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Abstract

Modelling the deformation and failure processes occurring in polymer bonded explosives (PBX)

and other energetic materials is of great importance for processing methods and lifetime storage

purposes. Crystal debonding is undesirable since this can lead to contamination and a reduction

in mechanical properties. An insensitive high explosive (PBX-1) was the focus of the study.

This binary particulate composite consists of (TATB) filler particles encapsulated in a polymeric

binder (KELF800). The particle/matrix interface was characterised with a bi-linear cohesive law,

the filler was treated as elastic and the matrix as visco-hyperelastic. Material parameters were

determined experimentally for the binder and the cohesive parameters were obtained previously

from Williamson et al. (2014) and Gee et al. (2007) for the interface. Once calibrated, the ma-

terial laws were implemented in a finite element model to allow the macroscopic response of the

composite to be simulated. A finite element mesh was generated using a SEM image to identify

the filler particles which are represented as a set of 2D polygons. Simulated microstructures

were also generated with the same size distribution and volume fraction only with the idealised

assumption that the particles are a set of circles in 2D and spheres in 3D. The various model

results were compared and a number of other variables were examined for their influence on the

global deformation behaviour such as strain rate, cohesive parameters and contrast between filler

and matrix modulus. The overwhelming outcome is that the geometry of the particles plays a

crucial role in determining the onset of failure and the severity of fracture in relation to whether

it is a purely local or global failure. The model was validated against a set of uniaxial tensile

tests on PBX-1 and it was found that it predicted the initial modulus and failure stress and strain

well.

Keywords: Particulate composites, High volume fraction, Finite Element Analysis,

Micromechanics, Fracture, PBX and Viscoelastic matrix composite

1. Introduction

Particle filled polymer composites can provide economic and technical advantages over other

engineering materials. By reinforcing a polymeric matrix with stiffer filler particles the mechan-
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ical properties of the composite can be tuned to meet specific requirements by choosing appro-

priate constituent phases [1].

Numerical studies on the effect of microstructure, arrangement and volume content of hard

damageable inclusions in a plastic matrix on the deformation and damage growth has been con-

ducted by Mishnaeksky [2]. He highlighted that particle arrangement does not influence the

effective response of the material in the elastic region or at small plastic deformation, however it

becomes significant at loads at which the particles begin to fail. The distribution of particles was

shown to have significant effects based on their arrangement, with more structured arrangements

having higher flow stresses compared to random or skewed/biased arrangements. The effect of

increasing size caused a very strong decrease in the strain hardening rate and lead to quicker

and earlier damage growth in the composites. Diler and Ipek [3] showed experimentally and nu-

merically that increasing volume fraction and particle size of their Al-SiCp composites reduces

flexural strength, with volume fraction having a more significant effect.

Fu et al. [4] studied the effects of particle size, particle/matrix adhesion and particle load-

ing on composite stiffness, strength and toughness of a range of particulate composites having

both micro- and nano-fillers with small aspect ratios. It was shown that composite strength and

toughness are strongly affected by all three factors, especially particle/matrix adhesion. This is

expected, because strength depends on effective stress transfer between filler and matrix, and

therefore toughness is controlled by the particle/matrix adhesion. Maloney et al. [5] reviewed

previous attempts at experimentally modifying certain parameters such as filler volume fraction,

stiffness and size as well as strength of both the filler and matrix to assess the effect each had on

the stiffness, strength and fracture toughness of the composite. It is worth mentioning here that

conventional particle reinforced composites go up to volume fractions of 50%, due to limits in

what can be fabricated, which is significantly lower to that studied here.

Polymer bonded explosives (PBX) are used in a wide variety of civil and military applications

such as detonators and solid rocket propellants. The volume of explosive crystals used within

PBX can vary from 60% to 95% by mass [6]. The inert binder is used to reduce the shock

sensitivity of the explosive and to make it safer to handle. PBX formulations can vary greatly

depending on their application. Crystal/filler choices are made based upon sensitivity, energy

release and achievable packing density. The matrix/binder material is used to bond these fillers

together in a way such that they can achieve their potential. The binder can strongly affect the

formability and fracture properties of the PBX.

The small volume of binder material can strongly influence the behaviour of the composite

as there is generally a large mismatch in moduli between the stiff crystals and the binder. This

binder material enables the composite to deform and absorb energy and it is this that allows the

PBX to be prepared and machined to desired shapes and sizes. However it is the quality of the in-

terface which is also a significant concern for manufacturers. Understanding the behaviour of the

material on a micro-scale is essential to ensure minimal loss of the filler during processing. Finite

element (FE) analysis of these microstructures allows the full-field strain map to be predicted.

A knowledge of the strain field inside the filler, matrix and along the particle/matrix interface

is essential to predict matrix or particle cracking and debonding between the filler and the mat-

rix. Early works in this area include research such as that of Guild and Young [7] looking into

the application of combined numerical and statistical methods to predict the elastic properties of

particle filled composite materials. The model, validated against macro-scale experimentation,

allowed for improved understanding of the failure process occurring on a micro-scale between

glass spheres and the matrix. PBX formulations can vary greatly depending on their application

and therefore require individual and unique modelling approaches.
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More recently work such as that by Barua and Zhou [6] attempted to simulate large volume

fraction grades of PBX. Cohesive zone finite element methods were implemented on a digitised

microstructure as well as idealised geometries of particle distributions. Bimodal distributions

of particle sizes produced composites with improved mechanical integrity over a monomodal

distribution of particles sizes. They also highlighted that failure at the interface was more likely

in regions of flat faced particles compared to round ones. Particle debonding in high filled elast-

omers used in solid propellants was also investigated by Matous et al [8]. They modelled particle

debonding through cohesive laws and determined its effect on the macroscopic mechanical re-

sponse of the composite through a small strain, multi-scale formulation. The simulations were

performed using a packing algorithm, generating a unit cell matching the volume fraction and

particle size distribution of the actual composites. Seidel et al [9] used a finite element code to

simulate the mechanical response of LX17. Because of the highly filled nature of the material,

Voronoi tessellation was used to represent the explosive crystals. The latter were surrounded by

linear viscoelastic cohesive zones that represented the binder matrix. A comparison was made

between their simulation results and experimental data. Yan-Qing and Feng-Lei [10] studied

PBX9501 composites and employed a similar technique, i.e. the Voronoi tessellation method

with a viscoelasic cohesive law at the particle interface. Cracking in the HMX particles was ac-

counted through a tensile crack model and they validated their predictions with experimental

data. Finally, purely experimental studies on PBX materials have also been reported in literature,

e.g. Liu et al [11], Drodge et al [12], Chen et al [13], Thompson et al [14], Gee et al [15], Rae

et al [16]. The work presented here builds on research such as this, developing a method and

process for analysing actual microstructures of binary particle filled composites. In real PBX

microstructures there are fine particles, which will be present in the binding material accounting

for a significant portion of the filler volume fraction. This has previously been accounted for by

either expanding or dilating digitised geometries [6], or through using Voronoi tesselated micro-

structures with viscoelastic cohesive zones. Note that in our method, the matrix and the interface

are modelled separately unlike Voronoi tessellation methods. The model presented here is dif-

ferent to the reported literature in that it captures all large particles and models them explicitly,

whilst fine particles are accounted for by increasing the stiffness of the matrix material model.

This enables very high volume fraction composites to be modelled, compared to the general lit-

erature in the area focused on volume fractions below 50% for particulate filled composites. The

damage criteria for fracture is also developed here and included within the analysis, allowing

the complex damage development process within these particulate composites to be modelled

explicitly.

2. Material constitutive laws: development and characterization

2.1. Composite materials

The PBX composition investigated here is referred to as PBX-1. This comprises a KELF800

matrix material, which is a chloro-tri-fluoro-ethylene vinylidene-fluoride co-polymer that exhib-

its a non-linear viscoelastic behaviour. The filler material is TATB, or triamino-trinitrobenzene,

which is assumed to be a linear elastic solid. To guide the development and validate the model,

the PBX was tested under uniaxial tension at 2×10−3/s. Cylindrical dumbbell specimens were

cast with a gauge length of 33.2 mm with a constant diameter of 10.2 mm. The densities of

TATB and KELF800 are 1.94 g/cm3 and 2.00 g/cm3 respectively. The composite contains 95%

TATB by mass fraction, equating to a 95.1% volume fraction.

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 1 shows a summary of the tensile test results. The Young’s modulus, E, failure strain,

ε f , and failure stress, σ f , for each of the three replicate specimens are given. There is a small

statistical sample collected here due to the expense, environmental considerations and hazards

involved to fabricate and test these types of materials.

Table 1: Raw tensile test data for the composite material.

Sample ε f σ f (MPa) E (GPa)

1 0.00174 8.263 7.85

2 0.00161 7.929 8.02

3 0.00189 8.567 7.11

Average 0.00174 8.253 7.66

A set of images of various magnifications were obtained prior to testing to quantify the

particle size distribution visible within the finished product. These are shown in Figure 1.
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Figure 1: Three electron microscope images of PBX-1, where the dark regions (low intensity) represent the filler, TATB,

and the light regions (high intensity) the matrix, KELF800. The graph shows the particle size distributions for each

image as well as sub regions within Image 1.

The two phases can be identified in the sample images shown in Figure 1. Obtaining SEM

images of this microstructure is a challenge compared to conventional composite materials, due

to the smearing effect that is observed during sample preparation. One of the images shown in

Figure 1, Image 3, was selected to generate the finite element mesh, since it was the cleanest

image obtained i.e. appeared to show the highest volume fraction of crystals visible in the image,

69%, (see Figure 2). All images shown in Figure 1 were however analysed in terms of volume

4
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fraction and particle size distribution. The volume fractions visible are comparable and ranged

from 57-69%. The particle size distributions of the whole images shown in Figure 1 as well

as random subsections of these images were obtained using Matlab [17] and are compared in

Figure 1. These look similar and it justifies the use of the chosen image in Figure 2 as a suitable

representative volume element.

222 mm

1
5
7

m
m

Figure 2: An electron microscope image of the PBX microstructure, where the dark regions (low intensity) represent the

filler, TATB, and the light regions (high intensity) the matrix, KELF800 [18]. The set of polygons (shown in red) were

used to generate the finite element mesh for the 2D polygon model.

In addition, in order to quantify the thickness of the matrix between particles, the images

were analysed using Matlab [17]. A line segment was drawn in multiple locations across the

image. The greyscale intensity was used to determine the boundaries of the two materials. It was

found that the thickness ranged from approximately 0.83-30 µm with an average of 6 µm. The

other images were not taken forward for the modelling phase since the level of detail in the edges

would be lost at the lower magnifications and since the total area fraction of visible crystals was

lower than that shown in Figure 2, which showed near 70% in the raw image.

2.2. Filler material

The filler was treated as an isotropic elastic solid with material data taken from literature

[15] with a Young’s modulus, E f = 31.5 GPa and Poisson’s ratio, ν f = 0.2. TATB has been

investigated thoroughly in literature with properties widely established. Its structure is graphitic

in nature and under significant shear forces these planes of preferred slip can provide significant

5
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initiation sites for failure and fracture. However, in spite of the apparent anisotropy in TATB and

given the experience with mechanical testing of this composite material and its failure behaviour,

TATB is treated as a linear elastic isotropic material in this study. This is because fracture within

the crystal is a secondary failure mechanism to debonding along the filler/matrix interfaces. In

addition, modelling the correct anisotropy would require knowledge of the orientation of the

individual crystals in the imaged microstructure. Even if such information had been available,

the model complexity would increase significantly. For these reasons, we made the simplifying

assumption that the filler crystals could be treated as isotopic.

2.3. Matrix material

A series of tensile tests were conducted on the KELF800 over a range of true strain rates,

(10−4 s−1 < ε̇ < 10−1 s−1). The results are shown in Figure 3. Tensile dog-bone samples were

produced in accordance to with ISO 527-2 (type 5A) standards from 2 mm thick sheets provided

by the Atomic Weapons Establishment (AWE). The samples had a gauge length 30 mm and

width 4 mm. These parent material sheets were produced in line with the processes used to

manufacture the composite discussed in section 2.1.
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Figure 3: Plot of true stress - true strain for KELF800 binder material and the calibrated hyper-viscoelastic material

model (inset).

It was assumed that all deformation occurs in the gauge length. This allowed the change in

gauge length to be approximated by the machine displacement (i.e. standard travel of crosshead).

The suitability of this assumption was verified optically using a line-tracking procedure. Five

equally spaced lines were drawn across the gauge length of each specimen, and grey scale images

were extracted from the video recordings at different points during each test. These were then

analysed using the line tracker function in Matlab [17]. It was found that the strain was uniform

along the gauge length for the range of relevant strains and confirmed that these were true strain

rate controlled tests.
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The binder material is clearly rate sensitive and exhibits a non-linear σ − ε response, as

illustrated by the example isochronal plot at a time of 3.57 s in Figure 3. However it was possible

to accurately characterize the binder behaviour with a hyper viscoelastic material law which is

shown in Figure 3.

Assuming a separable time- and strain-dependent material behaviour [19], [20], the relaxa-

tion stress under a step strain loading history is written as:

σ(ε, t) = σ0(ε)g(t) (1)

where g(t) and σ0(ε) are functions of time and strain respectively. The chosen form of the

time function is the Prony series [19]:

g(t) = c5 +

4
∑

i=1

ci exp(−t/φi) (2)

where t and φi are time and time constants respectively, and ci are dimensionless constants

related to c5 through
∑4

i=1 ci + c5 = 1. For an arbitrary strain history, the stress is evaluated via

the Leaderman form of the superposition integral [21]:

σ(ε, t) =

∫ t

0

g(t − s)
dσ0(ε)

ds
ds (3)

where σ0(ε) is the instantaneous stress at strain ε. The van der Waals model is chosen as the

hyperelastic potential [22]. The true stress form for uniaxial tension and uniaxial compression

can then be described using σ0(λ) = ∂W
∂λ
λ , where W is the hyperelastic potential and λ is the

stretch ratio equal to the exponential of the current true strain ε. The stress for uniaxial tension,

σ0(ε), can then be derived as:

σ0(λ) = µm
0 λ(λ − λ

−2)



















√

λ2
m − 3

√

λ2
m − 3 −

√
λ2 + 2λ−1 − 3

− a

√

(

λ2 + 2λ−1 − 3

2

)



















(4)

where µm
0

is the instantaneous initial shear modulus, λm is the locking stretch constant and a

is the global interaction parameter [23].

By substituting Eq. 2 in Eq. 3, and evaluating the integral using finite time increments [24],

[25], the following form is obtained:

σ(tn+1) = c5σ0(tn+1) +

N
∑

i=1

(

exp−∆t/φi σi(tn) + ci

1 − e−∆t/φi

∆t/φi

[σ0(tn+1) − σ0(tn)]

)

(5)

Eq. 5 is a function for updating the stress σ(tn+1) where ∆t is the time increment defined as

∆t = tn+1 − tn and σi(tn) is the stress corresponding to the ith term of the Prony series at time tn

i.e. σi(tn) =
∫ tn

0
ci exp(− tn−s

φi
)

dσ0(s)

ds
ds. Eq. 5 can be used to calculate the stress at any time, tn+1

, provided the stress at the previous time increment, tn, is known. The initial state at t = 0 is

σ = ε = 0, hence the stress at t > 0 can be calculated. A detailed derivation is given in [19].

The function can be evaluated for various strain histories by minimizing the error between the

experimental values of stress and those predicted using Eq. 5. The time constants φi are fixed. A

five term Prony series was sufficient to give a good fit to experiment up to a strain of 0.2 as shown

in the Figure 3 inset with instantaneous matrix shear modulus of µm
0
=72 MPa, a locking stretch,

7
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λm = 2.06 and global interaction parameter, a = 3.96. All parameter values are summarised in

Table 2.

µm
0

(MPa) λ a µ∗(MPa)

72 2.1 4.0 1200

c1 c2 c3 c4 c5

0.45 0.19 0.092 0.11 0.16

φ1 (s) φ2 (s) φ3 (s) φ4 (s) φ5

0.1 1 10 100 ∞

Table 2: Experimentally calibrated parameters for the hyper-viscoelastic binder material model.

It is not necessary or even possible to simulate every particle explicitly for high volume frac-

tions. Analytic models have been developed [26, 27] to describe the enhancement provided by

the presence of inclusions in the binder material. However care must be taken when using sim-

plified expressions which have been derived under the simplifying assumption that the volume

fraction is low and consequently do not have an explicit dependence on the elastic constants of

the stiffer filler [27]. This is not the case for high volume fractions and the dependence on the

filler modulus needs to be taken into account. The finite element meshes used here contained

a filler volume fraction of 0.57. This is the fraction that was extracted from the microstructure

image in Figure 2, when converted to a binary image. Some particles are lost at this stage, even

large ones intelligible by eye due to the loss in image contrast resulting from the smearing of the

polished PBX surface. Any particle under 5 µm can not be reliably identified in Figure 2. The

total filler volume fraction should be 95%. Therefore the matrix must be stiffened to account for

the missing volume fraction, which is assumed to be made up of very fine particles dispersed

throughout the matrix. This is acceptable since debonding will occur preferentially around large

particles, as the debonding stress varies as r−1/2 [28]. Williams [29] derived an analytical model

for quantifying toughening of polymers by plastic void growth. The model was based on Lamé

equations for a rigid spherical particle in an elastic shell subjected to a uniform tension. Chen et

al [30] also studied interfacial debonding by means of the Eshelby equivalent inclusion method.

They both give results that show that for a given interface adhesion energy, the critical debonding

stress varies inversely as the square root of the particle size. Further Matous et al [8] state that in

their models there was a marked size effect on the failure of their particle interfaces with most

of the failure occurring on large particle interfaces, even though damage initiation was size inde-

pendent and that this agrees with experimental observations. Rae et al[31] studied deformation

and failure of PBX composites and they also reported that failure was observed to start around

the edges of larger filler particles perpendicular to the direction of tensile strain. Therefore fine

particles do not debond from the matrix allowing the matrix to be treated as a homogenous com-

posite with a volume fraction of c f = 0.88; 0.57 + 0.88(1 − 0.57) gives the required volume

fraction of 0.95. Equation (6) gives the stiffened matrix modulus which is a function of the shear

modulus of both phases, the filler volume fraction (0.88) and the Eshelby transformation tensor,

S 1212 = (4−5νm)/15(1−νm) where νm is the Poisson’s ratio of the matrix material, 0.38, assuming

a spherical shape for the inclusions [18, 32, 33, 34].

µm
0 → µ

∗ = µm
0 +

c fµm
0

µm
0

µ f−µm
0

+ 2(1 − c f )S 1212

(6)
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Equation 6 was used to obtain µ∗ (see Table 2), the fine loaded binder instantaneous shear

modulus, and substituted for µm
0

in (4). The values of the locking stretch λm and interaction

parameter a were not modified as there is an absence of analytical models, which describe how

or even if λm and a would vary as a function of filler volume fraction, ν f . No fluctuations in λm

and minimal increases in a have been shown in Latex with up to 0.25 TiO2 filler fraction [35]

but further investigations are required to investigate how larger volume fractions can influence

these parameters. The assumption of spherical inclusions was explored further given the known

platelet nature of the visible crystals. The effect of the aspect ratio changing from 1 to 0.25 on

µ∗ was seen to cause a moderate increase in µ∗ from 1200 MPa in Table 2 to a maximum 1500

MPa. This was obtained using the Mori-Tanaka formulation for aligned particles and the Van Es

model [36, 37] to homogenise the effect of randomised particle orientation. So even though the

aspect ratio would change significantly the moduli of aligned platelets, in reality a randomised

orientation of the particles would greatly lessen the effect on the effectively isotropic modulus.

Given the unknown nature of the exact representative aspect ratio of the fine particles, and the

fact that the variation at most could be 20%, the fine particles were assumed to be spherical and

µ∗ was taken to be 1200 MPa.

2.4. Interface material model

The primary failure mode which occurs within these composites is debonding along the

particle-matrix interface which is only later followed by transgranular fracture of the TATB crys-

tals and tearing of the binder. Therefore only debonding along the particle/matrix interface was

considered. A bi-linear traction (σn) - separation (△) cohesive law as illustrated in Figure 4

was used to simulate the interface. Literature values of the debond energy were used, namely

Gc = 271 mJ/m2, which was obtained using molecular dynamics simulations of the interface

[15]. The same value is assumed for both mode I and mode II. The critical damage initiation

stress σc was calculated based on the Atomic Force Microscope pull-off technique [38]. With

knowledge of the work of adhesion and therefore the debond energy, Gc, the value of σc needed

to debond a spherical cap of the matrix from a flat surface was measured from the pull-off force

and the corresponding contact area [39]. The same value of σc = 13 MPa was used in both mode

I and mode II i.e. σIc = σIIc = 13 MPa. The stiffness of the cohesive zone in mode I was set at,

kI =315 GPa/µm, with kII = kI/2(1 + ν f ), where ν f is the filler Poisson’s ratio, taken to be 0.2.

Values of cohesive element stiffness were determined via parametric studies such that both arti-

ficial compliance and numerical convergence problems were avoided. These values comply with

various guidelines proposed in the literature [40]. The thickness of the elements is not important

for the global behaviour as long as it is accounted for in the stiffness calculated for the element,

again to avoid undesired compliance.

The traction-separation law describes the rate at which the cohesive stiffness is degraded after

damage initiation. σc is the criterion used here for initiation. The energy that is dissipated as

a result of the damage process, i.e., the energy release rate, Gc, is equal to the area under the

traction-separation curve, see Figure 4. For mixed mode loading conditions, damage is activated

in the normal and shear loading modes, in terms of a maximum stress criterion expressed as:

max

{

〈σI〉
σIc

,
σII

σIIc

}

= 1 (7)

where the symbol 〈σI〉 represents the Macaulay bracket, defined as 〈σI〉 = 1
2
(|σI | + σI ), im-

plying that damage is not initiated in compression. As already mentioned, the energy that is

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

dissipated as a result of the damage process, i.e. the energy release rate, Gc, is equal to the area

under the traction-separation curves, i.e. GIc =
σIcδIc

2
and GIIc =

σIIcδIIc

2
for pure normal and shear

loading conditions respectively. In addition, we assumed a linear mixed mode failure locus with

the total energy release rate, G, being equal to:

G = GI +GII ,
GI

GIc

+
GII

GIIc

= 1 (8)

where GI and GII are the energy release rates in the normal and shear directions. After the

onset of damage, the elements soften until they fail, at which point they are deleted (zero stiff-

ness). Softening causes numerical convergence issues when an implicit solver is used such as

Abaqus/Standard. Simulations were therefore performed using Abaqus/Explicit. An automatic

time increment with a maximum size of ∆t = 10−6s ensured that the kinetic energy was negli-

gible compared to the internal energy ensuring the simulation was quasi-static. The 3D sphere

model used cohesive contact for ease of mesh generation. The equivalent mesh using cohesive

elements and cohesive contact were compared on a smaller scale to ensure the two methods were

interchangeable without impacting the global (stress-strain) and local (failure) behaviour.

�

�

(a
�

Figure 4: (a) Schematic of the bilinear traction-separation law used to define the cohesive zone behaviour of the

particle/matrix interface. Part of the 2D polygon mesh shown in (b) the thin layer, 0.02µm, of cohesive elements (red) is

visible in the inset.

3. Mesh generation

One of the major challenges in simulating binary composites is developing an accurate rep-

resentation of the microstructure. Usually an idealised filler geometry is assumed such as circles

and ellipsoids in 2D or spheres and spheroids in 3D [41],[42],[43],[44]. To investigate this as-

sumption, an image based mesh generation algorithm was used [45] to generate a 2D mesh of

the actual composite geometry by representing the TATB crystals as a set of polygons. The SEM

image of the composite is shown in Figure 2 with the 53 polygons identified by the algorithm

shown in red.

In addition to the 2D polygon model described above, 2D circle and 3D sphere models were

included in our study. The commercial software MacroPac [46] was then used to generate a

simulated microstructure with the same volume fraction (0.57) and particle size distribution as the

2D polygon mesh with the assumption that the filler is a set of 61 circles in 2D and 1164 spheres

in 3D. The number of particles varies from model to model in order to maintain a similar size

10
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Figure 5: Particle size distributions of the TATB crystals extracted from the SEM image in Figure 2 alongside the

distributions used in the 2D circle and 3D sphere models.

distribution for the given shape (see Figure 5). Due to the different packing efficiency between

polygons and circles, more particles are needed in 2D circles (61) than 2D polygons (53) to attain

the same overall explicitly simulated volume fraction. Similarly 1164 spheres were needed for

the 3D sphere model in order to capture the particle size distribution. Note as a result of this

higher number of particles, the 3D sphere particle size distribution is smoother that the 2D models

as shown in Figure 5. Here it should also be acknowledged that a size distribution obtained from

a 2D slice cannot be used to generate the 3D representation unless the particles are spherical [47].

In our case the particle geometry is not spherical but, in the absence of 3D imaging (difficult with

micro-CT given the low density mismatch), the 2D polygon distribution was used to construct

the 3D sphere model as well as the 2D circle model. The three geometries are shown in Figure 5

together with the particle size distributions.

The simulated area was Lx×Ly = 222×157 µm in 2D and Lx×Ly×Lz = 222×157×111 µm

in 3D. A mesh convergence study was performed and a total of 692175 elements were used for

the 2D circle model, and 706153 for the 2D polygon model. Linear 4 node plane stress elements

with 1 integration point per element (CPS4R) were used for the matrix and filler with a thin layer

(0.02µm) of 4 node cohesive elements with 2 integration points per element (COH2D4) along the

interfaces. The 3D sphere mesh required a total of 29229480 linear 4 node tetrahedral elements

(C3D4). The applied tensile displacement was 2 × 10−3Ly = 0.314 µm. This was applied on a

ramp function such that the strain rate was the same as the experiments (2×10−3/s).

Boundary conditions can strongly affect the outcome of a given simulation, so it is important

to ensure that the correct choice is made. Four different cases were investigated to simulate the

11
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Figure 6: Schematic diagram showing the four boundary condition cases investigated.

tensile loading of the two-dimensional polygon model. The four cases were: (a) traction free

vertical edges, (b) straight vertical edges u(0, y) = u(0, Ly), u(Lx, y) = u(Lx, Ly), (c) periodic

vertical edges u(Lx, y) = u(0, y) + u(Lx, 0) and (d) periodic on all 4 edges. These are illustrated

schematically in Figure 6.

Figure 7: Schematic diagram showing the final boundary condition used for the 3D model (u, v, w are displacements in

x, y and z respectively).

Results presented in [18] showed that for a sufficiently large simulated volume, the choice

between cases (a), (b) and (d) of boundary conditions does not influence the macroscopic re-

sponse. Case (c) showed some variation due to the mismatch of constraint applied in the two

axes, leading to unnatural failures. Periodic boundary conditions are reserved for repeatable

12
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units of material and the geometry in this study although representative of the material, is ran-

dom and therefore not repeatable. Therefore all further simulations were performed using case

(a) boundary conditions. In the 2D model, the node at the origin was fixed in both directions

(see Figure 6). For consistency, the x and z axis were fixed in the 3D sphere models shown in

Figure 7.

4. Results

The maximum principal strain field throughout the simulation is shown in Figure 7 for the

2D polygon model, the 2D circle model and a side on view of the 3D sphere model. The 2D

circle and 3D sphere model results are similar at the lowest applied strain. At larger strains, the

3D model shows a higher level of damage around the large particles than the 2D model. How-

ever the largest difference between all three models is that the polygon corners in the 2D polygon

model generate stress concentrations, which initiate failure along the interface and brittle fracture

right through the representative element of the composite. By the end of the simulation a crack

can be seen orthogonal to the loading direction in Figure 7 whereas only the largest spheres have

debonded near the poles, leading to a more gradual accumulation of damage. Figure 7 shows the

failure evolution for the three models. For the two models 2D polygons and 3D spheres which

show macroscopic failure, debonding occurs around the larger particles. This is also observed by

an earlier onset of failure and associated drop is stress in the macroscopic stress-strain response

of the 2D polygon model as shown in Figure 8(a).

The experimentally measured elastic modulus and failure point are also shown in Figure

8(a). The latter are consistent with the deformation and fracture behaviour observed in the 2D

polygon model which gives confidence in the validity of the latter model. From Figure 8(a), both

the circle and polygon 2D models are somewhat more compliant than the 3D model as expected;

this is due to the plane stress assumption in both 2D models. In order to investigate the effect of

this assumption, the 2D circle and 2D polygon models were also run using plane strain elements,

illustrating the two extremes that bound a 3D model behaviour in terms of the lateral deformation

constraint. As shown in Figure 8(a), the plane strain conditions show a consistent lower strain to

failure as compared to the plane stress results, as expected. Comparing the idealised 2D circle

model and the real geometry 2D polygon model, the observed difference in the onset of failure

stems from the strain concentration effects provided by the sharp corners of the polygon particles

as already mentioned. Therefore the added strain localisation provided by the polygons gives a

more brittle fracture behaviour and lower strain to failure, compared to the relatively progressive

softening seen by the 2D circle models. The 2D polygon model therefore gives the most accurate

predictions for the deformation behaviour of this particulate composite, when compared to the

experimental data.

Simulations were performed at a range or strain rates as shown in Figure 9(b). The faster rate

produces a stiffer response in the matrix and the critical failure stress at the interface is reached

at a smaller applied macroscopic strain, whereas at lower strain rates the matrix is able to ac-

commodate the applied strain delaying fracture at the interface. There is therefore a competition

between the applied loading rate and the two mechanisms in the model by which the loading can

be accommodated, either through intra-granular fracture or matrix deformation.

The crack path at the end of the simulation for the three different filler geometries is shown

in Figure 10. This indicates that it is unreasonable to assume an idealised circle/sphere geometry

for the filler as the filler remains bonded to the matrix near the equator preventing rapid crack

propagation across the sample as observed experimentally and in the polygon model. The 2D

13
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Figure 8: The maximum principal strain at equally spaced intervals of applied macroscopic strain from 0 to 2 × 10−3

(the end of the simulation) for the 2D polygons, 2D circles and 3D spheres models. The displacements scaled ×5 in the

contour plots. 3D sphere images shown from the free surface (z=111µm).
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Figure 9: (a) The effect of particle geometry compared to experimental data: 2D circle, 2D polygon and 3D sphere. (b)

The effect of strain rate on the behaviour of the 2D polygon model.
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Figure 10: The scalar damage variable 0 ≤ d ≤ 1 at an applied macroscopic strain of 2×10−3 (the end of the simulation):

(a) 2D polygons, (b) 2D circles and (c) 3D spheres at free surface (z=111µm). White regions (voids) indicate the element

has failed and been deleted. Displacements scaled ×20.

circle and 3D sphere models exhibited progressive softening in contrast to the 2D polygon model

that exhibited brittle fracture, with a more sudden debond initiation and propagation. More

energy is dissipated in the matrix in the circle and sphere models compared to the polygon model.

The 3D sphere model for example in Figure 10 shows a great deal of green areas at the interfaces,

meaning a more global softening is occurring compared to a localised single major debond path

as seen in the 2D polygon model. Figure 11 examines the crack paths in more detail for the 3D

sphere model. As expected more severe damage regions are observed in the 3D sphere model

compared to the 2D circle model, given the triaxial stress state that can exist in the 3D object.

However, in spite of generating apparent large debond areas, a model (3D sphere) taking into

account the volume fraction, size distribution but not the shape of the particles was insufficient

to capture the global σ − ε behaviour of the composite.

To investigate the influence of model size and to ensure the model is representative, the 2D

polygon model was cut into four smaller models, or RVEs (representative volume elements), the

smallest being 1/16 of the original area with the same aspect ratio, material laws and equivalent

boundary conditions (see Figure 12). The volume fraction of the visible particles in each of the

RVE’s in Figure 12 was within 4.8% of the original 2D polygon model; the total volume fraction

however was kept at 95% for all RVE’s through the FLB adjustment. The crack path can be

seen in Figure 12 which indicates that the large particles with edges close to horizontal (where

the mode I traction is greatest) fail in all cases regardless of model size. Hence the macroscopic
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Figure 11: 3D view of the 3D sphere model at an applied macroscopic strain of 2 × 10−3 (the end of the simulation):

(a) max principal strain (rotated view of Figure 8 same scale), (b) max principal strain same as (a) but plotted on the

interface and (c) a section half way through along the z axis showing the scalar damage variable (similar to Figure 10(c)

but at the centre instead of the free surface). Displacements scaled ×20.

response is governed by the geometry of a few filler particles. It is therefore not surprising that

the macroscopic stress strain response for all model sizes were in agreement except for a small

change in the elastic modulus due to slight differences in the shape f unction, i.e aspect ratio,

number and length of edges, associated with each RVE model as shown in Figure 13(a).

For each model size, the effect of the elastic stiffness ratio of the two phases E f /Em, was

investigated by increasing the elastic shear modulus of the matrix µ∗ while keeping the filler

16
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Figure 12: RVE study to examine the influence of reducing the model geometry size whilst keeping volume fraction

constant. (a) Full 2D polygon model at the end of the simulation with the area reduced to (b) 1/2 (c) 1/4 (d) 1/8 (e)

1/16. Displacements ×20.

modulus constant. This is equivalent to increasing the applied strain rate which also leads to

a stiffening of the matrix modulus. Consequently both the macroscopic failure stress of the

composite (Figure 13(b)) and elastic modulus (Figure 13(c)) increase as the matrix stiffness

approaches that of the filler.
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Figure 13: (a) The effect of model size on the macroscopic stress-strain response predicted with the 2D polygon model.

(b) The failure stress and (c) composite modulus as a function of contrast E f /Em with E f = 31.5 GPa and increasing the

fine loaded initial matrix modulus, µ∗, for different model sizes.

There is an argument over whether or not the volume chosen is representative. Work by Un-

derwood [47] debates whether a slice can be taken through any axis such that the area fraction

matches the volume fraction. A step beyond that must look at whether the area of the microstruc-

ture chosen is sufficiently large to represent the global behaviour. There is a tradeoff between

capturing enough particles to be representative and capturing enough detail in the particle geo-

metry to accurately predict fracture paths and stress concentrations. It has been previously shown

by Mohammed et al. [48] that for low modulus contrast, simplified representations of a geometry

and a smaller RVE is suitable. This work indicates that even for a higher contrast, an RVE can

consist of a small number of filler particles but that the macroscopic failure response is not ac-

curately captured if a highly idealised filler geometry (circles or spheres) is assumed.

In terms of design considerations for general particulate composites, this study has shown

that shape of the particles plays a significant role in the damage development process within

the composite. If the material designer requires a brittle failure or a more gradual degradation,

then this can be achieved through changing the shape of the particles. This effect of shape

has been illustrated in Figure 9 and Figure 10. Design curves, such as Figure 13(b) and (c),
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can be generated to inform the material designer how to tune the constituent properties of their

composite to meet the demands of a specific application. For example, for a hypothetical design

criterion of σ f >15 MPa, then here E f /Em must be less than 4. A robust model such as this can

prove a powerful tool in the design and manufacturing process.
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Figure 14: The effect of (a) σ0 and (b) Gc on the 2D polygon model

Finally, the effect of the fracture energy and damage initiation stress for the cohesive zone

parameters was varied to show their influence on the macroscopic failure response of the com-

posite as shown in Figure 14. Reducing the damage initiation stress or fracture energy to half the

original value means that in both cases the work of fracture is halved as the area under the stress

strain curve is halved. However reducing σc means that damage is initiated at a lower stress as

seen in Figure 14(a). When the parameters were doubled failure was not observed for the macro-

scopic strain applied here. This sensitivity to cohesive parameters indicates that the values used

are reasonably accurate as the failure point measured experimentally agreed well with the failure

predicted by the 2D polygon model (see Figure 9(a)).

5. Conclusion

A novel method for modelling the microstructure of a high volume fraction particle filled

(95% TATB/KELF800) composite has been presented. An analytical micro mechanics model

has been used to define the matrix behaviour which was calibrated with experimental data and

stiffened to account for fine inclusions. Filler debonding was included as it is the primary failure

mode expected in this material. The elastic response and failure point predicted by the model

were validated against uniaxial tensile test data for the composite. The importance of an ac-

curate representation of the filler geometry was shown. For the material laws used here, the

response was independent of model size but highly sensitive to the cohesive law parameters (Gc

and σc). Therefore detailed experiments are required to define these parameters, on the correct

scale, strain range and strain rate range to reliably predict composite deformation and fracture

behaviour. Even though the models were validated, the experimental data available were limited;

therefore more experiments are needed in the future for the mechanical response of the PBX

composite.
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