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Abstract Protecting structures from the effect of blast loads
requires the careful design of all building components. In this
context, the mechanical properties of Polyvinyl Butyral
(PVB) are of interest to designers as the membrane behaviour
will affect the performance of laminated glass glazing when
loaded by explosion pressure waves. This polymer behaves in
a complex manner and is difficult to model over the wide
range of strain rates relevant to blast analysis. In this study,
data from experimental tests conducted at strain rates from
0.01 s™' to 400 s ' were used to develop material models
accounting for the rate dependency of the material. Firstly,
two models were derived assuming Prony series formulations.
A reduced polynomial spring and a spring derived from the
model proposed by Hoo Fatt and Ouyang were used. Two fits
were produced for each of these models, one for low rate
cases, up to 8 s !, and one for high rate cases, from 20 s L
Afterwards, a single model representing all rates was pro-
duced using a finite deformation viscoelastic model. This as-
sumed two hyperelastic springs in parallel, one of which was
in series with a non-linear damper. The results were compared
with the experimental results, assessing the quality of the fits
in the strain range of interest for blast loading situations. This
should provide designers with the information to choose be-
tween the available models depending on their design needs.
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Introduction

Explosions can put at risk the integrity of buildings during
their service life. Glazing elements present a specific risk dur-
ing such events, as their nature makes them more prone to
catastrophic failures than other structural components, causing
a large proportion of the injuries and economic losses occur-
ring due to such loading [1].

Glass has relatively low fracture toughness and therefore
will fail catastrophically without any plastic deformation. If
simple annealed glass panes are used in a building, after their
failure fragments can be thrown inside and outside the build-
ing envelope causing significant injuries. Additionally, once
the building skin is pierced, the blast pressure waves are able
to enter the internal spaces, causing additional wounds and
damage. Composite laminated glass windows can be used to
minimize the damage and risk of injury during blast events.
Whilst the glass layers are expected to fracture under the ap-
plied pressures, the polyvinyl butyral (PVB) membrane will
retain the glass fragments in the window frame. This ensures
that no projectiles are created and that blast pressures do not
enter the building space. Additionally, the glass fracture and
the large subsequent displacements of the membrane provide
a major mechanism to absorb the blast energy and mitigate its
transfer to the supporting building structure, significantly re-
ducing damage to these components. Figure 1 shows an ex-
ample of such a laminated glass pane, showing its deformation
mechanism after the glass fracture. Similar considerations also
affect the design of forward facing aircraft windows, which
have to resist significant pressures and potential high impact
loads.
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Fig. 1 Deformation of laminated glass pane during a blast
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Full scale blast tests have been performed in the past
employing 3D digital image correlation (DIC) to provide full
field strain and displacement data in three dimensions for the
whole glass surface [2]. The glass panes were composed of
two 3 mm thick plies of annealed glass with a 1.52 mm PVB
interlayer. 12.8 and 25.6 kg C4 charges (15 and 30 kg TNT
equivalent) were used and the stand-offs were between 10 and
16 m. These experimental data allowed the observation of the
entire loading process, starting from blast wave arrival and in-
cluding glass fracture and post-crack deformations. Typical
graphical results are shown together with a diagram of the ex-
perimental set-up in Fig. 2, where the appreciable deformation of
the PVB is apparent.

However, to provide improved design predictions for dif-
ferent blast situations, it is important to understand in detail
the behaviour of all the laminated glass components, including
the Polyvinyl Butyral (PVB) membrane. Specifically, relative-
ly simple material models representing this material at the
strain rates of interest would greatly assist the modelling of
the entire structure and its behaviour under blast loading.
These rates observed during blast events ranged from below
15! to above 100 sfl, therefore models used would have to
represent the material in this range. Additionally, the DIC
results showed that the strain in the material is generally lim-
ited to 0.15 strain [2], making an appropriate characterisation
of the material up to this deformation especially important.

The mechanical properties of this polymeric material have
been the object of several studies. Vallabhan performed shear
tests on laminated glass samples and obtained estimated of the
shear modulus at different shear strain levels [3]. Du Bois and
Timmel employed experimental results to include a
hyperelastic model of the PVB material in their work.
Several different spring functions were considered, using a
Mooney Rivlin representation for their final impact model
[4, 5]. Xu and Li have used experimental data to fit viscoelas-
tic laws which were used for windscreen impact simulations
[6]. Subsequently, they performed tests at high strain rate
using a split Hopkinson bar apparatus to obtain stress—strain
curves. They then fitted a viscoelastic law to this, assuming a
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Fig. 2 Typical blast and DIC set up and results from a blast test (30 kg
TNT Equivalent at 16 m). The DIC set up is shown (not to scale) (a),
together with a sample of the raw high speed images and DIC results at
three time steps (b) (adapted from [2])

Mooney Rivlin hyperelastic spring to account for the non-
linearity [7]. Iwasaki and Sato identified a shift in the PVB
behaviour at high strain rates [8] and they included a material
model fit for the lower strain rates cases [9]. Liu and Sun
performed several tests at different strain rates both in tension
and in compression. They then fitted the data with multiple
individual material laws to cover the different rates and stress
regimes [10]. Recently, Zhang et al. [11] also performed high
rate tests on the PVB material, reaching rates beyond 1000 s
The results of these authors also showed the same change in
behaviour seen in previous studies.

In this research the properties of PVB polymer membranes
were investigated to provide relevant material properties for
use in future blast research and design projects. The aim of this
study was to extend the available models to the high rates of
deformation commonly seen in blast loading cases, whilst also
attempting to limit the number of different models which
would need to be used to account for the possible range of
deformation speeds. Experimental data from uniaxial tests at
different strain rates were employed to derive material models
which could be used to model this component of the glazing
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system. Three material models were fitted. These included
two Prony series viscoelasticity functions and a model derived
using a full mathematical solution of the finite deformation
viscoelasticity equations. This last model assumed two differ-
ent hyperelastic springs in parallel, one of which was placed in
series with a viscous damper. The results from the various
approaches were then compared considering their accuracy
and their ease of application.

In all cases special attention was paid to the quality of the
stress—strain fits up to 0.2 strains, which includes the range of
strains generally seen in blast experimental data before the
glazing samples reached ultimate failure.

Method
Experimental Programme

Tensile tests at different strain rates were performed on the
same PVB material to obtain the data necessary for the model
calibration. The material tested in all cases was Saflex PVB
produced by Solutia Inc. with product number RB-41. The
equipment used was different for the high and the low strain
rate experiments, as no single machine could produce the
range of desired speeds.

All the tests at rates above 0.2 s ' and a proportion of the
tests at rates below this were performed by Hooper et al. [12].
The samples were cut in a dog bone shape, with a height of
75 mm and a gauge length of 20 mm. The gauge length width
was 4 mm and the material thickness was 0.76 mm through-
out. The tests were performed on a servo-hydraulic Instron
tensile testing machine, employing a loss motion device to
ensure a more constant strain rate at the higher speeds.
Lightweight titanium alloy grips were used to minimise iner-
tial effects. Strain data were collected optically using a high
speed camera and extracted with an automated image analysis
algorithm. This consisted in locating two black lines drawn on
the samples at 20 mm distance, measuring their relative posi-
tion in each frame captured with high speed cameras.
Photoelasticity techniques were also used for some samples
to visualise the strain distribution. Though these results were
not calibrated and hence could not be used to measure local
strains directly, their results indicated a uniform strain distri-
bution in the gauge length. Figure 3 is an image of one of the
faster tests taken 133 us after the initial loading, indicating
that the stresses exhibited a uniform distribution soon after
the start of the test. Force data were collected using a piezo-
electric load cell for speeds above 0.1 ms ' and a strain gauge
load cell for lower speeds. Tests were run at constant displace-
ment speeds of 0.005, 0.1, 0.32, 1,2, 5and 10 m s L provid-
ing results for average rates from 0.2 to 400 s .

The lower rate tests, below and including 0.2 s ! were
performed for this study. The specimens in this case were

Lines used for strain

measurements

Fig. 3 Photoelasticity results for a 400 s~' test 133 us after the initial
loading

cut following the dimensions specified in British Standard
37-2005 [13]. The plan geometry of the specimens is shown
in Fig. 4, whilst their thickness was 1.52 mm.

A low load and low speed single column 1 kN Zwick
tensile testing machine was employed. The strain data were
collected optically in a manner similar to that used by Hooper
et al. [12], with the difference that high speed cameras were
not used in this case. A Matlab routine was employed to iden-
tify in the images black lines which had been drawn at regular
intervals on the samples. The distance between these points
could then be used to calculate the strain at each time step. The
inbuilt force sensor of the machine was used to capture load-
ing data. As relevant codes [14] are not prescriptive towards
possible optical methods used for these measurements, both
the method used here and previously by Hooper et al. [12]
could satisfy the requirements. Tests were run at strain rates of
0.01, 0.02, 0.1 and 0.2 s™'. All the tests were performed at a
room temperature of 20 © C. As the rooms were climate con-
trolled, this temperature did not vary significantly during the
tests. Whilst it is possible that the membrane temperature
would have been increased during the test by the radiation
produced by the explosion, it was assumed that this effect
would have been of limited magnitude. It was nevertheless
possible that the material temperature would have increased
significantly due to the high rate deformation. However, the
same effect would have taken place in the laboratory material
tests, and would therefore be implicitly included in the results,
justifying the use of these results to derive the desired material
models.

The total number of tests at each speed is shown in Table 1.
Both Hooper et al.’s [12] and new tests are listed, as both sets
were employed in this analysis. In some cases the number of
performed tests was less than three. The consistency of the

35 mm |
N L -
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115 mm

Fig. 4 Dimension of specimens used in the low rate tests. The specimen
thickness was 1.52 mm
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Table 1  Number of tests performed at each strain rate. Both Hooper’s
and new tests are listed

Rate (s') 0.01 0.02 0.1 02 2 & 20 60 200 400

Number of samples 3 3 35 225 3 5 8

tests was therefore considered when deciding to include the
tests results.

Data from the two sets of experiments have been employed
to produce material models for the PVB. As both sets of ex-
periments produced data for the rate of 0.2 s™', these curves
have been compared. The other rates could not be compared,
as they were covered only by one set of experiments.

Material Model Fit

The experimental results highlighted the high degree of
rate dependence of the PVB material. Material models
need to take this into account and ideally include a mech-
anism to represent this change in behaviour. Hooper et al.
[12] argued that a viscoelastic model employing a Prony
series would not be able to cover all the strain rates of
interest. This was because, for the model to be able to
represent all the rates, its stretch and time dependant com-
ponents needed to be independent and separable. As this
was not possible in the PVB data, it could be assumed a
single model would not be able to represent the range of
behaviours observed regardless of the number of terms
used. Specifically, it was challenging to ensure that a single
Prony series model would show the changes in the small
strain stiffness observed in the experiments. This issue
could be overcome by using different models for different
rate conditions. As an example, the models proposed by
Liu et al. [9] represented different strain rate ranges and
loading types and hence ensured all the material behav-
iours of interest were covered.

However, work by several authors, for example that of
Hoo Fatt and Ouyang [15] shows that models which ex-
hibit the desired change in behaviour can be derived using
finite deformation viscoelasticity laws. Through these, dif-
ferent hyperelastic models can be combined, ensuring that
the whole range of deformation speeds is covered. The
technique has been described thoroughly by Huber and
Tsakmakis [16] and has been used by Hoo Fatt and
Ouyang [15], Arruda and Boyce [17], Amin et al. [18,
19] and others.

In this work both approaches were attempted. Firstly, two
Prony series models were developed using different
hyperelastic models, specifically a Hoo Fatt model and a re-
duced polynomial model. As it was not possible to model the
entire PVB behaviour with a single set of parameters [12], two
parameter fits were performed for each hyperelastic

SEM

formulation, one for the lower strain rate and one for the
higher strain rate data sets. In this case, the “low rate” model

covered tests up to and including an average rate of 8 s,

whist the “high rate” models covered rates higher than 8 s .
The rigorous finite deformation viscoelasticity derivation was
then employed to formulate a single model covering the entire
range of rates. This required the use of different hyperelastic
springs and a nonlinear viscosity function. The different ma-

terial models are described in more detail below.
Basic assumptions and definitions

When deriving the material models described above, certain
assumptions were made with regards to the PVB behaviour.

The coordinates of a point in the material before deformations
take place (¢ = 0) are defined by the vector X. If this element of
material is moved by the deformation, its new coordinates will
be given by a new vector, X. The deformation tensor F is given
by F;; = %/ The material was considered incompressible for

this study. This implies that the product of the diagonal mem-
bers of the deformation tensor should be 1. Therefore, if F;; is
equal to the stretch ratio (\), F», and F;33 will be equal to \/LX

For uniaxial tension, F will therefore be equal to:

A 0 0
0 — 0

F= VA 1 (1)
0 0

VA
The left Cauchy-Green strain tensor B is given by B =FF”.
Therefore, in this case:

/\2(1)0
B:OX(I) (2)

0 0 —

A

The two invariants of B are defined by 7, = t7(B) = \* + 2\~
and I = }{ (r(B)~1r(BB) } = A% + 20,

These quantities, especially B and its invariants, were used to
derive all the material models.

Prony series derivation

These viscoelastic material models include a non-linear
hyperelastic function o((e), dependent on strain, combined
with a Prony series, g(#), to include the time dependency.
The overall material model for a step strain relaxation test is
shown in equation. (3):

o =oo(e) x g(t) 3)
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The hyperelastic function was derived from the basic
Equation [17]:

o 0P
T= pl+26—]1B 26_12B (4)
where T is the Cauchy true stress tensor. The function implies
that a function representing the work of the spring (/) needs to
be differentiated with respect to the first two strain invariants
of the strain tensor B. Lamber-Diani and Rey [20] argued that
to determine the portion of the equation relating to /,, a biaxial
test would be required. As this was not available here, work
functions related solely to /; were chosen for this analysis.
This would limit the applicability of the model, as it would
be validated only for single axis test, and applying it to heavily
biaxial situations would represent an extrapolation from the
available data. However, in the proposed application, as
shown in Fig. 1, the PVB membrane will stretch significantly
in the direction perpendicular to the crack lines, therefore
representing a uniaxial tension situation.
The time dependent function g(#) was assumed to take the
form of a Prony series, which for stress relaxation test data
is given by:

N

g(t) = g.+ Z:giexp (— Tt> (5)

1

where g, the long term shear modulus, g; and 7; are model
parameters to be found. The model parameter fit was per-
formed assuming six terms of this series, using either the 7;
terms derived by Hooper or others at more regular logarithmic
intervals to facilitate the fitting process. The method described
by Goh et al. [21] was employed to perform the material
model fit, applying a square minimisation technique to deter-
mine the coefficients. The Solver function of Microsoft Excel
2012 was used to solve the optimisation problem.

Hoo fatt formulation

Hoo Fatt and Ouyang [15] used a model similar to an Ogden
spring when deriving a material law for a polymer material.
The rationale for this formulation was to be able to represent
the sharp change in stiffness which took place at small strains.
As the behaviour of the material under consideration here is
similar, the same hyperelastic law has been employed.
However, in this case the model was expanded into a summa-
tion in a similar manner to the classic Ogden model. This
allowed the sharp stiffness change to be reproduced with a
single hyperelastic spring in the Prony series approach. The
work function used is:

U= Y wlh-3)” ©)

where y; and «; are model parameters to be found. Two terms
were used. If this function is substituted into equation (4), the
hyperelastic strain is given by:

T = —pl + 201, (1;-3) VB + 205, (1,-3) "B (7)

The term p in the equation above can be found considering the
boundary conditions o,, = 033 = 0. Substituting into equation
(7), a formula for p is derived:

a1— 1 o~ 1
p =201 (1,-3)"" 1)X+2042M2(11—3)( ’ UX (3)
and therefore the final hyperelastic expression for uniaxial
tension is given by:

1 - -
ol —2<A2_>\> (a1M1(11—3)( D aapy (1,-3) 1))

©)

Reduced polynomial formulation

Various authors in the past have used a polynomial formula-
tion to represent the PVB material, for example Muralidhar
etal. [22]. As discussed above, a model independent of 7, had
to be used in this case. Therefore a reduced polynomial for-
mulation [23] was chosen in this work. Whilst this model does
not guarantee an equally accurate representation of the change
in stiffness at higher rates, it was considered that this proce-
dure would ensure the straightforward application of the mod-
el in finite element software for further analysis of the com-
posite material.
The work function in this case is given by:

v=> Ci(Ih-3) (10)

where C; are constants to be found. A third order model was

employed. Using the function above with equation (4) the
stress tensor was:

T:—pI+2(C1 +2C2(11—3)+3C3(11—3)2)B (11)
The term p could be found using the same method described
above, giving:

1

p= 2(01 1 20,(1-3) + 3C3(Il—3)2> L

(12)

Inserting this in equation (11) and deriving an equation for o,
gave:

oy =2 ()\2—%) (C1 +2C(1;-3) + 3C; (11—3)2) (13)
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Finite Deformation Viscoelasticity
Model derivation

The finite deformation viscoelasticity models are derived by
solving the mathematical equations representing a “springs
and dampers” system, similar to those assumed in traditional
viscoelasticity theory. However, in this case all small strain
assumptions are avoided to produce a solution valid for any
level of deformation. For the situation of interest here a system
of two nonlinear springs and a damper was assumed, as shown
in Fig. 5. This is the same system as Model A described by
Huber and Tsakmakys [16], and was also used by several
other authors previously mentioned [15, 19].

The total observed stress is equal to the sum of the stresses
affecting each spring. The single spring is referred to as the
equilibrium spring (“eq” in symbols), whilst the spring in
series with the damper is referred to as the overstress spring
(“oe” in symbols). The deformation of the equilibrium spring
and the summation of that of the damper and overstress spring
series is the same and equal to the overall measured deforma-
tion. Therefore, as shown in Fig. 5, the deformation of the
equilibrium spring is equal to B. The deformation of the over-
stress spring is instead dependant on the viscous behaviour of
the damper, introducing a time dependency in the model.

Huber and Tsakmakys [16] and Hoo Fatt and Ouyang [15]
provided a detailed derivation of the general equations
governing this model. The first step of the method, introduced
by Lubliner [24] in the context of finite deformation plasticity,
is to decompose the overall system deformation into an equi-
librium and an instantaneous part, F = F_F,. F; represents the
deformation state which would be reached if the load was
instantaneously removed from the deformed sample. It could
therefore be associated with the deformation of the damper. F,,

o]

Peq, A, B

Woe Ae,Be

Fig. 5 A summary of the material model assumed to model PVB

SEM

is instead assumed to be the deformation of the overstress
spring, hence the strain responsible for the stress acting in
the damper and spring series.

Additionally, it is assumed that the system will obey the ther-
modynamic condition [19]:

—pb+ S - L>0 (14)

Where p, is the material mass density in the original configu-
ration, ¢ is the rate of change of the internal Helmholtz free
energy, Sg is Cauchy (true) stress and L is the velocity gradi-
ent, L = FF !, measuring the rate of change of the velocity in
the volume of the material at a given moment in time.

Huber and Tsakmakys showed the derivation of a system
of equations based on these assumptions, and concluded with
a material model given by:

o, My
T=-pl+2“B2__“B"'
I T T
oY Ooe 5 -1
2 B,2_%B 15
* olis, < ~Ohp, ° (15)
2
B. = LB, + B.L'-=B,T,. (16)
U]

Where T,, = 2 51‘11’8 B.—2 g;z’x B. !, B, is the left Cauchy-

Green strain tensor for the overstress spring and 7 represents
the viscosity function of the damper. Spring functions similar
to those derived above for the Prony series models can then be
substituted into the equations. This derivation method was
used here, assuming a one term Ogden [25] function for the
equilibrium spring and a three terms Hoo Fatt’s spring func-
tion for the overstress response. Substituting these springs into
the system above, the following equations were obtained for
uniaxial tension:

1
/‘Lo)‘ao - /’Lo>‘7%% + 2 ()‘927*> X

g1 =
Ae
X (alul (115,-3)“™ + aopiy (115,-3) ™ + a4 (1130—3)(“371))
(17)
.2 1
B.— L B.+ BL’ - B2 [M\-—) x
n Ae
X (alﬂl (115,-3)“"™ + aopiy (115,-3) ™ + a4 (113(,—3)((‘371))
(18)

The parameters of these equations were fitted using the meth-
od explained below.

Data fit method Hoo Fatt and Ouyang presented a method to
fit the model constants for this kind of mathematical represen-
tation. In their paper, the constants for the two springs were
obtained first. At low, quasi static, rates it was assumed that
the damper would offer no resistance to the deformation.
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Fig. 6 The lowest and highest available strain rate data were used to fit
the two spring models for the finite deformation viscoelasticity model.
The figure shows the raw data and the model fits

Therefore, the overstress spring would not be stretched, giving
F;=F and F.=1. The measured stress would therefore be
caused by the deformation of the equilibrium spring.
Therefore, data sets in this range of rates could be used to fit
the parameters of the equilibrium spring directly. As the two
lowest strain rates data available were similar (see Fig. 11), it
was assumed that the quasi static condition was being
approached. The Ogden model spring could then be fitted
with the data from the lowest rate experiment (0.01 s ).

Again, the data for the higher rates, at 200 and 400 st
showed less variation than data at lower speeds. It was there-
fore assumed that these sets would approximate an instanta-
neous response of the material. In this condition, it could be
assumed that the damper would not move, and hence that the
overstress spring deformation would be equal to the total de-
formation of the material, specifically F;=1and F,=F. As the
total measured stress was equal to the sum of the stresses
acting on the two springs and the equilibrium spring stress
could be calculated using the material constants obtained in
the previous (quasi static) step, the stress acting on the over-
stress spring could be found. This allowed a stress strain curve
to be derived for the overstress spring, whose material param-
eters could then be fitted. This procedure was followed using
the 400 s~ data.

70

60 @ 0.01 /s Data] * 1
- x 0.02 /s Data * .
& sor * 0.1 /s Data ¥ o+ F 1
= + 0.2 /s Data + %
<
» 401 + % o o =
é + « . ><D xa X
s 30 +* . < 1
Q +
=] * %
g 20r o L s o 4

% x o
10 T 4
+ Tox - *x §< & ® °
O bt xifix Ex o & 7 s s s ‘ ‘ ‘
1 1.2 1.4 1.6 1.8 2 22 24 2.6 2.8 3

Stretch Ratio

Fig. 7 Low rate true Stress - stretch curves for PVB under uniaxial
tensile loading. Only the recent data for the 0.2 s ' case are presented
for clarity

Fig. 8 Intermediate rate true stress — stretch curves for PVB under
uniaxial tensile loading

Figure 6 shows the two extreme stress-stretch curves to-
gether with the fitted models.
Once the parameters of the springs had been fitted, the viscous
function had to be considered. The data showed that a constant
would not be sufficient to model the different material behav-
iour. A function as used by Hoo Fatt and Ouyang was as-
sumed and the parameters were fitted to the data. To achieve
this, the method described in the same paper was followed.
This assumed a matrix F, of the form:

Ae 0 0

Therefore B, was equal to:

Moo o0
1

1

0 0 —

Ae

Using this assumption, A and A, could be substituted in the
overstress strain rate differential equation, which became:

A 2T,
A 3n ¢

Ao (21)

Therefore n = % The values of n found in this way

were fitted to the proposed equation:

n={Cy(1-exp(Cpp(I18,73))) + Cip } (GM?B(, + Cns]%Be + Cyeli, + Cn7>
(22)

This function was substituted into the system of equations
of the model. Values for ) and the required deformation
invariants were obtained from the available data. T,, was
calculated by subtracting the equilibrium spring stress
from the experimentally measured stress. This data was
used to calculate A, from the known overstress spring
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equation. As the equation for this was nonlinear and diffi-
cult to invert, the stretch was found using a numerical
solver in Matlab [26]. The overstress rate was then found
through numerical differentiation. A polynomial was fitted
to the A\, data to achieve this, since otherwise the noise
present in the experimental curve would have prevented
realistic estimates being obtained. The values of 7 obtained
were then used to fit the constants required.

Once the parameters were obtained, the resulting system of
equations was solved numerically using Matlab.

Results
Experimental Results

The results from both sets of experiments are presented to-
gether for clarity.

Stretch Ratio

The data is shown as true stress versus stretch ratio A, which is
equal to the length of the sample at time t (/,) over the original
length (1)) :

A =

A (23)

The results of the low rate tests are shown in Fig. 7. As ex-
pected the curves presented nonlinear behaviour together with
significant strain rate sensitivity. At these rates the shape of the
curves did not change significantly, mostly showing an in-
crease in the overall stiffness as the deformation speed
increased.

The tests performed at strain rates above and including
2 s ! are shown in Figs. 8 and 9. The material non linearity
was still very evident, as was the rate sensitivity. Additionally
the shapes of the curves at the higher strain rates, starting from
arate of 8 s~ ', changed significantly, exhibiting a much higher
stiffness at small strains. This was consistent with past
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observations by Iwasaki and Sato [9]. The effect became
marked for rates of 20 ™' and above. Ideally a PVB material
model used for finite element application should be able to
represent this switch in behaviour to ensure that all situations
could be modelled accurately.

The failure point of the material did not change significant-
ly with the rate, the final stretch varying between ~2.7 and
~ 3.2 depending on the specific test. In one of the tests at a rate
of 200 s™' the grips appeared to have slipped at a stretch of
roughly 2.5, prejudicing the accuracy of the results beyond
this point. However, other data sets show the full behaviour
up to a failure stretch of 3, as shown in Fig. 9.

All data sets were employed for further analysis, though
generally only one data set is shown for each speed for clarity.
Typical curves for 2 s ' and 400 s ' are shown in Figure 10,
showing several experimental data sets for each of the strain
rates. The results are typical for the other tested rates. The data
were consistent between each experimental repeat, with small
differences if compared with the likely accuracy of model fits.
Therefore, all rates were employed in the analysis, even
though in some cases less than three tests were performed
for a specific strain rate.

70 T

The faster rates were also likely to present some more un-
certainty with regards to the exact initial modulus of the ma-
terial. Whilst photoleasticity results showed that the strains
were uniformly distributed after the very initial sample load-
ing stage, Hooper et al. [12] calculated that for the 400 s~
case, the rise time predicted with an assumed initial stiffness
would be similar to the time taken by a stress wave to travel
the length of the sample, 40 us, prejudicing the exact stiffness
measurement in the early times. Zhang et al. [11] however
measured longer initial yield times with a similar set up and
material. This suggested the initial results were valid, as sug-
gested here by the photoelasticity results shown in Fig. 3.
Whist this should guarantee an acceptable homogenization
of the stresses, it is possible that other effects, such as the
instrumentation free vibrations, will affect the precision of
the initial stiffness estimates. However, due to the expected
precision of the models used, it is unlikely that the uncertainty
associated with these issues will prejudice the evaluation of
the proposed material models.

Figure 11 shows a plot of the results at 0.2 s from both
tests performed by Hooper et al. and the latest series of exper-
iments. The curves were similar, with maximum differences of

Fig. 12 Low strain rate Prony
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4 MPa. Below a stretch of 1.5 this was limited to 2 MPa, with
the curves superimposing in the most relevant range up to 1.2
stretch. The failure points were often lower in the second
series of experiments, where the samples failed at a stretch
of 2.7 instead of the 3.2 limit reached in Hooper et al.’s data.
This was due to the difference in the sample geometry.
Thicker and wider samples were used in the later experiments,
causing higher forces to be applied to achieve the same stretch
levels. Therefore, eventual imperfections in the sample shape
lead to higher levels of stress concentrations, causing earlier
specimen failures. However, in both cases the failures took
place at significantly higher strain levels than the range of
interest. Therefore, it was decided that both the stress and
failure limit deviations would not affect the accuracy of the
material models significantly and the data from the two sets of
experiments were used directly without applying corrections.

Prony Series - Hoo Fatt Spring

Figure 12 shows the experimental data and the fitted material
models for a selection of low strain rate (up to 8 s ") cases. The
plots show that this function did not represent the material

behaviour accurately at the lowest strain rate of 0.02 s .

The fit improved for the intermediate rate of 0.2 s '.
However, the quality decreased again for the higher rate of

8 s !, where the initial behaviour was not captured by the

Table 2  Material parameters for the Hoo Fatt’s spring

Parameter Low rate (up to 8 sﬁl) High rate (above to 20 s'l)
1 (MPa) 437 8.1

R 1.38 1.54

1, (MPa) 5.68 95.7

o 0.618 0.68

1.5 2 2.5 3
Stretch Ratio

model. Whilst the shapes of the stress-stretch curves showed
some change throughout the range of rates, itis at 8 s~ that the
stress curve started to show the increase in initial stiffness that
cannot be modelled by the basic hyperelastic spring.

Figure 13 show the data for the high strain rate (from
20 s ') cases. The model showed some initial stiffness and
followed the experimental results at higher stretches more
accurately than the low rate cases. However, the fit again
seemed to be of lower quality for the highest rate cases, where
the initial stiffness did not match the experimental stiffness.
The model though followed again the experimental data ac-
curately after this stage. Figures 19, 20 and 21 show plots of
the errors for selected strain rates up to 1.2 stretch, the useful
range for blast loading simulation, and will be discussed be-
low. Tables 2 and 3 summarise the parameters which were
used in both the low and high rate cases.

Table 3  Prony series parameters for the Hoo Fatt’s spring viscoelastic
model

Parameter Low rate (up to 8 s ") High rate (above to 20 ™)
T (s) 1x107* 1x10°°
2 0 0.569
T, () 1x1073 1x10°°
2 0.200 0.161
T3 (s) 1x1072 1x1073
23 0 .00996
T4 (8) 0.1 0.1

24 0.274 .0269
Ts (S) 1 10

gs 0 0

Te () 100 1000

26 0.526 0

Sinf 0 0.143

SEM
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Prony Series — Reduced Polynomial Spring

The fitting of the reduced polynomial spring model was again
performed for the low strain rate and the high strain rate cases
separately. The low strain rate (up to 8 s ') results are shown
in Fig. 14. The results were similar to those for the Hoo Fatt
spring model. The model followed the experimental data for
the 0.2 s~ data set. However, the lower and the higher rates
were less accurate. The lower rates stiffness was
overestimated, producing higher stresses than those produced
experimentally. Instead, the 8 s case again showed that the
model could not capture the initial stiffness, producing lower
stresses than recorded in the experiment.

The results of the fit for the higher strain rates (above
205 ') are shown in and Fig. 15. In this case the model results
were accurate once the material softened, without though
modelling the initial deformation. This was probably due to
limitations in the spring model used. Tables 4 and 5 show the
parameters which were used for these fits, whilst Figs. 19, 20
and 21 show again the error in the fits at several strain rates.

Stretch Ratio

Finite Deformation Viscoelasticity

Figures 16 and 17 show selected plots of the experimental data
with their respective model fits obtained using finite deforma-
tion viscoelasticity. At the lower rates the model showed some
noise at low stretches, up to about A = 1.1. This was due to the
difficulty of reaching a stable numerical solution for the non-
linear differential equation in these cases. The accuracy of the
fit was again lower for the 8 s~ rate. However, in this case the
model overestimated the initial stiffness rather than
underestimating it as in the Prony series results. Both the low-
est rates, such as 0.02 s ' and the intermediate ones, such as
8 s !, showed more accurate results than the Prony series
models. For the rates of 0.1 and 0.2 s ' instead the model
did not show enough stiffness, reducing its accuracy.

Figure 17 indicates that the model was able to represent
the initial stiffness seen in the experiments. Therefore, the
model was shown to be able to switch between the high
rate behaviour and the low rate behaviour, as can be seen
by the difference between the 200 and the 0.02 s™' curves.
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Table 4 Material parameters for the reduced polynomial hyperelastic
spring

Parameter Low rate (up to 8 s High rate (above to 20 s
C1 (MPa) 40.7 311

C2 (MPa) 75.7 0.0112

C3 (MPa) 0 1.3

Table 5 Prony series parameters for the reduced polynomial

viscoelastic model

Parameter Low rate (up to 8 sh High rate (above to 20 sh
T (s) 1x107* 1x107°
g 0 0

T (5) 1x107° 1x107°
2 0.898 0.948
T3 (5) 1x1072 1x107°
g3 0 0.0151
T4 (S) 0.1 0.1

o 0 0.00112
5 (3) 1 10

gs 0 0

Tg (8) 100 1000

g6 0.102 0

Sint 0 0.0354

Tables 6 and 7 show the parameters which were fitted for
the two springs.

Discussion

All the models could capture aspects of the PVB behaviour at
the various strain rates, though showing different limitations.

140

As highlighted previously by Hooper et al. [12], the experi-
mental results available showed a change in the material be-
haviour taking place between the rated of 2 and 20 s ', with
the initial stiffness rising rapidly in this range. After this, the
initial stiffness appeared to remain constant, hence it could be
assumed that further increases in rate would not increase this
parameter significantly. However, the peak stress before the
material relaxation increased somewhat between the two
higher rate sets of tests (200 and 400 s ). Therefore, it is
possible that this parameter might increase further should the
material be deformed at higher rates. This further increase was
also confirmed in the newer data produced by Zhang et al.
[11].

The changes in the data also highlighted the need for sep-
arate material models, as discussed in the method section. As
an example, the high rate curves produced by the low rate Hoo
Fatt spring Prony series is shown in Fig. 18. The plots show
that the fit results display too low stiffness, as the increased
initial stiffness is not represented in the model.

The Prony series models for low rates struggled to repre-
sent the data at both the bottom and the top end of their rate
range. They produced stresses greater than measured for the
slower tests, whilst the 8 s ! curve fits did not show the initial
stiffness and hence underestimated stresses. The high rate
(above 20 s ) fits showed a good agreement beyond the ini-
tial high stiffness region. Both models though struggled to
account accurately for the low strain deformations, especially
for the 200 and 400 s~ ' cases. This error was much smaller in
the Hoo Fatt spring model, which showed the needed behav-
iour, albeit without reaching the correct stress levels. The re-
duced polynomial model instead struggled to show the initial
stiffness in any of the high rate cases and employing more
terms to improve this caused the results to show significant
oscillation, precluding their use in finite element models. After
the initial stiffness phase though the high rate models pro-
duced a better fit than the low rate models. The greater accu-
racy of the high strain rate fits might be due to the fact that the

Fig. 16 Finite deformation
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for rates 0.02, 0.2 and 8 s !

100 -

120~ | & 8/s Experimental Data ' B
----8 /s Finite Deformation Viscoelasticity
+ 0.2 /s Experimental Data )
----0.2 /s Finite Deformation Viscoelasticity o
x0.02 /s Experimental Data //A
80~ |~-0.02 /s Finite Deformation Viscoelasticity _,»'A‘ b

60

True Stress (MPa)

40

20

Stretch Ratio



Exp Mech (2016) 56:1501-1517 1513
Fig. 17 Finite deformation 120l 4
viscoelasticity model fit for rates * 200 /s Experimental Data %
-1 ——200 /s Finite Deformation Viscoelasticity %
20 and 200 s 1001 © 20 /s Experimental Data 4
---20 /s Finite Deformation Viscoelasticity o.
= T
E 80 * > o ° - ]
? 2 90
7] 60 _.0"0_ i
el e
= 40 **: :'0"0 4
*"*' * © °
* 00°
Foxt o0
20 A o0 T
X5 500000
0 1 1 1 1
1 1.5 2 25 3
Stretch Ratio
Table 6 Hyperelastic spring
parameters for finite deformation Ho (MPa) & p (MPa) o W (MPa) o, 13 (MPa) o
viscoelasticity
0.632 4.141 117.373 0.746 16.035 0.806 —121.468 0.768

shape of the stress stretch curves for these cases shows rela-
tively less variation, allowing a single model to capture their
behaviour. These results indicate that at least a third model
could be fitted covering the intermediate rates, including
8 s~'. More experiments would be needed at rates of similar
magnitude to achieve this.

The rigorous finite deformation viscoelasticity was able to
fit accurately more of the data sets considered. Again, the fit
quality was lower at lower stretches, though generally better
than the Prony Series models as shown in Figs. 19 and 21,
however it tended to improve significantly as the deformation
increased. Additionally, the model could represent the higher
stiffness region at high strain rate employing just one set of
constants, thereby opening the possibility of using a single
model to represent the PVB material for a range of situations.
This however, came at the cost of greater model complexity,
both in terms of the model derivation and of the procedure
needed to fit the material constants.

Figures 19, 20 and 21 show plots of the absolute errors for
strain rates of 0.02, 0.2 and 200 s up to a stretch of 1.2.
These data were calculated by subtracting the modelled

Table 7 Damping function parameters for finite deformation
viscoelasticity

Cni (MPas) Cn;  Cnz(MPas) Cny Cns Cns Cng
1.131 —0.248 0.026 —1.527 6.626 4.876 —5.893

stresses from the experimental stresses at each point. The ab-
solute error was chosen as at the relevant stretches the stresses
were generally small, which implied that small absolute errors
would produce very large relative errors. This would be espe-
cially the case for the lower strain rate cases, as the absolute
value of the stresses was significantly smaller, often below
10 MPa, increasing the apparent importance of errors in these
cases. A similar set of information is shown in Table 8, which
gives the mean square error between stretches of 1 and 1.15
for each fit. The absolute error for the finite deformation mod-
el, was lower for both the 0.02 s and the 200 s, i.e., the
curves are closer to 0. Whilst this behaviour was common to
several other rates considered, it should be noted that, as
shown in Fig. 20, the Prony series models are more accurate
at the rates of 0.1 and 0.2 s~'. These results were also largely
confirmed by the mean square error, which summarised the
quality of the fits in a single value. Whilst this did not high-
light the difference in accuracy at different levels of deforma-
tion, it represented a useful comparison between the models.
Again, it could be seen that, in general, the finite deformation
elasticity model produced similar or improved fits at most
strain rates, especially at the lower and higher ends of the
tested range. The fit quality instead was similar and in occa-
sions slightly worse between 0.1 and 8 s, in the transition
between the low and high rate behaviour. However, the error
magnitude at the stretches of interest was still relatively low,
up to 2 MPa. The most likely cause of this inaccuracy was the
nature of the differential equation which needs to be solved as
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Fig. 18 The high rate cases
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part of the material model. The shape of the stress—strain re-
lations for the materials indicated a sharp change of initial
stiffness between the rates of 2 and 20 s™'. Whilst the equa-
tions used here were able to represent the change, their behav-
iour was not perfect, as the differential equations required to
model this sudden change were very stiff. Therefore, the
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relatively small changes in the material stiffness in the lower
rate models were not represented fully by the material model.
The errors introduced by this issue were of approximately
2.5 MPa in the stretch range of interest, as shown in Fig. 20.
In the situation considered though, the PVB membrane was
likely to deform at such low rates especially when still

Fig. 20 Fit absolute errors for the
0.2 s™" strain rate case calculated
subtracting the models stresses by
the experimental values. The low
rate Prony series models were
used and produced a more
accurate fit in most of the
considered range, with errors of
less than 2 MPa
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Fig.21 Fit absolute errors for the
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connected with the glass layers. In this situations, as discussed
previously, its strains and stresses would be small, as the sig-
nificantly stiffer glass layers would limit the membrane defor-
mations. Whilst this phase of the deformation would need to
be modelled, as the composite action of the glazing material
depends on the stresses transferred by the PVB, it was as-
sumed that the uncertainties would be less important than
those affecting the material behaviour after its separation from
the glass. The deformation at this stage though would take
place at much higher strain rates, generally within the more
accurately represented high rate regime. Therefore, the ability
of representing a low strain behaviour, though somewhat less
precise, together with the change in stiffness at higher rate and
an accurate representation of the high rate stress—strain rela-
tionships would be useful for modelling the blast loading
phenomenon.

Therefore, in general the figures show that the fit produced
with the finite strain viscoelasticity model tended to be of
similar or better quality than those of the Prony series models
in the stretch range of interest. Additionally, as mentioned, the
results were produced using a single model and set of

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2
Stretch Ratio

constants, rather than switching between two separate models
for different strain rate regimes as per the Prony series.
Therefore, whilst in specific cases a specific Prony series mod-
el might produce more precise results, the more complex finite
strain viscoelasticity model guarantees much more flexibility
for possible design models.

Conclusion

The PVB tensile experimental data demonstrated the high
level of non-linearity and strain rate dependency exhibited
by this material. Two methods have been used to produce
several material models which account for this shift in behav-
iour. In the first approach, two hyperelastic functions were
used to produce four separate Prony series viscoelastic
models. These were fitted to the high rate experimental data,
including 20 s and above, and to the low rate experimental
data, including 8 s ! and below.

These models produced more accurate results for the high
rate fits, especially at larger stretch levels, even though the

Table 8 Mean square error of the

Finite Deformation
Viscoelasticity (MPa?)

Prony Reduced Polynomial
Spring (MPa?)

fits between 1 and 1.15 stretches Rate Prony Hoo Fatt Spring
) (MPa%)
0.01 3.9
0.02 3.6
0.1 2.1
0.2 0.6
2 12
8 8.8
20 5.7
60 5.9
200 259

400 31.6

1.9 0.2
1.6 0.2
0.4 0.4
0.1 0.9
2.7 2.3
8.2 10.4
13.5 44
29.2 4.8
335 5.7
23.0 12.4
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quality deteriorated somewhat at higher rates. The Hoo Fatt
spring performed better at lower stretches, as it was better able
to represent the rapid change in stiffness. The low rate fits
instead did not manage to capture the change in behaviour
of the material in the range considered. This caused them
not to represent accurately the small strain behaviour of the
fastest case, 8 s ', as the experimental curve began to show an
initial higher stiffness at this rate. The behaviour of the lower
rate data sets was also not captured accurately. These results
suggest that, ideally, a third Prony series model might be
needed for intermediate strain rates.

To overcome the Prony series limitations, a finite viscoelas-
ticity model was also derived following the method reported
by Huber and Tsakmakys [16]. This was shown to account for
the range of rates considered, with generally more accurate
results than the Prony series models, except for the rates of
0.1s'and0.2s". However, both the model derivation and
fitting procedure were significantly more complex and the
model required a large number of constants to be determined
(eight for the springs and seven for the damper). Also, as the
model is not currently included in commercially available fi-
nite element software, a user material subroutine would need
to be developed in order to apply it.

If the blast deformation phase of interest can be limited to a
specific small range of strain rates, it would be advantageous
to employ one of the Prony series viscoelastic models, as these
require fewer constants to be included and they are commonly
supported by FE software. However, if the rates of interest are
not known or are spread over a larger range, the finite visco-
elasticity model might well prove advantageous. In this case
the large number of constants to be fitted would still be smaller
than the total number of parameters for both the Prony series
models and the overall accuracy would be improved.

The combination of the models presented this this paper are
appropriate in modelling the complex behaviours of laminated
glass panes during blast loading and under extreme impact
loading when strain rates of interest cover a wide range.
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