limits of

computation on arbitrary data using such maps as code; these maps

are called numberings in computability theory [48]. Thus, there is a

second ready-made theory that can applied to develop this three-

layer model:

id 8 code: Numbers! Identifier! Entity

and theorize what is, and what is not, computable about systems of

identifiers. The conception of identity analysed here is inspired by

and abstracts ideas about abstract data types and encodings cf. [49].

Formalizing identity and social theory
Ours is an investigation into ideas about surveillance and identity,

wherein our models are developed from first principles. It may seem

far from the world implied by the revelations of Snowden, with its

surveillance tools (XKeyscore, Tempora, etc.) for target discovery

and development. Let us observe that new surveillance contexts arise

— or are recognized — as more of our professional and social activ-

ities are carried out by abstract technological systems rather than by

direct face-to-face interactions. To make use of these systems, an

individual needs to give over some of his/her identity to distinguish

himself/herself from other users in the context. Thus, rather than

having a single and holistic identity, individuals now have many sep-

arated and overlapping identities, which amplifies hugely the scope

of a theory of identifiers.

The physical and the virtual are converging; indeed, it seems that

the physical world is being sucked into the virtual and a virtual

world is being created that is self-contained. It certainly exerts a

strong influence on the physical world, and shows signs of

autonomy. Thus, the components of monitoring and surveillance —

context, entity, observable behaviour, attribute and identity — will

seem natural in a world held together by data and software.

The multiplicity of contexts and identities, and the possibility of

the autonomy of the virtual world, requires the nature of identity to

be theorized. The formal framework we offer here is a rigorous anal-

ysis of the conceptual structure of surveillance; there ought to be

others. What can formalization contribute? Guided by the theory of

abstract data types, our formalization of identity aspires to:

i. establish and explore principles that assume identity is a matter

of data and their implications;

ii. make precise essential concepts and classify abstractly methods

of identification;

iii. provide a unified point of view that illuminates the design of

many real systems;

iv. explore the role of identity in aspects of security studies, includ-

ing monitoring and surveillance, personal privacy and trusted

translations and interactions.

At this stage, these aims require a great deal of further work.

Finally, let us observe that if a social science topic is closely asso-

ciated with abstract technologies that collect and process data effec-

tively then the specification of the software tools — i.e. what the

tools are designed to do for users — can be formalized in the same

way as we have approached the problem here. Thus, sociological

notions that motivate, shape and are ultimately represented in soft-

ware, can be defined in a formal framework which can be mathe-

matically analysed. In short, sociological theories about human

activities that are closely associated with abstract software systems

can be expected to have formal models, mathematical theories, as

well as oodles of data arising from their use.

To isolate, define and analyse ideas is the raison d’être of formal

methods, though in new areas their mathematical nature presents

obstacles to their reception and appreciation. The use of formal

methods to express and analyse general notions is established in

areas of philosophy and linguistics but seems to be rare in social

studies. Given software’s colonization of professional and social life,

and its promotion of monitoring and Big Data, the role of formal

methods to theorize social concepts and problems is destined to

grow.
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